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Abstract

In this paper, we initiate the study of complete colourings of oriented graphs and the new
associated notion of the oriented achromatic number of oriented and undirected graphs. In
particular, we prove that for every integers a and b with 2 ≤ a ≤ b, there exists an oriented

graph
−→
Ga,b with oriented chromatic number a and oriented achromatic number b. We also

prove that adding a vertex, deleting a vertex or deleting an arc in an oriented graph may
increase its oriented achromatic number by an arbitrarily large value, while adding an arc
may increase its oriented achromatic number by at most 2.

Finally, we consider the behaviour of the oriented chromatic and achromatic numbers
with respect to elementary homomorphisms and show in particular that, in contrast to the
undirected case, there is no interpolation homomorphism theorem for oriented graphs.

Our notion of complete colouring of oriented graphs corresponds to the notion of complete
homomorphisms of oriented graphs and, therefore, differs from the notion of complete colour-
ings of directed graphs recently introduced by Edwards in [Harmonious chromatic number
of directed graphs. Discrete Appl. Math. 161 (2013), 369–376.].

Keywords: Achromatic number; Complete colouring; Complete homomorphism; Elementary
homomorphism; Oriented colouring; Oriented chromatic number.
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1 Introduction

All the graphs we consider in this paper are finite and simple. We denote by V (G) the set of
vertices of an undirected graph G and by E(G) its set of edges.

A complete colouring of an undirected graph G is a proper vertex colouring of G such that
for every pair of colours there is at least one edge in G whose endpoints are coloured with this
pair of colours. The achromatic number of G, denoted ψ(G), is then defined as the greatest
number of colours in a complete colouring of G.

The achromatic number of a graph can be equivalently defined in terms of complete homo-
morphisms. A homomorphism of a graph G to a graph H is a mapping h from V (G) to V (H)
such that h(u)h(v) is an edge in H whenever uv is an edge in G. The homomorphic image of G
under h, denoted h(G), is the subgraph of H given by V (h(G)) = h(V (G)) and xy ∈ E(h(G)) if
and only if there exists an edge uv ∈ E(G) such that h(u) = x and h(v) = y. A homomorphism
h of G to H is complete if and only if h(G) = H.

A proper vertex k-colouring of G can thus be viewed as a homomorphism of G to Kk, the
complete graph of order k, and a complete k-colouring of G as a complete homomorphism of G
to Kk. Moreover, the ordinary chromatic number χ(G) of G corresponds to the smallest k for
which there exists a complete homomorphism of G to Kk, while the achromatic number ψ(G)
of G corresponds to the greatest such k.
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The achromatic number was introduced by Harary, Hedetniemi and Prins [16] in 1967 and
has attracted a lot of attention since then. The interested reader may consult the two surveys by
Edwards [9] and by Hughes and MacGillivray [18], or Chapter 12 in the recent book Chromatic
Graph Theory by Chartrand and Zhang [7] (whose reading clearly inspired our work), as well as
the detailed online bibliography proposed by Edwards [10] which contains about 200 references
on harmonious and complete colourings.

In this paper, we introduce the notions of complete colourings, complete homomorphisms and
achromatic numbers of oriented graphs, that is antisymmetric digraphs. The notion of (oriented)
colouring of oriented graphs was introduced by Courcelle [8] in 1994 and then studied by several
authors (see [24] for a survey on oriented colourings). By taking an appropriate notion of an
“oriented clique”, namely an oriented graph of order n for which every oriented colouring must
use n colours, we get a natural extension to oriented graphs of complete colourings, complete
homomorphisms, and the achromatic number.

Very recently, Edwards considered complete colourings of directed graphs [11], but our def-
inition, based on oriented colourings, is quite different and exactly corresponds to complete
homomorphisms of oriented graphs (roughly speaking, in [11], two arcs −→uv and −→wx may be
coloured by a colouring function γ in such a way that γ(u) = γ(x) and γ(v) = γ(w), while such
a situation is forbidden in oriented colourings). In particular, every oriented graph admits a
complete colouring in our sense, which is not the case for the directed version of Edwards (it is
even NP-complete to decide whether an oriented graph admits a (directed) complete colouring
or not).

Our paper is organised as follows. In Section 2 we recall the definitions of oriented colourings,
homomorphisms of oriented graphs and oriented cliques and we introduce in Section 3 the
new notions of complete oriented colourings and oriented achromatic numbers, together with
some basic results. Our main results concerning the oriented achromatic number of graphs
are then given in Section 4. Finally, we investigate in Section 5 the properties of elementary
homomorphisms with respect to the oriented chromatic number and the oriented achromatic
number of oriented graphs.

2 Oriented colourings, homomorphisms and oriented cliques

An oriented graph
−→
G = (V (

−→
G), E(

−→
G)) is an antisymmetric digraph obtained from an undirected

(simple) graph G = (V (G), E(G)) having the same set of vertices, V (G) = V (
−→
G), by giving to

each edge uv in E(G) one of its two possible orientations, −→uv or −→vu. Such an oriented graph
−→
G

is said to be an orientation of G. For every vertex u in V (
−→
G), we denote by N+

−→
G
(u) the set of

out-neighbours of u, that is N+
−→
G
(u) = {v | −→uv ∈ E(

−→
G)}, and by N−

−→
G
(u) the set of in-neighbours

of u, that is N−
−→
G
(u) = {v | −→vu ∈ E(

−→
G)}. We will also denote by d+−→

G
(u) the outdegree of u, that is

d+−→
G
(u) = |N+

−→
G
(u)| and by d−−→

G
(u) the indegree of u, that is d−−→

G
(u) = |N−

−→
G
(u)|. We will simply use

the notation N+(u), N−(u), d+(u) or d−(u) whenever the graph
−→
G is clear from the context.

For every two non-adjacent vertices u and v in V (
−→
G), we denote by

−→
G +−→uv the oriented graph(

V (
−→
G), E(

−→
G) ∪ {−→uv}

)
. For every arc −→uv in E(

−→
G), we denote by

−→
G − −→uv the oriented graph(

V (
−→
G), E(

−→
G) \ {−→uv}

)
Let

−→
G be an oriented graph. A directed k-path (of length k ≥ 0) in

−→
G is a sequence of k+1

distinct vertices u0, . . . , uk such that −−−−→uiui+1 ∈ E(
−→
G) for every i, 0 ≤ i < k. Such a path is said

to be directed from u0 to uk. Let u and v be any two vertices in V (
−→
G). The directed distance

−→
d (

−→
G, u, v) from u to v in

−→
G is the minimal length of a directed path from u to v in

−→
G . If no

such path exists, then
−→
d (

−→
G, u, v) = ∞. Note that

−→
d (

−→
G, u, v) and

−→
d (

−→
G, v, u) may be distinct.

Let do(
−→
G, u, v) = min

{−→
d (

−→
G, u, v),

−→
d (

−→
G, v, u)

}
; we thus have do(

−→
G, u, v) = do(

−→
G, v, u) for
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every two vertices u and v in
−→
G . The maximum value of do(

−→
G, u, v), taken over all pairs of

vertices {u, v}, will be called the weak directed diameter of
−→
G . Note that, in contrast to the

ordinary directed diameter, the weak directed diameter of an oriented graph
−→
G may be finite

even when
−→
G is not strongly connected. In the following, we shall simply write

−→
d (u, v) or

do(u, v) whenever the oriented graph
−→
G is clear from the context. For an undirected graph G,

we denote by d(G, u, v) the distance from u to v in G.

Let
−→
G and

−→
H be two oriented graphs. A homomorphism from

−→
G to

−→
H is a mapping

h : V (
−→
G) −→ V (

−→
H ) such that for every arc −→uv in E(

−→
G),

−−−−−−→
h(u)h(v) is an arc in

−→
H . We write

−→
G −→

−→
H whenever such a homomorphism exists. Let h be a homomorphism of

−→
G to

−→
H . The

homomorphic image h(
−→
G) of

−→
G under h is the oriented subgraph of

−→
H given by

V (h(
−→
G)) = h(V (

−→
G)),

and
E(h(

−→
G)) =

{ −→
ab | ∃ −→uv ∈ E(

−→
G) such that h(u) = a and h(v) = b

}
.

An oriented k-colouring of an oriented graph
−→
G is a partition of V (

−→
G) into k disjoint

independent sets, such that all arcs linking any two of these sets have the same direction [23].

Such an oriented colouring is thus a mapping γ : V (
−→
G) −→ {1, 2, . . . , k} such that γ(u) ̸= γ(v)

for every arc −→uv in E(
−→
G) and γ(u) ̸= γ(x) whenever there exist two arcs −→uv and −→wx in E(

−→
G)

with γ(v) = γ(w) (v and w are not necessarily distinct). Observe that in any oriented colouring

of
−→
G , every two vertices u and v with do(

−→
G, u, v) ≤ 2 must be assigned distinct colours.

The oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is then defined as the smallest

k for which
−→
G admits an oriented k-colouring. Observe that χo(

−→
G) can equivalently be defined

as the smallest order of an oriented graph
−→
T for which

−→
G −→

−→
T . If G is an undirected graph,

the oriented chromatic number χo(G) of G is defined as the largest oriented chromatic number
of its orientations:

χo(G) = max
{
χo(

−→
G) | −→G is an orientation of G

}
.

An oriented clique, or simply an o-clique, is an oriented graph
−→O such that χo(

−→O) = |V (
−→O)|.

Hence, an oriented graph is an o-clique if and only if every two of its vertices are linked by a
directed path of length 1 or 2 [19], that is, its weak directed diameter is at most 2. Figure 1
shows examples of o-cliques of order up to 7, each of them being minimal with respect to the
number of arcs.

Let
−→
On be an o-clique of order n. The following construction [23] allows us to obtain from

−→
On a new o-clique

−→
O2n+1 of order 2n + 1: take two disjoint copies

−→
O ′

n and
−→
O ′′

n of
−→
On, a new

vertex u and add all arcs from u to every vertex of
−→
O ′

n and from every vertex of
−→
O ′′

n to u. In

Figure 1, the o-clique
−→
O7 has been obtained by applying this construction to the o-clique

−→
O3.

Recall that the ordinary chromatic number of an undirected graph G may be defined as
the smallest k such that G admits a homomorphism to the complete graph Kk. Similarly, the

oriented chromatic number of an oriented graph
−→
G corresponds to the smallest k for which there

exists an oriented o-clique
−→Ok of order k such that

−→
G admits a homomorphism to

−→Ok.
Let f(k) denote the minimum number of arcs in an o-clique of order k. The asymptotic

behaviour of the function f has been independently studied in [13] and [20], where it was proved
that lim f(k)/(k log k) = 1 for k → ∞. More precisely, Füredi et al. proved the following:

Theorem 1 (Füredi, Horak, Pareek and Zhu [13]) For every k ≥ 9,

(1− o(1))k log k ≤ f(k) ≤ k log k − 3

2
k.

In the following, we will say that an o-clique of order k is optimal whenever it has exactly
f(k) arcs. Note that all the o-cliques depicted in Figure 1 are optimal.
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−→
O2

−→
O1

−→
O6 −→

O7

−→
O4 −→

O5
−→
O3

Figure 1: Sample o-cliques

3 Complete colourings, complete homomorphisms, and the ori-
ented achromatic number

An oriented k-colouring γ : V (
−→
G) −→ {1, 2, . . . , k} of an oriented graph

−→
G is complete if and

only if for every two colours a, b ∈ {1, 2, . . . , k}, a ̸= b, at least one of the following two conditions
hold:

1. there exists an arc −→uv in E(
−→
G) such that either γ(u) = a and γ(v) = b or γ(u) = b and

γ(v) = a, or

2. there exist two arcs −→uv and −→wx in E(
−→
G) such that either γ(u) = a, γ(x) = b and γ(v) =

γ(w) or γ(u) = b, γ(x) = a and γ(v) = γ(w) (note here that we may have v = w).

Let
−→
G and

−→
H be oriented graphs. A homomorphism h :

−→
G −→ −→

H is complete if and only

if for every arc
−→
ab ∈ E(

−→
H ), there exists an arc −→uv ∈ E(

−→
G) such that h(u) = a and h(v) = b. In

other words, the homomorphism h is complete whenever h(
−→
G) =

−→
H . We shall write

−→
G ◦−→

−→
H

whenever there exists a complete homomorphism of
−→
G to

−→
H .

The following theorem shows that every complete oriented colouring can be equivalently
viewed as a complete homomorphism to some oriented o-clique.

Theorem 2 An oriented graph
−→
G admits a complete oriented k-colouring if and only if there

exists an o-clique
−→Ok of order k such that

−→
G ◦−→−→Ok.

Proof. Let γ be a complete oriented k-colouring of
−→
G , and

−→
H be the oriented graph defined

by V (
−→
H ) = {1, . . . , k} and for every i, j, 1 ≤ i, j ≤ k,

−→
ij ∈ E(

−→
H ) if and only if there exists an

arc −→uv ∈ E(
−→
G) such that γ(u) = i and γ(v) = j. We clearly have

−→
G ◦−→−→

H . We claim that
−→
H is an o-clique. To see that, let a and b be any two vertices in V (

−→
H ). Since γ is a complete

k-colouring of
−→
G , we get that (i) there exists an arc −→uv in E(

−→
G) such that either γ(u) = a and

γ(v) = b, and thus
−→
ab is an arc in

−→
H , or γ(u) = b and γ(v) = a, and thus

−→
ba is an arc in

−→
H ,

or (ii) there exist four vertices u, v, w and x in V (
−→
G) with −→uv, −→wx ∈ E(

−→
G) such that either

γ(u) = a, γ(x) = b and γ(v) = γ(w) = c, and thus acb is a directed 2-path in
−→
H , or γ(u) = b,

γ(x) = a and γ(v) = γ(w) = c, and thus bca is a directed 2-path in
−→
H .
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2

1 2 3 14 1 2 3 14

1 2 3 24

1 2 3 31

2 3 2 21

1 2 1 32

1 2 3 3

Figure 2: Complete oriented colouring of orientations of P4

Conversely, let
−→Ok be an o-clique of order k with V (

−→Ok) = {1, . . . , k}, h a complete homo-

morphism of
−→
G to

−→
Ok and a, b any two colours from {1, . . . , k}. If

−→
ab ∈ E(

−→
Ok) then there exists

an arc −→uv in E(
−→
G) such that h(u) = a and h(v) = b. Otherwise, there exists a directed 2-path

acb in
−→
Ok and, therefore, there exist four vertices u, v, w and x in V (

−→
G) with −→uv, −→wx ∈ E(

−→
G)

such that h(u) = a, h(x) = b and h(v) = h(w). The mapping h is thus a complete oriented

k-colouring of
−→
G . �

The oriented achromatic number of an oriented graph
−→
G , denoted ψo(

−→
G), is the largest k

such that
−→
G admits a complete oriented k-colouring or, equivalently, the largest order of an

o-clique
−→
O such that

−→
G ◦−→

−→
O . We will say that a complete oriented colouring of

−→
G is optimal

whenever it uses ψo(
−→
G) colours.

Since the composition of two (complete) homomorphisms is clearly a (complete) homomor-
phism, we have:

Proposition 3 For every oriented graph
−→
G , if

−→
H is a homomorphic image of

−→
G , then χo(

−→
G) ≤

χo(
−→
H ) and ψo(

−→
G) ≥ ψo(

−→
H ).

If G is an undirected graph, we define the oriented achromatic number ψo(G) of G as the
largest oriented achromatic number of its orientations:

ψo(G) = max
{
ψo(

−→
G) |

−→
G is an orientation of G

}
.

Consider the undirected path P4 of order 5; up to symmetries, this path admits seven distinct
orientations. The corresponding oriented paths, together with an optimal complete oriented
colouring, are depicted in Figure 2. We thus get that ψo(P4) = 4 (recall that the smallest
o-clique of order 5 has five arcs).

It is not difficult to observe that if G is an undirected complete bipartite graph then ψ(G) =
2. Our next theorem shows that the oriented achromatic number of the family of undirected
complete bipartite graphs is not bounded. We first need the following easy result:

Proposition 4 Let
−→
G be an oriented graph and u, v two vertices of

−→
G . If N+(u) ⊆ N+(v) and

N−(u) ⊆ N−(v) then χo(
−→
G) = χo(

−→
G − u).

Proof. Since
−→
G − u is a subgraph of

−→
G , we clearly have χo(

−→
G − u) ≤ χo(

−→
G). On the other

hand, every oriented coloring γ of
−→
G − u can be extended to an oriented coloring γu of

−→
G by

setting γu(u) = γ(v) and γu(w) = γ(w) for every vertex w ̸= u. Therefore χo(
−→
G) ≤ χo(

−→
G − u)

and the result follows. �

Theorem 5 For every two integers m and n with 1 ≤ m ≤ n, ψo(Km,n) = min{m+n,m+2m}.

5



Proof. Let (X,Y ) denote the bipartition of V (Km,n) with X = {x1, . . . , xm} and Y =
{y1, . . . , yn}, and let ν be any bijection from the set {1, . . . , 2m} to the set of subsets of {1, . . . ,m}
such that ν(1) = ∅ and ν(i) = {i− 1} for every i, 2 ≤ i ≤ m+ 1.

Suppose first that n ≤ 2m and let
−→
Km,n be the orientation ofKm,n defined by −−→xiyj ∈ E(

−→
Km,n)

if i ∈ ν(j) and −−→yjxi ∈ E(
−→
Km,n) otherwise. Since m ≤ n, for every i and j with 1 ≤ i < j ≤ m,

we have i ∈ {i} = ν(i + 1) and j /∈ ν(i + 1), so that xiyi+1xj is a directed path. Moreover, for
every k and ℓ with 1 ≤ k < ℓ ≤ n, there exists some α ∈ {1, . . . ,m} such that α belongs to
exactly one of the subsets ν(k) or ν(ℓ), so that either ykxαyℓ or yℓαyk is a directed path. Hence,

every two vertices of
−→
Km,n are linked by a directed path of length at most 2. The oriented graph

−→
Km,n is thus an o-clique and, therefore, ψo(Km,n) = m+ n.

Suppose now that n > 2m. Assume ψo(Km,n) = k and let
−→
Km,n be an orientation of

Km,n that admits a complete homomorphism to an o-clique Ok of order k. Since Km,n is a
complete bipartite graph, Ok must also be bipartite, with two parts of order m′ ≤ m and
k −m′, respectively. By Proposition 4 we thus have k −m′ ≤ 2m

′
, since otherwise two vertices

in the second part would have the same sets of in-neighbours and out-neighbours. It follows
that ψo(Km,n) ≤ m′ + 2m

′ ≤ m + 2m. The orientation of Km,n introduced above clearly
admits a complete homomorphism to the bipartite o-clique with parts of size m and 2m, so that
ψo(Km,n) = m+ 2m and the result follows. �

In particular, the oriented achromatic number of every star K1,n, n ≥ 2, equals 3 (every such
star admits an orientation containing a directed 2-path).

If G is an undirected bipartite graph, then it admits K2 as a homomorphic image. If
G contains a 2-path, then χo(G) ≥ 3. Therefore, since χo(K2) = 2, the first inequality of
Proposition 3 does not hold for undirected graphs with respect to the oriented chromatic number.

On the other hand, every orientation of a homomorphic image H of an undirected graph G
is a homomorphic image of some orientation of G so that every complete oriented colouring of
any orientation of H can be extended to a complete oriented colouring of some orientation of G
using the same number of colours. Hence, the second inequality of Proposition 3 still holds for
undirected graphs with respect to the oriented achromatic number:

Proposition 6 For every undirected graph G, if H is a homomorphic image of G, then ψo(G) ≥
ψo(H).

Let G be an undirected graph and γ be a complete (ordinary) k-colouring of G. Consider

the orientation
−→
G of G given by −→uv ∈ E(

−→
G) if and only if uv ∈ E(G) and γ(u) < γ(v). It is

not difficult to check that γ is indeed a complete oriented colouring of
−→
G , corresponding to a

complete homomorphism of
−→
G to the transitive tournament of order k. Hence we have:

Proposition 7 For every undirected graph G, ψo(G) ≥ ψ(G).

Since every complete oriented colouring is an oriented colouring, we get χo(
−→
G) ≤ ψo(

−→
G) for

every oriented graph
−→
G and, therefore, χo(G) ≤ ψo(G) for every undirected graph G. On the

other hand, we clearly have ψo(G) ≤ n for every undirected graph G of order n. Therefore:

Proposition 8 For every undirected graph G of order n, χo(G) ≤ ψo(G) ≤ n.

If G is the underlying graph of an o-clique of order n, we clearly have χo(G) = ψo(G) = n.
A graph G may satisfy the equality χo(G) = ψo(G) without being the underlying graph of
an o-clique. Consider for instance the path P3 on four vertices. Since the minimum number
of edges of an o-clique of order 4 is four, P3 is not the underlying graph of an o-clique and

ψo(P3) < 4. Now, considering the directed path
−→
P3, we get χo(P3) ≥ χo(

−→
P3) = 3 and, therefore,

χo(P3) = ψo(P3).
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On the other hand, considering the definitions of o-cliques and complete oriented colourings,
we easily get that being the underlying graph of an o-clique is a necessary and sufficient condition
for a graph G of order n to satisfy the equality ψo(G) = n:

Proposition 9 If
−→
G is an oriented graph of order n, then ψo(

−→
G) = n if and only if

−→
G is an

o-clique.

Hence, an undirected graph G of order n has oriented achromatic number n if and only if it
admits an orientation with weak directed diameter at most 2 (in particular, ψo(Kn) = n for every
complete graph Kn). Chvàtal and Thomassen proved in [6] that the problem of determining
whether an undirected graph admits an orientation with directed diameter 2 is NP-complete.
Recently, Bensmail, Duvignau and Kirgizov proved that the problem of determining whether an
undirected graph admits an orientation with weak diameter k is NP-complete for every k ≥ 2 [1].
Hence we have:

Theorem 10 The problem of determining whether ψo(G) = n for an undirected graph G of
order n is NP-complete.

Note that this is in contrast to the undirected case, since an undirected graph or order n has
achromatic number n if and only if it is a complete graph.

4 General results

In case of undirected graphs, Bhave proved in [2] that for every two integers a and b, with
2 ≤ a ≤ b, there exists a graph Ga,b with χ(Ga,b) = a and ψ(Ga,b) = b. The same result holds
for oriented chromatic and achromatic numbers of oriented graphs.

We first need two easy lemmas. For every oriented graph
−→
G , we denote by

−→
G (1) the oriented

graph obtained from
−→
G by adding a universal source vertex, that is V (

−→
G (1)) = V (

−→
G) ∪ {x}

and E(
−→
G (1)) = E(

−→
G) ∪ {xu | u ∈ V (

−→
G)}. Now, for every integer k ≥ 2, we inductively define

−→
G (k) =

(−→
G (k−1)

)(1)
.

Observe that in every oriented colouring of
−→
G (1), complete or not complete, the new universal

source vertex x must be assigned a colour distinct from the colours of the other vertices.
Therefore we get:

Lemma 11 For every oriented graph
−→
G and every integer k ≥ 1, χo(

−→
G (k)) = χo(

−→
G) + k and

ψo(
−→
G (k)) = ψo(

−→
G) + k.

Since no directed path can have a source or a sink vertex as an internal vertex, we also have:

Lemma 12 If
−→Ok is an o-clique of order k and u is a source or a sink vertex of

−→Ok, then
−→Ok−u

is an o-clique of order k − 1.

We can now prove the following:

Theorem 13 For every two integers a and b, with 2 ≤ a ≤ b, there exists an oriented graph−→
Ga,b with χo(

−→
Ga,b) = a and ψo(

−→
Ga,b) = b.

Proof. We first consider the case when a = 2. For b = 2 we let
−→
G2,2 =

−→
P1 and, for

b = 3,
−→
G2,3 = 2

−→
P1 (two disjoint arcs). Clearly, χo(

−→
G2,2) = χo(

−→
G2,3) = 2, ψo(

−→
G2,2) = 2 and

ψo(
−→
G2,3) = 3. Suppose now that b ≥ 4 and let

−→Ob be an optimal o-clique of order b with

V (
−→
Ob) = {v1, v2, . . . , vb}.
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−→Oℓ
−→O ′

ℓ

v v′

−→O ′
ℓ

.... .... .... ....

v vk v′

The oriented graph
−→
Gk The oriented graph

−→
G ′

k =
−→
Gk − vk

−→Oℓ

Figure 3: Construction for Theorem 14(1)

For every p ≥ 1, let
−→
Sp denote the orientation of K1,p obtained by orienting all the edges from

the central vertex towards the leaves (
−→
Sp is thus an outgoing star ). Let now

−→
G2,b =

⊎b
i=1

−→
Sd+(vi)

(disjoint union of outgoing stars). Since χo(
−→
Sp) = 2 for every p ≥ 1, we clearly have χo(

−→
G2,b) = 2.

Let h be the mapping from V (
−→
G2,b) to V (

−→Ob) that assigns the central vertex of every outgoing

star
−→
Sd+(vi) to the corresponding vertex vi and the leaves of

−→
Sd+(vi) to the out-neighbours of vi.

Clearly, h is a complete homomorphism of
−→
G2,b to

−→
Ob and, therefore, ψo(

−→
G2,b) ≥ b.

Suppose now that there exists a complete homomorphism h′ of
−→
G2,b to

−→
Ob′ , where

−→
Ob′ is an

o-clique of order b′ > b. Note that |E(
−→
Ob′)| ≤ |E(

−→
G2,b)| = |E(

−→
Ob)|. Due to the special structure

of
−→
G2,b, the o-clique

−→
Ob′ has at least b′ − b sink vertices (namely, the vertices that are not the

image of a central vertex of some outgoing star) and, according to Lemma 12, by deleting these

vertices we get an o-clique of order b having strictly less arcs than
−→
Ob, which contradicts the

optimality of
−→Ob. Hence, ψo(

−→
G2,b) = b as required.

We finally consider the case when a > 2. If a = b, we let
−→
Ga,b =

−→
Ga,a be any o-clique of order

a. Otherwise, according to Lemma 11, the oriented graph
−→
Ga,b =

−→
G

(a−2)
2,b−a+2 has the required

property. �

A natural question is to ask how the (oriented) achromatic number of a graph can be affected
by the removal of a single vertex or a single edge. In [14], Geller and Kronk proved that if G is a
nontrivial undirected graph then, for every vertex v of V (G), ψ(G)−1 ≤ ψ(G−v) ≤ ψ(G). The
situation is rather different in the oriented case, since deleting a vertex in an oriented graph may
increase or decrease its oriented achromatic number by an arbitrarily large value. In particular,
this proves that, unlike the undirected case, having oriented achromatic number at most k is
not a hereditary property with respect to induced subgraphs. More precisely, we have:

Theorem 14 For every k ≥ 1,

(1) there exists an oriented graph
−→
Gk with ψo(

−→
Gk − vk) ≥ ψo(

−→
Gk) + k for some vertex vk ∈

V (
−→
Gk),

(2) there exists an oriented graph
−→
Hk with ψo(

−→
Hk − wk) + k ≤ ψo(

−→
Hk) for some vertex wk ∈

V (
−→
Hk).

Proof. (1) Let
−→
Oℓ be an o-clique such that 2ψo(

−→
Oℓ) ≥ ψo(2

−→
Oℓ) + k+ 2, where 2

−→
Oℓ denotes the

disjoint union of two copies of
−→
Oℓ. Note that such an o-clique exists thanks to Theorem 1 (since

the number of arcs in an optimal o-clique of order ℓ tends to ℓ log ℓ when ℓ tends to infinity, by

taking a large enough ℓ and an optimal o-clique
−→
Oℓ, the difference 2ψo(

−→
Oℓ) − ψo(2

−→
Oℓ) can be

8



made arbitrarily large). Let p = ψo(
−→
Oℓ) = |V (

−→
Oℓ)| and q = ψo(2

−→
Oℓ). Hence, 2p − q ≥ k + 2.

Let now
−→
Gk be the oriented graph obtained from two disjoint copies of

−→
Oℓ, denoted

−→
Oℓ and

−→
O ′

ℓ,

and a directed 2-path vvkv
′, by adding all arcs from v to every vertex of

−→Oℓ, and from every

vertex of
−→
O ′

ℓ to v
′ (see Figure 3).

We first claim that ψo(
−→
Gk) ≤ q+3. Note that since v and v′ are forced to get distinct colours

in every complete oriented colouring of
−→
Gk, no additional constraint can arise between vertices

of
−→
Oℓ and vertices of

−→
O ′

ℓ. Therefore, since
−→
Gk contains in addition the three vertices v, vk and

v′, ψo(
−→
Gk) ≤ ψo(2

−→Oℓ) + 3 = q + 3.

Let now
−→
G ′

k =
−→
Gk − vk. We claim that ψo(

−→
G ′

k) ≥ 2p+1. Let γ : V (
−→
G ′

k) −→ {1, . . . , 2p+1}
be any mapping such that γ(v) = γ(v′) = 2p+1, γ(

−→
Oℓ) = {1, . . . , p} and γ(

−→
O ′

ℓ) = {p+1, . . . , 2p}.
Since for every vertex x in

−→Oℓ and every vertex x′ in
−→O ′

ℓ the two arcs −→vx and
−−→
x′v′ force x and x′

to be assigned distinct colours, every such mapping γ is a complete oriented (2p+ 1)-colouring

of
−→
G ′

k.

Finally, ψo(
−→
G ′

k)− ψo(
−→
Gk) ≥ 2p+ 1− (q + 3) = 2p− q − 2 ≥ k and the result follows.

(2) Similarly as above, let now
−→Oℓ be an o-clique such that 2ψo(

−→Oℓ) ≥ ψo(2
−→Oℓ)+k−1, p = ψo(

−→Oℓ)

and q = ψo(2
−→Oℓ), so that 2p− q ≥ k− 1. Let then

−→
Hk be the oriented graph obtained from two

disjoint copies of
−→Oℓ, denoted

−→Oℓ and
−→O ′

ℓ, and an isolated vertex wk, by adding all arcs from wk

to every vertex of
−→
Oℓ and from every vertex of

−→
Oℓ to wk.

The oriented graph
−→
Hk is clearly an o-clique and, therefore, ψo(

−→
Hk) = 2p+ 1. On the other

hand, ψo(
−→
Hk − wk) = q and the result follows. �

Geller and Kronk also proved that if G is a nontrivial undirected graph then, for every
edge uv of E(G), ψ(G) − 1 ≤ ψ(G − uv) ≤ ψ(G) [14]. Using a proof similar to the proof of

Theorem 14(1) and taking
−→
G ′

k =
−→
Gk −−→vvk, we also get:

Theorem 15 For every k ≥ 1, there exists an oriented graph
−→
Gk with ψo(

−→
Gk−−→uv) ≥ ψo(

−→
Gk)+k

for some arc −→uv ∈ E(
−→
Gk).

On the other hand, deleting an arc in an oriented graph can decrease its oriented achromatic
number by at most 2:

Theorem 16 For every non-empty oriented graph
−→
G and every arc −→uv ∈ E(

−→
G), ψo(

−→
G)− 2 ≤

ψo(
−→
G −−→uv).

Proof. Let γ be any optimal complete colouring of
−→
G using ψo(

−→
G) colours and let γ(u) = a

and γ(v) = b. If γ is not a complete colouring of
−→
G−−→uv then this is necessary due to the colours

a and b, since the arc −→uv is not involved in the constraints between colours other than a and b.

We may then recolour vertices with colour a or b (with colours used on V (
−→
G) \ {u, v}) in order

to get a complete colouring of
−→
G −−→uv, so that ψo(

−→
G −−→uv) ≥ ψo(

−→
G)− 2 as required. �

Corollary 17 For every non-empty undirected graph G and every edge uv ∈ E(G), ψo(G)−2 ≤
ψo(G− uv).

Proof. Let
−→
G be any orientation of G with ψo(

−→
G) = ψo(G) and, without loss of generality,

suppose that −→uv ∈ E(
−→
G). By Theorem 16, we then have ψo(G−uv) ≥ ψo(

−→
G−−→uv) ≥ ψo(

−→
G)−2 =

ψo(G)− 2 as required. �

Note that the results given by Theorems 14(2) and 16 are similar to the results on the
oriented chromatic number of Borodin et al. [3] who proved that deleting a vertex in an oriented
graph may decrease its oriented chromatic number by an unbounded value, while deleting an
arc may decrease its oriented chromatic number by at most 2.
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However, it is not difficult to check that the relation ψo(
−→
G−v) ≤ ψo(

−→
G) still holds whenever

v is a source or a sink vertex in
−→
G . More generally, such a relation holds for every subgraph

−→
H

of
−→
G such that for every two vertices u and v with do(

−→
H,u, v) > 2, we have do(

−→
G, u, v) > 2:

Theorem 18 If
−→
H is a subgraph of an oriented graph

−→
G such that for every two vertices u and

v in
−→
H , do(

−→
G, u, v) > 2 whenever do(

−→
H,u, v) > 2, then ψo(

−→
H ) ≤ ψo(

−→
G).

Proof. It suffices to observe that, under the assumption of the theorem, every complete oriented

colouring of
−→
H can be extended (for instance in a greedy way) to a complete oriented colouring

of
−→
G , since the vertices of

−→
G \ −→H cannot contradict the precolouring of the vertices of

−→
H . �

Corollary 19 If H is a subgraph of an undirected graph G such that for every two vertices u
and v in H, d(H,u, v) ≤ 2 whenever d(G, u, v) ≤ 2, then ψo(H) ≤ ψo(G).

5 Elementary homomorphisms

Let
−→
G be an oriented graph and u and v be two vertices in V (

−→
G) such that do(

−→
G, u, v) > 2.

The oriented graph
−→
G ′ obtained by identifying the vertices u and v into u is defined by

V (
−→
G ′) = V (

−→
G) \ {v},

and

E(
−→
G ′) =

(
E(

−→
G) ∩ V (

−→
G ′)× V (

−→
G ′)

)
∪
{−→uw | −→vw ∈ E(

−→
G)

}
∪
{−→wu | −→wv ∈ E(

−→
G)

}
.

The mapping ϵ : V (
−→
G) −→ V (

−→
G ′) defined by ϵ(u) = ϵ(v) = x and ϵ(w) = w for every

w ∈ V (
−→
G) \ {u, v} is an elementary homomorphism of

−→
G to

−→
G ′. The only effect of such an

elementary homomorphism is thus to identify two vertices whose directed distance is at least
3 (which ensures that the so-obtained homomorphic image is an oriented graph). Such an
elementary homomorphism will be denoted by ϵu=v whenever we need to specify which vertices

are identified and the corresponding obtained oriented graph will be denoted by
−→
Gu=v.

Let h be a homomorphism of
−→
G to

−→
H . For every vertex x in V (h(

−→
G)) let h−1(x) denote the

set of vertices of V (
−→
G) which are mapped to x by h and let ux be any fixed vertex in h−1(x).

Let Υ(
−→
G, h) be the set of elementary homomorphisms defined by

Υ(
−→
G, h) =

{
ϵux=vx | x ∈ V (h(

−→
G)), vx ∈ h−1(x), vx ̸= ux

}
.

It is easy to check that successively applying all the elementary homomorphisms of Υ(
−→
G, h) to

−→
G gives the homomorphic image h(

−→
G) of

−→
G .

Hence, an oriented graph
−→
G has oriented achromatic number at least k if and only if there

exists a set of elementary homomorphisms such that applying successively all the homomor-

phisms of this set gives an o-clique of order k. The oriented achromatic number of
−→
G is then

the maximum order of such an o-clique.
We now give some basic results on elementary homomorphisms and oriented chromatic

numbers of oriented graphs. If G is an undirected graph, it is not difficult to check that
χ(G) ≤ χ(ϵ(G)) ≤ χ(G) + 1 for every elementary homomorphism ϵ of G [7, Chapter 12].
Here again, the situation is quite different for the oriented chromatic number of oriented graphs,

since the difference between χo(
−→
G) and χo(ϵ(

−→
G)) can be made arbitrarily large:

Theorem 20 If ϵ is an elementary homomorphism of an oriented graph
−→
G , then χo(

−→
G) ≤

χo(ϵ(
−→
G)). On the other hand, for every k ≥ 0, there exists an oriented graph

−→
Gk and an

elementary homomorphism ϵk of
−→
Gk such that χo(ϵk(

−→
Gk)) ≥ χo(

−→
Gk) + k.

10



−→
T 2

u vx y
u = v

xy

The oriented graph
−→
Gk

..... ...............

The oriented graph ϵu=v(
−→
Gk)

−→
T 1

−→
T 1

−→
T 2

Figure 4: Construction for Theorem 20

Proof. The first claim directly follows from Proposition 3.

Let now
−→
T be any tournament on k + 3 vertices and

−→
Gk be the oriented graph obtained

from two disjoint copies
−→
T1 and

−→
T2 of

−→
T and a directed path uxyv of length 3 by adding all

arcs from u to every vertex of
−→
T1 and from every vertex of

−→
T2 to v (see Figure 4). Let then

γ be any mapping assigning distinct colours from {1, . . . , k + 3} to vertices of
−→
T1 and

−→
T2 —

twin vertices in
−→
T1 and

−→
T2 having the same colour — and colours k+4, . . . , k+7 to vertices u,

x, y and v, respectively. The mapping γ is clearly an oriented colouring of
−→
Gk and, therefore,

χo(
−→
Gk) ≤ k + 7. Let now ϵk = ϵu=v. The obtained oriented graph ϵk(

−→
Gk) then contains an

oriented o-clique subgraph of order 2k + 7, made of vertex u together with vertices of
−→
T1 and−→

T2. Hence, χo(ϵk(
−→
Gk)) ≥ 2k + 7 and the result follows. �

In [7, Chapter 12], it was proved that for every undirected graph G of order n, the achromatic
number of G cannot be closer to n than to its chromatic number. More precisely, the inequality

ψ(G) ≤ χ(G) + n

2

holds for every undirected graph G. The oriented graph
−→
Gk used in the proof of Theorem 20

proves that such an inequality does not hold in the oriented case. Indeed, we have n = |V (
−→
Gk)| =

2k+10, χo(
−→
Gk) ≤ k+7 and, by Proposition 3, ψo(

−→
Gk) ≥ ψo(ϵk(

−→
Gk)) ≥ χo(ϵk(

−→
Gk)) ≥ 2k+7 (for

ϵk being the elementary homomorphism used in the proof of Theorem 20). Hence, for k > 3,

χo(
−→
Gk) + n

2
≤ k + 7 + 2k + 10

2
=

3

2
k +

17

2
< 2k + 7 ≤ ψo(

−→
Gk).

The relation χ(ϵ(G)) ≤ χ(G) + 1 was used by Harary, Hedetniemi and Prins [16] to prove
the “Interpolation Homomorphism Theorem” in the undirected case, which states that for every
undirected graph G and every integer ℓ with χ(G) ≤ ℓ ≤ ψ(G), there is a homomorphic image
H of G with χ(H) = ℓ (and thus a complete ℓ-colouring of G). We do not have such an
interpolation theorem in the oriented case, as shown by the following result:

Theorem 21 For every integer k, k ≥ 3, there exists an oriented graph
−→
Gk with χo(

−→
Gk) = k,

ψo(
−→
Gk) ≥ k + 2 and, for every homomorphic image

−→
Hk of

−→
Gk, χo(

−→
Hk) ̸= k + 1. Therefore,

−→
Gk

does not admit any complete oriented (k + 1)-colouring.

Proof. Consider the directed cycle
−→
C9 of order 9. As shown by the oriented 3-colouring γ and

the complete oriented 5-colouring γ∗ depicted in Figure 5(a) and Figure 5(b), respectively, we

have χo(
−→
C9) = 3 and ψo(

−→
C9) ≥ 5. Obviously, every homomorphic image

−→
H of

−→
C9 obtained by

identifying only vertices that are assigned the same colour by γ is such that χo(
−→
H ) = χo(

−→
C9).
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(a) The oriented 3-colouring γ of
−→
C9

1

42

2

5

3 3

1

4

(b) The complete oriented 5-colouring γ∗ of
−→
C9

(c) The homomorphic image
−→
H ∗ of

−→
C9

1

11

2

2

2 3

3

3

Figure 5: An oriented graph which does not satisfy the “Interpolation Homomorphism Theorem”

Up to symmetry, there is only one homomorphic image
−→
H ∗ of

−→
C9 (depicted in Figure 5(c)) that

identifies vertices that are assigned distinct colours by γ and, since
−→
H ∗ contains a directed cycle

of order 5 (which is an o-clique) as a subgraph, we hace χo(
−→
H ∗) = 5. Hence, no homomorphic

image of
−→
C9 has oriented chromatic number 4.

We therefore set
−→
G3 =

−→
C9. Now, for every k ≥ 4, let

−→
Gk be the oriented graph obtained

from
−→
C9 and any o-clique

−→Ok−3 of order k − 3 by adding an arc from every vertex of
−→
C9 to

every vertex of
−→Ok−3. From the discussion above, we clearly have χo(

−→
Gk) = k − 3 + 3 = k

and ψo(
−→
Gk) ≥ k − 3 + 5 = k + 2. Moreover, since only vertices of

−→
C9 may be identified in a

homomorphic image of
−→
Gk, we get that the only homomorphic image

−→
H ∗

k of
−→
Gk with χo(

−→
H ∗

k) ̸= k

is such that χo(
−→
H ∗

k) = k + 2. �

Note that Edwards also proved in [11] that there is no interpolation theorem with respect to
complete directed colourings of oriented graphs.

Similarly to the undirected case [7, Chapter 12], the following result indicates under which

conditions the equality χo(ϵ(
−→
G)) = χo(

−→
G) holds for an elementary homomorphism ϵ of an

oriented graph
−→
G :

Theorem 22 Let
−→
G be an oriented graph and u and v be any two vertices in V (

−→
G) with

do(
−→
G, u, v) > 2. We then have χo(ϵu=v(

−→
G)) = χo(

−→
G) if and only if there exists an oriented

χo(
−→
G)-colouring γ of

−→
G such that γ(u) = γ(v).

Proof. Let k = χo(
−→
G) and suppose first that there exists an oriented k-colouring γ of

−→
G such

that γ(u) = γ(v). The mapping γ′ : V (ϵu=v(
−→
G)) −→ {1, 2, . . . , k} given by γ′(w) = γ(w) for

every w in V (ϵ(
−→
G) is clearly an oriented colouring of ϵu=v(

−→
G) and, therefore, χo(ϵu=v(

−→
G)) ≤

χo(
−→
G). Since χo(

−→
G) ≤ χo(ϵu=v(

−→
G)) by Theorem 20, we get χo(ϵu=v(

−→
G)) = χo(

−→
G).

Conversely, suppose that χo(ϵu=v(
−→
G)) = χo(

−→
G) = k and let γ′ be an oriented k-colouring

of ϵu=v(
−→
G). The mapping γ : V (

−→
G) −→ {1, 2, . . . , k} given by γ(v) = γ(u) = γ′(u) and

γ(w) = γ′(w) for every w in V (
−→
G) \ {u, v} is again clearly an oriented colouring of

−→
G and this

colouring satisfies the required condition. �
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−→
Oℓ

−→
O ′

ℓ

v v′

.... ....

x

The oriented graph
−→
Gk

Figure 6: Construction for Theorem 24

If
−→
G is an oriented graph, u and v two vertices of

−→
G at directed distance at least 3, we may

either identify u and v, add the arc −→uv or add the arc −→vu and still get an oriented graph. The
following result shows that at least one of these graphs has the same oriented chromatic number

as
−→
G :

Theorem 23 Let
−→
G be an oriented graph and u and v be any two vertices in V (

−→
G) with

do(
−→
G, u, v) > 2. We then have

χo(
−→
G) = min

{
χo

(
ϵu=v(

−→
G)

)
, χo

(−→
G +−→uv

)
, χo

(−→
G +−→vu

) }
.

Proof. If χo(
−→
G) = χo(ϵu=v(

−→
G)), then the statement is true since χo(

−→
G) ≤ χo

(−→
G + −→uv

)
and χo(

−→
G) ≤ χo

(−→
G + −→vu

)
for every oriented graph

−→
G and each pair of vertices u, v with

do(
−→
G, u, v) > 2.

Otherwise, χo(ϵu=v(
−→
G)) = χo(

−→
G) + 1 by Theorem 20. Moreover, by Theorem 22, every

oriented χo(
−→
G)-colouring of

−→
G assigns distinct colours to u and v. Every such colouring γ is

thus an oriented colouring of
−→
G +−→vu or

−→
G +−→uv, depending on whether there exists an arc −→wx

with γ(u) = γ(x) and γ(v) = γ(w), or γ(u) = γ(w) and γ(v) = γ(x), respectively (if none of

these situations occurs, γ is an oriented colouring of both
−→
G +−→vu and

−→
G +−→uv). �

Let us now consider elementary homomorphisms and (oriented) achromatic numbers. In [15],
Harary and Hedetniemi proved that for every undirected graph G and every elementary homo-
morphism ϵ of G, ψ(G) − 2 ≤ ψ(ϵ(G)) ≤ ψ(G). The rightmost inequality also holds for the
oriented achromatic number, as observed in Proposition 3 for oriented graphs and in Proposi-
tion 6 for undirected graphs. On the other hand, the leftmost inequality no longer holds for the

oriented achromatic number of oriented graphs, and the difference between ψo(
−→
G) and ψo(ϵ(

−→
G))

can be made arbitrarily large:

Theorem 24 For every integer k, k ≥ 1, there exists an oriented graph
−→
Gk and an elementary

homomorphism ϵk of
−→
Gk such that ψo(

−→
Gk) ≥ ψo(ϵk(

−→
Gk)) + k.

Proof. Let
−→
Gk be the oriented graph depicted in Figure 6 where

−→Oℓ and
−→O ′

ℓ are two copies of

an oriented o-clique
−→Oℓ such that 2ψo(

−→Oℓ) ≥ ψo(2
−→Oℓ) + k + 1, where 2

−→Oℓ denotes the disjoint

union of two copies of
−→Oℓ (the existence of such a clique was already discussed in the proof of

Theorem 14).
Let ϵk = ϵx=v′ . Since the two vertices v and v′ (identified with x) must be assigned distinct

colours in every complete oriented colouring of
−→
Gk, we have ψo(ϵk(

−→
Gk)) ≤ q + 2, where q =

ψo(2
−→Oℓ).
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Using again similar arguments as in the proof of Theorem 14, we get that ψo(
−→
Gk) ≥ 2p+ 1,

where p = ψo(
−→
Oℓ).

Finally, since 2p− q ≥ k + 1, we get ψo(
−→
Gk)− ψo(ϵk(

−→
Gk)) ≥ 2p+ 1− (q + 2) ≥ k. �

Despite the fact that the difference between ψo(
−→
G) and ψo(ϵ(

−→
G)) can be made arbitrarily

large, we still have the following result, similarly to the undirected case:

Theorem 25 If
−→
G is an oriented graph which is not an o-clique, then there exists an elementary

homomorphism ϵ of
−→
G such that ψo(ϵ(

−→
G)) = ψo(

−→
G).

Proof. By Proposition 3, we know that ψo(ϵ(
−→
G)) ≤ ψo(

−→
G) for every elementary homomorphism

ϵ of
−→
G .
Let now γ be any optimal complete oriented colouring of

−→
G using ψo(

−→
G) colours. Since

−→
G is

not an o-clique, ψo(
−→
G) < |V (

−→
G)| and, therefore, there exist two vertices u and v in V (

−→
G) with

γ(u) = γ(v). The colouring of ϵu=v(
−→
G) induced by γ is obviously a complete oriented colouring

so that ψo(ϵu=v(
−→
G)) ≥ ψo(

−→
G) and the result follows. �

Corollary 26 If G is an undirected graph such that no orientation of G is an o-clique, then
there exists an elementary homomorphism ϵ of G such that ψo(ϵ(G)) = ψo(G).

Proof. By Proposition 6 we know that ψo(ϵ(G)) ≤ ψo(G). Let
−→
G be any orientation of G

such that ψo(
−→
G) = ψo(G). Since

−→
G is not an o-clique, we get by Theorem 25 that there exists

an elementary homomorphism ϵ of
−→
G such that ψo(ϵ(

−→
G)) = ψo(

−→
G). Note that ϵ is also an

elementary homomorphism of G and that ϵ(
−→
G) is an orientation of ϵ(G). Hence, ψo(ϵ(G)) ≥

ψo(ϵ(
−→
G)) = ψo(

−→
G) and the result follows. �

6 Discussion

In this paper, we introduced and studied the new notions of complete colourings and the oriented
achromatic number of oriented graphs. We provided some first results on this topic and we would
like to mention possible directions for future work.

Many results concerning the achromatic number of undirected graphs make use of the fact
that, for every integer k, the only clique of order k is the complete graph Kk. Since the size
(number of edges) of Kk is

(
k
2

)
, the achromatic number of a graph of order n ≤

(
k
2

)
is necessarily

less than k. The situation is less clear for the oriented achromatic number of oriented graphs
since we do not know the exact size f(k) of an optimal o-clique of order k. (Theorem 1 just
tells us that f(k) ≈ k log k when k tends to infinity.) The study of this function f is therefore
particularly challenging.

Another direction of research, related to the previous one, would be to study the oriented
achromatic number of some “simple” classes of oriented graphs, such as paths, cycles, trees or
graphs with bounded degree. Several results for the achromatic number of these families are
given in [4, 5, 12, 17, 21, 22].

Finally, it would be interesting to study in more details the computational complexity of the
problem of determining the oriented achromatic number of an oriented graph for various classes
of oriented graphs.
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