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Abstract

The cubical dimension of a graph G is the smallest dimension of a
hypercube into which G is embeddable as a subgraph. The conjecture
of Havel [On hamiltonian circuits and spanning trees of hypercubes.
Časopis P̌ est. Mat 109 (2) (1984) 135-152] claims that the cubical
dimension of every balanced binary tree with 2n vertices, n ≥ 1, is n.
The 2-rooted complete binary tree of depth n is obtained from two
copies of the complete binary tree of depth n by adding an edge linking
their respective roots. In this paper, we determine the cubical dimen-
sion of trees obtained by subdividing twice a 2-rooted complete binary
tree and prove that every such balanced tree satisfies the conjecture
of Havel.

Keywords. Cubical dimension, Embedding, Havel’s conjecture, Hypercube,
Tree.
2010 MSC. 05C05, 05C60.

1 Introduction

For a given graph G, V (G) and E(G) denote respectively the set of vertices
and the set of edges of G. The hypercube of dimension n, denoted Qn, is
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the graph whose 2n vertices are boolean vectors of length n, such that two
vertices are adjacent if and only if they differ in exactly one coordinate.

An embedding of the graphG in the hypercube Qn is a one-to-one mapping
of V (G) into V (Qn) that preserves adjacency of vertices. In the case where
V (G) = V (Qn), we say that the embedding is total. In a general way, the
study of an embedding of G into Qn turns to see if G is isomorphic to a
subgraph of Qn.

This problem is well-known and treated in graph theory. Many efforts
have been made for finding conditions (necessary and/or sufficient) under
which a graphG is a subgraph ofQn. In particular, the problem of embedding
trees in the hypercube has attracted much attention, since trees are widely
used in many domains such as computer science, operations research, or
combinatorial optimization for instance.

A tree T is a connected graph without cycles. A binary tree is a tree in
which every vertex has at most two sons. We say that a tree T is balanced
if, in the bipartition of V (T ), both parts have the same cardinality. A tree
T is cubical if, for some integer n, there is an embedding of T into the
hypercube Qn. If T is cubical then the least positive integer n for which T
can be embedded into the hypercube Qn is called the cubical dimension of T ,
denoted by cd(T ). Firsov [7] showed that all trees are cubical. Hence, for a
tree T , the question we consider is to determine the cubical dimension of T .
Wagner and Corneil [15] showed that the problem of deciding if a tree T is
embeddable into the hypercube Qn is NP-complete. Binary trees and their
embeddings into hypercubes have been studied in [1, 2, 3, 4, 5, 6, 8, 10, 13].
A longstanding conjecture of Havel claims the following:

Conjecture 1 (Havel [9]). Every balanced binary tree with 2n vertices, n ≥ 1,
is a subgraph of Qn.

Several partial results have been obtained in support of this conjecture [4,
5, 14]. In this paper, we introduce some new classes of balanced binary trees
which satisfy the conjecture of Havel.

The hypercube Qn is bipartite, balanced and n-regular; it has 2n vertices
and n2n−1 edges. A tree T is said to be Cn-valuated if we can label every edge
of T with an integer from the set {1, 2, ..., n} in such a way that for every
path P in T , there exists an integer k ∈ {1, 2, ..., n} such that an odd number
of edges in P are labeled by k. Havel and Morávek proved the following:

Theorem 2 (Havel and Morávek [12]). A tree T is embeddable in Qn if and
only if there exists a Cn-valuation of T .
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Intuitively speaking, every edge with label k will be mapped to an edge of
Qn in the kth dimension. The fact that for every path there exists an integer
appearing an odd number of times ensures that all vertices are mapped to
distinct vertices in Qn.

The following result was proved by Havel:

Theorem 3 (Havel [9]). Every balanced binary tree of order 2n having two
vertices of degree 3 is embeddable into the hypercube Qn.

Havel and Liebl [10] and Nebeský [14] studied embeddings of the classes

of binary trees Dn,
ˆ̂
Dn, D̂n and Ďn, respectively defined as follows:

1. The tree D1 is the complete bipartite graph K1,2 whose root is the
unique vertex of degree 2. For n ≥ 2, Dn is the tree obtained from two
disjoint copies T and T ′ of Dn−1 and a new vertex v by adding an edge
from v to the root of T and another edge from v to the root of T ′. The
new vertex v is the root of Dn. The tree Dn is thus the complete binary
tree of depth n, with 2n+1 − 1 vertices. Moreover, we have cd(D1) = 2
and, for n ≥ 2, cd(Dn) = n+ 2 [10].

2. For n ≥ 1, the 2-rooted complete binary tree
ˆ̂
Dn is obtained from two

disjoint copies ofDn by adding an edge linking the roots of these copies.

This new edge will be referred to as the axial edge of
ˆ̂
Dn. The tree

ˆ̂
Dn

has 2n+2 − 2 vertices and cd(
ˆ̂
Dn) = n+ 2 [14].

3. For n ≥ 1, the tree D̂n is obtained from
ˆ̂
Dn by inserting two new

vertices of degree 2 into the axial edge of
ˆ̂
Dn. The edge joining these

two new vertices will be referred to as the central edge of D̂n. The tree
D̂n is balanced, has 2n+2 vertices and cd(D̂n) = n + 2 [14].

4. For n ≥ 1, the tree Ďn is obtained from
ˆ̂
Dn by inserting two new

vertices of degree 2 into some end-edge of
ˆ̂
Dn (that is an edge incident

to a leaf of
ˆ̂
Dn). The tree Ďn has 2n+2 vertices and cd(Ďn) = n+2 [14].

Let T be a tree with root r. We define the level of an edge uv in T
as max{d(r, u), d(r, v)}, where d(x, y) denotes the distance from vertex x to
vertex y in T . The level of an edge uv of the 2-rooted complete binary tree
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ˆ̂
Dn is defined as 0 if the edge uv is the axial edge of

ˆ̂
Dn, or as the level of uv

in the corresponding copy of Dn otherwise. An edge uv is an ancestor of an
edge xy if they both lie on a path linking the root of the tree to some leaf
and the level of uv is smaller than the level of xy. Recall that subdividing an
edge uv consists of replacing the edge uv by two new edges ux and xv where
x is a new vertex of degree 2.

In this paper, we will determine the cubical dimension of trees obtained

by subdividing twice the 2-rooted complete binary tree
ˆ̂
Dn. Such a tree has

2n+2 vertices and is of one of the following types:

• Type (A): the tree Ak
n is obtained by subdividing twice an edge of level

k, 0 ≤ k ≤ n, in
ˆ̂
Dn, n ≥ 1.

• Type (B): the tree Bk
n is obtained by subdividing two distinct edges of

the same level k, 1 ≤ k ≤ n, in
ˆ̂
Dn, not belonging to the same copy of

Dn.

• Type (C): the tree Ck
n is obtained by subdividing two distinct edges of

the same level k, 1 ≤ k ≤ n, in
ˆ̂
Dn, both belonging to the same copy

of Dn.

• Type (D): the tree Dk,ℓ
n is obtained by subdividing two distinct edges

of distinct levels k and ℓ, 0 ≤ k < ℓ ≤ n, in
ˆ̂
Dn, not belonging to the

same copy of Dn.

• Type (E): the tree Ek,ℓ
n is obtained by subdividing two distinct edges

of distinct levels k and ℓ, 1 ≤ k < ℓ ≤ n, in
ˆ̂
Dn, both belonging to the

same copy of Dn, such that none of these edges is the ancestor of the
other.

• Type (F): the tree F k,ℓ
n is obtained by subdividing two distinct edges

of distinct levels k and ℓ, 1 ≤ k < ℓ ≤ n, in
ˆ̂
Dn, both belonging to the

same copy of Dn, such that the edge of level k is the ancestor of the
edge of level ℓ.

The above-defined types of trees are illustrated in Figure 1, where vertices
created by edge subdivisions are drawn as squares.

Our main result is the following:
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Figure 1: Sample twice subdivided 2-rooted complete binary trees
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Theorem 4. Let T be a tree obtained by subdividing twice the 2-rooted com-

plete binary tree
ˆ̂
Dn. We then have:

1. cd(T ) = n+ 2 if T is of type (A) or (B),

2. cd(T ) = n+ 3 if T is of type (C), (D), (E) or (F).

It is worth noting here that such a tree is balanced if and only if it is
of type (A) or (B). Our result shows that trees of type (A) or (B) satisfy
the conjecture of Havel. We thus generalize the results of Nebeskỳ who
considered trees obtained by subdividing twice either the axial edge or an

end-edge of
ˆ̂
Dn (above-defined as D̂n and Ďn).

2 Proof of Theorem 4

The proof will follow from a series of lemmas, each considering one particular
type of tree.

Since every Cn-valuation of a tree T is also a Cn-valuation of any (con-
nected) subtree of T , we easily get the following:

Observation 5. If T1 is a subtree of T2, then cd(T1) ≤ cd(T2).

The following result will be useful in proving structural decompositions of
trees of type (A) and (B). Let T1 and T2 be two trees, u1v1 an edge of T1, and
u2x2y2v2 an induced path of T2 (x2 and y2 are both vertices of degree 2). We
define the ⋊⋉-gluing of T1 and T2 along {u1v1, u2v2}, denoted T1 ⋊⋉u1v1,u2v2 T2,
as the tree obtained by subdividing twice the edge u1v1 of T1, creating the
induced path u1x1y1v1, and identifying the two edges x1y1 and x2y2 (see
Figure 2). We then have:

Lemma 6. Let T1 and T2 be two trees, u1v1 an edge of T1, and u2x2y2v2 an
induced path of T2. If cd(T1) = cd(T2) = k, then cd(T1 ⋊⋉u1v1,u2v2 T2) ≤ k+1.

Proof. Since cd(T1) = cd(T2) = k, there exist a Ck-valuation γ1 of T1 and
a Ck-valuation γ2 of T2. Without loss of generality, we may assume that
γ1(u1v1) = γ2(x2y2). We can then construct a valuation γ of T = T1 ⋊⋉u1v1,u2v2

T2 by setting

• γ(u1x1) = γ(y1v1) = k + 1,
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x1

u1

T1

v1

u2 v2

T2

x2 y2

u2 v2

u1

x2 y2

T1 ⋊⋉{u1v1,u2v2} T2

v1

y1

Figure 2: A sample ⋊⋉-gluing of two trees: T1 ⋊⋉u1v1,u2v2 T2

• γ(z1t1) = γ1(z1t1) for every edge z1t1 from T1, and

• γ(z2t2) = γ2(z2t2) for every edge z2t2 from T2.

To see that γ is indeed a Ck+1-valuation of T , let P be any path in T . If
P does not contain the label k+1, then P is also a path in T1 or T2 and the
required property follows from the fact that both γ1 and γ2 are Ck-valuations.
If the label k + 1 appears only once in P then k + 1 appears an odd number
of times and we are done. Finally, if the label k+ 1 appears twice in P then
the path P ′ obtained from P by contracting the two edges with label k + 1
is a path in T1 and the required property follows from the fact that γ1 is a
Ck-valuation of T1.

We now turn to the proof of our main result, considering each type of
trees separately.

Lemma 7. For every n and k, 0 ≤ k ≤ n, n ≥ 1, cd(Ak
n) = n + 2.

Proof. Since the tree Ak
n has 2n+2 vertices, it cannot be embedded in Qn+1

and, therefore, cd(Ak
n) ≥ n + 2. We now prove by induction on k that

cd(Ak
n) = n+ 2 for every n ≥ 1.

The result clearly holds for k = 0 since A0
n = D̂n and cd(D̂n) = n+ 2 for

every n ≥ 1 [14].
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Dn−1Dn−1 Dn−1Dn−1

u1 v2u2

A1
n = A0

n−1 ⋊⋉{u1v1,u2v2} D̂n−1

v1

Dn−1 Dn−1

Ak
n = Ak−1

n−1 ⋊⋉{u1v1,u2v2} D̂n−1

v1

Dn−1

u1 v2

Figure 3: Structural decomposition of A1
n and of Ak

n, k > 1

Assume now that cd(Ak−1
n ) = n+2 for every n ≥ 1, and consider the tree

Ak
n. As depicted in Figure 3, it is not difficult to observe that, for every k ≥ 1,

Ak
n is the ⋊⋉-gluing of Ak−1

n−1 and D̂n−1 along the axial edge of Ak−1
n−1 and the

“axial path” of D̂n−1. Since cd(D̂n−1) = n+ 1 by [14] and cd(Ak−1
n−1) = n+ 1

by induction hypothesis, we get cd(Ak
n) = n+ 2 by Lemma 6.

Lemma 8. For every n and k, 1 ≤ k ≤ n, cd(Bk
n) = n + 2.

Proof. The proof is quite similar to the proof of Lemma 7. Since the tree Bk
n

has 2n+2 vertices, it cannot be embedded in Qn+1 and, therefore, cd(Bk
n) ≥

n+2. We now prove by induction on k that cd(Bk
n) = n+2 for every n ≥ 1.

As depicted in Figure 4, B1
n is the ⋊⋉-gluing of D̂n−1 and itself along

its central edge and axial path. Since cd(D̂n−1) = n + 1 by [14] we get
cd(B1

n) = n+ 2 by Lemma 6.
Assume now that cd(Bk−1

n ) = n + 2 for every n ≥ 1, and consider the
tree Bk

n. As depicted in Figure 4, Bk
n is the ⋊⋉-gluing of Bk−1

n−1 and D̂n−1 along

the axial edge of Bk−1
n−1 and the axial path of D̂n−1. Since cd(D̂n−1) = n + 1

by [14] and cd(Bk−1
n−1) = n+1 by induction hypothesis, we get cd(Bk

n) = n+2
by Lemma 6.

Lemma 9. For every n and k, 1 ≤ k ≤ n, cd(Ck
n) = n + 3.

Proof. Since the tree Ck
n has 2n+2 vertices and is not balanced, it cannot be

embedded in Qn+2 and, therefore, cd(Ck
n) ≥ n+ 3.

The fact that cd(Ck
n) = n+ 3 for every n and k, 1 ≤ k ≤ n, then simply

follows from Observation 5 since Ck
n is a subtree of

ˆ̂
Dn+1 (see Figure 5) and

cd(
ˆ̂
Dn+1) = n + 3 by [14].

8



u2

Dn−1Dn−1Dn−1 Dn−1Dn−1

Bk
n = Bk−1

n−1 ⋊⋉{u1v1,u2v2} D̂n−1

v1

Dn−1

u1 v2u2

B1
n = D̂n−1 ⋊⋉{u1v1,u2v2} D̂n−1

v1
u1 v2

Figure 4: Structural decomposition of B1
n and of Bk

n, k > 1

Dn−kDn−k

Dn−k Dn−k

Dk−1

Dn−k Dn−k Dn−k Dn−k

Dk−1

Dn−kDn−k

Figure 5: Ck
n is a subtree of

ˆ̂
Dn+1 (dashed lines depict elements of

ˆ̂
Dn+1\C

k
n)

9



Dn

Dℓ−1

Dn−ℓ Dn−ℓ Dn−ℓ Dn−ℓ

Dn−ℓ

Dn

Figure 6: D0,ℓ
n is a subtree of

ˆ̂
Dn+1 (dashed lines depict elements of

ˆ̂
Dn+1 \

D0,ℓ
n )

Lemma 10. For every n, k and ℓ, 0 ≤ k < ℓ ≤ n, cd(Dk,ℓ
n ) = n + 3.

Proof. Since the tree Dk,ℓ
n has 2n+2 vertices and is not balanced, it cannot be

embedded in Qn+2 and, therefore, cd(Dk,ℓ
n ) ≥ n + 3.

The fact that cd(Dk,ℓ
n ) = n+3 for every n and k, 0 ≤ k ≤ n, then follows

from Observation 5 since Dk,ℓ
n is a subtree of

ˆ̂
Dn+1 (see Figure 6 for k = 0

and Figure 7 for k > 0) and cd(
ˆ̂
Dn+1) = n+ 3 by [14].

Lemma 11. For every n, k and ℓ, 1 ≤ k < ℓ ≤ n, cd(Ek,ℓ
n ) = n+ 3.

Proof. Since the tree Ek,ℓ
n has 2n+2 vertices and is not balanced, it cannot be

embedded in Qn+2 and, therefore, cd(Ek,ℓ
n ) ≥ n+ 3.

The fact that cd(Ek,ℓ
n ) = n + 3 for every n and k, 1 ≤ k ≤ n, then

follows from Observation 5 since Ek,ℓ
n is a subtree of

ˆ̂
Dn+1 (see Figure 8) and

cd(
ˆ̂
Dn+1) = n + 3 by [14].

Lemma 12. For every n, k and ℓ, 1 ≤ k < ℓ ≤ n, cd(F k,ℓ
n ) = n + 3.

Proof. Since the tree F k,ℓ
n has 2n+2 vertices and is not balanced, it cannot

be embedded in Qn+2 and, therefore, cd(F k,ℓ
n ) ≥ n + 3. We now prove that

cd(F k,ℓ
n ) = n + 3 by constructing a Cn+3-valuation of F k,ℓ

n .
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Dn−ℓ

Dn−k

Dn−k

Dℓ−1

Dn−ℓ Dn−ℓ Dn−ℓ Dn−ℓ

Dk−1

Dn−kDn−kDn−k

Figure 7: Dk,ℓ
n is a subtree of

ˆ̂
Dn+1 (dashed lines depict elements of

ˆ̂
Dn+1 \

Dk,ℓ
n )

Dn−k

Dn−k

Dℓ−1

Dn−ℓ Dn−ℓ Dn−ℓ Dn−ℓ

Dk−1

Dn−kDn−kDn−k

Dn−ℓ

Dn

Figure 8: Ek,ℓ
n is a subtree of

ˆ̂
Dn+1 (dashed lines depict elements of

ˆ̂
Dn+1 \

Ek,ℓ
n )
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Let ukvk and uℓvℓ denote the two edges of
ˆ̂
Dn that have been subdivided,

with levels k and ℓ respectively, and let xk and xℓ denote the two corre-

sponding created vertices of degree 2. Since cd(
ˆ̂
Dn) = n + 2, there exists a

Cn+2-valuation of
ˆ̂
Dn, say γ0. We define the valuation γ of F k,ℓ

n as follows:

• γ(ukxk) = γ0(ukvk), γ(uℓxℓ) = γ0(uℓvℓ),

• γ(xkvk) = γ(xℓvℓ) = n + 3,

• γ(uv) = γ0(uv) for every edge uv /∈ {ukxk, xkvk, uℓxℓ, xℓvℓ}.

To see that γ is indeed a Cn+3-valuation of F k,ℓ
n , let P be any path in F k,ℓ

n .
If P does not contain the label n + 3, then P has the same labeling as a

path in
ˆ̂
Dn and the required property follows from the fact that γ0 is a Cn+2-

valuation. If the label n + 3 appears only once in P then n + 3 appears an
odd number of times and we are done. Finally, if the label n + 3 appears
twice in P then the path P ′ obtained from P by contracting the two edges

with label n + 3 is a path in
ˆ̂
Dn and the required property follows from the

fact that γ0 is a Cn+2-valuation of
ˆ̂
Dn.

The proof of Theorem 4 now clearly follows from Lemmas 7 to 12.
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