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Abstrat. Graph relabelling systems have been introdued as a suitable model for expressing and studyingdistributed algorithms on a network of ommuniating proessors. We reall the basi ideas underlying thatmodel and we survey the main questions that have been onsidered and the main results that have been obtainedin that framework.Keywords. Distributed algorithm, Eletion, k-overing, Reognition, Loal omputations in graphs, Graphrelabelling system.1 IntrodutionGraph relabelling systems have been introdued in [2℄ as a suitable tool for expressing distributedalgorithms on a network of ommuniating proessors. In that model a network is regarded as a labelledgraph whose verties stand for proessors and edges stand for ommuniation links. Vertex labels areused for desribing the states of proessors and edge labels for desribing the states of ommuniationlinks. A omputation in a network then orresponds to a sequene of labels transformations leadingto a �nal labelled graph onsidered as the result of the omputation. Every elementary step insuh a omputation will be desribed by a graph relabelling rule expressing the modi�ation of theorresponding labels.Let us �rst illustrate this idea by onsidering a simple distributed algorithm whih omputes aspanning tree of a network. Assume that a unique given proessor is in an \ative" state (enodedby the label A), all other proessors being in some \neutral" state (label N) and that all links are insome \passive" state (label 0). The tree initially ontains the unique ative vertex. At any step of theomputation, an ative vertex may ativate one of its neutral neighbours and mark the orrespondinglink whih gets the new label 1. This omputation stops as soon as all the proessors have beenativated. The spanning tree is then obtained by onsidering all the links with label 1. Fig. 1desribes a sample omputation using this algorithm.An elementary step in this omputation may be depited as a relabelling step by means of thefollowing relabelling rule R whih desribes the orresponding label modi�ations:R: tA 0 tN tA 1 tA-An appliation of this relabelling rule on a given graph (or network) onsists in (i) �nding in thegraph a subgraph isomorphi to the left-hand-side of the rule (this subgraph is alled the ourreneof the rule) and (ii) modifying its labels aording to the right-hand-side of the rule.The relabelling sequene depited in Fig. 1 illustrates a sequential omputation sine the relabellingsteps are sequentially applied. A distributed view of this omputation an be obtained by onsideringthat relabelling steps onerning disjoint parts of the graph may be applied in any order, or evenonurrently (this is namely the ase for the steps (2) and (3), or (4) and (5) in Fig. 1).Among models related to those used here are omputations de�ned by Fiksel et al. [6℄ and byAngluin [1℄. The �rst one onsiders a synhronous model based on graphs equipped with idential1Most of the work reported here has been supported by the Esprit Basi Researh Working Group COMPUGRAPH,the Esprit Basi Researh Ation no 3166 (ASMICS) and the European Community Cooperation Ation IC-1000(ALTEC). 1



2 Graph relabelling systems: a general overview
tN tNtA tNtN tN00000 00 -(1) tN tNtA tAtN tN01000 00 -(2) tN tNtA tAtA tN01001 00 -(3) tN tAtA tAtA tN01001 10

-(4) tA tAtA tAtA tN01101 10 -(5) tA tAtA tAtA tA01101 11Figure 1: Computation of a spanning tree.�nite automata on all verties. An elementary omputation step then onsists in omputing the nextstate of eah proessor aording to its own state and the states of all its neighbours. The latter oneonsiders an asynhronous model. During an elementary omputation step, two neighbouring vertiesexhange their labels and then ompute their new ones.In this paper, we reall the basi ideas underlying the graph relabelling model and we surveythe main questions that have been onsidered and the main results that have been obtained in thatframework. The rest of this paper is organized as follows. In Setion 2 we give the basi de�nitions andnotation that will be used. In partiular, we de�ne two mehanisms, namely the notions of prioritiesand forbidden ontexts, whih allow to inrease the expressive power of graph relabelling systems byadding some loal ontrol on the appliability of the relabelling rules.One of the main motivations when introduing graph relabelling systems was to o�er a suitablemodel for studying and for proving properties of distributed algorithms. In Setion 3 we show howproof tehniques issued from rewriting theory an be useful in this ontext.Setion 4 is devoted to the study of the well-known eletion problem. Starting from a graph whoseall verties have the same label, a vertex is said to be eleted if, after some omputation, it is theunique vertex in the graph having some distinguished label. This problem has only solutions for somespeial graph lasses. We provide in partiular a graph relabelling system whih solves this problemfor the lass of so-alled prime graphs.From a more abstrat point of view, graph relabelling systems allow to express loal omputationson graphs. One of the main questions is then to haraterize those fontions that an be loallyomputed in a graph. These notions are presented in Setion 5.In Setion 6 we fous on the spei� reognition problem. A graph relabelling system is said toreognize a given lass of graphs if, starting from any uniformly labelled graph, it omputes a �nallabelling whih allows to deide whether the graph belongs to the lass or not. We review some graphlasses that an or annot be reognized in suh a way.In Setion 7 we introdue the notion of k-overing whih generalizes the lassial notion of graphovering. We show how this notion an be an useful tool for proving negative results onerning theapabilities of graph relabelling systems.Finally, in Setion 8 we deal with the so-alled termination detetion riteria whih is a majorparameter in distributed omputing theory.



Y. M�etivier and E. Sopena 32 Basi de�nitions and notationUnless otherwise stated, all the graphs onsidered in this paper are �nite, undireted, without multipleedges, loopless and onneted. For every graph G we denote by V (G) its set of verties and by E(G)its set of edges. If G and G0 are two graphs, we say that G0 is a subgraph of G if V (G0) � V (G) andE(G0) � E(G). If X is a subset of V (G), the subgraph of G indued by X has vertex set X andedge set the set of all edges whose both extremities belong to X. A homomorphism of a graph G to agraph H is a mapping ' from V (G) to V (H) suh that '(x)'(y) is an edge in H whenever xy is anedge in G. We say that ' is an isomorphism if ' is bijetive and '�1 is also a homomorphism. In thefollowing, a set of graphs whih is losed under isomorphism will be alled a lass of graphs.Let L be a set whose elements are alled labels. A L-labelled graph is a pair (G;�) where G is agraph and � a mapping from V (G)[E(G) to L. If (G;�) and (G0; �0) are two labelled graphs, we saythat (G0; �0) is a (labelled) subgraph of (G;�) if G0 is a subgraph of G and �0 is the restrition of �to V (G0) [ E(G0). We will denote by GL the set of all L-labelled graphs. An isomorphism betweentwo labelled graphs (G;�) and (H;�) is an isomorphism ' between G and H whih preserves thelabels, that is �(x) = �('(x)) for every x in V (G) and �(xy) = �('(x)'(y)) for every xy in E(G).An ourrene of (G;�) in (H;�) is an isomorphism ' between G and a subgraph (H 0; �0) of (H;�).We will then write '(G;�) = (H 0; �0).A (graph) relabelling rule is a triple R = (GR; �R; �0R) suh that (GR; �R) and (GR; �0R) are twolabelled graphs. The labelled graph (GR; �R) (resp. (GR; �0R)) is alled the left-hand side (resp.right-hand side) of R.A graph relabelling system (GRS for short) is a triple R = (L;I; P ) where L is a set of labels,I a subset of L alled the set of initial labels and P a �nite set of relabelling rules. A R-relabellingstep is a 5-tuple (G;�;R; '; �0) suh that R is a relabelling rule in P and ' is both an ourrene of(GR; �R) in (G;�) and an ourrene of (GR; �0R) in (G;�0). Intuitively speaking, the labelling �0 of Gis obtained from � by modifying all the labels of the elements of '(GR; �R) aording to the labelling�0R. Suh a relabelling step will be denoted by (G;�) �!R;' (G;�0). A R-relabelling sequeneis a tuple (G;�0; R0; '0; �1; R1; '1; �2; : : : ; �n�1; Rn�1; 'n�1; �n) suh that for every i, 0 � i < n,(G;�i; Ri; 'i; �i+1) is a R-relabelling step. The existene of suh a relabelling sequene will be denotedby (G;�0) �!�R (G;�n).A labelled graph (G;�) is said to beR-irreduible if there exists no ourrene of (GR; �R) in (G;�)for every relabelling rule R in P . For every labelled graph (G;�) in GI we denote by IrredR(G;�)the set of all R-irreduible labelled graphs (G;�0) suh that (G;�) �!�R (G;�0). Intuitively speaking,the set IrredR(G;�) ontains all the �nal labellings that an be obtained from a I-labelled graph(G;�) by applying relabelling rules in P and may be viewed as the set of all the possible results ofthe omputation enoded by the system R.Example 1 The algorithm introdued in Setion 1 may be enoded by the graph relabelling systemR1 = (L1;I1; P1) de�ned by L1 = fN;A;0;1g, I1 = fN;A;0g, and P1 = fRg where R is thefollowing relabelling rule: R: tA 0 tN tA 1 tA-Fig. 1 desribes a sample R1-relabelling sequene.The notion of relabelling sequene de�ned above obviously orresponds to a notion of sequentialomputation. We an de�ne a more distributed way of omputing by saying that two relabelling stepsonerning \disjoint" ourrenes may be applied in any order, or even onurrently. It is easy tohek that if (G;�i; Ri; 'i; �i+1) and (G;�i+1; Ri+1; 'i+1; �i+2) are two labelling steps suh that 'i(G)and 'i+1(G) do not interset then (G;�i; Ri+1; 'i+1; �0) and (G;�0; Ri; 'i; �i+2) are two relabellingsteps leading to the same resulting labelled graph (G;�i+2). More generally, any two relabellingsequenes suh that the latter one may be obtained from the former one by a suession of suh\ommutations" lead to the same resulting graph. Hene, our notion of relabelling sequene may be



4 Graph relabelling systems: a general overview
tN tNtA tNtN tN00000 00 - tN tNtM tAtN tN01000 00 - tN tNtM tMtN tA01000 01 - tN tNtM tMtA tM11000 01 -
tN tNtM tMtF tA11000 01 - tN tNtM tAtF tF11000 01 - tN tNtA tFtF tF11000 01 - tA tNtM tFtF tF11010 01 -
tM tAtM tFtF tF11110 01 - tA tFtM tFtF tF11110 01 - tF tFtA tFtF tF11110 01Figure 2: A sample R2-relabelling sequene.regarded as a serialization [14℄ of some distributed omputation. This model is learly asynhronous:several relabelling steps may be done at the same time but we do not demand all of them to be done.In the sequel we will essentially deal with sequential relabelling sequenes but the reader should keepin mind that suh sequenes may be done in a distributed way.In order to reah a satisfatory expressive power, we introdue some loal ontrol mehanisms.These mehanisms allow us to restrit in some sense the appliability of relabelling rules.A graph relabelling system with priorities (PGRS for short) is a 4-tuple R = (L;I; P;>) suh that(L;I; P ) is a graph relabelling system and > is a partial order de�ned on the set P alled the priorityrelation. A R-relabelling step is then de�ned as a 5-tuple (G;�;R; '; �0) suh that R is a relabellingrule in P , ' is both an ourrene of (GR; �R) in (G;�) and an ourrene of (GR; �0R) in (G;�0) andthere exists no ourrene '0 of a relabelling rule R0 in P with R0 > R suh that '(GR) and '(GR0)interset in G (that is V ('(GR)) \ V ('(GR0 )) = �). The notion of relabelling sequene is de�ned aspreviously.Example 2 Let R2 = (L2;I2; P2; >2) be the PGRS de�ned by L2 = fN;A;M; F;0;1g, I2 =fN;A;0g, P2 = fR1; R2g where R1 and R2 are the following relabelling rules:R1: tA 0 tN tM 1 tA-R2: tM 1 tA tA 1 tF-with the priority relation: R1 >2 R2.Suppose that (G;�) is a labelled graph ontaining exatly one A-labelled vertex. As before, thissystem omputes a spanning tree of G but in a stritly sequential way, using the well-known depth-�rst searh algorithm: the (unique) ative vertex, with label A, may ativate one of its N-labelledneighbours and beome marked (label M). When an ative vertex has no N-labelled neighbour, itreativates its \father" (whih orresponds to the unique M-labelled vertex to whih it is linked by a1-labelled edge), and beomes F-labelled. Fig. 2 shows a sample R2-relabelling sequene.Let (G;�) be a labelled graph. A ontext of (G;�) is a triple (H;�;  ) suh that (H;�) is alabelled graph and  an ourrene of (G;�) in (H;�). A relabelling rule with forbidden ontexts
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tN tNtA tNtN tN00000 00 - tN tNtA tA'tN tN01000 00 - tN tNtA tA'tA' tN01001 00 - tN tA'tA tA'tA' tN01001 10 -
tA' tA'tA tA'tA' tN01101 10 - tF tA'tA tA'tA' tN01101 10 - tF tFtA tA'tA' tN01101 10 - tF tFtA tA'tA' tA'11101 10 -
tF tFtA tA'tA' tF11101 10 - tF tFtA tFtA' tF11101 10 - tF tFtA tFtF tF11101 10Figure 3: A sample R3-relabelling sequene.is a 4-tuple R = (GR; �R; �0R; FR) suh that (GR; �R; �0R) is a relabelling rule and FR is a �niteset of ontexts of (GR; �R). A graph relabelling system with forbidden ontexts (FCGRS for short)is a triple R = (L;I; P ) de�ned as a GRS exept that the set P is a set of relabelling rules withforbidden ontexts. A R-relabelling step is a 5-tuple (G;�;R; '; �0) suh that R is a relabelling rulewith forbidden ontexts in P , ' is both an ourrene of (GR; �R) in (G;�) and an ourrene of(GR; �0R) in (G;�0), and for every ontext (Hi; �i;  i) of (GR; �R), there is no ourrene 'i of (Hi; �i)in (G;�) suh that 'i( i(GR; �R)) = '(GR; �R). In other words, a relabelling rule with forbiddenontexts may be applied on some ourrene if and only if this ourrene is not \inluded" in anourrene of some of its forbidden ontexts.Example 3 LetR3 = (L3;I3; P3) be the FCGRS de�ned by L3 = fN;A;M; F;0;1g, I3 = fN;A;0g,P3 = fR1; R2; R3g where R1, R2 and R3 are the following relabelling rules with forbidden ontexts:R1: tA 0 tN tA 1 tA'- , �R2: tA' 0 tN tA' 1 tA'- , �R3: tA' tF- , tA'0 tN tA'AAAA1 ���� 1tA' tA' tA'AAAA1 ���� 1tA tA'The unique vertex of the left-hand side of the rule R3 is assoiated with the top vertex of its forbiddenontexts. Roughly speaking, the rule R3 means that a A0-labelled vertex may beome F-labelled if ithas noN-labelled neighbour (in that ase rule R2 should be applied) and at most one A- or A0-labelledneighbour (it means that the A0-labelled vertex is a leaf of the omputed spanning tree).This system provides a distributed implementation of the sequential algorithm enoded in Exam-ple 2 (we may have several ative verties, with label A or A0, at the same time). Fig. 3 shows asample R3-relabelling sequene.



6 Graph relabelling systems: a general overviewDue to the ontrol mehanism on the appliability of relabelling rules in PGRSs and FCGRSs,only relabelling steps onerning \far enough" ourrenes may be applied onurrently [11℄. Roughlyspeaking, in order to hek whether a relabelling rule may be applied on a given ourrene or notit is neessary to onsider some \ontrol area" surrounding this ourrene. Two relabelling stepsare then \independant" if their orresponding ontrol areas do not interset. The reader should notehere that the diameter of this ontrol area is bounded by some onstant only depending on the graphrelabelling system.The omparison between the expressive power of PGRSs and FCGRSs, together with some othertypes of GRSs, has been done in [11℄. In partiular, it has been proved that PGRSs and FCGRSs areequivalent: for every PGRS (resp. FCGRS) there exists a FCGRS (resp. PGRS) ahieving the sameomputation. In the rest of the paper we will thus indi�erently provide examples under the PGRS orFCGRS form.3 Proof tehniquesGraph relabelling systems provide a formal model for expressing distributed algorithms. The aim ofthis Setion is to show that this model is suitable for studying and proving properties of distributedalgorithms.A graph relabelling system R is noetherian if there is no in�nite R-relabelling sequene startingfrom a graph with initial labels in I. Thus, if a distributed algorithm is enoded by a noetheriangraph relabelling system then this algorithm always terminates. In order to prove that a given systemis noetherian we generally use the following tehnique. Let (S;<) be a partially ordered set with noin�nite dereasing hain (that is every dereasing hain x1 > x2 > : : : > xn > : : : in S is �nite). Wesay that < is a noetherian order ompatible with R if there exists a mapping f from GL to S suh thatfor every R-relabelling step (G;�;R; '; �0) we have f(G;�) > f(G;�0). It is not diÆult to see that ifsuh an order exists then the system R is noetherian: sine there is no in�nite dereasing hain in S,there annot exist any in�nite R-relabelling sequene.In order to prove the orretness of a graph relabelling system, that is the orretness of analgorithm enoded by suh a system, it is useful to exhibit (i) some invariant properties assoiatedwith the system (by invariant property, we mean here some property of the graph labelling that issatis�ed by the initial labelling and that is preserved by the appliation of every relabelling rule) and(ii) some properties of irreduible graphs. These properties generally allow to derive the orretnessof the system.Let us illustrate these tehniques by onsidering the simple graph relabelling system R1 given inExample 1.Termination: Let f be the mapping from GL1 to the set of natural integers IN whih assoiates witheah L1-labelled graph the number of its N-labelled verties. Observing that this number stritlydereases when we apply the relabelling rule R1 we get that (IN; >) is a noetherian order ompatiblewith the system R1. Thus R1 is a noetherian system.Corretness: Let (G;�) be a L1-labelled graph and P1, P2 be the following properties:P1 : Every 1-labelled edge is inident with two A-labelled verties,P2 : The subgraph of G made of the 1-labelled edges and the A-labelled verties has no yle.Every I1-labelled graph satis�es P1 and P2 sine it has no 1-labelled edge. Moreover, these twoproperties are learly preserved when we apply the rule R1. Thus, P1 and P2 are invariant withrespet to R1.Let now (G;�) be any I1-labelled graph having at least one A-labelled vertex and (G;�0) be alabelled graph in IrredR1(G;�). Considering the relabelling rule R1, (G;�0) annot have any N-labelled vertex. From property P2, we get that the subgraph of (G;�0) indued by the 1-labelled edgeshas no yle. If (G;�) has exatly one A-labelled vertex we thus obtain a spanning tree of G. If (G;�)



Y. M�etivier and E. Sopena 7has more than one A-labelled vertex we obtain a spanning forest having as many omponents as thenumber of these initially A-labelled verties.The reader interested in more substantial examples is referred to [9℄. In partiular, the graphrelabelling systems introdued in Examples 2 and 3 are onsidered there.The omplexity of a distributed algorithm enoded by a graph relabelling system an also bestudied by using lassial tehniques from rewriting theory. The spae omplexity is well-aptured bythe number of labels that are used, and the (sequential) time omplexity by the length of a relabellingsequene. The degree of parallelism may also be measured by onsidering the ratio between the lengthof a parallel relabelling sequene and the length of a sequential relabelling sequene. Of ourse, thisratio strongly depends on the spei� topology of the graph under onsideration.4 The eletion problemThe eletion problem is one of the paradigms of the theory of distributed omputing [22℄. Consideringa network of proessors we say that a given proessor p has been eleted when the network is in someglobal state suh that the proessor p knows that it is the eleted proessor and all other proessorsknow that they are not. Using our terminology, it means that we get a labelling of the graph in whiha unique vertex has some distinguished label.This problem may be onsidered under various assumptions [22℄: the network may be direted ornot, the network may be anonymous (all verties have the same initial label) or not (every two distintverties have distint initial labels), all verties, or some of them, may have some spei� knowledgeon the network or not (suh as the diameter of the network, the total number of verties or simply anupper bound of these parameters), et.We �rst illustrate this problem with a sample FCGRS eleting a vertex in a tree.Example 4 Let R4 = (L4;I4; P4) be the FCGRS de�ned by L4 = fN;F;E, 0g, I4 = fN;0g andP4 = fR1; R2g where R1, R2 are the following relabelling rules with forbidden ontexts:R1: tN tN0 - tF tN0 , tN tN0tN0R2: tN - tE , tNtN0Let us all a pendant vertex any N-labelled vertex having exatly one N-labelled neighbour. The ruleR1 then onsists in \utting" a pendant vertex in the tree, this ut vertex beoming F-labelled. Thus,if (G;�) is a labelled tree whose all verties are N-labelled and all edges are 0-labelled then this utingproedure leads to a unique N-labelled vertex whih beomes eleted thanks to the rule R2.It is not diÆult to observe that every vertex in the tree may be eleted by this algorithm. Apreise analysis of this algorithm is proposed in [18℄. In partiular, it is proved that there exist one ortwo verties having the highest probability of being eleted, namely the medians of the graph (reallhere that a vertex is alled a median if the sum of the distanes of this vertex to all other verties inthe graph is minimum).The following algorithm has been proposed by Mazurkiewiz [15℄ and is designed for oriented rings(that is networks whose orresponding graph is a direted yle) having a prime number of verties.



8 Graph relabelling systems: a general overview
t� t�t���� AAA��� AAU� - t� tAt���� AAA��� AAU� - t� tAtA��� AAA��� AAU� - tB tAtA��� AAA��� AAU� - tB tAtAB��� AAA��� AAU� -
tBA tAtAB��� AAA��� AAU� - tBA tAAtAB��� AAA��� AAU� - tBA tAAtABA��� AAA��� AAU� - tBA tAABtABA��� AAA��� AAU� - tBAA tAABtABA��� AAA��� AAU�Figure 4: Eletion in a prime oriented ring
t t t ttt����HHHHA prime tree t t t t tt

2-deomposition of a treeFigure 5: Prime and not prime graphs.Example 5 Let L be the set of words on the alphabet fA;Bg with length at most n, n � 3. Let �denotes the empty word, jmj denotes the length of a word m and mi denote the ith letter of the wordm. Consider the following rules:R1: t� - t� t� - tA-For every non-empty word m:R2(m): tm - t� tm - tB-For every words m and x with 0 < jxj < n and jxj � jmj:R3(m;x): tm - tx tm - txmjxj-Mazurkiewiz proved that if (G;�) is a direted yle on n verties, n being a prime number,whose all verties are initially �-labelled then this algorithm always terminates and leads to a �nallabelling suh that (i) all verties are labelled by distint words of length n, (ii) all these labels areonjugate of some word w (reall that two words u and v are onjugate if u = u1u2 and v = u2u1).The eleted vertex is then the vertex having the minimum label with respet to the lexiographiordering. Therefore, every vertex may know whether it has been eleted or not by onsidering the setof all the onjugates of its own �nal label. Fig. 4 shows a sample exeution of this algorithm on anoriented triangle. The vertex with �nal label AAB is the eleted vertex.Observe that this algorithm requires that every vertex knows the total number of verties in theyle, this number being used in the de�nition of the relabelling rules.The eletion problem has been onsidered in the undireted ase in [19℄. For instane, it has beenproved that the eletion problem an be solved for the so-alled prime graphs, provided that everyvertex knows the total number of verties in the graph. Let G be an undireted graph and r be apositive integer. A r-deomposition of G is a spanning forest of G whose all onneted omponents



Y. M�etivier and E. Sopena 9(trees) ontain exatly r verties. A graph having n verties is then said to be prime if it only admits 1-and n-deompositions. Fig. 5 illustrates this notion of primality. The lass of prime graphs obviouslyontains all the graphs having a prime number of verties.An eletion algorithm for the lass of prime graphs an then be intuitively desribed as follows: weassoiate with eah vertex x of the graph a weight denoted by w(x). Initially, the weight of every vertexis 1. The algorithm maintains a spanning forest of the graph whose every tree has a distinguishedvertex alled the leader of the tree. The weight of this leader equals the size of the tree. Initially,every vertex onstitutes a tree of the spanning forest and it is the leader of this tree. We say that twotrees T1 and T2 of the spanning forest are adjaent if there exists an edge x1x2 suh that x1 is a vertexin T1 and x2 is a vertex in T2. The algorithm then proeeds as follows:1. If two leaders with weight 1 are adjaent then they are ombined into a unique tree; one of thembeomes the new leader (with weight 2), the weight of the other one is set to 0.2. A leader L with a weight w(L) � 2 tries to �nd an adjaent tree whose leader L0 is suh thatw(L) > w(L0). If it �nds one, then the two trees are ombined into a unique tree with leader L.The weight of L beomes the size of the new tree and the weight of L0 is set to 0.If the graph is prime, it is not diÆult to hek that this algorithm stops when the spanning forestontains a unique tree. The leader of this tree is then the eleted vertex. The omplete desription ofthis algorithm an be found in [19℄.5 Loal omputations in graphsOne of the main harateristis of distributed algorithms is the loality of the omputation [8, 22℄. Ev-ery omputation step ourring on some proessor only depends on the loal ontext of this proessor.This loality onept is aptured via the notion of loal graph relabelling relations [13℄.Let G be a graph, x a vertex in V (G) and k some positive integer. We denote by BG(x; k) theball of radius k entered at x, that is the subgraph of G indued by all verties that are at distane atmost k from x (reall that the distane between two verties is the length of a shortest path linkingthese two verties). A graph relabelling relation (over L) is a binary relation R de�ned on the setof L-labelled graphs suh that every pair in R is of the form ((G;�); (G;�0)). Thus, two labelledgraphs in relation only di�er on their labelling funtion. We will write (G;�)R(G;�0) whenever thepair ((G;�); (G;�0)) is in R. A L-labelled graph (G;�) is said to be R-irreduible if there exists no(G;�0) suh that (G;�)R(G;�0). We will denote by R� the reexive and transitive losure of R and,for every L-labelled graph (G;�), by IrredR(G;�) the set of R-irreduible graphs (G;�0) suh that(G;�)R�(G;�0).We say that a graph relabelling relation R is k-loal for some positive integer k if for every pair((G;�); (G;�0)) in R, there exists some vertex x in V (G) suh that � and �0 oinide on V (G) nV (BG(x; k)) [ E(G) n E(BG(x; k)). Intuitively speaking, it means that � and �0 only di�er on aentered ball of radius at most k. A graph relabelling relation is loal if it is k-loal for some k. Agraph relabelling relation R is k-loally generated if it an be omputed for any graph as soon as itis known on the set of graphs with diameter at most 2k. More formally, if (G;�), (G0; �0), (H;�),(H 0; �0) are four labelled graphs, BG(x; k) and BH(y; k) two isomorphi balls in G and H respetivelysuh that (i) � and �0 oinide on V (G) n V (BG(x; k)) [ E(G) n E(BG(x; k)), (ii) � and �0 oinideon V (H) n V (BH(y; k))[E(H) nE(BH(y; k)) and (iii) � and � oinide respetively on BG(x; k) andBH(y; k) then (G;�)R(G0; �0) if and only if (H;�)R(H 0; �0). A graph relabelling relation is loallygenerated if it is k-loally generated for some k.Graph relabelling systems (GRSs, PGRSs, FCGRSs) are thus speial ases of loally generatedgraph relabelling relations. One of the main questions in that framework is \what an be omputed bymeans of loally generated graph relabelling relations ?". This question is obviously strongly related tothe general problem of haraterizing those funtions that an be omputed by distributed algorithmsin an asynhronous way (see e.g. [20℄). The next Setion is devoted to that question and disuss



10 Graph relabelling systems: a general overviewthe problem of haraterizing those lasses of graphs that an be reognized by means of suh loalomputations.6 The reognition problemThe problem adressed in this setion an be informally desribed as follows: let F be some lass of(unlabelled) graphs. We will say that this lass an be loally reognized if there exists some graphrelabelling system or, more generally, some loally generated graph relabelling relation, whih, startingfrom any uniformly labelled graph (G;�0) (that is all verties and edges have the same label), leadsto some �nal labelling that allows to deide whether G belongs to the lass F or not.More formally, we de�ne a graph reognizer as a pair (R;K) where R is a graph relabelling relationand K a lass of labelled graphs. The set of labelled graphs reognized by (R;K) is then de�ned asthe set of labelled graphs (G;�) suh that IrredR(G;�) \ K 6= �. Suh a reognizer is said to bedeterministi if (i) R is noetherian and (ii) for every labelled graph (G;�), either IrredR(G;�) � Kor IrredR(G;�) \ K = �.We are essentially interested in graph reognizers where the relation R is loally generated (withthe partiular ase of graph relabelling systems) and the set K is de�ned in some \simple way". In [13℄this set K is de�ned by means of a so-alled �nal ondition, that is a logial formula indutively de�nedas follows: (i) for every label ` 2 L, ` is a formula and (ii) if ' and  are formulas then so do :',' _  and ' ^  . Now, for ` 2 L, a labelled graph satis�es the formula ` if it ontains at least one`-labelled omponent, and by indution, it satis�es ' _  if it satis�es ' or  and so on in the usualway. Thus, suh �nal onditions allow to verify the presene or the absene of some spei� labelsbut not to ount the number of suh labels. We will denote by K(') the set of labelled graphs whihsatisfy the formula '.We �rst illustrate this reognition mehanism with a tree reognizer given in [9℄.Example 6 Let R5 = (L5;I5; P5; >5) be the PGRS de�ned by L5 = fN; I;F;0g, I5 = fN;0g,P5 = fR1; R2; R3; R4; R5g with the rules:R1: tN 0 tN 0 tN tN 0 tI 0 tN-R2: tI 0 tN 0 tN tI 0 tI 0 tN-R3: tI 0 tN 0 tI tI 0 tI 0 tI-R4: tN 0 tN tN 0 tF-R5: tI 0 tN tN 0 tF-and the priority relation: fR1; R2; R3g >5 fR4; R5g.Let now ' be the �nal ondition ' = :I. It an be proved that if (G;�) is a labelled graph whose allverties are N-labelled and all edges are 0-labelled then every labelled graph (G;�0) in IrredR5(G;�)has no I-labelled vertex, and thus satis�es ', if and only if G has no yle. Hene, the pair (R5;K('))is a deterministi reognizer for the lass of trees.In [10, 13℄ the reognizable lasses of graphs are ompared to the lasses of graphs de�nable bylogi formulas (see [4℄ for the notion of de�nability by logi formulas). In partiular, it is proved that(deterministially or not) reognizable lasses of graphs are not omparable with lasses of graphsde�nable by logi formulas expressed in �rst-order logi (FOL), monadi seond-order logi (MSOL)or seond-order logi (SOL). The ase of the so-alled 1-graphs, that is graphs having a distinguished



Y. M�etivier and E. Sopena 11Table 1: Reognizable and not-reognizable graph lassesGraph properties Graphs 1-GraphsFOLexatly one `-labelled vertex No Yesk-regular Yes YesMSOLbipartite No Yesk-olorable (k > 2) No ?hamiltonian No Yesayli Yes YesSOLeven number of verties No Yes
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The graph HFigure 6: The graph G is a 2-overing of the graph H.vertex is also onsidered. Table 1 gives some sample graph lasses or 1-graph lasses that an orannot be deterministially reognized.The lass of graphs having an even number of verties an be undeterministially reognized butannot be deterministially reognized. The lass of graphs having an odd number of verties annotbe reognized, even in an undeterministi way. Thus, the set of deterministially reognizable lasses ofgraphs is not losed under taking omplement and is stritly inluded in the set of undeterministiallyreognizable lasses of graphs. However, the set of deterministially reognizable lasses of graphs islosed under union and intersetion [13℄.The majority problem has been onsidered in [12℄. It is proved that the lass of graphs havingstritly more A-labelled verties than B-labelled verties is deterministially reognizable. However,for every positive integer m, the lass of graphs suh that the di�erene between the number of A-labelled verties and the number of B-labelled verties is at most m annot be reognized, even in anundeterministi way.The main question here is to �nd some haraterization of the lasses of graphs that an bereognized by loally generated graph relabelling relations. Up to now, this question is still an openproblem.7 k-overings of graphsInspired by tehniques used by Angluin [1℄ and Fisher et al. [7℄, we de�ne the notion of k-overing,introdued in [13℄, whih generalizes the lassial notion of overing from graph theory. This notionis useful for proving negative results onerning loally generated graph relabelling relations.



12 Graph relabelling systems: a general overviewLet k be a positive integer. We say that a labelled graph (G;�) is a k-overing of a labelled graph(H;�) via a mapping  from V (G) to V (H) if  is a surjetive homomorphism suh that for every vertexx of V (G), the restrition of  to BG(x; k) indues an isomorphism between BG(x; k) and BH((x); k)whih preserves vertex and edge labels. Fig. 6 shows two sample (unlabelled for simpliity) graphs Gand H suh that G 2-overs H. The numbering of the verties de�nes the orresponding 2-overing .The notion of k-overing is related to k-loally generated graph relabelling relations by the followingresult:Theorem 7 [13℄ If a labelled graph (G;�) is a k-overing of a labelled graph (H;�) then everyk-loally generated graph relabelling relation R that reognizes (H;�) also reognizes (G;�). If Rreognizes deterministially then (G;�) is reognized if and only if (H;�) is reognized.This result follows from the easy observation that if (H;�)R(H;�0) then there exists a labellingfuntion �0 suh that (G;�)R�(G;�0) and (G;�0) k-overs (H;�0). If �0 modi�es the entered ballBH(x; k), then �0 is obtained from � by reproduing these modi�ations on the orresponding inverseimage �1(BH(x; k)) (whih is a �nite set of balls isomorphi to BH(x; k)), where  stands for thek-overing of (H;�) by (G;�).Sine there exist planar graphs with non-planar k-overings for every k, we get that the lass ofplanar graphs annot be reognized, even in an undeterministi way [13℄.Using this notion of k-overing, it is proved in [5℄ that every non-trivial minor-losed lass of graphsontaining at least one graph with at least two yles annot be reognized by a k-loally generatedgraph relabelling relation.A standard method for produing overings of a graph G is to onsider the kroneker produt of Gby the omplete graph K2 (reall that the kroneker produt of G and H is the graph with vertex setV (G) � V (H) and with edge set those pairs ffx; yg; fz; tgg with fx; zg 2 E(G) and fy; tg 2 E(H)).This onstrution has been studied in [3℄. By onsidering properties of this onstrution it has beenproved in partiular that the lasses of graphs having a ut-vertex or a ut-edge, of graphs with trivialautomorphism group, of non-bipartite or non-planar graphs are not reognizable by loally generatedgraph relabelling relations, even in an undeterministi way.In [21℄ Reidemeister gave an elegant method for onstruting all the overings of a graph. Up tonow, no suh onstrution method is known in the ase of k-overings.8 The termination detetion problemAn important property in distributed omputing theory is the apability, for a given vertex, to detetthe termination of the algorithm [22℄. To be really e�etive, this detetion should be done in somesimple way, namely by examining the labels of the \losed neighbourhood" of a vertex.More formally, we will say that a graph relabelling system R has the k-loal termination detetionproperty (k-LTDP for short) if (i) there exists a (not neessarily �nite) set B of triples (Bi; �i; xi) suhthat (Bi; �i) is a labelled graph and xi a vertex in V (Bi) suh that xi is at distane at most k fromany other vertex in V (Bi), and (ii) for every labelled graph (G;�), there exists a vertex x in V (G), apositive integer k0 � k and an isomorphism between BG(x; k0) and some (Bi; �i; xi) whih maps x toxi if and only if the graph (G;�) is R-irreduible.Let us illustrate this notion on the three examples given in Setion 2. The graph relabelling systemR1 (see Example 1) is not k-LTDP, for every k. Every N-labelled vertex knows that the omputationis not terminated, but a A-labelled vertex annot detet the termination sine the omputation maybe still \ative" in a part of the graph whih is unboundedly far from this vertex. On the ontrary,onsidering the PGRS R2 (see Example 2) and the FCGRS R3 (see Example 3), it is easy to hekthat in both ases, if a A-labelled vertex is suh that all its neighbours are F-labelled, then the graphis neessarily irreduible. Thus, the systems R2 and R3 are both 1-LTDP.In [17℄ it is proved that if C is a lass of labelled graphs, (G;�) is a labelled graph and (H;�) is aonneted non-trivial k-overing of (G;�) suh that both (G;�) and (H;�) belong to the lass C, then
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