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Abstract. Homomorphisms between graphs are studied as a generalization of colorings and of chromatic
number. We investigate here homomorphisms from orientations of undirected planar graphs to graphs (not
necessarily planar) containing as few digons as possible. We relate the existence of such homomorphisms to
girth and it appears that these questions remain interesting even if we insist the girth of G is large, an assumption
which makes the chromatic number easy to compute. In particular we prove that every orientation of any large
girth planar graph is 5-colorable and classify those digraphs on 3, 4 and 5 vertices which color all large girth
oriented planar graphs.
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1 Introduction and statement of results

Given graphs G = (V, F) and G' = (V', E') a homomorphism from G to G’ is any mapping f : V — V'
satisfying
[z.y] € B = [f(2), f(y)] € E".

Here the brackets on both sides of the implication means the same thing : either an edge or an arc.
The existence of a homomorphism from G to G’ will be denoted by G — G’.

Homomorphisms are clearly related to the chromatic number of undirected graphs (an undirected
graph G is k-colorable if and only if there exists a homomorphism from G to Ky, the complete graph
on k vertices) and this led to an extensive research (see e.g. [2, 3, 8, 9, 10, 11, 15, 16, 18]). For this
reason we will often call colors the vertices of the target graphs (i.e. homomorphic images).

From the homomorphism point of view there is a big difference between directed and undirected
graphs. While for undirected graphs the complexity of the problem is well captured by the chromatic
number (given a graph G, deciding whether G has a homomorphism to G’ is polynomial if and
only if G' is bipartite [9]) for directed graphs the problem is much harder and presently seemingly
untractable. The present paper is a contribution to this area. We consider (unless otherwise stated)
oriented graphs, that is directed graphs not containing two opposite arcs. Oriented graphs are thus
orientations of undirected graphs.

Motivated by 3-, 4- and 5-color theorems for (undirected) planar graphs [1, 6, 19], we study similar
questions for oriented graphs. It appears that these questions remain interesting even if we insist the
girth of G is large, an assumption which makes the chromatic number easy to compute. This is the
main motivation of this paper.

More precisely, we consider the following problems :
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2 Colorings and girth of oriented planar graphs
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Figure 1: Target digraphs on three vertices

A. The Oriented Coloring Problem : Given an oriented graph G = (V, A), find the smallest
number of vertices of an oriented graph G' = (V', A’) for which G — G’. This number will be denoted
here ¥(G) and called the oriented chromatic number of G.

Observe that if we consider symmetric digraphs as target graphs this number is then the usual
chromatic number. Another motivation stems from a recent paper [17] where it was proved that x(G)
is bounded by a constant for every planar graph G. In fact it was proved that yx(G) < 80 for every
planar graph G and presently this is the best known result.

The oriented coloring problem was further studied in [18] where it was proved that orientations
of k-trees and of bounded degree graphs have bounded oriented chromatic number. In particular, the
maximum oriented chromatic number of a k-tree is determined up to a logk factor. Also, examples
of planar graphs G with x¥(G) > 16 are presented.

The second problem which we consider is :

B. The Girth Problem : Given an integer g > 2, determine the quantity

-

X(9) = maz{ X(G) ; G planar, girth(G) =g }
We prove the following

Theorem 1

(1) For €U€Ty 9, X(g) = 5.
2) %(7) >

(3) If g > 16 then X(g)
(4) If g > 11 then X(g)
(5) If g > 7 then X(9)
(6) If g > 6 then X(g)

We view (3) as yet another 5-color theorem (for high girth planar graphs).

Thus it is clear that for coloring (i.e. homomorphism) of oriented planar graphs of (even) large
girth with at most 4 colors one needs some oppositely oriented edges. In this context, we studied in a
greater detail celebrated Grotzsch Theorem [6] (see also [19] for a remarkably short proof), which states
that every undirected planar graph with no triangle is 3-colorable. Consider the digraphs Xy, ..., X5
depicted on Figure 1. We prove :

Theorem 2

1) For every g and every X € {Xy,..., X4}, there exists a graph Gx , with girth g such that Gx , —
7g ’g

/ X.

(2) Let G be an oriented planar graph with girth(G) > 16 then G — X5.

(3) There exists a graph G with girth 8 such that G 4 Xs.

This result shows in particular that in order to obtain a 3-color theorem for oriented planar graphs
with a large girth we need to use a target graph having at least two symmetrical edges.

How many symmetrical edges are needed for 4-color theorem ? Under no girth assumption it is
clear that all edges need to be symmetric. The following theorem relates the girth parameter to the
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Figure 2: Target digraphs on four vertices

existence of homomorphisms to each digraph with four vertices. Note that the results obtained for
a digraph H also hold for the digraph H !, obtained from H by reversing all the edges. Thus let
Y1,..., Y7 be the digraphs depicted on Figure 2. Then we have :

Theorem 3

(1) For every g and every Y € {Y1,Ys} there exists an oriented planar graph Gvy,, with girth g such
that Gy, + Y.

(2) If G is an oriented planar graph with girth g > 26 then G — Y3, G — Yy and G — Y5.

(3) If G is an oriented planar graph with girth g > 16 then G — Y.

(4) If G is an oriented planar graph with girth g > 11 then G — Y7.

Thus at least one symmetric edge is needed for a high girth oriented 4-color theorem. But this is
not sufficient (see Y3) and two symmetric edges are sufficient in general.

By Theorem 1(3) for an oriented 5-color theorem we do not need any symmetric edge. Below we
give the full discussion of this fact for tournaments on five vertices. Let Z, ..., Z5 be the tournaments
depicted on Figure 3 (as stated below, we do not have to consider those tournaments having no
4-cycle). Then the following holds :

Theorem 4

1) If Z is a tournament with either no 3-cycle or no J-cycle then for ever there exists a planar

( y y Y g p

oriented graph Gz 4 with girth g such that Gz, 4 Z.

2) For every g and every Z € {Zy,Z>} there exists an oriented planar graph Gz, with girth g such
’g

that Gz 4 4 Z.

(3) If G is an oriented planar graph with girth g > 31 then G — Zs.

(4) If G is an oriented planar graph with girth g > 26 then G — Zj.

(5) If G is an oriented planar graph with girth g > 16 then G — Zs.

6) For every Z € {Z1,...,Z5} there exists an oriented planar graph Gz 7 of girth 7 such that G 77 —

(6) Yy {Z1,....Z5} p graph Gz7 of g z7

/] Z.

In the next section we prove the positive parts of Theorems 1, 2, 3 and 4. In Section 3 we give
some examples thus proving the negative parts of the above statements. Section 4 contains some open
problems.

One last note regarding oriented coloring of graphs with large girth. Let G = (V| E) be an
undirected graph. Subdivide each edge of G by a single vertex and orient the edges such that each
new (subdivision) vertex v satisfies d*(v) = d~ (v) = 1. Call the resulting oriented graph G*. Then we
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Figure 3: Target tournaments on five vertices

clearly have ¥(G*) > x(G). Note that the graph G* is bipartite and that girth(G*) > 2 x girth(G).
Thus assuming a girth 6 for oriented graphs is generally not sufficient for high girth coloring results.
We can for instance construct bipartite graphs G* with high girth and large ¥(G*). Note also that G*
is 2-degenerate (every subgraph of G* has a vertex with degree at most 2).

2 Upper bounds

Since all the target graphs we will use have no sources and no sinks (that is vertices with in-degree or
out-degree zero) every vertex with degree one can be mapped into it. Thus we may assume that all
our graphs are orientations of a graph G with minimal degree at least two.

Given an undirected planar graph G = (V, E) we denote an arbitrary orientation of it by G. Denote
by V the set of all branching vertices of G' (that is vertices with degree at least 3). Clearly we may
view G as a subdivision of a graph G = (V, E) which we call the branching graph of G. Note that G is
planar and has minimal degree at least 3. As there is a vertex in its dual which has maximum degree
5 we know that some of the faces of G have at most 5 incident edges. Now if girth(G) > 5d + 1 then
one of the edges of G has to be subdivided by d points. Defining the length of a path as the number
of edges on it, we thus proved the following :

Lemma 5 Let G be a subdivision of a branching graph G, let girth(G) > 5d + 1. Then G contains a
path of length d + 1 all of whose internal vertices have degree 2 in G.

We will call such a path a long ear (of length d + 1).

Recall that the circulant (directed) graph G(n;aq1,as,...,ax) is the graph whose vertex set is Z,
and whose arcs are those pairs (z,y) such that 34, 1 <i <k, y—z =a; (mod n). Circulant graphs
are clearly transitive. We shall use (for Theorem 1) the circulant tournaments T5 = G(5;1,2) (also
depicted as Zs on Figure 3) and T7 = G(7;1,2,3). These tournaments have the following properties :

Lemma 6 Let P be an arbitrary oriented path of length 3 with end-vertices a and b. For every pair
x,y of (not necessarily distinct) vertices of T; there exists a homomorphism f : P3 — T7 such that

f(a) = = and f(b) =y.

Lemma 7 Let Py be an arbitrary oriented path of length J with end-vertices a and b. For every pair
x,y of (not necessarily distinct) vertices of Ts there exists a homomorphism f : Py — Ty such that

fla) ==z and f(b) = y.
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Lemmas 6 and 7 can be derived from the following more general statement :

Proposition 8 Let G, 4 be the circulant graph G(n;1,2,...,d). Then the end-vertices of every ori-
ented path P of length at least % can be mapped by a homomorphism P — Gy, 4 to any pair of (not
necessarily distinct) vertices of Gy, q.

Proof. Let P be an oriented path of length ¢ > ZT_} with vertices ag, a1, ...,a;. As Gy, 4 is a transitive
graph we may assume that ap maps to 0. Considering just the initial part P; of P with vertices
ag,ai,---,a; we denote by A; the possible images of the vertex a; under a homomorphism f; : P, —

Gy,q4- We clearly have |A;| = d. It then suffices to prove that for each i <t, |A4;] =i(d — 1) + 1 since
we will then have |A;| = n. However it is clear that the set A; is formed by d consecutive (modulo n)
integers (either {1,2,...,d} if (ap,a1) € Por {n—1,n—2,...,n—d} if (a1,a0) € P). And assuming
that A;, 7 < t, is a set of consecutive integers then A;,; is again a set of consecutive integers of length
|Az| + (d — 1). |

Note that the circulant tournament G(7;1,2,4) also satisfies the claim of Lemma 6. This tour-
nament has been used in [18] where it is proved that it is a homomorphic image of any oriented
outerplanar graph. Moreover this tournament is optimal (and unique) since there exist oriented out-
erplanar graphs with oriented chromatic number 7.

Let us now turn to the proof of our statements.

Proof of Theorem 1(3,4).
(3) Let G = (V, E) be a planar graph of girth at least 16. We prove by induction on |V| that G — Zs.
By Lemma 5 G contains a long ear P of length at least 4, with end-vertices a and b. For the graph
G' = G\ P we can use the induction hypothesis and so get a homomorhism f' : G' — Z5. Put
z = f'(a), y = f'(b) and apply lemma 7 to get a homomorphism f : P — Z5. Clearly f' and f may
be combined to get a homomorphism G — Z5. Thus ¥(G) < 5 and using Theorem 1(1) we get the
desired result.

(4) This can be proved analogously by using Lemmas 5 and 6. a

Proof of Theorem 2(2).

It suffices to check that for every oriented path P of length 3 and for every pair z,y of (not necessarily
distinct) vertices of X5 there exists a homomorphism f : P — X5 such that f(a) = z and f(b) = y.
Lemma 5 then implies the desired result. |

Proof of Theorem 3(2,3,4).
(2,3) This is obtained in the same way as before, by considering oriented paths of length 4 (Y5) and
6 (Yg, Y4 and Y5)

(4) The graph Y7 on Figure 2 is in fact the circulant graph G(4;1,2). Hence, combining Lemma 5
and Proposition 8 we get the desired result. |

Proof of Theorem 4(3,4,5).
The result concerning Z5 has already been established in the proof of Theorem 1(3). For Z3 and Z4
we still use the same technique by considering all paths of length respectively 7 and 6. O

It remains to establish the upper bounds in Theorem 1(5,6). For this we use a different technique.
Recall that an acyclic k-coloring of an undirected graph is a coloring which uses k colors and such
that every cycle uses at least three colors. The following has been proved in [17] :
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Lemma 9 [17] For every k, there exists an oriented graph Hy, such that for any orientation G of an
undirected graph G with an acyclic k-coloring there exists a homomorphism G — Hy. Moreover, the

size of Hy, is k x 281,

In [4] Borodin proved that any planar graph has an acyclic 5-coloring. By Lemma 9 we thus obtain
that ¥(3) < 80 [17]. Any planar graph with girth ¢ > 11 contains a long ear of length at least 3 and
thus can be acyclically 3-colored. Borodin, Kostochka and Woodall [5] recently proved that every
planar graph with girth ¢ > 6 (resp. g > 7) can be acyclically 4-colored (resp. acyclically 3-colored).
This gives the bounds stated in Theorem 1(5,6). Relationships between oriented colorings and acyclic
colorings have been considered in [14] where it was proved that a family F of undirected graphs is
acyclically colorable using a bounded number of colors if and only if all the orientations of the graphs
in F have oriented chromatic number bounded by some constant.

3 Lower bounds

In this section we will construct some sample planar graphs thus proving the negative statements of
Theorems 1, 2, 3 and 4.

Proof of Theorem 1(1,2).

(1) Suppose that there exists a tournament Ty on 4 vertices such that every oriented planar graph

G with sufficiently large girth has Ty as a homomorphic image. Since any (directed) cycle having p

vertices with p =1 or 2 (mod 3) cannot be 3-colored, Ty contains a directed 4-cycle. Thus T} is the

tournament Y] depicted on Figure 2.

For every g we now construct an oriented planar graph Gr, 4 such that G, ; # T4, thus leading to
g

a contradiction. Let P, be the oriented path on |2] vertices whose edges have alternatively forward

and backward direction and let © and v denote its end-vertices :

° ® ® @ e )
u \Y

The graph G, 4 is then constructed as follows : let z1x2... 2, be a directed cycle on p > g vertices,
p=1or2 (mod 3). To every vertex z; attach two copies of P, by identifying the two u-vertices with
z; and adding an edge linking the two v-vertices. The graph Gr, , thus obtained has clearly girth g
or g+ 1. Moreover, for every homomorphism f : G, ; — T4, one vertex z; at least satisfies f(z;) = 4.
It is then easy to check that the two v-vertices of the paths attached to z; are mapped to the same
color, namely 1 or 4 depending on the parity of []. Since these two vertices are joined by an edge
we obtain the desired contradiction and the result follows.

(2) According to Theorems 1(1) and 4(1) it suffices to consider the tournaments on five vertices
depicted on Figure 3. For Z; and Z; the result will be proved later (see the proof of Theorem 4(2)).
We now construct for every tournament Z € {Z3, 74, Z5} an oriented planar graph Gz of girth 7
such that Gz 7 4 Z. The three corresponding constructions are given below.

Construction of Gz,7 : Let P be the following oriented path :

° ° . °
u Vv
The graph Gz, 7 is then obtained as follows : let zy,...,z7 be a directed 7-cycle. To every vertex z;
attach five copies of P by identifying the u-vertices with z;. Denote by vy, ..., vs the corresponding

v-vertices and add all the edges (v;,v;t1), 1 <7 < 5. Let now f be any homomorphism from Gz, 7 to
Z3. Since all the directed 3-cycles in Z3 contain color 4, at least one vertex x; is mapped by f to color
4. Tt is easy to check that the corresponding v-vertices must then be assigned colors 1, 2, 3 or 5. But
the 4-tournament induced by these colors is transitive so that one cannot color all the five v-vertices.

Construction of Gz, 7 : Let P3 denote the directed path of length 3 and u, v denote its end-
vertices. The graph Gz, 7 is constructed as follows : let xy,...,z7 be a directed 7-cycle. To every
vertex x; attach four copies of P; by identifying the u-vertices with z; (denote by wvq,...,v4 the
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Figure 4: Construction of Gz, 7

Xj

Figure 5: Construction of G'x; g

four corresponding v-vertices) and four copies of P5 by identifying the v-vertices with x; (denote by
u1,...,uq the four corresponding u-vertices). Add then the edges (v;,v;11) and (u;,u;y1) for every
i, 1 <1 < 4. Let now f be any homomorphism from Gz, 7 to Z;. Since all the directed 3-cycles in
Z4 use colors 2 or 3 at least one of the vertices z; is mapped by f to color 2 or 3. If z; is mapped to
color 2 (resp. to color 3) then all the corresponding u-vertices (resp. v-vertices) have to be mapped
to colors 2, 3 or 4 (resp. to colors 1, 2 or 3). But in both cases these 3 colors induce a transitive
3-tournament so that the corresponding u- or v-vertices cannot be colored.

Construction of Gz, 7 : This construction is illustrated by Figure 4. Let P3 denote the directed
path of length 3 and u, v denote its end-vertices. Take 49 copies of Pj3, identify all the u-vertices
and denote by v1,v9,...,v49 the corresponding v-vertices. Then add edges in order to construct the
directed 7-cycle vz, vi4,...,07j,...,v49. Finally, for every j, 1 < j < 7 add the edges (v7j—6,v7j—5),
(’07]',4,’07]',5), (07]’,3,1}7]',4), (’07]',3,’07]',2), (’07]',1,1)7]',2), (07]’,1,1}7]'), and (’07]',6,1)7]'). Let us now
prove that there is no homomorphism from the graph Gz, 7 thus obtained to Zs. Let f be such a
homomorphism. Since Zj is vertex-transitive we may assume that f(u) = 1. Then all the v-vertices
have to be assigned colors 1, 2, 4 or 5. Due to the 7-cycle linking the vertices v7;, 1 < j <7 at least
one of them, say vy, has to be assigned color 4. It is then easy to check that the 7-cycle on vertices
VTk—6, UTk—5, - - - , U7k cannot be colored by using only colors 1, 2, 4 or 5.

This concludes the proof. |

Proof of Theorem 2(1,3).
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(1) The result for graphs X; and X5 is already stated in Theorem 1(1). The graph X3 contains a
2-cycle but no 3-cycle so no directed cycle having an odd number of vertices can be mapped to X3. For
every g let us now construct an oriented planar graph Gx, 4 of girth g such that Gx, , # X4. Let P,
denote the path of length [ 4] whose edges have alternatively forward and backward direction and u,
v denote its end-vertices (as depicted in the proof of Theorem 1(1)). Let z1,zs,...,z, be a directed
cycle on g vertices. To every vertex x; attach two copies of P, by identifying the two u-vertices with
z; and adding an edge linking the two v-vertices. Let now f be any homomorphism from the graph
Gx,,g thus obtained to Xy. At least one vertex z; must be assigned color 3. It is easy to check that the
two corresponding v-vertices have also to be assigned the same color (3 or 2 according to the parity
of [4]), a contradiction since they are linked by an edge.

(3) We will construct a graph Gy, g (see figure 5) such that Gx, s / Xs5. Let P3 be the directed

path of length 3 and u, v denote its end-vertices. The graph G'x; g is then constructed as follows : let
r1%2 ... xT9 be a directed cycle of length 9. To every vertex z;, 1 <14 < 9, we attach 39 copies of P
by identifying all the u-vertices with vertex x;. Let v1,vo, ..., v39 denote the corresponding v-vertices.
Between every two vertices v; and v;;; we then add a path of length 2 having two backward edges
(those additional “middle” vertices are drawn as full circles in figure 5). Let a (resp. b) denote the
middle vertex lying between v; and vy (resp. vs and vg). We then add an edge from a to b. We finally
add a directed 9-cycle connecting all the middle vertices lying between vg and v7, v19 and v11, ..., Vs
and vsg. We will denote by ¢y, ..., cg those middle vertices linked by the 9-cycle.
Let us now prove that Gx, s # Xs. Since z1z2... 29 is a directed 9-cycle, every homomorphism f
from G'x, g to X5 has to use all the three colors 1, 2 and 3. Hence there is at least one vertex z; with
f(z;) = 3. Tt is then easy to check that all the v-vertices have to be mapped to colors 2 or 3. The
only possibilities for coloring the middle vertices are thus the following :

2 3 2 2 1 2 3 1 2 3 2 3
O=—@0—20 O=—@—0 O=—@—20
Vi Vieg Vi Vil Vi Vi1 Vi Vieg

Therefore if a vertex v; is assigned color 3 then all the vertices v;, 7 < ¢ must be also assigned color 3.

The 9-cycle ¢y, ca, ..., cg must use the color 3. Then so do all the vertices v, vs,...,vg, which implies
that both vertices a and b are assigned the same color 2, a contradiction since there are linked by an
edge. a

Proof of Theorem 3(1).

For Y7 the result is a consequence of Theorem 1(1). For every g let us now construct an oriented
planar graph Gy, 4 of girth g such that Gy, 4, +# Ya. Let P, denote the path of length || whose
edges have alternatively forward and backward direction and u, v denote its end-vertices (as depicted
in the proof of Theorem 1(1)). Let 21,9, ...,Zot11 be a directed cycle on 2k + 1 vertices, 2k +1 > g.
To every vertex x; attach two copies of P, by identifying the two u-vertices with z; and adding an
edge linking the two v-vertices. Let now f be any homomorphism from the graph Gy, , thus obtained
to Y. Since z1,...,%2,+1 is an odd cycle, at least one vertex z; must be assigned color 4. Then the
two corresponding v-vertices have also to be assigned the same color (4 or 1 according to the parity
of [4]), a contradiction since they are linked by an edge. 0

Proof of Theorem 4(1,2,6).
(1) It is sufficient here to remark that if Z does not contain a 3-cycle (it is then a transitive tournament)
then no directed cycle can be mapped to Z. If Z does not contain a 4-cycle (it obviously neither
contains a 5-cycle) then no directed cycle on p vertices, p=1or 2 (mod 3), can be mapped to Z.
(2) We construct for every g an oriented planar graph Gz, 4 such that Gz, o » Zi. Consider the
graph G, used in proof of Theorem 1(1). Since G, cannot be mapped to Y; every homomorphism
[ : Gy — Z; has to use color 5. The graph Gz, 4 is then obtained from G, by associating with every
vertex = of G, a new vertex v, and an edge directed from v, to z. Since color 5 has incoming degree
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0 in Z; we are done.
For Z, it is also sufficient to consider the graph G, used in proof of Theorem 1(1). Every cycle in Z
uses color 3. Thus in every homomorphism f : Gy — Zj there is at least one vertex z; with color 3.
The two v-vertices of the paths attached to x; are then mapped to the same color (3 or 4 according
to the parity of [4]) which leads to a contradiction since they are linked by an edge.

(6) This result is already stated in Theorem 1(2). O

4 Discussion and open problems

1. The main open problem is to narrow the difference between the lower and upper bounds for our
extremal function x(g).

2. The complexity of coloring by small digraphs was considered by Bang-Jensen, Hell and
McGillivray [3]. In particular they proved that coloring by any semicomplete graph (that is a di-
graph which arises from a tournament by the addition of some arcs) with 3 and 4 vertices containing
2 cycles is an NP-complete problem. This supports their general conjecture that the existence of
H-coloring is NP-complete for a semicomplete graph H if and only if H contains at least two cycles.
However this does not apply to the problems considered in this paper as we consider problems re-
stricted to planar graphs of large girth. As shown for instance by the proofs of Theorem 1(3) and
Theorem 3(4) these problems can be in P even under the existence of many cycles in the target graph
(Z5 and Y7 respectively).

3. Given a class I of graphs we say that a graph H is universal if G — H for any graph G € K.
Thus ¥(G) is bounded for K if and only if there exists a universal graph H. Universal graphs were
studied e.g. in [8, 12, 18]. In a forthcoming paper we will discuss classes of planar graphs for which
there exists a planar universal graph.
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