
On the oriented chromatic index of

oriented graphs

Pascal Ochem, Alexandre Pinlou, Éric Sopena∗
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Abstract

A homomorphism from an oriented graph G to an oriented graph H is a mapping

ϕ from the set of vertices of G to the set of vertices of H such that
−−−−−−→
ϕ(u)ϕ(v) is an

arc in H whenever −→uv is an arc in G. The oriented chromatic index of an oriented
graph G is the minimum number of vertices in an oriented graph H such that there
exists a homomorphism from the line digraph LD(G) of G to H (the line digraph

LD(G) of G is given by V (LD(G)) = A(G) and
−→
ab ∈ A(LD(G)) whenever a = −→uv

and b = −→vw).
We give upper bounds for the oriented chromatic index of graphs with bounded

acyclic chromatic number, of planar graphs and of graphs with bounded degree.
We also prove that the problem of deciding whether an oriented graph has oriented
chromatic index at most k is polynomial time if k ≤ 3 and is NP-complete if k ≥ 4.

Keywords: Oriented graph, oriented coloring, arc coloring.

1 Introduction

We consider finite simple oriented graphs, that is digraphs with no opposite arcs. For an
oriented graph G, we denote by V (G) its set of vertices and by A(G) its set of arcs. For
two adjacent vertices u and v, we denote by −→uv the arc from u to v or simply uv whenever
its orientation is not relevant (therefore, uv = −→uv or uv = −→vu).

The notion of oriented vertex-coloring was introduced by Courcelle [6] as follows: an
oriented k-vertex-coloring of an oriented graph G is a mapping ϕ from V (G) to a set of

∗E-mail: {Pascal.Ochem,Alexandre.Pinlou,Eric.Sopena}@labri.fr

1



k colors such that (i) ϕ(u) 6= ϕ(v) whenever −→uv ∈ A(G) and (ii) ϕ(v) 6= ϕ(x) whenever
−→uv,−→xy ∈ A(G) and ϕ(u) = ϕ(y). The oriented chromatic number of G, denoted by χo(G),
is defined as the smallest k such that G admits an oriented k-vertex-coloring. Observe that
conditions (i) and (ii) above insure that two vertices linked by a directed path of length
one or two must get distinct colors in any oriented vertex-coloring.

Let G and H be two oriented graphs. A homomorphism from G to H is a mapping

ϕ from V (G) to V (H) that preserves the arcs:
−−−−−−→
ϕ(u)ϕ(v) ∈ A(H) whenever −→uv ∈ A(G).

An oriented k-vertex-coloring of an oriented graph G can be equivalently defined as a
homomorphism ϕ from G to H , where H is an oriented graph of order k. The existence of
such a homomorphism from G to H is denoted by G → H . The vertices of H are called
colors, and we say that G is H-colorable. The oriented chromatic number of G can then
be equivalently defined as the smallest order of an oriented graph H such that G→ H .

Oriented vertex-colorings have been studied by several authors in the last decade and
the problem of bounding the oriented chromatic number has been investigated for graphs
with bounded acyclic chromatic number [14], graphs with bounded maximum average
degree [5], graphs with bounded degree [9], graphs with bounded treewidth [15, 16] and
graphs subdivisions [17].

One can define oriented arc-colorings of oriented graphs in a natural way by saying that,
as in the undirected case, an oriented arc-coloring of an oriented graph G is an oriented
vertex-coloring of its line digraph LD(G) (recall that LD(G) is given by V (LD(G)) = A(G)

and
−→
ab ∈ A(LD(G)) whenever a = −→uv and b = −→vw). We say that an oriented graph G

is H-arc-colorable if there exists a homomorphism ϕ from LD(G) to H and ϕ is then an
H-arc-coloring or simply an arc-coloring of G. Therefore, an oriented arc-coloring ϕ of
G must satisfy (i) ϕ(−→uv) 6= ϕ(−→vw) whenever −→uv and −→vw are two consecutive arcs in G,
and (ii) ϕ(−→vw) 6= ϕ(−→xy) whenever −→uv,−→vw,−→xy,−→yz ∈ A(G) with ϕ(−→uv) = ϕ(−→yz). Note that
these two conditions insure that two arcs belonging to a direted path of length two or
three must get distinct colors in any oriented arc-coloring. Also note that two incident but
non-consecutive arcs (i.e. two arcs incoming into a same vertex or two arcs outgoing from
a same vertex) can get the same color since the two corresponding vertices in LD(G) are
not adjacent and does not belong to a directed 2-path. The oriented chromatic index of
G, denoted by χ′

o(G), is defined as the smallest order of an oriented graph H such that
LD(G)→ H .

The first easy result concerning oriented arc-coloring relates the oriented chromatic
index to the oriented chromatic number:

Theorem 1 Let G be an oriented graph. Then χ′

o(G) ≤ χo(G).

To see that, consider an oriented graph G with χo(G) = k and an oriented k-vertex-
coloring f of G. The mapping g defined by g(−→uv) = f(u) for every arc −→uv ∈ A(G) is clearly
an oriented arc-coloring of G.

Therefore, all upper bounds for the oriented chromatic number are also valid for the
oriented chromatic index. In this paper, we provide better upper bounds for the oriented
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chromatic index of several classes of graphs and consider the complexity of the oriented
arc-coloring problem.

This paper is organised as follows. The link between oriented chromatic index and
acyclic chromatic number is discussed in Section 2. The oriented chromatic index of planar
graphs and of graphs with bounded degree are respectively considered in Sections 3 and 4.
Finally, the complexity of determining the oriented chromatic index of a graph is studied
in Section 5.

In the rest of the paper, we will use the following notation. A vertex of degree k will be
called a k-vertex. If −→uv is an arc, u is a predecessor of v and v is a successor of u. A vertex
will be called a source if it has no predecessors and a sink if it has no successors.

For a graph G and a vertex v of V (G), we denote by G \ v the graph obtained from
G by removing v together with the set of its incident arcs; similarly, for an arc a of A(G),
G \ a denotes the graph obtained from G by removing a. These two notions are extended
to sets of vertices or arcs in a standard way.

Let G be an oriented graph and f be an oriented arc-coloring of G. For a given vertex
v of G, we denote by C+

f (v) and C−

f (v) the outgoing color set of v (i.e. the set of colors of
the arcs outgoing from v) and the incoming color set of v (i.e. the set of colors of the arcs
incoming to v), respectively.

2 Oriented chromatic index and acyclic chromatic

number

A proper vertex-coloring is acyclic if every subgraph induced by any two color classes
is a forest (in other words, the graph has no bichromatic cycle). The acyclic chromatic
number of a graph G, denoted by χa(G), is the smallest k such that G admits an acyclic
k-vertex-coloring.

One of the first problems considered for oriented vertex-colorings was to characterize
the families of graphs having bounded oriented chromatic number. It was shown that these
families are exactly the ones having bounded acyclic chromatic number [9, 14].

In particular, Raspaud and Sopena [14] proved that every oriented graph whose un-
derlying undirected graph has acyclic chromatic number at most k has oriented chromatic
number at most k · 2k−1. Recently, Ochem [12] proved that this bound is tight by con-
structing, for every k ≥ 3, an oriented graph G such that χa(G) = k and χo(G) = k · 2k−1.

By Theorem 1, every oriented graph with acyclic chromatic number k has oriented
chromatic index at most k · 2k−1. By adapting the proof of the above-mentionned result
of Raspaud and Sopena, we get a new bound which is quadratic in terms of the acyclic
chromatic number:

Theorem 2 Every oriented graph whose underlying undirected graph has acyclic chromatic
number at most k has oriented chromatic index at most 2k(k − 1)−

⌊

k
2

⌋

.
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To show that, we need the two following easy lemmas :

Lemma 3 Let F be an oriented forest. Then F admits a C3-arc-coloring where C3 is the
directed cycle on three vertices.

Proof. Since the line digraph of an oriented forest is an oriented forest, the result follows
from the fact that every oriented forest has an oriented C3-vertex-coloring [15]. 2

Lemma 4 Let F be a forest, c be a 2-vertex-coloring of F using i and j (i < j) and
−→
F be

any orientation of F . There exists an oriented 4-arc-coloring f of
−→
F using {i, j} × {0, 1}

such that for every vertex u, c(u) and the first component of f(u) coincide.

Proof. The coloring f can easily be obtained from c by using the following rule: if −→uv and
−→vw are two consecutive arcs in

−→
F , then let f(−→uv) = (c(u), α) and f(−→vw) = (c(v), β) with

α = β if and only if c(u) < c(v). 2

Proof of Theorem 2 : Let G be an oriented graph, V1, . . . , Vk be the k color classes
of V (G) induced by an acyclic k-coloring of G, and A1, . . . , Ak be the k arc sets of A(G)
defined as Ai = {−→uv ∈ A(G), u ∈ Vi}. By definition, Fi,j = G[Vi, Vj ] is a forest for

i, j ∈ [1, k], i < j and there are k(k−1)
2

such forests; moreover, consider the l =
⌊

k
2

⌋

forests
F1,2, F3,4, . . . , F2l−1,2l (these forests do not share any vertex). We say that these l forests are
of type 1 while the remaining ones are of type 2. Then, we define an oriented arc-coloring
fi,j for each forest Fi,j as follows. If Fi,j is of type 1, let fi,j be any oriented 3-arc-coloring
given by Lemma 3. If Fi,j is of type 2, let fi,j be any oriented 4-arc-coloring given by
Lemma 4.

Recall that each −→uv ∈ A(G) belongs to a unique forest Fi,j, i, j ∈ [1, k], i < j. We now
define the following mapping f on A(G):

∀ −→uv ∈ Fi,j, f(−→uv) = (x, i, j) where x = fi,j(
−→uv).

We shall prove that f is an oriented arc-coloring of G. We first have to check that any
pair of consecutive arcs −→uv and −→vw get distinct colors. If −→uv and −→vw belong to two distinct
forests, say −→uv ∈ Fi,j and −→vw ∈ Fj,k, then f(−→uv) = (x, i, j) 6= (y, j, k) = f(−→vw) for any x, y

since i 6= k. Now if −→uv,−→vw ∈ Fi,j, then f(−→uv) = (fi,j(
−→uv), i, j) 6= (fi,j(

−→vw), i, j) = f(−→vw)
since fi,j is an oriented arc-coloring. Therefore, if f is not an oriented arc-coloring of G,
there are four arcs −→uv,−→vw,−→xy,−→yz of G with f(−→uv) = f(−→yz) and f(−→vw) = f(−→xy). Since any
fi,j is an oriented arc-coloring, the arcs−→uv,−→vw,−→xy,−→yz does not belong to the same forest and
then −→uv,−→yz ∈ Fi,j and −→vw,−→xy ∈ Fj,k, i 6= k. Since two forests of type 1 does not share any
vertex, we assume w.l.o.g. that Fi,j is of type 2. Suppose that f(−→uv) = f(−→yz) = ((i, p), i, j)
(resp. ((j, p), i, j, )) for some p ∈ {0, 1}. This implies that y ∈ Vi (resp. v ∈ Vi). Then,
since f(−→vw) = f(−→xy) = (r, j, k) for some r, the vertex y (resp. v) belongs either to Vj or to
Vk. This is a contradiction since i 6= j 6= k 6= i. It is easy to see that this coloring uses at
most 2k(k − 1)−

⌊

k
2

⌋

colors. That completes the proof. 2
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Figure 1: The tournament T4

3 Planar graphs

A celebrated result of Borodin [2] states that every planar graph has acyclic chromatic num-
ber at most five. Thus, from their previously mentionned result, Raspaud and Sopena [14]
obtained that every oriented planar graph has oriented chromatic number at most 80,
which is the best known upper bound for planar graphs up to now.

Sopena [15] constructed an oriented planar graph with oriented chromatic number 16.
More recently, Marshall [10] showed that an oriented planar graph with oriented chromatic
number at least 17 exists. The gap between the lower and the upper bound is very large
and seems to be very hard to reduce.

Concerning oriented arc-coloring of planar graphs, Theorem 2 and Borodin’s result give
the following upper bound:

Corollary 5 Let G be a planar graph. Then χ′

o(G) ≤ 38.

We can easily construct oriented planar graphs with oriented chromatic index 7. The
gap between lower and upper bound is thus also large for the oriented chromatic index of
planar graphs.

The girth of a planar graph is the size of a smallest cycle. Oriented chromatic number
of planar graphs with large girth was widely studied [3, 4, 5, 11]. In particular, Nešetřil et.
al [11] proved that for every g ≥ 3, there exists a planar graph G with girth g such that
χo(G) ≥ 5.

We now prove that in case of oriented arc-coloring, this bound can be decreased to 4
for some high girth. Let T4 be the tournament on four vertices depicted in Figure 1. We
say that a T4-arc-coloring f of an oriented graph G is good if

1. ∀ u ∈ V (G), C+
f (u) ∈ {{1}, {2}, {3}, {4}, {2, 3}, {3, 4}},

2. ∀ u ∈ V (G), C−

f (u) ∈ {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}}.

We first prove the following:

Lemma 6 Let P = v0v1 . . . v9v10 be an oriented 10-path of 2-vertices (d(vi) = 2 for 1 ≤
i ≤ 9). Then, any good T4-arc-coloring ϕ of P ′ = P \ {v2, . . . , v8} can be extended to a
good T4-arc-coloring of P .
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Figure 2: Automaton A of Lemma 6

Proof. Let f ′ be a good T4-arc-coloring of P ′. Let f ′(v9v10) = c. We uncolor f ′(v9v10)
and prove in the following that there exist a good T4-arc-coloring f of P extending f ′ such
that f(v9v10) = c. We shall extend f ′ to P from v1v2 to v9v10 and we shall reason in term
of reachable colors (i.e. for each i, we shall consider the set of colors we are able to obtain
on vivi+1). For instance, if the reachable color set of vivi+1 is S = {c1, . . . , cn}, that means
there exist n good T4-arc-colorings f1, . . . , fn of P \ {vi+1vi+2, . . . , v9v10} extending f ′ such
that fj(vivi+1) = cj for 1 ≤ j ≤ n. Therefore, showing that the reachable color set of v9v10

is {1, 2, 3, 4} means that there exists a good T4-arc-coloring f of P with f(v9v10) = c, that
will complete the proof.

We associate to each arc of P a state, which is its orientation (from left to right if
−−−→vivi+1 ∈ A(G) and from right to left otherwise) and its reachable color set. A case study
of T4 allows us to determine twenty possible states of an arc of P . Let us consider the
automaton of Figure 2. Its twenty states are the twenty possible states of an arc of P . The
first row stands for the arc of P oriented from left to right while the second one stands
for the ones oriented from right to left. Each state of the first row (resp. second row)
will be called a 1-state (resp. a 2-state). Two transitions leave each state, one towards
a 1-state and one towards a 2-state; these transitions are respectively called 1-transition
and 2-transition. The four first states of each row (i.e. the states 1, 2, 3, 4, 11, 12, 13, 14)
correspond to the eight possible states of v0v1 (i.e. one color and one orientation). Then,
knowing the state of an arc vivi+1 and the orientation of the next arc vi+1vi+2, we are able
to determine the state of vi+1vi+2 by following either the 1-transition if −−−−−→vi+1vi+2 ∈ A(P ) or
the 2-transition if −−−−−→vi+2vi+1 ∈ A(P ). Clearly, the state of the v9v10 will be either the state
10 or the state 20, that completes the proof. 2

Theorem 7 Let G be a planar graph with girth g ≥ 46. Then G admits a good T4-arc-
coloring.

Proof. Consider a minimal counter-example H to Theorem 7. We prove that H contains
neither a 1-vertex nor an oriented 10-path of 2-vertices.

• Suppose that H contains a 1-vertex u, let v be its neighbor and suppose that −→uv ∈
A(H). Let H ′ \ u. Due to the minimality of H , H ′ admits a good T4-arc-coloring f .
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Therefore, C+
f (v) ∈ {{1}, {2}, {3}, {4}, {2, 3}, {3, 4}}. For each possible case, there

clearly exists a predecessor in T4 we can use to extend f to good T4-arc-coloring of
H . The proof of the case −→vu ∈ A(H) is similar.

• Suppose that H contains a 10-path uv1v2 . . . v9w of 2-vertices (therefore d(vi) = 2
for all i ∈ [1, 9]) and let H ′ = H \ {v2, v3, . . . , v8}. Due to the minimality of H , H ′

admits a good T4-arc-coloring f . Lemma 6 insures that f can be extended to a good
T4-arc-coloring of H .

In [11], the authors proved that every planar graph G of girth g(G) ≥ 5d + 1 contains
either a 1-vertex or a (d + 1)-path of 2-vertices. Therefore, since g(H) ≥ 46, a counter-
example to Theorem 7 does not exist. That completes the proof. 2

Observe that for a directed cycle of length l 6≡ 0 (mod 3), any oriented arc-coloring
needs at least 4 colors. Then, for any g ≥ 3, consider the connected oriented graph Gg

obtained by taking two directed cycles sharing one arc, the first one of size g and the second
one of size k ≥ g, k 6≡ 0 (mod 3). Clearly, the bound of Theorem 7 is tight since Gg has
girth g and oriented chromatic index 4.

4 Graphs with bounded degree

Every oriented graph with maximum degree three has oriented chromatic number at
most 11 [16]. In [15], Sopena conjectured that the oriented chromatic number of con-
nected oriented graphs with maximum degree three is at most 7. In case of oriented
arc-coloring, Pinlou [13] recently proved that every oriented graph with maximum degree
three has oriented chromatic index at most 7.

For the general case, Kostochka et al. [9] proved that every oriented graph with max-
imum degree ∆ has oriented chromatic number at most 2∆22∆ using a probabilistic ar-
gument. Therefore, for such a graph G we also have χ′

o(G) ≤ 2∆22∆. In [1], Alon et al.
proved that every graph with maximum degree ∆ has acyclic chromatic number at most
O(∆4/3). Using Theorem 2, we thus get the better upper bound of O(∆8/3) for the oriented
chromatic index of oriented graphs with maximum degree ∆.

We improve this latter bound and show the following:

Theorem 8 Let G be an oriented graph with maximum degree ∆. Then, χ′

o(G) ≤ 2∆2.

Proof. Let G∗ be the undirected graph defined by V (G∗) = V (G) and uv ∈ E(G∗) if and

only if −→uv ∈ A(G) or −→vu ∈ A(G) or there exists a vertex t such that
−→
ut,
−→
tv ∈ A(G). We

clearly have ∆(G∗) ≤ ∆ + ∆× (∆− 1) = ∆2. Let p be an optimal proper vertex-coloring
of G∗ using at most ∆2 + 1 colors from {0, . . . , ∆2} by Brook’s Theorem.

Let now c be the mapping from A(G) to {1, . . . , ∆2}×{0, 1} defined by c(−→uv) = (p(v), 0)
if p(u) < p(v) and c(−→uv) = (p(u), 1) if p(u) > p(v).

We will show that c is an arc-coloring of G.
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Suppose first that −→uv and −→vw are two consecutive arcs of G such that c(−→uv) = c(−→vw) =
(α, i). If i = 0 (resp. i = 1) then p(v) = p(w) (resp. p(u) = p(v)), a contradiction since
vw ∈ E(G∗) (resp. uv ∈ E(G∗)).

Suppose now that there are four arcs −→uv,−→vw,−→xy, and −→yz of G such that c(−→uv) = c(−→yz) =
(α, i) and c(−→vw) = c(−→xy) = (β, j). If i = j = 0, we get α = p(v) = p(z) and p(v) < p(w)
on one hand, β = p(y) = p(w) and p(w) = p(y) < p(z) = p(v) on the other hand, a
contradiction. The case i = j = 1 leads to a contradiction in a similar way. Assume now
that i 6= j and w.l.o.g. that i = 0 and j = 1. Then we have α = p(v) = p(z) on one
hand and β = p(v) = p(x) on the other hand. Thus p(z) = p(x), a contradiction since
xz ∈ E(G∗).

Therefore, the mapping c is an arc-coloring of G which uses at most 2∆2 colors. 2

Concerning the lower bound, we are only able to construct oriented graphs with max-
imum degree ∆ and oriented chromatic index 2∆ − 1. For that, let n = 2∆− 1 and con-
sider the oriented bipartite graph Bn,n defined by V (Bn,n) = {x0, . . . , xn−1, y0, . . . , yn−1},
−−→xiyi ∈ A(Bn,n) for all 0 ≤ i < n and −−→yixk ∈ A(Bn,n) for all 0 ≤ i < n, 1 ≤ j < ∆ and
k = i+j (mod n). Clearly, Bn,n is a ∆-regular graph and any pair of arcs of {−−→xiyi, 0 ≤ i < n}
belongs to a directed 3-path and thus need distinct colors.

5 NP-completeness

Complexity results for the oriented chromatic number were established recently. Kloster-
meyer and MacGillivray [8] have shown that given an oriented graph G, deciding whether
χo(G) ≤ k is polynomial time if k ≤ 3 and is NP-complete if k ≥ 4. Culus and Demange [7]
extended the above result to the case of bipartite oriented graphs and circuit-free oriented
graphs.

In this section, we determine the complexity of deciding whether the oriented chro-
matic index of a given oriented graph is at most a fixed positive integer. Since the ori-
ented chromatic index of an oriented graph G is the oriented chromatic number of its line
digraph LD(G), the result we provide below is then an extension of Klostermeyer and
MacGillivray’s result to the case of line digraphs.

Theorem 9 Given an oriented graph G, deciding whether χ′

o(G) ≤ k is polynomial time
if k ≤ 3 and NP-complete if k ≥ 4.

Proof. The case k ≤ 3 directly follows from Klostermeyer and MacGillivray’s result since
χ′

o(G) = χo(LD(G)) and LD(G) can be constructed from G in polynomial time.
We show that the case k = 4 is NP-complete using a reduction from 3-colorability.

We construct the oriented graph G′ from an undirected graph G as follows. For every
vertex v of G, we put an arc v′ in G′. For every edge xy in G, we add a directed 4-path of
2-vertices joining the head of x′ to the tail of y′, and another 4-path of 2-vertices joining
the head of y′ to the tail of x′. Hence, G′ contains 10-circuits (i.e. a directed cycles on ten
vertices) induced by the edges of G: such a 10-circuit induced by the edge xy is denoted
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by Cx,y. Thus, any oriented arc-coloring needs at least four colors. Therefore, we have
χ′

o(G
′) ≤ 4 if and only if G′ has an homomorphism to the tournament T4 depicted in

Figure 1 (T4 is the only tournament on four vertices containing a 4-circuit). Notice that,
for any edge xy of G, the arcs x′ and y′ are opposite arcs on Cx,y. We easily check by
a case study that any T4-arc-coloring h of Cx,y is such that h(x′) 6= h(y′) and that every
couple of distinct colors can be obtained for (h(x′), h(y′)) except (2, 3) and (3, 2). If c is
a proper 3-vertex-coloring of G, then G′ admits a T4-arc-coloring h such that h(v′) = 1
if c(v) = 1, h(v′) = 2 if c(v) = 2, and h(v′) = 4 if c(v) = 3. Conversely, if G′ admits
a T4-arc-coloring h, then the coloring c of G such that c(v) = 1 if h(v′) = 1, c(v) = 2 if
h(v′) = 2 or h(v′) = 3, and c(v) = 3 if h(v′) = 4, is a proper 3-vertex-coloring.

We now consider the case k ≥ 4, k even. We consider the problem whether χ′

o(G) ≤ k

restricted to oriented graphs G containing neither sources nor sinks. This case is done by
induction on k. Notice that the oriented graphs in the proof of the case k = 4 contain
neither sources nor sinks, so k = 4 is our base case. We construct an oriented graph G′

without sources nor sinks from an oriented graph G without sources nor sinks, such that
χ′

o(G
′) = χ′

o(G) + 2. The graph G′ is obtained from G by adding three vertices v1, v2,
v3, the arcs −−→v1v2,

−−→v2v3, and the arcs −→vv1,
−→v3v, for every vertex v of G. Any oriented k-

arc-coloring f of G can be extended to an oriented (k + 2)-coloring of G′ as follows. The
arcs −→vv1 (resp. −→v3v) get the same color as one of C+

f (v) (resp. C−

f (v)) since C+
f (v) 6= ∅

and C−

f (v) 6= ∅. The arcs −−→v1v2 and −−→v2v3 get additional colors. Conversely, any oriented
k-arc-coloring of G′ induces an oriented (k − 2)-arc-coloring of G. To see this, notice that
every arc −→xy of G is contained in the 5-circuit −→xy,−→yv1,

−−→v1v2,
−−→v2v3,

−→v3x, which implies that
the color of −→xy is distinct from those of −−→v1v2 and −−→v2v3.

We finally consider the case k ≥ 4, k odd. We construct an oriented graph G′ from an
oriented graph G without sources nor sinks, such that χ′

o(G
′) = χ′

o(G) + 1. The graph G′

is obtained from G by adding two vertices v1, v2, the arc −−→v1v2, and the arcs −→vv1, for every
vertex v of G. As above, we check that any oriented k-arc-coloring of G can be extended
to an oriented (k + 1)-coloring of G′, any oriented k-arc-coloring of G′ induces an oriented
(k − 1)-arc-coloring of G. 2
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[11] J. Nešetřil, A. Raspaud, and E. Sopena. Colorings and girth of oriented planar graphs.
Discrete Math., 165-166:519–530, 1997.

[12] P. Ochem. Negative results on acyclic improper colorings. In Stefan Felsner, editor,
2005 European Conference on Combinatorics, Graph Theory and Applications (Euro-
Comb ’05), volume AE of DMTCS Proceedings, pages 357–362. Discrete Math. and
Theoret. Comput. Sci., 2005.

[13] A. Pinlou. On oriented arc-coloring of subcubic graphs. Research Report RR-1379-06,
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