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Abstract

A directed star forest is a forest all of whose componentstme with
arcs emanating from the center to the leaves. The aciraliitected star
arboricity of an oriented grap® (that is a digraph with no opposite arcs)
is the minimum number of edge-disjoint directed star fareghose union
covers all edges o6 and such that the union of any two such forests is
acircuitic. We show that every subcubic graph has acicuditiected star
arboricity at most four.

1 Introduction

We consider finite simple oriented graphs, that is digrapitls mo opposite arcs.
For an oriented grapB®, we denote by (G) its set of vertices and b§(G) its set
of arcs.

In [1], Algor and Alon introduced the notion of thdirected star arboricityof
a digraphG, defined as the minimum number of edge-disjoint directedfstasts
needed to coveh(G). (A directed star forest is a forest all of whose components
are directed stars, that is stars with arcs emanating frencehter.) In the same
vein, we study here the new notion of theircuitic directed star arboricity of an
oriented graphs, defined as the minimum number of edge-disjoint directed sta



forests needed to cov&(G) in such a way that the union of any two such forests
contains no circuit. In [5], Guiduli proved that every orfed graph with indegree
and outdegree both less tharnas directed star arboricity at mast-20logD + 84
colors.

In this paper, we prove the following

Theorem 1 Every graph with maximum degree at most 3 has acircuiticotie
star arboricity at most 4.

The notion of acircuitic directed star arboricity arisesnfr the study of arc-
coloring of oriented graphs. In [4], Courcelle introducdx thotion of vertex-
coloring of oriented graphs as followskavertex-coloringof an oriented grapks
is a mappingf fromV (G) to a set ofk colors such thati) f(u) # f(v) whenever
uv is an arc inG, and (i) f(u) # f(x) wheneveruv and wx are two arcs inG
with f(v) = f(w). Vertex-coloring of oriented graphs have been studied tgraé¢
authors in the last past years (see e.g. [2, 6] or [9] for anviei).

Recall that aracyclic coloring of an undirected gragh is a proper coloring
of U such that every cycle ibJ uses at least three colors. Raspaud and Sopena
proved in [8] that every orientation of an undirected gramdt tadmits an acyclic
k-coloring admits an orientegk - 2~1)-coloring.

One can define arc-colorings of oriented graphs in a natuagl oy saying
that, as in the undirected case, an arc-coloring of an @&tegtaphG is a vertex-
coloring of the line digraph oB. (Recall that the line digraph(G) of Gis given by
V(L(G)) = A(G) and (v, W) € A(L(G)) wheneveruv € A(G) andvw € A(G).) It
is not difficult to see that every oriented graph havirlg\ertex-coloring admits a
k-arc-coloring (from &-vertex-coloringf, we obtain &-arc-coloringg by setting
g(tw) = f(u)).

By adapting the proof of the above-mentionned result of Rag@nd Sopena,
it is not difficult to prove that every oriented graph with raciitic directed star
arboricity at mosk admits a(k- 2¢-1)-arc-coloring.

This paper is organised as follows: we introduce the maimiiefhs and no-
tation in the next section and prove our main result in Sacdio

2 Definitions and notation

In the rest of the paper, oriented graphs will be simply cefjeaphs. For a vertex
v, we denote byd~(v) the indegree of;, by d*(v) its outdegree and bgi(v) its
degree, thatig(v) = d*(v) +d~ (v). A source vertexs a vertexv with d~(v) = 0.
The maximum degreand minimum degreef a graphG are respectively denoted



by A(G) andd(G). A graphG is said to becubicif A(G) = 8(G) = 3 andsubcubic
if A(G) <3.

We denote byav the arc fromu to v or simply uv whenever its orientation is
not relevant (thereforev= Uv or uv= Vt)). If a= tvis an arc, them is thetail
andv is theheadof a.

For a graphG and a vertex of V(G), we denote byG\ v the graph obtained
from G by removingv together with the set of its incident arcs; similarly, for an
arca of A(G), G\ a denotes the graph obtained fragby removinga. These
two notions are extended to sets in a standard way: for a setrotesV’, G\ V’
denotes the graph obtained fr@dby successively removing all vertices\¢fand
their incident arcs, and for a set of ai’s G\ A’ denotes the graph obtained from
G by removing all arcs o#'.

The notions of arboricity discussed in the previous seati@y be defined in
terms of arc-colorings or partitions of the set of arcs. Maecisely, &-directed-
star-coloring (or simply k-dst-coloring of a graphG is a partition ofA(G) into
k directed star forestéF;,F,,...,F}. Equivalently, ak-dst-coloring ofG is ak-

— —
coloring f of A(G) such thai(i) UV, Wi e A(G) = f(uv) # f(vw), and(ii) UV, tv e
AG) = f(u_v)> # f(t7)>. Thedirected star arboricityof G, denoted bydst(G), is
then the smallegt for which G admits ak-dst-coloring.

A graph G is acircuitic if it does not contain any circuit. A-acircuitic-
directed-star-coloring(or simply k-adst-coloring of a graphG is a partition of
A(G) into k directed star forestsF;,F,, ..., R} such that for all, j € [1,k], K UF;
is acircuitic. Equivalently, &-adst-coloring ofG is ak-dst-coloring ofG such that
no circuit inG is bichromatic. Thecircuitic directed star arboricityof G, denoted
by adst(G), is the smallesk for which G admits ak-adst-coloring.

Note that from the above definitions we get that every edderiog of an
undirected graptH is a dst-coloring of any orientation d¢f. Similarly, every
acyclic edge-coloring ofl is an adst-coloring of any orientation df.

The following notation will be extensively used in the restlee paper. Con-
sider a graptG and letA' = {a;,ap,...,a,} be a subset oA(G). We denote by
Cgs(as,az,...,an), or simplyCg(A'), the set of circuits ofs that contain all the
arcsap,ap,...,an.

Drawing conventions. In all the figures, we shall use the following convention: a
vertex whose neighbors are totally specified will be blackemeas a vertex whose
neighbors are partially specified will be white. Moreovar,etige will represent
an arc with any of its two possible orientations.



3 Proof of Theorem 1

Suppose that Theorem 1 is false and consider a minimal aeexéenpleG. We
prove a series of lemmas. In each of them, we redut@a smaller grapks’ (that
is |A(G)| > |A(G)]) which admits a 4-adst-colorinff which is also gartial adst-
coloring of G (that is an adst-coloring only defined on some subéeif A(G)).
We extend such a partial adst-colorifigto an adst-coloring of G. In this case,
it should be understood that we ét) = f’(a) for every arca € A(G'). We then
explain how to seff (a) for every uncoloredh € A(G). The existence of proves
that G does not contain some specific configurations. This set digumations
will finally lead to a contradiction.

Consider a circuiC and letu,v € V(C). We denote byPc(u,v) the directed
path fromutovinC.

The following observation will be extensively used in thesa:

Observation 2 Let C be a circuit, f an adst-coloring of C, and he circuit
obtained from C by replacingd?u,v) by a directed path £(u,v). If f'is a
dst-coloring of C such that f(a) = f(a) for every a¢ Pc(u,v) and {f(a); a€
Pc(u,v)} C {f'(d); & € P(u,v)} then f is an adst-coloring of C

This directly follows from the fact thgtf’(C’)| > |f(C)| > 3.
We first show that a minimal counter-example to Theorem 1 cessarily a
cubic graph.

Lemma 3 If G is a minimal counter-example to Theorem 1, théB) > 3.

Proof. Letv € V(G) with d(v) < 2. We consider two cases:

Casel: @(v)=1.
Consider the dangling anav in G and let f’ be any 4-adst-coloring of the
graphG' = G\ {v}. We extendf’ to a 4-adst-coloringf of G by setting
f(uv) = a for some colora distinct from the colors of the at most two arcs
incident touv.

Case2: @(v)=2.
Consider the two arasvandwvin G and letf’ be any 4-adst-coloring of the
graphG’ obtained fronG by contractinguvin a single vertex. We extendf’
to a 4-adst-coloring of G by settingf (wv) = f/(wx) and f (uv) = afor any
adistinct from the colors of the three arcs incidentto (By Observation 2,
no circuit inG can be bichromatic.)

In both cases we thus obtain a 4-adst-colorfngf G, a contradiction. ]
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Figure 1: Configurations of Lemma 5

Lemma 4 If G is a minimal counter-example to Theorem 1, then G doesnwt
tain any source vertex.

Proof. Letv e V(G) be a source vertexy;, u, andus be the three neighbors of
v and f’ be any 4-adst-coloring of the gra@i = G\ v. By Lemma 3, we know
thatd*(v) = 3. Each of the arcsuy, Vi andvig has at least two available colors.
Since they can get the same color, we can extérid a 4-adst-coloring of G, a
contradiction. ]

We now prove that a minimal counter-example to Theorem ladoesitno tri-
angle.

Lemma 5 If G is a minimal counter-example to Theorem 1, then G is giesfree.

Proof. If G contains three pairwise adjacent triangles, t¥eis an orientation of
the complete grapK,4. By Lemma 4 we only have to consider the two orientations
of K4 depicted on Figures 1(a) and 1(b) that both admit a 4-adsting.
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If G contains two adjacent triangles, th@mcontains the configuration of Fig-
ure 1(c). Consider the gragl = G\ {w,x} and letf’ be a 4-adst-coloring d&’
such thatf’(uv) # f’(yz) (this can be done since we have two possible choices for
coloring each ofivanduz. Suppose without loss of generality tHatuv) = 1 and
f’(yz) = 2. In this case, we can produce an acyclic 4-edge-colorindepicted
on Figure 1(c). Indeed, this coloring is a proper edge-adpand no path link-
ing u andz is bichromatic. Hence, for all possible orientations of ¢hes of the
configuration, this coloring gives a 4-adst-colorih@f G.

Suppose finally tha® contains the configuration of Figure 1(d), and fébe
any 4-adst-coloring of the grap® obtained fromG by contracting the triangle
V1VLv3 in a single vertew. Therefore, every circult € Cg(UiVi, Vjuj) corresponds
to a circuitC’' € Cg (UiV, VU ).

We now extend the partial adst-coloriri§to a 4-adst-coloring of G as fol-
lows. We distinguish two cases:

Case 1: f(vuy) # f'(vp) # f'(vug) # ' (vuy).
Without loss of generality, suppose th#ft(viu;) = 1, f/(vup) = 2 and
f’(vsuz) = 3. We then sef (vav1) = 2, f(vyv2) = 3 andf(vovz) = 1.

Case2:3i,j€{1,2,3},i# ], f'(v) = f'(vjuj)) =a
In this case we necessarily haye;, vjuj € A(G). Letk € {1,2,3}, k#1, j.
We then sef (vivk), f(vjv) andf(vv;) as follows:
1. f(vw) =bforanyb¢ {a, f'(uw)},
2. f(vjw)=cforanyc¢ {ab, f'(uw)},
3. f(vvj) =dforanyd ¢ {a,b,c}.

This can be done since we have four available colors.

In both cases, thanks to Observation 2, we obtain a 4-adstiop f of G, a con-
tradiction. ]

Let G be a graph an@ a circuit inG. An arc having exactly one of its endpoints
in C is said to bancidentto C. Moreover, two such incident arcs areighboring
if their endpoints irC are linked by an arc dt.

The four next lemmas will allow us to prove that a minimal cteurexample
Gto Theorem 1 is necessarily acircuitic.

Lemma 6 If G is a minimal counter-example to Theorem 1, then G doesnwt
tain a circuit all of whose vertices have indegree one andlegitee two.



Proof. Suppose that there exists a cira@it= {VoV1, V1V, ..., Vk_2Vk_1, Vk_1V0

in G such thad™* (vj) = 1 andd~(v;) = 2 fori € [0,k — 1] and letf’ be any 4-adst-
coloring of the grapl&’ = G\ C. Let {Viti | i € [0,k— 1]} be the set of arcs incident
toC.

We extend the partial colorinff to a 4-adst-coloring of G as follows. Due to
the orientation of5, C is the only circuit ofG that does not belong @'. Therefore,
we only need to color the arcs Gfin such a way tha€ is not bichromatic. We
distinguish two cases depending on the colors of the artdanttoC.

1. All arcs incident taC are colored with the same color. In this case, we color
the arcs ofC using the three other remaining colors.

2. Two neighboring arcs incident © have distinct colors. Suppose without
loss of generality that’(VoUp) = co and f/(V1Uz) # co. In this case, we set

(@) f(Vovi) = co,
(b) Vi€ [1,k—2], f(ViVi;1) =ciforanyc & {ci_1, f(Vii1Ui1)},
(©) f(Vic1vo) = c1 for anyck_1 & {Co,C1,Ck_2}-

The circuitC is clearly not bichromatic sino& # ¢1 # C_1 # Co.

In both cases, we obtain a 4-adst-coloringf G, a contradiction. ]

Lemma 7 If G is a minimal counter-example to Theorem 1, then G doesomot
tain a circuit all of whose vertices have indegree two andlegtee one.

Proof. Suppose that there exists a cirdit= {VoVi, ViV3, .. ., Vk_2Vk_1, Vk_1V0} iN
G (see Figures 2(a) or 3(a)) such tht(v;) =2 andd~(v;) = 1 fori € [0,k — 1].
Let {tV; | i € [0,k— 1]} be the set of arcs incident @ By Lemma 5, the tails of
two neighboring arcs incident t© are necessarily distinct.

We consider two cases depending on whether the vericasdu, are distinct
or not. We first show that in both cases there exists a reduéiof G (see Figures
2(b) and 3(b)) which admits a 4-adst-colorifigsuch thatf’(Ugvp) # f/(Uvi) #
P/ (UV3) # f'(UgVo).

Case 1: 4 # Uy (see Figure 2(a)).
Let f’ be any 4-adst-coloring of the gra@i obtained fromG\ C by iden-
tifying vp, v1 andv, in a single vertew (see Figure 2(b)). We clearly have
f(UoV) # T (V) # T (V) # f(UoV).
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(a) The graptG (b) The graphG’

Figure 2: The configuration of Case 1 of Lemma 7 and its redncti

U1
V0 V9

(a) The grapiG (b) The graptG’

Figure 3: The configuration of Case 2 of Lemma 7 and its redncti



Case 2: g = up = u(see Figure 3(a)).
Note that by Lemma 4 we hawg # u. Let f’ be any 4-adst-coloring of
the graphG’ = G\ C (see Figure 3(b)). Since we have at least three available
colors for the arcéivp anduvs, we can choosé’ in such a way that’(Uvg) #
F/(VE) # f/(0%B) # f/(U%).

Assume now thatf (UgVp) = ¢, f(Ugvi) # ¢ and f(UaV3) # ¢ As in the
previous lemmag is the only circuit ofG that does not belong t6’'. Therefore,
we only need to color the arcs Gfin such a way thaC is not bichromatic. We
then setf as follows:

1. f(p) =c,

2.Vie[2k—1], j=i+1 (modk), f(WV])=c
foranyci ¢ {c-1, f(Givi), f(U;Vj)},

3. f(Vovi) = co for anyco ¢ {ck-1,C1, f(tavi)}-

Note thatc, 1 # f(UogVo) = ¢1. Thereforecy 1 # Co # €1 # k1 andC is not
bichromatic. We thus obtain a 4-adst-colorih@f G, a contradiction.
|

From the two previous lemmas, we get thaCifis a circuit in a minimal
counter-example to Theorem 1, there exist two neighboriag @cident withC
having opposite directions (with respect@). The next two lemmas will show
that this situation is also not possible.

Lemma 8 If G is a minimal counter-example to Theorem 1, then G doesnwt
tain the configuration depicted on Figure 4(a).

Proof. Suppose that the grafghcontains the configuration of Figure 4(a), with the
arcsuju, Uyu, V1Y, VoY, V1V, VLV, Zz andz,z being pairwise distinct, and ldt be
any 4-adst-coloring of the grag® obtained fromG\ {w,x} by adding the arcay
andvz (see Figure 4(b)). Suppose thatuy) = a and f'(vz) = b.

We extend the partial 4-adst-colorirf§to a 4-adst-coloring of G as follows.

Let E = Co 0V, Wk, X¥/) UC(VW, Wi, X2) andF = Cg (W, Wi, X2) UCg (VWi WX, XY).
We first setf (Xy) = a and f(Xz) = b. Clearly, all circuits inG not belonging to
E UF also belong td3’, and thus are already not bichromatic. Moreover, by Ob-
servation 2, the circuits i will not be bichromatic. Therefore, we only have to
pay attention to the circuits iR.

We consider two cases depending on the caaadb:



(b) The reductiorG’

Figure 4: The configuration of Lemma 8 and its reduction.
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Casel: a#h.
We set f(iW) = a, f(WI) = b and f(Wx) = c for any ¢ ¢ {a,b}. Since
[{f(aW), f(WX), f(X2)}| = [{a,c,b}| =3 and|{ f (W), f (WX), f (xy)}| = [{b,c.a}| =

3, no circuit inF is bichromatic.

Case2: a=h.
We consider three subcases.

_— — — —>
1. {udu,u,,w;, W, } NA(G) # 0.
We assume without loss of generality tlﬁi € A(G). In this case, we
first setf(Uw) = c for anyc ¢ {a, f(uu)), f(u,)} and f (W) = d for
anyd ¢ {a,c, f(vW,)}. Now, we can color the ar@x with the fourth
colore¢ {a,c,d}. Therefore]{f(WO) f(wx), f(x2)}| = |{c,e a}| =
3, [{f (W), (_3() f(xy)}| = [{d,e a}| = 3, and so no circuit ifF is
bichromatic.
e e — —
2. Uju,ubu, Vv, vov € A(G)
— — — —
and { f(uu), f(LU)} # {f(Vyv). (V).
— — — —
Note that sincea ¢ { f(uju), f(Wu), f(V}v), f(V,v)}, we necessarily
— — — —
have{ f(uju), f(u,u)} N{f(V}v), f(V, v)} # 0. Therefore we can as-
sume without loss of generality thz[i(ul ) = f(\/lv) =, f(u2 )=d
—

and f(v,v) = e, with a,c,d, e being pairwise distinct. In this case, we
set f(OwW) = e and f (VW) = d. Now, we can color the ar@x with the

colorc. Therefore){ f(Gw), f(WX), f(X2)}| = |{e,c,a}| =3, |{ f (W),
f(wx), f(Xy)}| = |{d,c,a}| = 3, and so no circuit i is bichromatic.

3. U, 15U, V)V, Vv € A(G)

and{ f (uyu), f(Up0)} = { F(4V), f(Vo¥)}.

We assume without loss of generality tlﬂie(@) = f(?/) = c and

f(@) = f(@) =d, a#c#d#a We then setf (W) = a and

f(0W) = ewith e¢ {a,c,d}.

Sinceiwandxz are colored with distinct colors, no circuit@g (W, wx, X2)

is bichromatic.

We still have to set the color of the an& We consider three subcases.

(@ {y1y: Y2y} NA(G) # 0
We assume without loss of generality th@/ € A(G). So, if
f(yy,) = c(resp. f(yy,) =d), we setf (WX) = d (resp. f (WK) = c),
otherwise €(yy,) =€), we use eithec or d. Therefore|{ f (WX), f (Xy), f(y_y;)}\ =
3, and thus no circuit i€g (VW, WX, Xy) is bichromatic.
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(b) VYo Yys € A(G) and{ F(Vyv), f (vov)} # { F(y¥h), F(y¥5)}-

—

We assume without loss of generality thilyy,) = e. Now, if
F(yyh) = c (resp. f(yy,) = d) we setf (W) = d (resp. f (WX) = c).
This implies that for any € {1,2}, |[{ f(wWX), f(xy), f(yy)}| =3,
and thus no circuit ilCg (YW, Wx, Xy) is bichromatic.

(©) Yi¥¥ € AG) and {f(iv), F(vv)} = {(y9}). F (1)}

=

We can suppose without loss of generality tli@yy,) = ¢ and

f(y_)/z)) =d. We then seff (Wx) = c. If there is no arc emanating
fromy, and colored witta, no circuit inCg(VW, WX, Xy) is bichro-
matic. If there exists an arc emanating frgfnand colored with
a, then there exists at least orﬁavailable color distinehfcdahat
can be used to recolor the &g, in such a way that we forbid
bichromatic circuits irCg (VW, WX, Xy).

In all cases, we obtain a 4-adst-colorifgf G, a contradiction. ]

In the configuration of the previous Lemma, the auqsandV\/j on one hand,
wYi and24 on the other hand, are necessarily distinct since, by Lemmatnimal
counter-example to Theorem 1 contains no triangle. The leextha deals with
the case where two aresf (or vv)) andyy; (or zZ) are the same. Without loss of
generality, we will suppose that the args andz;z are the same.

Lemma 9 If G is a minimal counter-example to Theorem 1, then G doesnwt
tain the configuration depicted on Figure 5(a).

Proof. Suppose that the grap@ contains the configuration of Figure 5(a) (in
this configuration, two arcs linking a black and a white vemeay be the same
provided it does not produce a triangle). We consider twesaepending on the
orientation of the argz

Case 1:Vze A(G).

Consider the graply] (see Figure 5(b)) obtained fro@®\ {w,x} by adding
the arcsuv and zy (see Figure 5(b)) and Ieff be any 4-adst-coloring a8} .
Assume thatf](UV) = a, f{(VZ) = b and f{(Zy) = c (see Figure 5(b)). We
extend the partial 4-adst-coloring to a 4-adst-coloring of G as follows.

We first setf (UW) = a, f(WX) = f(Vz) = band f(Xy) = c (see Figure 5(a)).
By Observation 2, no circuit i is thus bichromatic. We then color the arcs
VWandxz so thatf (W) ¢ {a,b, f(V'v)} and f(XZ) ¢ {b, f(z2)}.

12



(b) The reductiorG) (c) The reductiorG,,

Figure 5: The configuration of Lemma 9 and its reductions.
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Figure 6: The orientatiolﬁ such thaadst(K_Z,) =4

Case 2:zve A(G).

Consider the grap@, obtained fronG\ {w,x} by adding the arcazandvy
and letf} be any 4-adst-coloring @,. Assume thaf(Uz) = a, f;(zV) =b
and fé(v_’y) = c (see Figure 5(c)). We extend the partial 4-adst-colofihtp
a 4-adst-coloringf of G as follows.

As in the previous case, we sBIW) = a, f(WX) = f(Vz) =bandf(xy) =c
(see Figure 5(a)). By Observation 2, we only have to pay @berio the
circuits inCg (W, WX, Xz). We then color the arcet and Xz in such a way
that f (VW) ¢ {a,b, f(V'v)} andf (Xz) = a (this can be done sindé(zZ) # a).
Sincea # b # f (VW) # a, no circuit inCg (VW, WX, X2) is bichromatic.

In both cases we obtain a 4-adst-colorihgf G, a contradiction. ]
Using the previous lemmas, we can now prove our main result.

Proof of Theorem 1 By Lemmas 6, 7, 8 and 9, a minimal counter-exanm@le
to Theorem 1 does not contain any circuit. Therefore, angt4edloring of G
is a 4-adst-coloring ofs. Moreover, it follows from the definitions that arky
edge-coloring of the underlying undirected graphGfs a k-dst-coloring ofG.
Therefore, by Vizing’'s theorem [11], the gra@hadmits a 4-edge-coloring and
thus a 4-adst-coloring, a contradiction. ]

. The bound given in Theorem 1 is optimal. To see that, cons$igeorientation
K4 of the complete grapK, given on Figure 6. If we want to color this graph with
three colors, the only way to color the asag uw, wx, Xv andvwis clearly the one
depicted on Figure 6. But in this case, we need one more cotdhé arciv and
thus,adstK,) = 4.
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4 Discussion

In [3] Burnstein proved that every graph with maximum degteelmits an acyclic
5-vertex-coloring. Since the line graph of a subcubic gragd maximum degree
at most 4, we get that every subcubic graph admits an acyditg&-coloring and
thus a 5-adst-coloring. Our result shows that this boundeatecreased to 4 when
considering oriented graphs and acircuitic arc-colorings

We also provided an oriented cubic graph with acircuitieclied star arboricity
4. However, we do not know any other example of a cubic oréegtaph that does
not admit a 3-adst-coloring.

From our result, we get that every oriented graph with maxmaegree three
admits a 4 241 = 32-arc-coloring. However, every such graph admits an 11-
vertex-coloring [10] and thus an 11-arc-coloring.

In a companion paper [7] we show that evé&y+minor free oriented grap&
has acircuitic directed star arboricity at mosn{A(G),A™ (G) + 2}, whereA™ (G)
stands for the maximum indegree ®f This class of graphs contains in particular
outerplanar graphs. It would thus be interesting to deteerthe acircuitic directed
star arboricity of planar graphs.
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