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Acircuitic directed star arboricity of planar
graphs with large girth

Alexandre Pinlou† and Éric Sopena‡

LaBRI, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France

A directed star forest is a forest all of whose components are stars with arcs emanating from the center to the leaves.
The acircuitic directed star arboricity of an oriented graph G is the minimum number of edge-disjoint directed star
forests whose union covers all edges of G and such that the union of two such forests is acircuitic. We show that
graphs with maximum average degree less than 7

3
(resp. 133

41
) have acircuitic directed star arboricity at most ∆ (resp.

∆ + 1); this implies that planar graphs of girth at least 14 (resp. 6) have acircuitic directed star arboricity at most ∆

(resp. ∆ + 1).
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1 Introduction
We consider finite simple loopless undirected or oriented graphs, that is graphs with no cycle of length
one or two. For an undirected graph (resp. an oriented graph) G, we denote by V (G) its vertex set and by
E(G) its edge set (resp. by A(G) its arc set).

An edge-coloring of an undirected graph G is proper if no pair of incident edges receive the same
color. A proper edge-coloring of G is acyclic if the graph induced by any two color classes is a forest.
The minimum number of colors needed to acyclically edge-color G is the acyclic chromatic index of G
and is denoted by χ′

a(G). The notion of acyclic coloring was introduced by Grünbaum in [7].
The best known upper bound on acyclic edge-coloring is due to Alon et al. [3] where they proved that

every graph has an acyclic (16∆)-edge-coloring. More recently, Muthu et al. [10] obtained better results
for graphs with large girth: in particular, for every undirected graph G with girth g ≥ 9, χ′

a(G) ≤ 6∆(G).

Acyclic chromatic index can be related to the notion of star arboricity. The notion of star arboricity
was introduced by Akiyama and Kano in [1]. It is defined as the minimum number of edge-disjoint star
forests needed to cover E(G). They proved that complete graphs on n vertices can be decomposed into
dn

2 e + 1 star forests. This notion was studied by many authors for some graph families such as d-regular
graphs, complete regular multipartite graphs or planar graphs (see [2, 4, 5]).
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Considering planar graphs, Algor and Alon showed in [2] that every planar graph can be decomposed
into 6 star forests. This bound was decreased to 5 by Hakimi et al. in [9] and this bound is tight.

In [2], Algor and Alon introduced the notion of directed star arboricity of a digraph G, defined as the
minimum number of edge-disjoint directed star forests needed to cover A(G) (a directed star is a star with
arcs emanating from the center to the leaves). In [8], Guiduli showed that every digraph with indegree
and outdegree both less than D has directed star arboricity at most D + 20 logD + 84.

We introduced in [11] the new notion of acircuitic directed star arboricity of an oriented graph G, de-
noted by adst(G), defined as the minimum number of edge-disjoint directed star forests needed to cover
A(G) in such a way that the union of any two such forests contains no circuit. The study of this notion
arises from the study of oriented arc-colorings since every oriented graph with acircuitic directed star
arboricity at most k admits an oriented (k · 2k−1)-arc-coloring (see [11] for more details).

It is easy to see that each color class of an acyclic edge-coloring of G is a matching (therefore a star
forest), and the graph induced by any two such matchings is a forest. We thus get that for every orientation
−→
G of an undirected graph G with χ′

a(G) ≤ k, adst(
−→
G) ≤ k.

In this paper, we consider the acyclic chromatic index and the acircuitic directed star arboricity of
oriented graphs with bounded maximum average degree.
Definition 1 Let G be a graph. The maximum average degree of G, denoted by mad(G), is given by

mad(G) = max
H⊆G

{

2|A(H)|

|V (H)|

}

We prove the following:
Theorem 1 Let G be an undirected graph (which is not a cycle) with mad(G) ≤ 7

3 . Then χ′
a(G) =

∆(G).

Therefore, we get:
Corollary 1 Let G be an oriented graph (which is not a cycle) with mad(G) ≤ 7

3 . Then adst(G) ≤
∆(G).

For graphs with larger maximum average degree, we prove the following:
Theorem 2 Let G be an oriented graph with mad(G) < 133

41 . Then adst(G) ≤ ∆(G) + 1.

In case of planar graphs, the maximum average degree parameter is linked to the girth (the shortest
cycle of the graph) as follows [6]:

Observation 1 Let G be a planar graph with girth g, then mad(G) <
2g

g − 2
.

Therefore, we get:
Corollary 2

(1) Let G be an oriented planar graph (which is not a cycle) with girth g ≥ 14. Then adst(G) ≤ ∆(G).

(2) Let G be an oriented planar graph with girth g ≥ 6. Then adst(G) ≤ ∆(G) + 1.
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Moreover, we can easily see that for every undirected graph G, there exist an orientation −→
G with

acircuitic directed star arboricity at least ∆(G) (consider −→G containing a star of degree ∆(G) with arcs
emanating from the leaves to the center). Therefore, for oriented planar graphs with girth at least 14, the
bound is tight, and for oriented planar graphs G with girth at least 6, we get ∆(G) ≤ adst(G) ≤ ∆(G)+1.

This paper is organised as follows: we introduce the main definitions and notation in the next section
and prove Theorem 1 and 2 in Sections 3 and 4.

2 Definitions and notation
Let G be an oriented graph. We denote by −→uv the arc from u to v or simply uv whenever its orientation is
not relevant (therefore uv = −→uv or uv = −→vu).

For a vertex v of G, we denote by d−(v) the indegree of v, by d+(v) its outdegree and by d(v) its
degree, that is d(v) = d+(v) + d−(v). A vertex of degree k (resp. at most k, at least k) is called a
k-vertex (resp. ≤k-vertex, ≥k-vertex) and a vertex of degree k adjacent to d 2-vertices is called a k[d]-
vertex. A neighbor of degree k (resp. at most k, at least k) of a vertex u is called a k-neighbor (resp.
≤k-neighbor, ≥k-neighbor) of u. We denote by N−(v) the set of incoming neighbors of v (N−(v) =
{u ∈ V | −→uv ∈ A(G)}), by N+(v) the set of outgoing neighbors of v (N+(v) = {w ∈ V | −→vw ∈ A(G)})
and by N(v) the set of neighbors of v, that is N(v) = N−(v)∪N+(v). A source vertex is a vertex v with
d−(v) = 0. The maximum degree and minimum degree of a graph G are respectively denoted by ∆(G)
and δ(G).

For an undirected (resp. oriented) graph G and a vertex v of V (G), we denote by G \ v the graph
obtained from G by removing v together with the set of its incident edges (resp. arcs); similarly, for an
edge (resp. arc) a of E(G) (resp. A(G)), G \ a denotes the graph obtained from G by removing a. These
two notions are extended to sets in a standard way: for a set of vertices V ′ ⊆ V (G), G \ V ′ denotes the
graph obtained from G by successively removing all vertices of V ′ and their incident edges (resp. arcs),
and for a set of edges (resp. arcs) W ⊆ E(G) (resp. W ⊆ A(G)), G \ W denotes the graph obtained
from G by removing all edges (resp. arcs) of W .

The notions of arboricity discussed in the previous section may be defined in terms of arc-coloring or
partitions of the set of the arcs. More precisely, a k-directed-star-coloring (or simply k-dst-coloring) of
an oriented graph G is a partition of A(G) into k directed star forests {F1, F2, . . . , Fk}. Equivalently, a
k-dst-coloring of G is a k-coloring f of A(G) such that (i) −→uv,−→vw ∈ A(G) ⇒ f(−→uv) 6= f(−→vw), and (ii)
−→uv,−→wv ∈ A(G) ⇒ f(−→uv) 6= f(−→wv). The directed star arboricity of G, denoted by dst(G), is the smallest
k for which G admits a k-dst-coloring.

An oriented graph G is acircuitic if it does not contain any circuit (that is a cycle with all arcs having
the same direction). A k-acircuitic-directed-star-coloring (or simply k-adst-coloring) of a graph G is
a partition of A(G) into k directed star forests {F1, F2, . . . , Fk} such that for all i, j ∈ [1, k], Fi ∪ Fj

is acircuitic. Equivalently, a k-adst-coloring of G is a k-dst-coloring of G such that no circuit in G is
bichromatic. The acircuitic directed star arboricity of G, denoted by adst(G), is the smallest k for which
G admits a k-adst-coloring.

For an undirected graph G, a given edge-coloring f of G and a vertex v ∈ V (G), we denote by Cf (v)
the set of incident colors of v (i.e. Cf (v) = {f(uv) | u ∈ N(v)}). For an oriented graph G, a given
arc-coloring f of G and a vertex v ∈ V (G), we denote by C−

f (v) the set of incoming colors of v (i.e.
C−

f (v) = {f(−→uv) | u ∈ N−(v)}) and by C+
f (v) the set of outgoing colors of v (i.e. C+

f (v) = {f(−→vu) |
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u ∈ N+(v)}) (therefore Cf (v) = C+
f (v) ∪ C+

f (v)).

3 Proof of Theorem 1
We use the method of reducible configurations and discharging procedures to prove Theorem 1.

In the rest of this section, let H be a minimal (with respect to inclusion as a subgraph) counter-example
to Theorem 1 and ∆ = ∆(H). We shall show that H does not contain a set of reducible configurations.

The drawing conventions for a forbidden configuration are the following: a vertex whose neighbors are
totally specified will be black (i.e. vertex of fixed degree), whereas a vertex whose neighbors are partially
specified will be white. Moreover, an edge will represent an arc with any of its two possible orientations.

In all the proofs which follow, we shall proceed similarly. We suppose that H contains some config-
urations and, for each of them, we consider a reduction H ′ of H obtained from H by removing vertices
and/or arcs. Since H ′ is a subgraph of H , mad(H ′) ≤ mad(H). Therefore, due to the minimality of H ,
there exists an acyclic ∆(H ′)-edge-coloring f of H ′; moreover, ∆(H ′) ≤ ∆ and thus f is an acyclic ∆-
edge-coloring of H ′. The coloring f is therefore a partial acyclic ∆-edge-coloring of H , that is an acyclic
edge-coloring on some subset S of A(H), and we show how to extend it to an acyclic ∆-edge-coloring
of H .

The existence of such a coloring f of H showed that H does not contain each considered configuration.

u1

u v

w1

w

(a)

w

w1

w2

u1

x

u

v2

v1

v

(b)

Fig. 1: Forbidden configurations for Theorem 1

Lemma 1 The graph H does not contain a 1-vertex.

Proof: Suppose that H contains a dangling edge uv and let H ′ = H \ uv. We can easily extend f since
uv is adjacent to at most ∆ − 1 colors. 2

Since H is not a circuit and does not contains 1-vertices, we get ∆ ≥ 3 (therefore, we have at least
three colors).
Lemma 2 The graph H does not contain the configuration (a) of Figure 1.

Proof: Let H ′ = H \ v. We can set f(uv) = c1 for some c1 /∈ {f(u1u), f(ww1)} since |{f(u1u),
f(ww1)}| ≤ 2. We can finally set f(vw) = c2 for some c2 /∈ {f(u1u), f(ww1)} since we have at least
one available color (f is acyclic since Cf (v) ∩ Cf (w) = ∅). 2
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Fig. 2: Extented acyclic edge-coloring

Lemma 3 The graph H does not contain the configuration (b) of Figure 1.

Proof: Let H ′ = H \ {x, v2, w2}. Let us consider the two graphs of Figure 2. The bold colors are the
colors of the partial acyclic ∆-edge-coloring f , and the notation a/b means that we consider two cases
on the same configuration.

We consider four distinct cases depending on the coloring of uu1, vv1 and ww1 : (1, 1, 1), (1, 1, 2),
(1, 2, 2) and (1, 2, 3). Figure 2 shows the four possible cases and gives a possible extension of the required
acyclic edge-coloring. 2

We now prove that every graph with no 1-vertex that does not contain the configurations of Figure 1
has mad ≥ 7

3 .
We assign to each vertex v an initial charge w(v) = d(v). Now, we use the following discharging rules:

Rule 1. Each 3-vertex gives 1
3 to each of its 3-neighbors having a 2-neighbor;

Rule 2. Each 3-vertex gives 1
6 to each of its other 2-neighbors.

We denote by w∗(v) the new charge of the vertex v after the discharging procedure.
Let v be a k-vertex; we shall prove that the new charge w∗(v) of each vertex v is at least 7

3 . We consider
the following cases (recall that H has no 1-vertices):

• if k = 2, then w(v) = 2 and w∗(v) ≥ 2 + min{ 1
3 ; 2 · 1

6} = 7
3 , since by Lemma 2 a 2-vertex has at

least one ≥3-neighbor;

• if k = 3, then w(v) = 3 and w∗(v) ≥ 3 − max{2 · 1
3 ; 1

3 + 2 · 1
6 ; 3 · 1

6} = 7
3 ;

• if k ≥ 4, then w(v) = k and w∗(v) ≥ k − k · 1
3 > 7

3 .

Observe that
∑

v∈V (H)

w(v) =
∑

v∈V (H)

w∗(v) =
∑

v∈V (H)

d(v),

and

mad(H) ≥
2|A(H)|

|V (H)|
=

∑

v∈V (H)

d(v)

|V (H)|
=

∑

v∈V (H)

w∗(v)

|V (H)|
≥

7
3 |V (H)|

|V (H)|
=

7

3
.
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The contradiction with the hypothesis mad(H) < 7
3 completes the proof of Theorem 1.

Therefore, every graph (which is not a cycle) with mad ≤ 7
3 admits an acyclic ∆-edge-coloring and

thus a ∆-adst-coloring.

4 Proof of Theorem 2
To prove this theorem, we use the same technique as before.

Let H be a minimal (with respect to inclusion as a subgraph) counter-example to Theorem 2 and ∆ =
∆(H). We introduce here two new notions. For an uncolored arc −→uv of H , a color c is called an available
color for −→uv if it satisfies the constraints of a dst-coloring for −→uv; we denote by F f (−→uv) = C−

f (u)∪Cf (v)

the set of forbidden colors of −→uv; we can easily see that any color c /∈ F f (−→uv) is an available color for −→uv.
A color c is called a feasible color for −→uv if assigning color c to −→uv results in a partial adst-coloring. Note
that a feasible color is necessarily an available color whereas the contrary is false. We can also note that for
a given partial adst-coloring f of H and an uncolored arc −→uv, if C−

f (u) ∩ C+
f (v) = ∅, then any available

color for −→uv is also feasible for −→uv (indeed, any circuit which contains −→uv will not be bichromatic).
In almost all cases, the completion process of f will be the following: for an uncolored arc −→uv, we

shall initially determine its available colors, and then ensure, by recoloring some arcs if necessary, that
any such color is also feasible for −→uv.

We shall show in the following lemmas that H contains none of the configurations depicted in Figure 3.
In [11], we proved that subcubic graphs (graphs of maximum degree at most three) admit a 4-adst-

coloring. Hence, we may assume that ∆ ≥ 4 in our arguments.
Lemma 4 The graph H does not contain any of the configurations (a) and (b) of Figure 3.

Proof: Let H ′ = H \ uu1. We can set f(uu1) = c for some c /∈ F f (uu1) since each available color for
uu1 is also feasible (no circuit in H contains uu1) and |F f (uu1)| = |Cf (u1)| ≤ ∆ − 1. 2

Lemma 5 The graph H does not contain the configuration (c) of Figure 3.

Proof: Let H ′ = H \ −−→u1u. We can set f(−−→u1u) = c for some c /∈ F f (−−→u1u) since each available color for
−−→u1u is also feasible (no circuit in H contains −−→u1u) and |F f (−−→u1u)| = |C−

f (u1)∪Cf (u)| ≤ ∆−1+1 = ∆.
2

Note that by the two previous lemmas, if u is a 2-vertex in H , then u has one incoming and one outgoing
arc (δ−(u) = δ+(u) = 1).
Lemma 6 The graph H does not contain the configuration (d) of Figure 3.

Proof: Let H ′ = H \ −→vu. We can set f(−→vu) = c for some c /∈ F f (vu) since each available color for −→vu
is also feasible (no circuit in H contains −→vu) and |F f (−→vu)| = |C−

f (v) ∪ Cf (u)| ≤ 1 + ∆ − 1 = ∆. 2

Lemma 7 The graph H does not contain the configuration (e) of Figure 3.

Proof: Let H ′ = H \ −→vw. Suppose first that f(−→uv) /∈ C+
f (w); therefore C−

f (v) ∩ C+
f (w) = ∅ and

thus any available color for −→vw is also feasible: we can set f(−→vw) = c for some c /∈ F f (vw) since
|F f (−→vw)| = |C−

f (v) ∪ Cf (w)| ≤ 1 + ∆ − 1 = ∆.
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2
u1
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Fig. 3: Forbidden configurations for Theorem 2
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k ≤ ∆ − 2

u

v1

vk

v
′

1

v
′

k

u1

u2

v2 v
′

2

(n)

k ≤ ∆ − 2

u

v1

vk

v
′

1

v
′

k

u1

u2

v2 v
′

2

(o)

k ≤ ∆ − 2

v2 v
′

2
u

v1

vk

v
′

1

v
′

k

u1

w

w1

w2

(p)

Fig. 3: Forbidden configurations for Theorem 2 (cont’d)

Suppose now that f(−→uv) ∈ C+(w). W.l.o.g., let f(−→uv) = f(−−→ww1) = . . . = f(−−→wwn) for some n,
1 ≤ n ≤ k. Since |F f (−−→wwi)| ≤ ∆ − 1 for 1 ≤ i ≤ n, we can recolor f(−−→wwi) = ci for some
ci /∈ F f (−−→wwi) ∪ f(−→uv), that leads us to the previous case. 2

Note that by the previous lemma, if −−→uvw is a directed path in H , then one of v and w must have at least
two incoming arcs (δ−(v) · δ−(w) ≥ 2).
Lemma 8 The graph H does not contain the configuration (f) of Figure 3.

Proof: Let H ′ = H\uv. Suppose first that f(uu1) 6= f(vv1); we can set f(uv) = c for some c /∈ F f (uv)
since each available color for −→uv is also feasible (we have Cf (u)∩Cf (v) = ∅) and |F f (uv)| = 2 < ∆+1.

Suppose now that f(uu1) = f(vv1). Let c /∈ F f (uv)∪Cf (v1) = Cf (v1); we have |Cf (v1)| ≤ ∆, and
thus such a color exists and is an available color for uv; moreover, since c /∈ Cf (v1), c is also a feasible
color for uv and therefore we can set f(uv) = c. 2

Lemma 9 The graph H does not contain the configuration (g) of Figure 3.

Proof: Let H ′ = H \ uv. Let f(uu1) = a, f(uu2) = b and f(vv1) = c. By Lemmas 4, 5 and 7, there
exists i ∈ {1, 2} such that −→uiu ∈ A(H); w.l.o.g., let −−→u1u ∈ (H); that implies a 6= b. We have two cases
to consider:

1. |{a, b, c}| = 3.
We have Cf (u) ∩ Cf (v) = ∅ and therefore any available color for −→uv is feasible for −→uv (no
bichromatic circuit in H contains −→uv). We can thus set f(uv) = d for some d /∈ F f (uv) since
|F f (uv)| ≤ 3 < ∆.

2. |{a, b, c}| = 2.
W.l.o.g. we assume that a = c. Suppose that −−→uvv1 is a directed path; thus, by Lemma 7, we have
|d−(v1)| ≥ 2. Let d /∈ S = F f (−→uv) ∪ C+

f (v1); we have |S| ≤ 2 + ∆ − 2 = ∆, and thus such a
color exists and is an available color for uv; moreover, since d /∈ C+

f (v1), d is also a feasible color
for uv and therefore we can set f(uv) = d.
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Suppose now that −−→v1vu is directed path; we have d−(u) = 2 by Lemma 6. We can recolor f(−→v1v) =
d for some d /∈ T = F f (−→v1v)∪ {c} since |T | ≤ ∆− 1 + 1 = ∆; this implies C−

f (u)∩C+
f (v) = ∅

and therefore any available color for −→vu is feasible for −→vu (no bichromatic circuit in H contains −→vu):
so, we set f(−→vu) = e for some e /∈ F f (−→vu) since |F f (−→vu)| ≤ 3 < ∆.

2

Lemma 10 The graph H does not contain the configuration (h) of Figure 3.

Proof: Let H ′ = H \ −→uv. By Lemma 4, we have −−→u2u ∈ A(H), and by Lemma 7, d−(v) ≥ 2 (w.l.o.g.
assume −→v1v ∈ A(H)).

Suppose that either −→v2v ∈ A(H) or f(−−→u2u) 6= f(−→vv2); therefore, C−
f (u) ∩ C+

f (v) = ∅ and thus
any available color for −→uv is also feasible; we can thus set f(−→uv) = c for some c /∈ F f (−→uv) since
|F f (uv)| ≤ 3 < ∆.

Suppose now that f(−−→u2u) = f(−→vv2). Consider the set of colors S = F f (−→uv) ∪ (C−
f (u2) ∩ C+

f (v2)).
Clearly, any color c /∈ S is feasible for −→uv. If |S| ≤ ∆, we can set f(−→uv) = c for some c /∈ S. If
|S| = ∆ + 1, it implies C−

f (u2) = C+
f (v2), d−(u2) = d+(v2) = ∆ − 1 and f(−→v1v) /∈ C+

f (v2). In this
case, we erase f(−→vv2) and pick one outgoing arc from v2, denoted by

−−→
v2v

′
2. Denote f(

−−→
v2v

′
2) = d; since

|F f (v2v
′
2)| = |C+

f (v2)| ≤ ∆ − 1, we can recolor f(
−−→
v2v

′
2) = e for some e /∈ F f (v2v

′
2) ∪ {d}. Thus, the

color d is feasible for −→vv2; indeed, f(−→v1v) /∈ {f(v2w) | w ∈ N+(v2) \ v′2)} and d /∈ C+
f (v′2). Thus, we

set f(−→vv2) = d, which leads us to the previous case (f(−−→u2u) 6= f(−→vv2)). 2

Lemma 11 The graph H does not contain the configuration (i) of Figure 3.

Proof: Let H ′ = H \ u. By Lemma 10, u has two incoming arcs and one outgoing arc (w.l.o.g. assume
−→vu,−→wu,−→ux ∈ A(H)). We first set f(−→vu) = c for some c /∈ S = F f (−→vu) ∪ {f(xx1), f(xx2)} since
|S| ≤ 2 + 2 ≤ ∆. Let T = F f (−→wu) ∪ {f(xx1), f(xx2)}. We consider two cases:

1. If |T | ≤ ∆, we can set f(−→wu) = d for some d /∈ T . Therefore C−
f (u) ∩ C+

f (x) = ∅, and
thus any available color for −→ux is feasible and we can set f(−→ux) = e for some e /∈ F f (−→ux) since
|F f (−→ux)| ≤ 4 ≤ ∆.

2. If |T | = ∆ + 1, this implies ∆ = 4. Assume w.l.o.g. that C−
f (v) = C−

f (w) = {1, 2} and
C+

f (x) = {3, 4}. We can recolor in this case f(−→vu) = 3, and set f(−→wu) = 4; finally, the color 5 is
clearly feasible for −→ux and we set f(−→ux) = 5.

2

Lemma 12 The graph H does not contain the configuration (j) of Figure 3.

Proof: By Lemmas 4 and 10, we have d+(u) ≤ 1. We consider three cases:

1. Suppose first that u is a sink and let H ′ = H \wu. Since C−
f (w)∩C+

f (u) = ∅, any available color
for −→wu is feasible and thus we can set f(−→wu) = c for some c /∈ F f (wu) since |F f (wu)| ≤ 4 ≤ ∆.
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2. Suppose now that one of the arcs −→uv,−→uw belongs to A(H) (w.l.o.g. assume −→uv ∈ A(H)) and let
H ′ = H \wu. By Lemma 10, we have −−→w1w,−−→w2w ∈ A(H). Let H ′ = H \ −→wu.
If C−

f (w) ∩ C+
f (u) = ∅, any available color for −→wu is also feasible, and therefore, we can set

f(−→wu) = c for some c /∈ F f (f(−→wu)) since |F f (−→wu)| ≤ 4 ≤ ∆.
Otherwise, f(−→uv) ∈ C−

f (w) (w.l.o.g. assume f(−→uv) = f(−−→w1w)). Let S = F f (−→wu) ∪ C+
f (v). Any

color c /∈ S is feasible for −→wu since c /∈ C+
f (v) and thus, if |S| ≤ ∆, we can set f(−→wu) = c.

Otherwise, we have |S| = ∆ + 1, which implies ∆ = 4 and d+(v) = 2; therefore, we may thus
assume w.l.o.g. that f(−−→w1w) = f(−→uv) = 1, f(−−→w2w) = 2, f(−−→u1u) = 3, f(−→vv1) = 4 and f(−→vx) = 5.
Then, we erase the colors f(−→uv) and f(−→vv1) and set f(−→uv) = 4; now, any color c /∈ F f (−→vv1) is
feasible since C−

f (v) ∩ C+
f (v1) = ∅, and we can set f(−→vv1) = c since |F f (−→vv1)| ≤ ∆. This leads

us to the previous case (f(−→uv) /∈ {f(w1w), f(w2w)}).

3. Suppose finally that −−→uu1 ∈ A(H); by Lemmas 4 and 10, we have −→v1v,−→xv,−−→w1w,−−→w2w ∈ A(H).
Since k ≤ ∆ − 2, we have d(x) ≤ ∆ − 1. Let H ′ = H \ v. We first set f(−→v1v) = c for
some c /∈ S = F f (−→v1v) ∪ f(−−→uu1) since |S| ≤ ∆ − 1 + 1 = ∆ and f(−→xv) = d for some
d /∈ T = F f (xv)∪ f(−−→uu1) = C−

f (x)∪{f(−→v1v), f(−−→uu1)} since |T | ≤ ∆− 2 + 2 = ∆. Therefore,
any available color for −→vu is also feasible since C−

f (v) ∩ C+
f (u) = ∅; we can thus set f(−→vu) = e

for some e /∈ F f (−→vu).

2

Lemma 13 The graph H does not contain the configuration (k) of Figure 3.

Proof: Let H ′ = H \ v. By Lemmas 4 and 5, we have −→v1v ∈ A(H) and by Lemma 6 we have d+(u) > 0
(w.l.o.g. assume −−→uu1 ∈ A(H)). We shall consider three cases depending on the cardinality of the color
set C+

f (u).

1. |C+
f (u)| = 1.

We set f(−→v1v) = c for some c /∈ S = F f (−→v1v)∪C+
f (u) since |S| ≤ ∆−1+1 = ∆. Then, we have

C−
f (v) ∩ C+

f (u) = ∅ and thus any available color for −→vu is also feasible. We then set f(−→vu) = d

for some d /∈ F f (−→vu) since |F f (−→vu)| = 2 < ∆.

2. |C+
f (u)| = 2.

W.l.o.g., assume f(−−→uu1) = 1 and f(−−→uu2) = 2. Let S = F f (−→v1v) ∪ C+
f (u) = C−

f (v1) ∪ Cf (v) ∪

C+
f (u) = C−

f (v1) ∪ C+
f (u). Clearly, if |S| ≤ ∆, we can proceed as in the previous case.

If |S| = ∆ + 1, C−
f (v1) = {3, 4, . . . , ∆ + 1}. Suppose first that −−→uu3 ∈ A(H) and w.l.o.g. assume

f(−−→uu3) = 2. We can recolor f(−−→uu1) = c for some c /∈ F f (−−→uu1) ∪ {1} since |F f (−−→uu1)| ≤ ∆ − 1.
This implies |S| ≤ ∆ and therefore, we can also proceed as in the previous case.
Suppose now that −−→u3u ∈ A(H) and assume w.l.o.g. f(−−→u3u) = 3. Let T = {4, 5, . . . , ∆ + 1}. If
there exists some i ∈ {1, 2} such that T 6⊆ C+

f (ui), we have |T \ C+
f (ui)| 6= ∅ and therefore, we

can pick a color c ∈ T \ C+
f (ui) and set f(−→v1v) = i and f(−→vu) = c: the color c is feasible for −→vu

since f(−−−→uu3−i) 6= f(−→v1v) and c /∈ C+
f (ui)).
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Finally, we can suppose that for all i ∈ {1, 2}, T ⊆ C+
f (ui). We first erase f(−→vv1) and consider

four subcases:

• C+
f (u1) = T and 2 /∈ C−

f (u1).
We can recolor f(−−→uu1) = 2 (the color 2 is feasible for −−→uu1 since 3 /∈ C+

f (u1)) and set
f(−→v1v) = 1. We thus have C−

f (v)∩C+
f (u) = ∅ which implies that any available color for −→vu

is also feasible; we can set f(−→vu) = c for some c /∈ F f (−→vu) since |F f (−→vu)| = 3 < ∆.
• C+

f (u1) = T ∪ {2}.
Let −−→u1w denote the outgoing arc of u1 with f(−−→u1w) = 2. We first erase f(−−→uu1) and we recolor
f(−−→u1w) = c for some c /∈ U = F f (−−→u1w) ∪ {2} (we have |U | ≤ ∆ − 1 + 1 = ∆); then, 2
is a feasible color since f(−−→u3u) /∈ {f(u1x) | x ∈ N+(u1) \ w)} and 2 /∈ C+

f (w) and we set
f(−−→uu1) = 2. We can then set f(−→v1v) = 1, which implies C−

f (v)∩C+
f (u) = ∅. Therefore any

available color for −→vu is also feasible and we can set f(−→vu) = c for some c /∈ F f (−→vu) since
|F f (−→vu)| = 3 < ∆.

• C+
f (u1) = T ∪ {3}.

Let −−→u1w denote the outgoing arc of u1 with f(−−→u1w) = 3. We can set f(−−→u1w) = c for some
c /∈ U = F f (−−→u1w) ∪ {3} (we have |U | ≤ ∆ − 1 + 1). At this point, we have C+

f (u1) = T

and 2 /∈ C−
f (u1), or C+

f (u1) = T ∪ {2}: these two subcases were already considered before.
• C+

f (u1) = T and C−
f (u1) = {2}.

By considering the three previous subcases on the vertex u2, we deduce that we have C+
f (v2) =

T and C−
f (v2) = {1}. In this case, we erase f(−−→uu1) and f(−−→uu2) and recolor f(−−→u3u) = c for

some c /∈ V = F f (−−→u3u)∪{3} (we have |V | ≤ ∆−1+1). We thus have C−
f (u)∩C+

f (ui) = ∅

for i = 1, 2; therefore the color 3 is feasible for −−→uu1 and −−→uu2 since 3 /∈ F f (−→uui) and we can
set f(−−→uu1) = 3, f(−−→uu2) = 3. Finally, we set f(−→v1v) = 1, which implies C−

f (v)∩C+
f (u) = ∅:

we can set f(−→vu) = d for some d /∈ F f (−→vu) since |F f (−→vu)| ≤ 3 < ∆.

3. |C+
f (u)| = 3.

W.l.o.g. assume f(−−→uu1) = 1, f(−−→uu2) = 2, f(−−→uu3) = 3. Let S = F f (−→v1v) ∪ C+
f (u). If |S| ≤ ∆,

we can set f(−→v1v) = c for some c /∈ S and f(−→vu) = d for some d /∈ F f (−→vu) since any available
color for −→vu is also feasible (we have C−

f (v) ∩ C+
f (u) = ∅) and F f (−→vu) = 4 ≤ ∆. If |S| =

∆ + 1, this implies {4, 5, . . . , ∆ + 1} ⊆ C−
f (v1) and therefore at least two colors of C+

f (u) do
not belong to C−

f (v1). Suppose w.l.o.g. that 1 /∈ C−
f (v1). We then set f(−−→uu1) = c for some

c /∈ T = F f (−−→uu1) ∪ {1} since |T | ≤ ∆ − 1 + 1 = ∆. We can then set f(−→v1v) = 1, which implies
C−

f (v) ∩ C+
f (u) = ∅. We finally set f(−→vu) = d for some d /∈ F f (−→vu) since |F f (−→vu)| ≤ 4 ≤ ∆.

2

Lemma 14 The graph H does not contain the configuration (l) of Figure 3.

Proof: Let H ′ = H \ v. By Lemma 13, we have −→uv ∈ A(H) and d(v1) ≥ 5 (therefore, ∆ ≥ 5), and
by Lemma 7 we have d−(v1) ≥ 2. Let S = F f (−→uv) ∪ C+

f (v1). If |S| ≤ ∆, we can set f(−→uv) = c for
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some c /∈ S, which implies C−
f (v) ∩ C+

f (v1) = ∅: any available color for −→vv1 is also feasible and thus
we can set and f(−→vv1) = d for some d /∈ F f (−→vv1) since |F f (−→vv1)| ≤ ∆. If |S| = ∆ + 1, it means that
C−

f (u) = 3 (w.l.o.g. assume f(−−→u1u) = 1, f(−−→u2u) = 2, f(−→wu) = 3) and |C+
f (v1)| = ∆ − 2 (w.l.o.g.

assume C+
f (v1) = {4, 5, . . . , ∆+1}). In this case, we erase f(−→wu), which implies |S| ≤ 2+∆−2 = ∆

and we set f(−→uv) = 3. Then, we set f(−→wu) = d for some d /∈ F f (−→wu) since |F f (−→wu)| ≤ 5 ≤ ∆.
Finally, since 3 /∈ C+

f (v1), any available color for −→vv1 is also feasible: we can set f(−→vv1) = d for some
d /∈ F f (−→vv1) since |F f (−→vv1)| ≤ ∆. 2

Note that on the four last configurations (m),(n),(o) and (p) of Figure 3, by Lemmas 4 and 5, we have a
directed 2-path linking u and v′

i, for all i ∈ [1, k].
Lemma 15 The graph H does not contain the configuration (m) of Figure 3.

Proof: Let H ′ = H \ v1. We consider two cases:

1. Suppose first that there exists i ∈ [1, k] such that
−−−→
uviv

′
i is a directed path in H (w.l.o.g. assume

−−−→
uv1v

′
1). We can set f(

−−→
v1v

′
1) = c for some c /∈ F f (

−−→
v1v

′
1) since |F f (

−−→
v1v

′
1)| ≤ ∆ − 1. Clearly, any

feasible color for −→uv1 does not belong to f(
−−→
v1v

′
1) ∪ C−

f (u) ∪ {f(
−−→
v′jvj) | f(−→vju) = c}; therefore at

most ∆ colors are not feasible and it remains at least one feasible color to set f(−→uv1).

2. Suppose now that
−−−→
v′iviu is a directed path in H for all i ∈ [1, k]. By Lemma 6, we have −−→uu1 ∈

A(H). We can set f(
−−→
v′1v1) = c for some c /∈ S = F f (

−−→
v′1v1)∪{f(−−→uu1)} since |S| ≤ ∆−1+1 = ∆.

Thus, we have C−
f (v1)∩C+

f (u) = ∅ which implies that any available color for −→v1u is also feasible;
we then set f(−→v1u) = d for some d /∈ F f (−→v1u) since |F f (−→v1v)| ≤ ∆.

2

Lemma 16 The graph H does not contain the configuration (n) of Figure 3.

Proof: Suppose first that −→uvi ∈ A(H) for all i ∈ [1, k]. By Lemma 7, we have d−(v′i) ≥ 2 for all
i ∈ [1, k]. Let H ′ = H \ v1. We can set f(−→uv1) = c for some c /∈ S = F f (−→uv1) ∪ C+

f (v′1) since
|S| ≤ 2 + ∆ − 2 = ∆. Then, we have C−

f (v1) ∩ C+
f (v′1) = ∅ and therefore any available color for

−−→
v1v

′
1

is also feasible: we can set f(
−−→
v1v

′
1) = d for some d /∈ F f (

−−→
v1v

′
1) since |F f (

−−→
v1v

′
1)| ≤ ∆.

Suppose now that there exists i ∈ [1, k] such that −→viu ∈ A(H) (w.l.o.g. assume −→v2u ∈ A(H)). We
shall consider two cases depending on the orientations of uu1 and uu2:

• −−→uu1,−−→uu2 ∈ A(H).

Let H ′ = H \ v1. We can set f(
−−→
v1v

′
1) = c for some c /∈ F f (

−−→
v1v

′
1) since |F f (

−−→
v1v

′
1)| ≤ ∆ − 1.

Clearly, any feasible color for −→uv1 does not belong to f(
−−→
v1v

′
1) ∪ C−

f (u) ∪ {f(
−−→
v′jvj) | f(−→vju) = c};

therefore at most ∆ colors are not feasible for −→uv1 and it remains at least one feasible color to set
f(−→uv1).

• −−→u1u ∈ A(H).
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Let H ′ = H \ v2. We can set f(
−−→
v′2v2) = c for some c /∈ S = F f (

−−→
v′2v2) ∪ {f(uu2)} since

|S| ≤ ∆ − 1 + 1 = ∆. Clearly, any feasible color for −→v2u does not belong to f(
−−→
v′2v2) ∪ C−

f (u) ∪

{f(
−−→
vjv

′
j) | f(−→uvj) = c}; therefore at most ∆ colors are not feasible for −→v2u and it remains at least

1 feasible color to set f(−→v2u).

2

Lemma 17 The graph H does not contain the configuration (o) of Figure 3.

Proof: Let H ′ = H \ v1. By Lemma 16, we have −→viu ∈ A(H) for all i ∈ [1, k]. We can set f(
−−→
v1v

′
1) = c

for some c /∈ S = F f (
−−→
v1v

′
1) ∪ {f(uu2)} since |S| ≤ ∆ − 1 + 1 = ∆. Therefore, C−

f (v1) ∩ C+
f (u) = ∅

and any available color for −→v1u is also feasible; we thus set f(−→v1u) = d for some d /∈ F f (−→v1u). 2

Lemma 18 The graph H does not contain the configuration (p) of Figure 3.

Proof: Let H ′ = H \ uw. By Lemmas 16 and 17, we have −→viu ∈ A(H) for all i ∈ [1, k − 2], and
−−→uu1,−→uw ∈ A(H). Clearly, any feasible color for −−→uu2 does not belong to F f (−−→uu2) ∪ {f(

−−→
v′jvj) | f(−→vju) ∈

{f(ww1), f(ww2)}}; therefore at most ∆ colors are not feasible and thus it remains at least 1 feasible
color to set f(−→uw). 2

We now prove that every graph that does not contain the configurations of Figure 3 has mad ≥ 133
41 .

We call a strong k-vertex a k-vertex which is adjacent to at most k − 3 2-vertices, and a weak k-vertex
a k[k − 2]-vertex. We also call strong 3-vertex a 3-vertex which is adjacent to at most one 3-vertex, and
weak 3-vertex a 3-vertex adjacent to two 3-vertices.

Note that by Lemma 16, if H contains a weak k-vertex u, the k − 2 2-vertices vi adjacent to u,
1 ≤ i ≤ k − 2, are directed towards u (i.e. −→viu ∈ A(H) ∀i ∈ [1, k − 2]). Therefore, since H contains no
source vertex (by Lemmas 4 and 5), a 2-vertex cannot be adjacent to two weak k-vertices.

We assign to each vertex v an initial charge w(v) = d(v). Now, we use the following discharging rules:

Rule 1. Each strong 3-vertex gives 2
41 to each of its 3-neighbors;

Rule 2. Each 4-vertex gives 27
41 to each of its 2-neighbors and 6

41 to each of its 3-neighbors;

Rule 3. Each ≥5-vertex gives 6
41 to each of its 3-neighbors;

Rule 4. Each weak ≥5-vertex gives 24
41 to each of its 2-neighbors;

Rule 5. Each strong ≥5-vertex gives 27
41 to each of its 2-neighbors.

We denote by w∗(v) the new charge of the vertex v after the discharging procedure.
Let H be a minimal counter-example to Theorem 2 and v be a k-vertex; we shall prove that the new charge
w∗(v) of each vertex v is at least 133

41 . We consider the following cases (recall that H has no 1-vertices):

• if k = 2, then w(v) = 2 and w∗(v) ≥ 2 + 24
41 + 27

41 = 133
41 , since by Lemma 16 a 2-vertex is not

adjacent to two weak ≥5-vertices;

• if k = 3 and v is a strong 3-vertex, then w(v) = 3 and w∗(v) ≥ 3 + 2 · 6
41 − 2

41 = 133
41 ;
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• if k = 3 and v is a weak 3-vertex, then w(v) = 3 and w∗(v) = 3 + 2 · 2
41 + 6

41 = 133
41 , since by

Lemma 12 a weak 3-vertex is adjacent to two strong 3-vertices;

• if k = 4 and v is adjacent to a 2-vertex, then w(v) = 4 and w∗(v) ≥ 4 − 27
41 = 137

41 , since by
Lemma 13, a 4-vertex is linked to a 2-vertex by an outgoing arc and therefore, by Lemmas 16 and
17, a 4-vertex can have only one 2-neighbor; moreover, by Lemma 14, a 4-vertex is not adjacent to
a 3-vertex if it is already adjacent to 2-vertices;

• if k = 4 and v is not adjacent to a 2-vertex, then w(v) = 4 and w∗(v) ≥ 4 − 4 · 6
41 = 140

41 ;

• if k ≥ 5 and v is a strong k-vertex, then w(v) = k and w∗(v) ≥ k − 3 · 6
41 − (k − 3) · 27

41 ≥ 133
41 ;

• if k ≥ 5 and v is a weak k-vertex, then w(v) = k and w∗(v) ≥ k − (k − 2) · 24
41 ≥ 133

41 , since by
Lemma 18 the two other neighbors of a weak k-vertex are ≥4-vertices.

As in the proof of Theorem 1, we get that mad(H) ≥ 133
41 . The contradiction concludes the proof of

Theorem 2.
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