LaBRI Research Report No. Compiled on April 11, 2001
The final version of this paper has been published in Inform. Processing Letters 51 (1994), 171-174.

GOOD AND SEMI-STRONG
COLORINGS OF ORIENTED
PLANAR GRAPHS

André RASPAUD and Eric SOPENA
LaBRI, Université Bordeauz I, 351 cours de la Libération, 33405 Talence Cedex, France.

Abstract. A k—coloring of an oriented graph G = (V, A) is an assignment ¢ of one of the colors 1,2,...,k to
each vertex of the graph such that, for every arc (z,y) of G, ¢(x) # ¢(y). The k—coloring is good if for every
arc (z,y) of G there is no arc (z,t) € A such that c¢(z) = ¢(t) and c(y) = ¢(z). A k—coloring is said to be
semi—strong if for every vertex x of G, ¢(z) # ¢(t) for any pair {z,t} of vertices of N~ (x).

We show that every oriented planar graph has a good coloring using at most 5 x 2 colors and that every
oriented planar graph G = (V, A) with d=(z) < 3 for every x € V has a good and semi-strong coloring using at
most 4 x 5 x 2% colors.
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1 Introduction

Let G = (V, F) be a graph with vertex set V and edge set E. We assume that G is finite and simple
(without loops and multiple edges). A k—coloring of the vertices is an assignment of one of the colors
1,2,...,k to each vertex so that no two adjacent vertices receive the same color. A k—coloring is said
to be acyclic if the subgraph induced by the vertices with any two colors has no cycle. If G = (V, A)
is an oriented graph, a k—coloring c¢ of G is a k—coloring of the underlying unoriented graph and
a k—coloring is good if for every arc (z,y) of G there is no arc (z,t) € A such that ¢(z) = ¢(t) and
c(y) = ¢(z). Let z € V, we denote by N*(z) (resp. N~ (x)) the set of vertices y (resp. z) such that
(z,y) € A (resp. (z,7) € A) and d*(z) = |[NT(z)|, d (z) = [N (z)|]. A k—coloring c of an oriented
graph G is said to be semi—strong if for every vertex x of G, ¢(z) # ¢(t) for any pair {z,t} of vertices
of N~ ().

In this paper we give a first answer to a question coming from a work of B. Courcelle [3] concerning
the monadic second order logic of graphs. In [3] B. Courcelle showed that every planar oriented graph
with d=(z) < 3 for every € V has a good and semi-strong coloring which uses at most 43 x 3%3
colors. The question is: can we improve this upper bound? We have the following result:

Theorem 1 Every oriented planar graph has a good coloring using at most 5 x 2% colors.

Theorem 2 FEwvery planar graph can be oriented in such a way that the oriented graph thus obtained
has a good and semi-strong coloring using at most 4 x 5 x 2* colors.

To prove those theorems we use the following result [2]:
Theorem 3 (Borodin - 79) Every planar graph has an acyclic 5—coloring.
This property was conjectured in [4] and several authors have tried to solve it [1, 7, 9].

As a matter of fact, this coloring problem is a particular case of the general H-coloring problem
considered by several authors (see e.g. [6, 8]) in the case of directed or undirected graphs : let
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G = (V,A) and H = (W, B) be two directed (resp. undirected) graphs ; we say that G can be
H-colored if there exists a mapping p from V to W such that (z,y) € A = (uz,py) € B (resp.
{z,y} € A = {pz,py} € B). In the undirected case the usual notion of k-coloring hence corresponds
to that of Kj-coloring. In this paper, we study the H-coloring problem in the directed case when the
orientation of the considered graphs is antisymmetric (in that case, the coloring of any two neighbour
vertices induces the direction of the corresponding edge). Hence, our problem can be stated as follows
: can we find a minimal (with respect to the number of vertices) oriented graph M such that any
oriented planar graph G is M-colorable ?

Other families of oriented graphs have been studied in [11] where some optimal solutions are
proposed.

2 Proofs of the theorems

2.1 Theorem 1

We will prove in fact a stronger result:

Theorem 4 If G = (V, A) is an oriented graph whose underlying unoriented graph has an acyclic
k-coloring then it has a good coloring using at most k.28=1 colors.

It is clear that this result with theorem 3 implies the theorem 1. We first establish the easy
following lemma:

Lemma 5 Let F be a forest, ¢ be a 2-coloring of F using colors i and j (i < j), and F be any
oriented forest obtained by giving an orientation to F. Then there exists a good 4-coloring f of F
using colors {i, j} x {0,1} and such that for any vertez x in F, f'(z) = c(z) (where f'(x) denotes the

first component of f(x)).

Note that by oriented forest we mean any oriented graph whose underlying undirected graph is a
forest.

Proof. The coloring f can easily be obtained from ¢ by using the following rule : if (z,y) is an arc in F
then let f(z) = (c(z), ), f(y) = (c(y), 8) (where o, 8 € {0,1}) with a = g if and only if ¢(z) < ¢(y).
O

Proof of the theorem. Let G = (V, A) be an oriented graph and Vi,...,V, be the k color classes

of V', by hypothesis F; ; = G[V; UV}] for i,j € [1,k] and i # j (the subgraph induced by V; UV}) is a

forest. There are @ such forests, since F; ; and F;; denote the same forest. Hence by the previous

lemma F; ; has a good 4-coloring, denoted by f; ; = f;;, which satisfies : for any = € V; (resp. Vj),
() =i (resp. j). For each z € V there is i € [1,k] such that z € V; and = belongs to (k — 1) forests

F;j, j €[1,k], i # j. We define now the following coloring c of G :

Let £ € V and ¢ such that x € V; then

C(l‘) = (ia sz,zl (l‘), s 7fi2,ik_1 (l‘)),

where {i1,... i 1} is the set {1,...,k}\ {i}, with iy <iy <--- < iz and where f2;(x) denotes the
second component of f; ;(x). This is a coloring of G. We must prove that it is a good coloring. If it is
not a good coloring of G there are four vertices z,y, z,t of G such that (z,y) € A and (z,t) € A with
c(z) = ¢(t) and ¢(y) = c(z). By the definition of ¢ it is clear that z,t (resp. y, z) belong to the same
Vi (resp. Vj;). Hence

c(x) = e(t) = (i, [, (@), [, (7))
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c(y) = e(2) = G S35 @) FFjs, (1)
Moreover (z,y) and (z,t) belong to the same forest F;; for these two integers in [1,k]. We deduce
that fZQJ(ZE) = fj(t) and ffl(y) = JQZ(Z), which is impossible because f; ; = f;; is a good coloring. It
2]671

is easy to see that the coloring c uses at most k. colors. This completes the proof. a

2.2 Theorem 2

The arboricity a(G) of a graph G is the minimal number of forests needed to cover G. By a theorem
of Nash-Williams [10] it is easy to prove that for a planar graph G (G) < 3 [3]. We can then deduce
the following easy lemma [3]:

Lemma 6 If G = (V, E) is a planar graph then it can be oriented in such a way that d~(z) < 3 for
every x € V.

We prove now that if G = (V, A) is an oriented planar graph such that d— (z) < 3 for every x € V
then it has a good and semi strong coloring using at most 4 x 5 x 24 colors.
We use a technique developed in [3]. By theorem 1 G has a good 80-coloring c. Let V; be a set of
vertices of a color class for some i € [1,80]. Let G; be the graph with vertex set V; and edge set E;
defined as follows: there is an edge linking the vertices x and y of G; if and only if {z,y} C N~ (z)
for some z € V. It is not difficult to see that G; is planar : consider a vertex z in G which has a
predecessor A in V;. Note that in this case we have x ¢ V; and N*(z) N V; = . Since d™(z) < 3, z
can induce edges in E; between at most three vertices, say A, B and C, provided these vertices are
i-colored by ¢ (see Figure 1.a). We can then obtain a planar drawing of G; by using an initial planar
drawing of G as follows : (i) if only one predecessor of x belongs to V;, x cannot induce any edge in E;,
(7) if two predecessors of z, say A, B, belong to V; the corresponding edge can be drawn as shown in
Figure 1.b and (4i7) if all the three predecessors of z belong to V; then the three corresponding edges
can be drawn as shown in Figure 1.c. Moreover, it is easy to see that no other edge in G; will cross
the edges thus constructed.

Hence G; has a 4-coloring ¢;. We define the following coloring C' of G : for every z € V, C(z) =
(ci(z),c(x)) where 7 is such that z € V;. This coloring is good because of ¢ and semi-strong because
of the ¢;’s. C uses at most 4 x 5 x 2% colors. This completes the proof. O

3 Remarks

A planar graph G is outerplanar if it can be embedded in the plane so that all its vertices lie on the
same face [5]. In [4] it is proved that every outerplanar graph has an acyclic 3-coloring. Then by using
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the theorem 4 we have the following result:

Corollary 7 If G is an oriented outerplanar graph then it has a good coloring using at most 3 x 22
colors.

In the same way, if a graph G is a graph with maximal degree 3 then G has an acyclic 4-coloring

[4]. So we have:

Corollary 8 If G is a graph with mazimal degree 3 then every oriented graph obtained from G has a
good coloring using at most 4 x 23 colors.
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