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e.Abstra
t. Homomorphisms between graphs are studied as a generalization of 
olorings and of 
hromati
number. We investigate here homomorphisms from orientations of undire
ted planar graphs to graphs (notne
essarily planar) 
ontaining as few digons as possible. We relate the existen
e of su
h homomorphisms togirth and it appears that these questions remain interesting even if we insist the girth ofG is large, an assumptionwhi
h makes the 
hromati
 number easy to 
ompute. In parti
ular we prove that every orientation of any largegirth planar graph is 5-
olorable and 
lassify those digraphs on 3, 4 and 5 verti
es whi
h 
olor all large girthoriented planar graphs.Keywords. Graph homomorphisms, Oriented planar graphs, Girth.1 Introdu
tion and statement of resultsGiven graphs G = (V;E) and G0 = (V 0; E0) a homomorphism from G to G0 is any mapping f : V ! V 0satisfying [x; y℄ 2 E =) [f(x); f(y)℄ 2 E0:Here the bra
kets on both sides of the impli
ation means the same thing : either an edge or an ar
.The existen
e of a homomorphism from G to G0 will be denoted by G! G0.Homomorphisms are 
learly related to the 
hromati
 number of undire
ted graphs (an undire
tedgraph G is k-
olorable if and only if there exists a homomorphism from G to Kk, the 
omplete graphon k verti
es) and this led to an extensive resear
h (see e.g. [2, 3, 8, 9, 10, 11, 15, 16, 18℄). For thisreason we will often 
all 
olors the verti
es of the target graphs (i.e. homomorphi
 images).From the homomorphism point of view there is a big di�eren
e between dire
ted and undire
tedgraphs. While for undire
ted graphs the 
omplexity of the problem is well 
aptured by the 
hromati
number (given a graph G, de
iding whether G has a homomorphism to G0 is polynomial if andonly if G0 is bipartite [9℄) for dire
ted graphs the problem is mu
h harder and presently seeminglyuntra
table. The present paper is a 
ontribution to this area. We 
onsider (unless otherwise stated)oriented graphs, that is dire
ted graphs not 
ontaining two opposite ar
s. Oriented graphs are thusorientations of undire
ted graphs.Motivated by 3-, 4- and 5-
olor theorems for (undire
ted) planar graphs [1, 6, 19℄, we study similarquestions for oriented graphs. It appears that these questions remain interesting even if we insist thegirth of G is large, an assumption whi
h makes the 
hromati
 number easy to 
ompute. This is themain motivation of this paper.More pre
isely, we 
onsider the following problems :1This work has been done while the author was visiting the University of Bordeaux I and was partly supported byGA�CR 2167.2With the support of the European Community Cooperative A
tion IC-1000 ALTEC.3With the support of the European Basi
 Resear
h A
tion ESPRIT no 3166 ASMICS and the European CommunityCooperative A
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2 Colorings and girth of oriented planar graphs
1

3 2

1

3 2

X X4 5

1

3 2

X

1

3 2

X1 2

1

3 2

X 3Figure 1: Target digraphs on three verti
esA. The Oriented Coloring Problem : Given an oriented graph G = (V;A), �nd the smallestnumber of verti
es of an oriented graph G0 = (V 0; A0) for whi
h G! G0. This number will be denotedhere ~�(G) and 
alled the oriented 
hromati
 number of G.Observe that if we 
onsider symmetri
 digraphs as target graphs this number is then the usual
hromati
 number. Another motivation stems from a re
ent paper [17℄ where it was proved that ~�(G)is bounded by a 
onstant for every planar graph G. In fa
t it was proved that ~�(G) � 80 for everyplanar graph G and presently this is the best known result.The oriented 
oloring problem was further studied in [18℄ where it was proved that orientationsof k-trees and of bounded degree graphs have bounded oriented 
hromati
 number. In parti
ular, themaximum oriented 
hromati
 number of a k-tree is determined up to a log k fa
tor. Also, examplesof planar graphs G with ~�(G) � 16 are presented.The se
ond problem whi
h we 
onsider is :B. The Girth Problem : Given an integer g > 2, determine the quantity~�(g) = maxf ~�(G) ; G planar, girth(G) = g gWe prove the followingTheorem 1(1) For every g, ~�(g) � 5.(2) ~�(7) > 5.(3) If g � 16 then ~�(g) = 5.(4) If g � 11 then ~�(g) � 7.(5) If g � 7 then ~�(g) � 12.(6) If g � 6 then ~�(g) � 32.We view (3) as yet another 5-
olor theorem (for high girth planar graphs).Thus it is 
lear that for 
oloring (i.e. homomorphism) of oriented planar graphs of (even) largegirth with at most 4 
olors one needs some oppositely oriented edges. In this 
ontext, we studied in agreater detail 
elebrated Gr�otzs
h Theorem [6℄ (see also [19℄ for a remarkably short proof), whi
h statesthat every undire
ted planar graph with no triangle is 3-
olorable. Consider the digraphs X1; : : : ;X5depi
ted on Figure 1. We prove :Theorem 2(1) For every g and every X 2 fX1; : : : ;X4g, there exists a graph GX;g with girth g su
h that GX;g != X.(2) Let G be an oriented planar graph with girth(G) � 16 then G! X5.(3) There exists a graph G with girth 8 su
h that G!= X5.This result shows in parti
ular that in order to obtain a 3-
olor theorem for oriented planar graphswith a large girth we need to use a target graph having at least two symmetri
al edges.How many symmetri
al edges are needed for 4-
olor theorem ? Under no girth assumption it is
lear that all edges need to be symmetri
. The following theorem relates the girth parameter to the
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esexisten
e of homomorphisms to ea
h digraph with four verti
es. Note that the results obtained fora digraph H also hold for the digraph H�1, obtained from H by reversing all the edges. Thus letY1; : : : ; Y7 be the digraphs depi
ted on Figure 2. Then we have :Theorem 3(1) For every g and every Y 2 fY1; Y2g there exists an oriented planar graph GY;g with girth g su
hthat GY;g != Y .(2) If G is an oriented planar graph with girth g � 26 then G! Y3, G! Y4 and G! Y5.(3) If G is an oriented planar graph with girth g � 16 then G! Y6.(4) If G is an oriented planar graph with girth g � 11 then G! Y7.Thus at least one symmetri
 edge is needed for a high girth oriented 4-
olor theorem. But this isnot suÆ
ient (see Y2) and two symmetri
 edges are suÆ
ient in general.By Theorem 1(3) for an oriented 5-
olor theorem we do not need any symmetri
 edge. Below wegive the full dis
ussion of this fa
t for tournaments on �ve verti
es. Let Z1; : : : ; Z5 be the tournamentsdepi
ted on Figure 3 (as stated below, we do not have to 
onsider those tournaments having no4-
y
le). Then the following holds :Theorem 4(1) If Z is a tournament with either no 3-
y
le or no 4-
y
le then for every g there exists a planaroriented graph GZ;g with girth g su
h that GZ;g != Z.(2) For every g and every Z 2 fZ1; Z2g there exists an oriented planar graph GZ;g with girth g su
hthat GZ;g != Z.(3) If G is an oriented planar graph with girth g � 31 then G! Z3.(4) If G is an oriented planar graph with girth g � 26 then G! Z4.(5) If G is an oriented planar graph with girth g � 16 then G! Z5.(6) For every Z 2 fZ1; : : : ; Z5g there exists an oriented planar graph GZ;7 of girth 7 su
h that GZ;7 != Z.In the next se
tion we prove the positive parts of Theorems 1, 2, 3 and 4. In Se
tion 3 we givesome examples thus proving the negative parts of the above statements. Se
tion 4 
ontains some openproblems.One last note regarding oriented 
oloring of graphs with large girth. Let G = (V;E) be anundire
ted graph. Subdivide ea
h edge of G by a single vertex and orient the edges su
h that ea
hnew (subdivision) vertex v satis�es d+(v) = d�(v) = 1. Call the resulting oriented graph G�. Then we
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es
learly have ~�(G�) � �(G). Note that the graph G� is bipartite and that girth(G�) � 2 � girth(G).Thus assuming a girth 6 for oriented graphs is generally not suÆ
ient for high girth 
oloring results.We 
an for instan
e 
onstru
t bipartite graphs G� with high girth and large ~�(G�). Note also that G�is 2-degenerate (every subgraph of G� has a vertex with degree at most 2).2 Upper boundsSin
e all the target graphs we will use have no sour
es and no sinks (that is verti
es with in-degree orout-degree zero) every vertex with degree one 
an be mapped into it. Thus we may assume that allour graphs are orientations of a graph G with minimal degree at least two.Given an undire
ted planar graph G = (V;E) we denote an arbitrary orientation of it by ~G. Denoteby V the set of all bran
hing verti
es of G (that is verti
es with degree at least 3). Clearly we mayview G as a subdivision of a graph G = (V ;E) whi
h we 
all the bran
hing graph of G. Note that G isplanar and has minimal degree at least 3. As there is a vertex in its dual whi
h has maximum degree5 we know that some of the fa
es of G have at most 5 in
ident edges. Now if girth(G) � 5d+ 1 thenone of the edges of G has to be subdivided by d points. De�ning the length of a path as the numberof edges on it, we thus proved the following :Lemma 5 Let G be a subdivision of a bran
hing graph G, let girth(G) � 5d+ 1. Then G 
ontains apath of length d+ 1 all of whose internal verti
es have degree 2 in G.We will 
all su
h a path a long ear (of length d+ 1).Re
all that the 
ir
ulant (dire
ted) graph G(n; a1; a2; : : : ; ak) is the graph whose vertex set is ZZnand whose ar
s are those pairs (x; y) su
h that 9 i; 1 � i � k; y�x � ai (mod n). Cir
ulant graphsare 
learly transitive. We shall use (for Theorem 1) the 
ir
ulant tournaments T5 = G(5; 1; 2) (alsodepi
ted as Z5 on Figure 3) and T7 = G(7; 1; 2; 3). These tournaments have the following properties :Lemma 6 Let P3 be an arbitrary oriented path of length 3 with end-verti
es a and b. For every pairx; y of (not ne
essarily distin
t) verti
es of T7 there exists a homomorphism f : P3 ! T7 su
h thatf(a) = x and f(b) = y.Lemma 7 Let P4 be an arbitrary oriented path of length 4 with end-verti
es a and b. For every pairx; y of (not ne
essarily distin
t) verti
es of T5 there exists a homomorphism f : P4 ! T5 su
h thatf(a) = x and f(b) = y.



J. Ne�set�ril, A. Raspaud and E. Sopena 5Lemmas 6 and 7 
an be derived from the following more general statement :Proposition 8 Let Gn;d be the 
ir
ulant graph G(n; 1; 2; : : : ; d). Then the end-verti
es of every ori-ented path P of length at least n�1d�1 
an be mapped by a homomorphism P ! Gn;d to any pair of (notne
essarily distin
t) verti
es of Gn;d.Proof. Let P be an oriented path of length t � n�1d�1 with verti
es a0; a1; : : : ; at. As Gn;d is a transitivegraph we may assume that a0 maps to 0. Considering just the initial part Pi of P with verti
esa0; a1; : : : ; ai we denote by Ai the possible images of the vertex ai under a homomorphism fi : Pi !Gn;d. We 
learly have jA1j = d. It then suÆ
es to prove that for ea
h i � t, jAij = i(d � 1) + 1 sin
ewe will then have jAtj = n. However it is 
lear that the set A1 is formed by d 
onse
utive (modulo n)integers (either f1; 2; : : : ; dg if (a0; a1) 2 P or fn� 1; n� 2; : : : ; n� dg if (a1; a0) 2 P ). And assumingthat Ai, i < t, is a set of 
onse
utive integers then Ai+1 is again a set of 
onse
utive integers of lengthjAij+ (d� 1). 2Note that the 
ir
ulant tournament G(7; 1; 2; 4) also satis�es the 
laim of Lemma 6. This tour-nament has been used in [18℄ where it is proved that it is a homomorphi
 image of any orientedouterplanar graph. Moreover this tournament is optimal (and unique) sin
e there exist oriented out-erplanar graphs with oriented 
hromati
 number 7.Let us now turn to the proof of our statements.Proof of Theorem 1(3,4).(3) Let G = (V;E) be a planar graph of girth at least 16. We prove by indu
tion on jV j that G! Z5.By Lemma 5 G 
ontains a long ear P of length at least 4, with end-verti
es a and b. For the graphG0 = G n P we 
an use the indu
tion hypothesis and so get a homomorhism f 0 : G0 ! Z5. Putx = f 0(a), y = f 0(b) and apply lemma 7 to get a homomorphism f : P ! Z5. Clearly f 0 and f maybe 
ombined to get a homomorphism G ! Z5. Thus ~�(G) � 5 and using Theorem 1(1) we get thedesired result.(4) This 
an be proved analogously by using Lemmas 5 and 6. 2Proof of Theorem 2(2).It suÆ
es to 
he
k that for every oriented path P of length 3 and for every pair x; y of (not ne
essarilydistin
t) verti
es of X5 there exists a homomorphism f : P ! X5 su
h that f(a) = x and f(b) = y.Lemma 5 then implies the desired result. 2Proof of Theorem 3(2,3,4).(2; 3) This is obtained in the same way as before, by 
onsidering oriented paths of length 4 (Y6) and6 (Y3, Y4 and Y5).(4) The graph Y7 on Figure 2 is in fa
t the 
ir
ulant graph G(4; 1; 2). Hen
e, 
ombining Lemma 5and Proposition 8 we get the desired result. 2Proof of Theorem 4(3,4,5).The result 
on
erning Z5 has already been established in the proof of Theorem 1(3). For Z3 and Z4we still use the same te
hnique by 
onsidering all paths of length respe
tively 7 and 6. 2It remains to establish the upper bounds in Theorem 1(5,6). For this we use a di�erent te
hnique.Re
all that an a
y
li
 k-
oloring of an undire
ted graph is a 
oloring whi
h uses k 
olors and su
hthat every 
y
le uses at least three 
olors. The following has been proved in [17℄ :



6 Colorings and girth of oriented planar graphsLemma 9 [17℄ For every k, there exists an oriented graph Hk su
h that for any orientation ~G of anundire
ted graph G with an a
y
li
 k-
oloring there exists a homomorphism ~G ! Hk. Moreover, thesize of Hk is k � 2k�1.In [4℄ Borodin proved that any planar graph has an a
y
li
 5-
oloring. By Lemma 9 we thus obtainthat ~�(3) � 80 [17℄. Any planar graph with girth g � 11 
ontains a long ear of length at least 3 andthus 
an be a
y
li
ally 3-
olored. Borodin, Kosto
hka and Woodall [5℄ re
ently proved that everyplanar graph with girth g � 6 (resp. g � 7) 
an be a
y
li
ally 4-
olored (resp. a
y
li
ally 3-
olored).This gives the bounds stated in Theorem 1(5,6). Relationships between oriented 
olorings and a
y
li

olorings have been 
onsidered in [14℄ where it was proved that a family F of undire
ted graphs isa
y
li
ally 
olorable using a bounded number of 
olors if and only if all the orientations of the graphsin F have oriented 
hromati
 number bounded by some 
onstant.3 Lower boundsIn this se
tion we will 
onstru
t some sample planar graphs thus proving the negative statements ofTheorems 1, 2, 3 and 4.Proof of Theorem 1(1,2).(1) Suppose that there exists a tournament T4 on 4 verti
es su
h that every oriented planar graphG with suÆ
iently large girth has T4 as a homomorphi
 image. Sin
e any (dire
ted) 
y
le having pverti
es with p � 1 or 2 (mod 3) 
annot be 3-
olored, T4 
ontains a dire
ted 4-
y
le. Thus T4 is thetournament Y1 depi
ted on Figure 2.For every g we now 
onstru
t an oriented planar graph GT4;g su
h that GT4;g != T4, thus leading toa 
ontradi
tion. Let Pg be the oriented path on bg2
 verti
es whose edges have alternatively forwardand ba
kward dire
tion and let u and v denote its end-verti
es :
........

u vThe graph GT4;g is then 
onstru
ted as follows : let x1x2 : : : xp be a dire
ted 
y
le on p � g verti
es,p � 1 or 2 (mod 3). To every vertex xi atta
h two 
opies of Pg by identifying the two u-verti
es withxi and adding an edge linking the two v-verti
es. The graph GT4;g thus obtained has 
learly girth gor g+1. Moreover, for every homomorphism f : GT4;g ! T4, one vertex xi at least satis�es f(xi) = 4.It is then easy to 
he
k that the two v-verti
es of the paths atta
hed to xi are mapped to the same
olor, namely 1 or 4 depending on the parity of bg2
. Sin
e these two verti
es are joined by an edgewe obtain the desired 
ontradi
tion and the result follows.(2) A

ording to Theorems 1(1) and 4(1) it suÆ
es to 
onsider the tournaments on �ve verti
esdepi
ted on Figure 3. For Z1 and Z2 the result will be proved later (see the proof of Theorem 4(2)).We now 
onstru
t for every tournament Z 2 fZ3; Z4; Z5g an oriented planar graph GZ;7 of girth 7su
h that GZ;7 != Z. The three 
orresponding 
onstru
tions are given below.Constru
tion of GZ3;7 : Let P be the following oriented path :
u vThe graph GZ3;7 is then obtained as follows : let x1; : : : ; x7 be a dire
ted 7-
y
le. To every vertex xiatta
h �ve 
opies of P by identifying the u-verti
es with xi. Denote by v1; : : : ; v5 the 
orrespondingv-verti
es and add all the edges (vi; vi+1), 1 � i < 5. Let now f be any homomorphism from GZ3;7 toZ3. Sin
e all the dire
ted 3-
y
les in Z3 
ontain 
olor 4, at least one vertex xi is mapped by f to 
olor4. It is easy to 
he
k that the 
orresponding v-verti
es must then be assigned 
olors 1, 2, 3 or 5. Butthe 4-tournament indu
ed by these 
olors is transitive so that one 
annot 
olor all the �ve v-verti
es.Constru
tion of GZ4;7 : Let P3 denote the dire
ted path of length 3 and u, v denote its end-verti
es. The graph GZ4;7 is 
onstru
ted as follows : let x1; : : : ; x7 be a dire
ted 7-
y
le. To everyvertex xi atta
h four 
opies of P3 by identifying the u-verti
es with xi (denote by v1; : : : ; v4 the



J. Ne�set�ril, A. Raspaud and E. Sopena 7
.... .... .... ....

....
v v v v7 14 42 49

v v v v1 2 3 4 5v 6
v v8 43v

uFigure 4: Constru
tion of GZ5;7
... ... ...

... ...

......

v v v1 2 3

x i

ba

v v6 7

c 1 c 2

v

c
38 39v

9

Figure 5: Constru
tion of GX5;8four 
orresponding v-verti
es) and four 
opies of P3 by identifying the v-verti
es with xi (denote byu1; : : : ; u4 the four 
orresponding u-verti
es). Add then the edges (vi; vi+1) and (ui; ui+1) for everyi; 1 � i < 4. Let now f be any homomorphism from GZ4;7 to Z4. Sin
e all the dire
ted 3-
y
les inZ4 use 
olors 2 or 3 at least one of the verti
es xi is mapped by f to 
olor 2 or 3. If xi is mapped to
olor 2 (resp. to 
olor 3) then all the 
orresponding u-verti
es (resp. v-verti
es) have to be mappedto 
olors 2, 3 or 4 (resp. to 
olors 1, 2 or 3). But in both 
ases these 3 
olors indu
e a transitive3-tournament so that the 
orresponding u- or v-verti
es 
annot be 
olored.Constru
tion of GZ5;7 : This 
onstru
tion is illustrated by Figure 4. Let P3 denote the dire
tedpath of length 3 and u, v denote its end-verti
es. Take 49 
opies of P3, identify all the u-verti
esand denote by v1; v2; : : : ; v49 the 
orresponding v-verti
es. Then add edges in order to 
onstru
t thedire
ted 7-
y
le v7; v14; : : : ; v7j ; : : : ; v49. Finally, for every j, 1 � j � 7 add the edges (v7j�6; v7j�5),(v7j�4; v7j�5), (v7j�3; v7j�4), (v7j�3; v7j�2), (v7j�1; v7j�2), (v7j�1; v7j), and (v7j�6; v7j). Let us nowprove that there is no homomorphism from the graph GZ5;7 thus obtained to Z5. Let f be su
h ahomomorphism. Sin
e Z5 is vertex-transitive we may assume that f(u) = 1. Then all the v-verti
eshave to be assigned 
olors 1, 2, 4 or 5. Due to the 7-
y
le linking the verti
es v7j , 1 � j � 7 at leastone of them, say v7k, has to be assigned 
olor 4. It is then easy to 
he
k that the 7-
y
le on verti
esv7k�6; v7k�5; : : : ; v7k 
annot be 
olored by using only 
olors 1, 2, 4 or 5.This 
on
ludes the proof. 2Proof of Theorem 2(1,3).



8 Colorings and girth of oriented planar graphs(1) The result for graphs X1 and X2 is already stated in Theorem 1(1). The graph X3 
ontains a2-
y
le but no 3-
y
le so no dire
ted 
y
le having an odd number of verti
es 
an be mapped to X3. Forevery g let us now 
onstru
t an oriented planar graph GX4;g of girth g su
h that GX4;g != X4. Let Pgdenote the path of length bg2
 whose edges have alternatively forward and ba
kward dire
tion and u,v denote its end-verti
es (as depi
ted in the proof of Theorem 1(1)). Let x1; x2; : : : ; xg be a dire
ted
y
le on g verti
es. To every vertex xi atta
h two 
opies of Pg by identifying the two u-verti
es withxi and adding an edge linking the two v-verti
es. Let now f be any homomorphism from the graphGX4;g thus obtained to X4. At least one vertex xi must be assigned 
olor 3. It is easy to 
he
k that thetwo 
orresponding v-verti
es have also to be assigned the same 
olor (3 or 2 a

ording to the parityof bg2
), a 
ontradi
tion sin
e they are linked by an edge.(3) We will 
onstru
t a graph GX5;8 (see �gure 5) su
h that GX5;8 != X5. Let P3 be the dire
tedpath of length 3 and u, v denote its end-verti
es. The graph GX5;8 is then 
onstru
ted as follows : letx1x2 : : : x9 be a dire
ted 
y
le of length 9. To every vertex xi, 1 � i � 9, we atta
h 39 
opies of P3by identifying all the u-verti
es with vertex xi. Let v1; v2; : : : ; v39 denote the 
orresponding v-verti
es.Between every two verti
es vi and vi+1 we then add a path of length 2 having two ba
kward edges(those additional \middle" verti
es are drawn as full 
ir
les in �gure 5). Let a (resp. b) denote themiddle vertex lying between v1 and v2 (resp. v5 and v6). We then add an edge from a to b. We �nallyadd a dire
ted 9-
y
le 
onne
ting all the middle verti
es lying between v6 and v7, v10 and v11, : : :, v38and v39. We will denote by 
1; : : : ; 
9 those middle verti
es linked by the 9-
y
le.Let us now prove that GX5;8 != X5. Sin
e x1x2 : : : x9 is a dire
ted 9-
y
le, every homomorphism ffrom GX5;8 to X5 has to use all the three 
olors 1, 2 and 3. Hen
e there is at least one vertex xi withf(xi) = 3. It is then easy to 
he
k that all the v-verti
es have to be mapped to 
olors 2 or 3. Theonly possibilities for 
oloring the middle verti
es are thus the following :
v i

2 3

v i+1

2

v i

2 1

v i+1

2

v i

3 1

v i+1

2

v i

3 2

v i+1

3Therefore if a vertex vi is assigned 
olor 3 then all the verti
es vj , j < i must be also assigned 
olor 3.The 9-
y
le 
1; 
2; : : : ; 
9 must use the 
olor 3. Then so do all the verti
es v1; v2; : : : ; v6, whi
h impliesthat both verti
es a and b are assigned the same 
olor 2, a 
ontradi
tion sin
e there are linked by anedge. 2Proof of Theorem 3(1).For Y1 the result is a 
onsequen
e of Theorem 1(1). For every g let us now 
onstru
t an orientedplanar graph GY2;g of girth g su
h that GY2;g != Y2. Let Pg denote the path of length bg2
 whoseedges have alternatively forward and ba
kward dire
tion and u, v denote its end-verti
es (as depi
tedin the proof of Theorem 1(1)). Let x1; x2; : : : ; x2k+1 be a dire
ted 
y
le on 2k+1 verti
es, 2k+1 � g.To every vertex xi atta
h two 
opies of Pg by identifying the two u-verti
es with xi and adding anedge linking the two v-verti
es. Let now f be any homomorphism from the graph GY2;g thus obtainedto Y2. Sin
e x1; : : : ; x2k+1 is an odd 
y
le, at least one vertex xi must be assigned 
olor 4. Then thetwo 
orresponding v-verti
es have also to be assigned the same 
olor (4 or 1 a

ording to the parityof bg2
), a 
ontradi
tion sin
e they are linked by an edge. 2Proof of Theorem 4(1,2,6).(1) It is suÆ
ient here to remark that if Z does not 
ontain a 3-
y
le (it is then a transitive tournament)then no dire
ted 
y
le 
an be mapped to Z. If Z does not 
ontain a 4-
y
le (it obviously neither
ontains a 5-
y
le) then no dire
ted 
y
le on p verti
es, p � 1 or 2 (mod 3), 
an be mapped to Z.(2) We 
onstru
t for every g an oriented planar graph GZ1;g su
h that GZ1;g != Z1. Consider thegraph Gg used in proof of Theorem 1(1). Sin
e Gg 
annot be mapped to Y1 every homomorphismf : Gg ! Z1 has to use 
olor 5. The graph GZ1;g is then obtained from Gg by asso
iating with everyvertex x of Gg a new vertex vx and an edge dire
ted from vx to x. Sin
e 
olor 5 has in
oming degree
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ient to 
onsider the graph Gg used in proof of Theorem 1(1). Every 
y
le in Z2uses 
olor 3. Thus in every homomorphism f : Gg ! Z2 there is at least one vertex xi with 
olor 3.The two v-verti
es of the paths atta
hed to xi are then mapped to the same 
olor (3 or 4 a

ordingto the parity of bg2
) whi
h leads to a 
ontradi
tion sin
e they are linked by an edge.(6) This result is already stated in Theorem 1(2). 24 Dis
ussion and open problems1. The main open problem is to narrow the di�eren
e between the lower and upper bounds for ourextremal fun
tion ~�(g).2. The 
omplexity of 
oloring by small digraphs was 
onsidered by Bang-Jensen, Hell andM
Gillivray [3℄. In parti
ular they proved that 
oloring by any semi
omplete graph (that is a di-graph whi
h arises from a tournament by the addition of some ar
s) with 3 and 4 verti
es 
ontaining2 
y
les is an NP-
omplete problem. This supports their general 
onje
ture that the existen
e ofH-
oloring is NP-
omplete for a semi
omplete graph H if and only if H 
ontains at least two 
y
les.However this does not apply to the problems 
onsidered in this paper as we 
onsider problems re-stri
ted to planar graphs of large girth. As shown for instan
e by the proofs of Theorem 1(3) andTheorem 3(4) these problems 
an be in P even under the existen
e of many 
y
les in the target graph(Z5 and Y7 respe
tively).3. Given a 
lass K of graphs we say that a graph H is universal if G ! H for any graph G 2 K.Thus ~�(G) is bounded for K if and only if there exists a universal graph H. Universal graphs werestudied e.g. in [8, 12, 18℄. In a forth
oming paper we will dis
uss 
lasses of planar graphs for whi
hthere exists a planar universal graph.Referen
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