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Abstract

The square G? of a graph G is defined on the vertex set of G in
such a way that distinct vertices with distance at most two in G are
joined by an edge. We study the chromatic number of the square of
the Cartesian product C,,,0C), of two cycles and show that the value
of this parameter is at most 7 except when m = n = 3, in which case
the value is 9, and when m = n =4 or m = 3 and n = 5, in which
case the value is 8.

Moreover, we conjecture that for every G = C,,,0C,,, the chromatic
number of G? equals [mn/a(G?)], where a(G?) denotes the size of a
maximal independent set in G2.

Key words: Chromatic number, square, distance two coloring, Cartesian
product of cycles.

*E-mail: sopena@labri.fr.
"E-mail: wujj0007@yahoo.com.tw. This work has been done while the author was
visiting the LaBRI thanks to a postdoctoral fellowship from Bordeaux 1 University.



1 Introduction

A k-coloring of a graph G with vertex set V(G) and edge set E(G) is a
mapping ¢ from V' (G) to the set {1,2,...,k} such that ¢(u) # ¢(v) whenever
uv is an edge in E(G). The chromatic number x(G) of G is the smallest k
for which G admits a k-coloring.

Let G and H be graphs. The Cartesian product GOH of G and H is the
graph with vertex set V(G) x V(H) where two vertices (u1,v;) and (ug, vg)
are adjacent if and only if either u; = ug and vyv9 € E(H) or v; = vy and
uiug € E(G). Let P, and C,, denote respectively the path and the cycle on
n vertices. We will denote by G,,,, = P,,0PF, the grid with m rows and n
columns and by 7, ,, = C,,,0C,, the toroidal grid with m rows and n columns.

The square G* of a graph G is given by V(G?) = V(G) and wv € F(G?)
if and only if uv € E(G) or there exists w € V(G) such that uw, vw €
E(G). In other words, any two vertices within distance at most two in
G are linked by an edge in G?. The problem of determining the chromatic
number of the square of particular graphs has attracted very much attention,
with a particular focus on the square of planar graphs (see e.g. [2, 5, 6, 11,
12]), following Wegner [15] who conjectured that every planar graph with
maximum degree A > 8 satisfies x(G?) < [2A]+1. Havet et al. proved in [5]
that the square of any such planar graph admits a coloring using (% +o(1))A
colors.

In [1], Chiang and Yan studied the chromatic number of the square of
Cartesian products of paths and cycles and proved the following:

Theorem 1 (Chiang and Yan [1]) Let G = C,0P,, m > 3, n > 2.

Then N
ifn=2andm=0 (mod 4),

ifn=2and m = 3,6,
ifn>3 and m#0 (mod 5),
otherwise.

X(G*) =

T OO O >

Since C,,0P, is a subgraph of C,,0C,,, the previous theorem provides
lower bounds for the chromatic number of the square of toroidal grids.

In [13], Pér and Wood studied the notion of F-free coloring which gen-
eralizes several types of colorings and, in particular, square coloring. They
obtained an upper bound on the F-free chromatic number of cartesian prod-
ucts of general graphs. Moreover, in case of square coloring, they proved
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that the chromatic number of any graph given as the Cartesian product of d
cycles is at most 6d + O(logd).

An L(p, q)-labeling of a graph G is an assignment ¢ of nonnegative integers
to the vertices of G in such a way that |¢(u) — ¢(v)| > p whenever u and v
are adjacent and |¢(u) — ¢(v)| > ¢ whenever u and v are at distance two in
G. The AP-number of G is defined as the smallest £ such that G admits an
L(p, q)-labeling on the set {0, 1,...,k} (note that such a labeling uses k + 1
labels). It follows from the definition that any L(1,0)-labeling of G is a usual
coloring of G and that any L(1, 1)-labeling of GG is a coloring of the square of
G. Therefore, x(G) = A}(G) + 1 and x(G?) = M\ (G) + 1 for every graph G.

This notion was introduced by Griggs and Yeh [4] to model the Channel
assignment problem. In the same paper, they conjectured that for every graph
G with maximum degree A, A\}(G) < A% This motivated many authors to
study L(2,1)-labeling of some particular classes of graphs and the case of
Cartesian products of graphs was investigated in [1, 3, 7, 8, 9, 10, 14, 16].

In particular, Schwartz and Traxell [14] considered L(2,1)-labelings of
products of cycles and proved the following:

Theorem 2 (Schwartz and Traxell [14]) Let T,,,, = C,,0C,,. Then

6 if mn=0 (modT7),
N(Tn) = 8 if (m,n) € A,
7 otherwise.

where A = {{3,i}:1> 3,1 odd ori=4,10} U {{5,i} : i =5,6,9,10,13,17}
u {{6,7},{6,11},{7,9},{9,10}}.

Since every L(2,1)-labeling is a L(1,1)-labeling, we get \3(G) + 1 >
M (G)+1 = x(G?) for every graph G. Therefore, Theorems 2 provides upper
bounds on the chromatic number of the square of toroidal grids (note that
the upper bounds corresponding to the three cases of Theorem 2 are 7, 9 and
8, respectively).

Our main result will improve the bounds provided by Theorems 1 and 2
and by the general result of Pér and Wood [13]:

Theorem 3 Let Ty, = C,,0C,. Then x(T};,,) < 7 except x(T53) = 9 and
X(T32,5) = X(T42,4) = 8.



2 Coloring the square of toroidal grids

In this section, we shall prove Theorem 3 and give more precise bounds for
Cartesian products of some particular cycles.

We shall construct explicit colorings by means of combinations of patterns
given in matrix form. Each pattern can be thought of as a coloring of the
square of the toroidal grid of the same size. For instance, the pattern E
depicted in Figure 1 provides in an obvious way a 7-coloring of the square of
T57. Moreover, by repeating this pattern, we can easily obtain a 7-coloring
of the square of toroidal grids of the form T, 7,.

Let G be a graph and ¢ be any coloring of GG. Since every color class in
(G is an independent set, we have the following standard observation:

V(G|

Observation 4 x(G) > {m-‘ where a(G) denotes the mazimum size of

an independent set in G.

We shall extensively use the following result. Given two integers r and s,
let S(r,s) denote the set of all nonnegative integer combinations of r and s:

S(r,s) = {ar + (s : a, 3 nonnegative integers}.
A standard property of the set S(r, s) is the following:

Lemma 5 If r and s are relatively prime integers greater than one, then
te S(r,s) forallt> (r—1)(s—1), and (r —1)(s—1) =1 & S(r,s).

We then have:

Theorem 6 Let T,,, = C,0C,, m € S(4,7) and n € S(3,7). Then
X(Th,) < 7.

Proof. Let m € S(4,7) and n € S(3,7). We use the following 7 x 7 pattern
A to prove the lemma.

16 4275 3
275 316 4
31 6 4 2 75
A=14 2 75 3 16
5316 4 27
6 4 275 31
75316 4 2




It is easy to check that this pattern provides a coloring of T72,7- For any
pattern X, let X;, X7 be the subpatterns of X such that X; is obtained by
taking the ¢ first rows of X and X} is obtained by taking the j first columns
of X. It is again easy to check that the patterns A4, A5 and (A4)} provide
colorings of T4277, T%g and Tig, respectively. Therefore, using combinations of
A and A4, we can get a m x 7 pattern Y and, using combinations of Y and
Yy, we can get a m X n pattern which provides a 7-coloring of Tr?z,n' i
For example, the following pattern B provides a 7-coloring of Tflylg, ob-
tained from A by using the combinations 11 =744 and 13 =7+ 2 x 3.

16 4275 3|16 4|1 6 4
2 75316 4275|2735
316427513 16[3 16
4 275 316142 7427
53 16 42753 1[5 31
B=|6 4 2 75 3 1|6 4 2|6 4 2
75316 4275 3|75 3
16 4275 3|16 4|1 6 4
2 75316 4(2 752735
3164275316316
4 275 316142 7427

By Lemma 5 we then get:
Corollary 7 Let Ty, = C,,0C,,, m > 12 and n > 18. Then x(T},,) < 7.

We now consider toroidal grids with one component being a C5. Then we
have:

Theorem 8 Let T3, = C50C,,. Then

if n 1s even,

if n is odd and n # 3,5,
ifn=>5,

ifn=3.

x(T3,) =

NoRRo ol I @)

Proof. Let C, D and E be the patterns given in Figure 1. These patterns
clearly provide colorings of T3,, T3¢ and T3, respectively. For the upper
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1 4 25 1425 36 1423125
C=|253 6| D=|2 5 3614 E=|25 14736
36 1 4 36 1 4 25 36 756 47

Figure 1: Patterns for Theorem 8

bounds, we use the combinations of patterns C' and D to obtain the even
cases and use the combinations of patterns C', D and E to obtain the odd
cases. The remainder cases are n = 3, 5,9, and the following patterns provide
the required colorings of 15 3, T35 and Tj g, respectively.

1 47 142 36 1423145 36
2 5 8 25147 251423647
3 69 36 7 5 8 36 756 7125

For the lower bounds, notice that the intersection of any independent
set I in T3, with any two consecutive columns contains at most one vertex.
Therefore, a(T5,,) < [n/2]. By Observation 4, we get x(77%,) > 6 when n is
odd; in particular, x(75,) > 7 when n = 5 and x(73,) > 9 whenn=3. 1

As in the proof of Theorem 6, we can get colorings of T?)Zk’n, k> 1, by
using combinations of the patterns given in Theorem 8. We thus get the
following:

Corollary 9 Let Ty, = Cs,0C,,. Then

if n 1s even,

if n is odd and n # 3,5,
ifn=2>5,

ifn=3.

NoRRo ol I @)

We now consider toroidal grids with one component being a C;. Then we
have:

Theorem 10 Let T, = C,0C,. Then

6 fn=0 (mod3),
X(T42,n) =< 8 ifn=4,
7 otherwise.
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Figure 2: Patterns for Theorem 10

Proof. For m = 3k, this follows from Corollary 9. Let F', G and H be the
patterns given in Figure 2. These patterns clearly provide colorings of Tjg,
Ti 5 and T42, -, respectively. Thanks to Lemma 5, by using combinations of F',
G and H, we can get a T-coloring of Tfm except when n = 4. In this latter
case, we can use the following pattern:

1 2 3 4
34 5 6
5 6 7 8
78 1 2

Observe now that the intersection of any independent set [ in T}, with any
three consecutive columns contains at most two vertices. Thus, a(Tin) <
[2]. By Observation 4, x(7},) > 6 when n is not a multiple of 3 and
x(T7,) > 8 when n = 4. i

Using combinations of the patterns from Theorem 10, we get the follow-

ing:
Corollary 11 Let Ty, = Cy0C,,, k > 1. Then

6 ifn=0 (mod3),
7 otherwise.

We now consider toroidal grids with one component being a Cs. Then we
have:

Theorem 12 Let T5,, = C;0C,,, n > 5. Then

5 ifn=0 (mod}5),

6 otherwise.



12345 6 1 2 3 45
345 1 2 345 6 1 2
I=|5123 4| J=|5 61 2 3 4
2 3451 2 34561
4 51 2 3 4 56 1 2 3

Figure 3: Patterns for Theorem 12

Proof. Let I and J be the patterns given in Figure 3 which provide colorings
of T5275 and T§6, respectively. We use combinations of I and J to get a
5-coloring (resp. a 6-coloring) of 77, when n = 0 (mod 5) (resp. when
n € S5(5,6) and n # 0 (mod 5)).

The remainder cases are n = 7,8,9,13,14,16,19. The corresponding
patterns are given below, except for n = 16, in which case the corresponding
pattern is obtained by combining two 5 X 8 patterns.

1 3 21 7 5 4 1 3 26 315 4
2 45 3 6 17 2 4514 2 36
316 75 46 316 256 45
4 2 3 4 2 71 4 23 413 21
5 6 7 5 3 6 2 5 6 1 5 2 46 3
n=7 n==_§
1 351465 2 4 1326 315 2436 5 4
246 3 214 3 5 24 51426 315 2186
312465 216 316 25 314263 45
4 6 3 5143 5 2 4 23 416 2531561
52 46 3 216 3 56 15 2 4316 2 43 2
n=9 n=13
1326 315 243256 4
2451426 356413375
316 25 3142152 4°¢6
4 2 3 416 25 346 3 51
56 152431651423
n=14

oo



1234561234567
3456123456712
56 123456712314
K=|1234567123456
3456123456712
6 1 2345 67123495
4561234567123
Figure 4: Pattern for Theorem 3
1326315 2431421625 34
2451426 3152635 43¢%6135
316 2531426314615 24°¢6
423416 25314253 2¢6 351
561 524316253645 146 2
n =19

Observe now that the intersection of any independent set [ in 75, with
any column contains at most one vertex. That means a(77,,) < n. Therefore,
x(T2,) > 5 by Observation 4. It is finally straightforward to verify that
a(TZ,) < n when n is not a multiple of 5 (and thus x(7%,) > 5) and that
a(T2;) =5 (and thus x(72;) > £ =7). |

Using combinations of the patterns from Theorem 12, we get the follow-
ing:

Corollary 13 Let Ty, = C5,0C,, n > 5. Then

5 ifn=0 (mod5),
6 otherwise.

At this point, we are able to prove our main result.
Proof of Theorem 3. By Corollaries 9, 11 and 13, we already proved
that if one of m,n is a multiple of 3, 4, or 5, then Theorem 3 holds. By
Lemma 5 and Corollary 7, the remainder cases are 11 x 11, 13 x 13, 13 x 17
and 17 x 17. Let K be the 7 x 13 pattern given in Figure 4. As in the proof
of Theorem 6, we use combinations of K and K3 to obtain an m x 13 pattern
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X for m € S(7,3). Then we use combinations of X and Xj to obtain an
m X n pattern for n € S(13,4). In this way, we can obtain a 7-coloring of
Ti5 .13, Tih 3 and T ;. We simply transpose the 17 x 13 pattern to get a
13 x 17 pattern. Finally, the 11 x 11 pattern which provides a 6-coloring of
T111 is as follows:

123123123435
3456 456416 2
51231235 2 34
23456416451
45613523123
12342645645
6 416 5 312312
3523126 456 4
16 4564512335
23123123416
456 456456 23

i
As we have seen before, the general upper bound of 7 for x(7};,,,) given
in Theorem 3 can be decreased for particular values of m and n. We now
provide other cases for which this bound can be decreased to 6.
Using combinations of the 11 x 11 pattern above, we get:

Corollary 14 Let T,,,, = C,,0C,, m,n =0 (mod 11). Then x(T7,) < 6.

The same bound can be obtained for toroidal grids with one component
being a Cyg:

Theorem 15 Let Ty, = C40C,, n > 6. Then x(T%,) = 6.

Proof. Let L and M be the patterns given in Figure 5 which provide 6-
colorings of Té 4 and TéQ, respectively. By Lemma 5, we can get a 6-coloring
of T, by using combinations of patterns L and M. | |

Using combinations of the patterns from Theorem 15, we get the follow-
ing:

Corollary 16 Let Ty, = Cer0C,,, n > 6. Then x(Tg, ) < 6.
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Figure 5: Patterns for Theorem 15

Finally, using Corollary 13 and the lower bound given by Theorem 1, we
get the following

Corollary 17 Let Ty, = C,,0C,, for m,n > 3. Then x(T},,,) > 5. More-
over, X(G*) =5 if and only if m,n =0 (mod 5).

3 Discussion

In this paper, we have investigated the chromatic number of the square of
toroidal grids, that is Cartesian products of two cycles. We obtained general
upper bounds for this parameter by providing explicit colorings based on
the use of specific patterns. This leads in an obvious way to a linear time
algorithm for constructing such colorings.

Table 1 summarizes those of our results which give tight bounds. We
also included two cases, marked by (x), for which the tight bound has been
obtained by a computer program. It can be observed that in all the cases for
which a tight bound has been obtained, this bound matches the lower bound
given by Observation 4. Therefore, we propose the following:

V(T7.0)l -‘
a(T?

m,n)

Conjecture 18 For every toroidal grid Ty, n, x(T7,) = [
References

[1] S.-H. Chiang, J.-H. Yan. On L(d, 1)-labeling of Cartesian product of a cycle
and a path. Discrete Appl. Math. 156 (2008),2867-2881.

11



values of m and n

m,n =0 (mod 5)

=3, n=0 (mod 2)

=4, n=0 (mod 3)

m=6,n>06

m=28,n=11,13 (%)

m=0 (mod 3), m#0 (m od5)n_0(mod2)n;—é0(mod5)

TTLEO(HIO 5),n#0 (mod 5),n>6,n#7

0 (mod 6), n >6,n %0 (mod 5)

m,nEO? od 11), m # 0 (mod 5), n # 0 (mod 5)

m=3,n%0 (mod 2),n# 3,5

=4, n#0 (mod 3), n #4

m=5n=7"17

m="7n="78(x)

m=3n=2>5

m=4,n=4

m=3,n=3

O 0|0 || [ J| DD | DO | O Oy Ot

Table 1: Summary of results on x(77,,,)

12




2]

[10]

[11]

[12]

7. Dvorsk, D. Kral’, P. Nejedly, R. Skrekovski. Coloring squares of planar
graphs with girth six. Europ. J. Combin. 29(4) (2008), 838-849.

J.P. Georges, D.W. Mauro, M.I. Stein. Labeling products of complete graphs
with a condition at distance two. SIAM J. Discrete Math. 14 (2000) 28-35.

J.R. Griggs, R.K. Yeh. Labeling graphs with a condition at distance two.
SIAM J. Discrete Math. 5 (1992) 586-595.

F. Havet, J. van den Heuvel, C.J.H. McDiarmid, B. Reed. List colouring
squares of planar graphs. In: Proc. 2007 Europ. Conf. on Combin., Graph
Theory and Applications, EuroComb’07, Electr. Notes in Discrete Math. 29
(2007), 515-519.

J. van den Heuvel, S. McGuinness. Coloring the square of a planar graph. J.
Graph Theory 42 (2002), 110-124.

P.K. Jha. Optimal L(2,1)-labeling of Cartesian products of cycles, with an
application to independent domination. IEEE Trans. Circuits and Syst. 10
(2000), 1531-1534.

P.K. Jha, S. Klavzar, A. Vesel. Optimal L(2,1)-labelings of certain direct
products of cycles and Cartesian products of cycles. Discrete Appl. Math.
152 (2005), 257-265.

P.K. Jha, A. Narayanan, P. Sood, K. Sundaram, V. Sunder. On L(2,1)-
labelings of the Cartesian product of a cycle and a path. Ars Combin. 55
(2000), 81-89.

D. Kuo, J.-H. Yan. On L(2, 1)-labelings of Cartesian products of paths and
cycles. Discrete Math. 283 (2004), 137-144.

K.-W. Lih, W. Wang. Coloring the square of an outerplanar graph. Taiwanese
J. Math. 10 (2006), 1015-1023.

M. Molloy, M.R. Salavatipour. A bound on the chromatic number of the
square of a planar graph. J. Combin. Theory Series B 94(2) (2005), 189—
213.

A. Pér, D.E. Wood. Colourings of the cartesian product of graphs and mul-
tiplicative Sidon sets. Combinatorica, to appear.

C. Schwarz, D. S. Troxell. L(2,1)-labelings of Cartesian products of two cycles.
Discrete Appl. Math. 154 (2006), 1522-1540.

13



[15] G. Wegner. Graphs with given diameter and a coloring problem. Tech. Report,
Univ. of Dortmund (1977).

[16] M.A. Whittlesey, J.P. Georges, D.W. Mauro. On the A number of @, and
related graphs. SIAM J. Discrete Math. 8 (1995), 499-506.

14



