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1 LaBRI, Université Bordeaux, CNRS {heussner, sutre}@labri.fr
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Abstract. The technique of counterexample-guided abstraction refine-
ment (Cegar) has been successfully applied in the areas of software and
hardware verification. Automatic abstraction refinement is also desirable
for the safety verification of complex infinite-state models. This paper in-
vestigates Cegar in the context of formal models of network protocols,
in our case, the verification of fifo systems. Our main contribution is the
introduction of extrapolation-based path invariants for abstraction re-
finement. We develop a range of algorithms that are based on this novel
theoretical notion, and which are parametrized by different extrapola-
tion operators. These are utilized as subroutines in the refinement step
of our Cegar semi-algorithm that is based on recognizable partition ab-
stractions. We give sufficient conditions for the termination of Cegar by
constraining the extrapolation operator. Our empirical evaluation con-
firms the benefit of extrapolation-based path invariants.

1 Introduction

Distributed processes that communicate over a network of reliable and un-
bounded fifo channels are an important model for the automatic verification of
client-server architectures and network protocols. We focus on communicating
fifo systems that consist of a set of finite automata that model the processes, and
a set of reliable, unbounded fifo queues that model the communication channels.
This class of infinite-state systems is, unfortunately, Turing-complete even in the
case of one fifo queue [BZ83]. In general, two approaches for the automatic verifi-
cation of Turing-complete infinite-state models have been considered in the liter-
ature: (a) exact semi-algorithms that compute forward or backward reachability
sets (e.g., [BG99, BH99, FIS03] for fifo systems) but may not terminate, and
(b) algorithms that always terminate but only compute an over-approximation
of these reachability sets (e.g., [LGJJ06, YBCI08] for fifo systems).

CEGAR. In the last decade, counterexample-guided abstraction refinement
[CGJ+03] has emerged as a powerful technique that bridges the gap between
these two approaches. Cegar plays a prominent role in the automatic, iterative
approximation and refinement of abstractions and has been applied successfully
in the areas of software [BR01, HJMS02] and hardware verification [CGJ+03].
Briefly, the Cegar approach to the verification of a safety property utilizes an
C. Păsăreanu (Ed.): Proc. 16th Int. SPIN Workshop on Model Checking Software (SPIN 2009),
Grenoble, France, June 2009. LNCS 5578, pp. 107–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



108 Alexander Heußner, Tristan Le Gall, and Grégoire Sutre

abstract–check–refine loop that searches for a counterexample in a conservative
over-approximation of the original model, and, in the case of finding a false neg-
ative, refines the over-approximation to eliminate this spurious counterexample.

Our Contribution. We present a Cegar semi-algorithm for safety verification of
fifo systems based on finite partition abstractions where equivalence classes are
recognizable languages of queue contents, or, equivalently, Qdds [BG99]. The
crucial part in Cegar-based verification is refinement, which must find a new
partition that is both (1) precise enough to rule out the spurious counterexample
and (2) computationally “simple”. In most techniques, refinement is based on the
generation of path invariants; these are invariants along the spurious counterex-
ample that prove its unfeasibility (in our case, given by a series of recognizable
languages). We follow this approach, and present several generic algorithms to
obtain path invariants based on parametrized extrapolation operators for queue
contents. Our path invariant generation procedures are fully generic with respect
to the extrapolation. Refining the partition consists in splitting abstract states
that occur on the counterexample with the generated path invariant.

We formally present the resulting Cegar semi-algorithm and give partial ter-
mination results that, in contrast to the classical Cegar literature, do not rely
on an “a priori finiteness condition” on the set of all possible abstractions. Actu-
ally, our results depend mainly on our generic extrapolation-based path invariant
generation. In particular we show that our semi-algorithm always terminates if
(at least) one of these two conditions is satisfied: (1) the fifo system under ver-
ification is unsafe, or (2) it has a finite reachability set and the parametrized
extrapolation has a finite image for each value of the parameter.

We have implemented our approach in the tool Mcscm [Mcs] that performs
Cegar-based safety verification of fifo systems. Experimental results on a suite
of (small to medium size) network protocols allow for a first discussion of our
approach’s advantages.

Related Work. Exact semi-algorithms for reachability set computations of fifo
systems usually apply acceleration techniques [BG99, BH99, FIS03] that, intu-
itively, compute the effect of iterating a given “control flow” loop. The tools
Lash [Las] (for counter/fifo systems) and Trex [Tre] (for lossy fifo systems) im-
plement these techniques. However, recognizable languages equipped with Pres-
burger formulas (Cqdds [BH99]) are required to represent (and compute) the
effect of counting loops [BG99, FIS03]. Moreover such tools may only terminate
when the fifo system can be flattened into an equivalent system without nested
loops. Our experiments show that our approach can cope with both counting
loops and nested loops that cannot be flattened.

The closest approach to ours is abstract regular model checking [BHV04],
an extension of the generic regular model-checking framework based on the
abstract–check–refine paradigm. As in classical regular model-checking, a sys-
tem is modeled as follows: configurations are words over a finite alphabet and
the transition relation is given by a finite-state transducer. The analysis consists
in an over-approximated forward exploration (by Kleene iteration), followed, in
case of a non-empty intersection with the bad states, by an exact backward
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computation along the reached sets. Two parametrized automata abstraction
schemes are provided in [BHV04], both based on state merging. These schemes
fit in our definition of extrapolation, and therefore can also be used in our frame-
work. Notice that in Armc, abstraction is performed on the data structures that
are used to represent sets of configurations, whereas in our case the system it-
self is abstracted. After each refinement step, Armc restarts (from scratch) the
approximated forward exploration from the refined reached set, whereas our re-
finement is local to the spurious counterexample path. Moreover, the precision of
the abstraction is global in Armc, and may only increase (for the entire system)
at each refinement step. In contrast, our path invariant generation procedures
only use the precision required for each spurious counterexample. Preliminary
benchmarks demonstrate the benefit of our local and adaptive approach for the
larger examples, where a “highly” precise abstraction is required only for a few
control loops. Last, our approach is not tied to words and automata. In this
work we only focus on fifo systems, but our framework is fully generic and could
be applied to other infinite-state systems (e.g., hybrid systems), provided that
suitable parametrized extrapolations are designed (e.g., on polyhedra).

Outline. We recapitulate fifo systems in Section 2 and define their partition ab-
stractions in Section 3. Refinement and extrapolation-based generation of path
invariants are developed in Section 4. In Section 5, we present the general Cegar
semi-algorithm, and analyze its correctness and termination. Section 6 provides
an overview of the extrapolation used in our implementation. Experimental re-
sults are presented in Section 7, along with some perspectives.

Due to space limitations, all proofs were omitted in this paper. A long version
with detailed proofs and additional material can be obtained from the authors.

2 Fifo Systems

This section presents basic definitions and notations for fifo systems that will be
used throughout the paper. For any set S we write ℘(S) for the set of all subsets
of S, and Sn for the set of n-tuples over S (when n ≥ 1). For any i ∈ {1, . . . , n},
we denote by s(i) the ith component of an n-tuple s. Given s ∈ Sn, i ∈ {1, . . . , n}
and u ∈ S, we write s[i ← u] for the n-tuple s′ ∈ Sn defined by s′(i) = u and
s′(j) = s(j) for all j ∈ {1, . . . , n} with j 6= i.

Let Σ denote an alphabet (i.e., a non-empty set of letters). We write Σ∗ for
the set of all finite words (words for short) over Σ, and we let ε denote the empty
word. For any two words w,w′ ∈ Σ∗, we write w · w′ for their concatenation. A
language is any subset of Σ∗. For any language L, we denote by L∗ its Kleene
closure and we write L+ = L ·L∗. The alphabet of L, written alph(L), is the least
subset A of Σ such that L ⊆ A∗. For any word w ∈ Σ∗, the singleton language
{w} will be written simply as word w when no confusion is possible.

Safety Verification of Labeled Transition Systems. We will use labeled transition
systems to formally define the behavioral semantics of fifo systems. A labeled
transition system is any triple LTS = 〈C, Σ,→〉 where C is a set of configurations,
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Fig. 1. The Connection/Disconnection Protocol [JR86]

Σ is a finite set of actions and →⊆ C ×Σ × C is a (labeled) transition relation.
We say that LTS is finite when C is finite. For simplicity, we will often write
c
l−→ c′ in place of (c, l, c′) ∈→.
A finite path (path for short) in LTS is any pair π = (c, u) where c ∈ C,

and u is either the empty sequence, or a non-empty finite sequence of transi-
tions (c0, l0, c′0), . . . , (ch−1, lh−1, c

′
h−1) such that c0 = c and c′i−1 = ci for every

0 < i < h. We simply write π as c0
l0−→ · · · lh−1−−−→ ch. The natural number h

is called the length of π. We say that π is a simple path if ci 6= cj for all
0 ≤ i < j ≤ h. For any two sets Init ⊆ C and Bad ⊆ C of configurations, a

path from Init to Bad is any path c0
l0−→ · · · lh−1−−−→ ch such that c0 ∈ Init and

ch ∈ Bad. Observe that if c ∈ Init ∩Bad then c is a path (of zero length) from
Init to Bad. The reachability set of LTS from Init is the set of configurations c
such that there is a path from Init to {c}.

In this paper, we focus on the verification of safety properties on fifo sys-
tems. A safety property is in general specified as a set of “bad” configurations
that should not be reachable from the initial configurations. Formally, a safety
condition for a labeled transition system LTS = 〈C, Σ,→〉 is a pair (Init, Bad)
of subsets of C. We say that LTS is (Init, Bad)-unsafe if there is a path from
Init to Bad in LTS, which is called a counterexample. We say that LTS is
(Init, Bad)-safe when it is not (Init, Bad)-unsafe.

Fifo Systems. The asynchronous communication of distributed systems is usu-
ally modeled as a set of local processes together with a network topology given
by channels between processes. Each process can be modeled by a finite-state
machine that sends and receives messages on the channels to which it is con-
nected. Let us consider a classical example, which will be used in the remainder
of this paper to illustrate our approach.

Example 2.1. The connection/disconnection protocol [JR86] – abbreviated as
c/d protocol – between two hosts is depicted in Figure 1. This model is composed
of two processes, a client and a server, as well as two unidirectional channels.

To simplify the presentation, we restrict our attention to the case of one
finite-state control process. The general case of multiple processes can be reduced
to this simpler form by taking the asynchronous product of all processes. For
the connection/disconnection protocol, the asynchronous product of the two
processes is depicted in Figure 2.

Definition 2.2. A fifo system A is a 4-tuple 〈Q,M,n,∆〉 where:
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Fig. 2. Fifo System Representing the Connection/Disconnection Protocol

– Q is a finite set of control states,
– M is a finite alphabet of messages,
– n ≥ 1 is the number of fifo queues,
– ∆ ⊆ Q×Σ ×Q is a set of transition rules,

where Σ = {1, . . . , n} × {!, ?} ×M is the set of fifo actions over n queues.

Simplifying notation, fifo actions in Σ will be shortly written i!m and i?m
instead of (i, !,m) and (i, ?,m). The intended meaning of fifo actions is the follow-
ing: i!m means “emission of message m on queue i ” and i?m means “reception
of message m from queue i ”. The operational semantics of a fifo system A is
formally given by its associated labeled transition system JAK defined below.

Definition 2.3. The operational semantics of a fifo system A = 〈Q,M,n,∆〉
is the labeled transition system JAK = 〈C, Σ,→〉 defined as follows:

– C = Q× (M∗)n is the set of configurations,
– Σ = {1, . . . , n} × {!, ?} ×M is the set of actions,
– the transition relation →⊆ C ×Σ × C is the set of triples ((q,w), l, (q′,w′))

such that (q, l, q′) ∈ ∆ and that satisfy the two following conditions:

• if l = i!m then w′(i) = w(i) ·m and w′(j) = w(j) for all j 6= i,
• if l = i?m then w(i) = m ·w′(i) and w′(j) = w(j) for all j 6= i.

Example 2.4. The fifo system A = 〈{00, 01, 10, 11}, {o, c, d}, 2, ∆〉 that corre-
sponds to the c/d protocol is displayed in Figure 2. The set of initial config-
urations is Init = {(00, ε, ε)}. A set of bad configurations for this protocol is
Bad = {00, 10} × (c ·M∗ ×M∗). This set contains configurations where the
server is in control state 0 but the first message in the first queue is close. This
is the classical case of an undefined reception which results in a (local) deadlock
for the server. Setting the initial configuration to c0 = (00, ε, ε), a counterexam-
ple to the safety condition ({c0}, Bad) is the path (00, ε, ε) 1!o−−→ (10, o, ε) 1?o−−→
(11, ε, ε) 2!d−−→ (10, ε, d) 1!c−−→ (00, c, d) in JAK.
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3 Partition Abstraction for Fifo Systems

In the context of Cegar-based safety verification, automatic abstraction tech-
niques are usually based on predicates [GS97] or partitions [CGJ+03]. In this
work, we focus on partition-based abstraction and refinement techniques for fifo
systems. A partition of a set S is any set P of non-empty pairwise disjoint sub-
sets of S such that S =

⋃
p∈P p. Elements p of a partition P are called classes.

For any element s in S, we denote by [ s ]P the class in P containing s.
At the labeled transition system level, partition abstraction consists of merg-

ing configurations that are equivalent with respect to a given equivalence rela-
tion, or a given partition. In practice, it is often desirable to maintain different
partitions for different control states, to keep partition sizes relatively small. We
follow this approach in our definition of partition abstraction for fifo systems,
by associating a partition of (M∗)n with each control state. To ease notation,
we write L = (M∗)n \ L for the complement of any subset L of (M∗)n.

To effectively compute partition abstractions for fifo systems, we need a fam-
ily of finitely representable subsets of (M∗)n. A natural candidate is the class
of recognizable subsets of (M∗)n, or, equivalently, of Qdd-definable subsets of
(M∗)n [BGWW97], since this class is effectively closed under Boolean opera-
tions. Recall that a subset L of (M∗)n is recognizable if (and only if) it is a
finite union of subsets of the form L1 × · · · × Ln where each Li is a regular lan-
guage over M [Ber79]. We extend recognizability in the natural way to subsets
of the set C = Q × (M∗)n of configurations. A subset C ⊆ C is recognizable if
{w | (q,w) ∈ C} is recognizable for every q ∈ Q. We denote by Rec ((M∗)n) the
set of recognizable subsets of (M∗)n, and write P ((M∗)n) for the set of all finite
partitions of (M∗)n where classes are recognizable subsets of (M∗)n.

Definition 3.1. Consider a fifo system A = 〈Q,M,n,∆〉 and a partition map
P : Q→ P ((M∗)n). The partition abstraction of JAK induced by P is the finite
labeled transition system JAK]P = 〈C]P , Σ,→

]
P 〉 defined as follows:

– C]P = {(q, p) | q ∈ Q and p ∈ P (q)} is the set of abstract configurations,
– Σ = {1, . . . , n} × {!, ?} ×M is the set of actions,
– the abstract transition relation →]

P ⊆ C
]
P × Σ × C]P is the set of triples

((q, p), l, (q′, p′)) such that (q,w) l−→ (q′,w′) for some w ∈ p and w′ ∈ p′.

To relate concrete and abstract configurations, we define the abstraction function
αP : C → C]P , and its extension to ℘(C) → ℘(C]P ), as well as the concretization
function γP : C]P → C, extended to ℘(C]P )→ ℘(C), as expected:

αP ((q,w)) = (q, [ w ]P (q))
γP ((q, p)) = {q} × p

αP (C) = {α(c) | c ∈ C}
γP (C]) =

⋃{
γ(c])

∣∣ c] ∈ C]}
To simplify notations, we shall drop the P subscript when the partition map

can easily be derived from the context. Intuitively, an abstract configuration
(q, p) of JAK] represents the set {q} × p of (concrete) configurations of JAK. The
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Fig. 3. Example Partition Abstraction of the C/D Protocol (Example 3.5)

abstract transition relation →] is the existential lift of the concrete transition
relation → to abstract configurations.

The following forward and backward language transformers will be used to
capture the effect of fifo actions. The functions post : Σ×℘((M∗)n)→ ℘((M∗)n)
and pre : Σ × ℘((M∗)n)→ ℘((M∗)n) are defined by:

post(i!m,L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) ·m = u}
post(i?m,L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) = m · u}

pre(i!m,L) = {w[i← u] | w ∈ L, u ∈M∗ and w(i) = u ·m}
pre(i?m,L) = {w[i← u] | w ∈ L, u ∈M∗ and m ·w(i) = u}

Obviously, post(l, L) and pre(l, L) are effectively recognizable subsets of (M∗)n

for any l ∈ Σ and any recognizable subset L ⊆ (M∗)n. Moreover, we may use post
and pre to characterize the abstract transition relation of a partition abstraction
JAK]P , as follows: for any rule (q, l, q′) ∈ ∆ and for any pair (p, p′) ∈ P (q)×P (q′),

we have (q, p) l−→] (q′, p′) iff post(l, p) ∩ p′ 6= ∅ iff p ∩ pre(l, p′) 6= ∅.

Lemma 3.2. For any fifo system A and partition map P : Q→ P ((M∗)n), JAK]
is effectively computable. For any recognizable subset C ⊆ C, α(C) is effectively
computable.

We extend α to paths in the obvious way: α(c0
l0−→ · · · lh−1−−−→ ch) = α(c0) l0−→]

· · · lh−1−−−→]
α(ch). Observe that α(π) is an abstract path in JAK] for any concrete

path π in JAK. We therefore obtain the following safety preservation property.

Proposition 3.3. Consider a fifo system A and a safety condition (Init, Bad)
for JAK. For any partition abstraction JAK] of JAK, if JAK] is (α(Init), α(Bad))-
safe then JAK is (Init, Bad)-safe.
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The converse to this proposition does not hold generally. An abstract coun-
terexample π] is called feasible if there exists a concrete counterexample π such
that π] = α(π), and π] is called spurious otherwise.

Lemma 3.4. For any fifo system A, any partition map P : Q→ P ((M∗)n), and
any safety condition (Init, Bad) for JAK, feasibility of abstract counterexamples
is effectively decidable.

Example 3.5. Continuing the discussion of the c/d protocol, we consider the
partition abstraction induced by the following partition map:

q ∈ Q 00 10 01 11

P (q) ε× ε, ε× ε o∗ × ε, o∗ × ε M∗ ×M∗ M∗ ×M∗

The set of initial abstract configurations is α(Init) = {(00, ε × ε)}, and the
set of bad abstract configurations is α(Bad) = {(00, ε× ε), (10, o∗ × ε)}. The
resulting partition abstraction is the finite labeled transition system depicted in
Figure 3. A simple graph search reveals several abstract counterexamples, for
instance π] = (00, ε× ε) 1!o−−→] (10, o∗ × ε) 1!c−−→] (00, ε× ε). This counterexample
is spurious since the only concrete path that corresponds to π] (i.e., whose image
under α is π]) is π = (00, ε, ε) 1!o−−→ (10, o, ε) 1!c−−→ (00, oc, ε) /∈ Bad.

4 Counterexample-based Partition Refinement

The abstraction-based verification of safety properties relies on refinement tech-
niques that gradually increase the precision of abstractions in order to rule out
spurious abstract counterexamples. Refinement for partition abstractions simply
consists in splitting some classes into a sub-partition.

Given two partitions P and P̃ of a set S, we say that P̃ refines P when each
class p̃ ∈ P̃ is contained in some class p ∈ P . Moreover we then write [ p̃ ]P for
the class p ∈ P containing p̃.

Let us fix, for the remainder of this section, a fifo system A = 〈Q,M,n,∆〉
and a safety condition (Init, Bad) for JAK. Given two partition maps P, P̃ : Q→
P ((M∗)n), we say that P̃ refines P if P̃ (q) refines P (q) for every control state

q ∈ Q. If P̃ refines P , then for any abstract path (q0, p̃0) l0−→] · · · lh−1−−−→] (qh, p̃h)

in JAK]eP , it holds that (q0, [ p̃0 ]P (q0))
l0−→] · · · lh−1−−−→] (qh, [ p̃h ]P (qh)) is an abstract

path in JAK]P . This fact shows that, informally, refining a partition abstraction
does not introduce any new spurious counterexample.

When a spurious counterexample is found in the abstraction, the partition
map must be refined so as to rule out this counterexample. We formalize this

concept for an abstract path π]P = (q0, p0) l0−→] · · · lh−1−−−→] (qh, ph) in JAK]P from
αP (Init) to αP (Bad) as follows: a refinement P̃ of P is said to rule out the

abstract counterexample π]P if there exists no path π]P = (q0, p̃0) l0−→] · · · lh−1−−−→]

(qh, p̃h) from α eP (Init) to α eP (Bad) in JAK]eP satisfying p̃i ⊆ pi for all 0 ≤ i ≤ h.
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Note that if π]P is a feasible counterexample, then no refinement of P can rule it
out. Conversely, if P̃ is a refinement of P that rules out π]P then any refinement of
P̃ also rules out π]P . The main challenge in Cegar is the discovery of “suitable”
refinements, that are computationally “simple” but “precise enough” to rule
out spurious counterexamples. In this work, we focus on counterexample-guided
refinements based on path invariants.

Definition 4.1. Consider a partition map P and a spurious counterexample

π] = (q0, p0) l0−→] · · · lh−1−−−→] (qh, ph) in JAK]P . A path invariant for π] is any
sequence L0, . . . , Lh of recognizable subsets of (M∗)n such that:

(i) we have ({q0} × p0) ∩ Init ⊆ {q0} × L0, and
(ii) we have post(li, pi ∩ Li) ⊆ Li+1 for every 0 ≤ i < h, and

(iii) we have ({qh} × Lh) ∩Bad = ∅

Observe that condition (ii) is more general than post(li, Li) ⊆ Li+1 which
is classically required for inductive invariants. With this relaxed condition, path
invariants are tailored to the given spurious counterexample, and therefore can
be simpler (e.g., be coarser or have more empty Li).

Proposition 4.2. Consider a partition map P and a simple spurious counterex-

ample π] = (q0, p0) l0−→] · · · lh−1−−−→] (qh, ph). Given a path invariant L0, . . . , Lh
for π], the partition map P̃ defined below is a refinement of P that rules out π]:

P̃ (q) = (P (q) \ {pi | i ∈ I(q)}) ∪
⋃

i∈I(q)

{
pi ∩ Li, pi ∩ Li

}
\ {∅}

where I(q) = {i | 0 ≤ i ≤ h, qi = q} for each control state q ∈ Q.

We propose a generic approach to obtain path invariants by utilizing a
parametrized approximation operator for queue contents. The parameter (the
k in the definition below) is used to adjust the precision of the approximation.

Definition 4.3. A (parametrized) extrapolation is any function ∇ from N to
Rec ((M∗)n) → Rec ((M∗)n) that satisfies, for any L ∈ Rec ((M∗)n), the two
following conditions (with ∇(k) written as ∇k):

(i) we have L ⊆ ∇k(L) for every k ∈ N,
(ii) there exists kL ∈ N such that L = ∇k(L) for every k ≥ kL.

Our definition of extrapolation is quite general, in particular, it does not re-
quire monotonicity in k or in L, but it is adequate for the design of path invariant
generation procedures. The most simple extrapolation is the identity extrapola-
tion that maps each k ∈ N to the identity on Rec ((M∗)n). The parametrized
automata approximations of [BHV04] and [LGJJ06] also satisfy the requirements
of Definition 4.3. The choice of an appropriate extrapolation with respect to the
underlying domain of fifo systems is crucial for the implementation of Cegar’s
refinement step, and will be discussed in Section 6.
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UPInv (∇, Init, Bad, π]
P )

Input: extrapolation∇, recognizable subsets Init, Bad of Q×(M∗)n, spurious

counterexample π]
P = (q0, p0)

l0−→] · · ·
lh−1−−−→]

(qh, ph)

1 k ← 0
2 do
3 L0 ← ∇k (p0 ∩ {w | (q0,w) ∈ Init})
4 for i from 1 upto h
5 Fi ← post(li−1, pi−1 ∩ Li−1)
6 if pi ∩ Fi = ∅
7 Li ← ∅
8 else
9 Li ← ∇k(Fi)

10 k ← k + 1
11 while ({qh} × Lh) ∩Bad 6= ∅
12 return (L0, . . . , Lh)

Split (∇, L0, L1)

Input: extrapolation ∇, disjoint recognizable subsets L0, L1 of (M∗)n

1 k ← 0
2 while ∇k(L0) ∩ L1 6= ∅
3 k ← k + 1
4 return ∇k(L0)

APInv (∇, Init, Bad, π]
P )

Input: extrapolation∇, recognizable subsets Init, Bad of Q×(M∗)n, spurious

counterexample π]
P = (q0, p0)

l0−→] · · ·
lh−1−−−→]

(qh, ph)

1 Bh ← ph ∩ {w | (qh,w) ∈ Bad}
2 i← h
3 while Bi 6= ∅ and i > 0
4 i← i− 1
5 Bi ← pi ∩ pre(li, Bi+1)
6 if i = 0
7 I ← p0 ∩ {w | (q0,w) ∈ Init}
8 L0 ← Split (∇, I, B0)
9 else

10 (L0, . . . , Li)← ((M∗)n, . . . , (M∗)n)
11 for j from i upto h− 1
12 Lj+1 ← Split (∇, post(lj , pj ∩ Lj), Bj+1)
13 return (L0, . . . , Lh)

Fig. 4. Extrapolation-based Path Invariant Generation Algorithms
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Remark 4.4. Extrapolations are closed under various operations, such as func-
tional composition, union and intersection, as well as round-robin combination.

We now present two extrapolation-based path invariant generation proce-
dures (Figure 4). Recall that the parameter k of an extrapolation intuitively
indicates the desired precision of the approximation. The first algorithm, UPInv,
performs an approximated post computation along the spurious counterexam-
ple, and iteratively increases the precision k of the approximation until a path
invariant is obtained. The applied precision in UPInv is uniform along the coun-
terexample. Due to its simplicity, the termination analysis of Cegar in the
following section will refer to UPInv. The second algorithm, APInv, first per-
forms an exact pre computation along the spurious counterexample to identify
the “bad” coreachable subsets Bi. The path invariant is then computed with a
forward traversal that uses the Split subroutine to simplify each post image while
remaining disjoint from the Bi. The precision used in Split is therefore tailored
to each post image, which may lead to simpler path invariants. Naturally, both
algorithms may be “reversed” to generate path invariants backwards.

Observe that if the extrapolation∇ is effectively computable, then all steps in
the algorithms UPInv, Split and APInv are effectively computable. We now prove
correctness and termination of these algorithms. Let us fix, for the remainder of
this section, an extrapolation ∇ and a partition map P : Q → P ((M∗)n), and
assume that Init and Bad are recognizable.

Proposition 4.5. For any spurious abstract counterexample π]P , the execution
of UPInv (∇, Init, Bad, π]P ) terminates and returns a path invariant for π]P .

Lemma 4.6. For any two recognizable subsets L0, L1 of (M∗)n, if L0 ∩ L1 = ∅
then Split (∇, L0, L1) terminates and returns a recognizable subset L of (M∗)n

that satisfies L0 ⊆ L ⊆ L1.

Proposition 4.7. For any spurious abstract counterexample π]P , the execution
of APInv (∇, Init, Bad, π]P ) terminates and returns a path invariant for π]P .

Example 4.8. Consider again the c/d protocol, and assume an extrapolation
∇ satisfying ∇0(L × ε) = (alph(L))∗ × ε for all L ⊆ M∗, and ∇1(u × ε) =
u× ε for each u ∈ {ε, o, oc}, e.g., the extrapolation ρ′′ presented in Remark 6.1.
The UPInv algorithm, applied to the spurious counterexample (00, ε × ε) 1!o−−→]

(10, o∗ × ε) 1!c−−→] (00, ε× ε) of Example 3.5, would perform two iterations of
the while-loop and produce the path invariant (ε × ε, o × ε, oc × ε). These
iterations are detailed in the table below. The mark  or X indicates whether
the condition at line 11 is satisfied.

L0 L1 L2 Line 11

k = 0 ε× ε o∗ × ε {o, c}∗ × ε  

k = 1 ε× ε o× ε oc× ε X
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Following Proposition 4.2, the partition map would be refined to:

q ∈ Q 00 10 01, 11

P (q) ε× ε, oc× ε, (ε ∪ oc)× ε o× ε, (ε ∪ (o · o+))× ε, o∗ × ε M∗ ×M∗

This refined partition map clearly rules out the spurious counterexample.

5 Safety Cegar Semi-Algorithm for Fifo Systems

We are now equipped with the key ingredients to present our Cegar semi-
algorithm for fifo systems. The semi-algorithm takes as input a fifo system A,
a recognizable safety condition (Init, Bad), an initial partition map P0, and a
path invariant generation procedure PathInv. The initial partition map may be
the trivial one, mapping each control state to (M∗)n. We may use any path
invariant generation procedure, such as the ones presented in the previous sec-
tion. The semi-algorithm iteratively refines the partition abstraction until either
the abstraction is precise enough to prove that JAK is (Init, Bad)-safe (line 10),
or a feasible counterexample is found (line 4). If the abstract counterexample
picked at line 2 is spurious, a path invariant is generated and is used to refine the
partition. The new partition map obtained after the foreach loop (lines 8–9) is
precisely the partition map P̃ from Proposition 4.2, and hence it rules out this
abstract counterexample. Recall that Lemmata 3.2 and 3.4 ensure that the steps
at lines 1 and 3 are effectively computable. The correctness of the CEGAR semi-
algorithm is expressed by the following proposition, which directly follows from
Proposition 3.3 and from the definition of feasible abstract counterexamples.

Proposition 5.1. For any terminating execution of CEGAR (A, Init, Bad, P0,
PathInv), if the execution returns X (resp.  ) then JAK is (Init, Bad)-safe (resp.
(Init, Bad)-unsafe).

A detailed example execution of CEGAR on the c/d protocol is provided in
the long version. Termination of the CEGAR semi-algorithm cannot be assured
as, otherwise, it would solve the general reachability problem, which is known to
be undecidable for fifo systems [BZ83]. However, (Init, Bad)-unsafety is semi-
decidable for fifo systems by forward or backward symbolic exploration when Init
and Bad are recognizable [BG99]. Moreover, this problem becomes decidable for
fifo systems having a finite reachability set from Init.

We investigate in this section the termination of the CEGAR semi-algorithm
when A is (Init, Bad)-unsafe or has a finite reachability set from Init. In con-
trast to other approaches where abstractions are refined globally (e.g., predicate
abstraction [GS97]), partition abstractions [CGJ+03] are refined locally by split-
ting abstract configurations along the abstract counterexample (viz. lines 8 – 9
of the CEGAR semi-algorithm). The abstract transition relation only needs to
be refined locally around the abstract configurations which have been split, and,
hence, its refinement can be computed efficiently. However, this local nature of
refinement complicates the analysis of the algorithm. We fix an extrapolation
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CEGAR (A, Init, Bad, P0,PathInv)

Input: fifo system A = 〈Q,M,n,∆〉, recognizable subsets Init, Bad of Q ×
(M∗)n, partition map P0 : Q→ P ((M∗)n), procedure PathInv

1 while JAK]P is (αP (Init), αP (Bad))-unsafe

2 pick a simple abstract counterexample π] in JAK]P
3 if π] is a feasible abstract counterexample
4 return  
5 else

6 write π] as the abstract path (q0, p0)
l0−→] · · ·

lh−1−−−→]
(qh, ph)

7 (L0, . . . , Lh) ← PathInv
`
Init, Bad, π]

´
8 foreach i ∈ {0, . . . , h}
9 P (qi)← (P (qi) \ {pi}) ∪

`˘
pi ∩ Li, pi ∩ Li

¯
\ {∅}

´
10 return X

∇ and we focus on the path invariant generation procedure UPInv presented in
Section 4.

Proposition 5.2. For any breadth-first execution of CEGAR (A, Init, Bad, P0,
UPInv (∇)), if the execution does not terminate then the sequence (hθ)θ∈N of
lengths of counterexamples picked at line 2 is nondecreasing and diverges.

Corollary 5.3. If JAK is (Init, Bad)-unsafe then any breadth-first execution of
CEGAR (A, Init, Bad, P0,UPInv (∇)) terminates.

It would also be desirable to obtain termination of the CEGAR semi-algorithm
when A has a finite reachability set from Init. However, as demonstrated in the
long version, this condition is not sufficient to guarantee that CEGAR (A, Init,
Bad, P0,UPInv (∇)) has a terminating execution. It turns out that termination
can be guaranteed for fifo systems with a finite reachability set when ∇k has
a finite image for every k ∈ N. This apparently strong requirement, formally
specified in Definition 5.4, is satisfied by the extrapolations presented in [BHV04]
and [LGJJ06], which are based on state equivalences up to a certain depth.

Definition 5.4. An extrapolation ∇ is restricted if for every k ∈ N, the set
{∇k(L) | L ∈ Rec ((M∗)n)} is finite.

Remark that if∇ is restricted then for any execution of CEGAR (A, Init, Bad,
P0,UPInv (∇)), the execution terminates if and only if the number of iterations of
the while-loop of the algorithm UPInv is bounded3. As shown by the following
proposition, if moreover JAK has a finite reachability set from Init then the
execution necessarily terminates.

Proposition 5.5. Assume that ∇ is restricted. If JAK has a finite reachabil-
ity set from Init, then any execution of CEGAR (A, Init, Bad, P0, UPInv (∇))
terminates.
3 Remark that this bound is not a bound on the length of abstract counterexamples.
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6 Overview of the (Colored) Bisimulation Extrapolation

This section briefly introduces the bisimulation-based extrapolation underly-
ing the widening operator introduced in [LGJJ06]. This extrapolation assumes
an automata representation of recognizable subsets of (M∗)n, and relies on
bounded-depth bisimulation over the states of the automata. For simplicity, we
focus in this section on fifo systems with a single queue, i.e., n = 1. In this
simpler case, recognizable subsets of (M∗)n are regular languages contained in
M∗, which can directly be represented by finite automata over M . The general
case of n ≥ 2, which is discussed in detail in the long version, requires the use
of Qdds, that are finite automata accepting recognizable subsets of (M∗)n via
an encoding of n-tuples in (M∗)n by words over an extended alphabet. Still, the
main ingredients rest the same.

In the remainder of this section, we lift our discussion from regular languages
in M∗ to finite automata over M . Consider a finite automaton over M with a set
Q of states. As in abstract regular model checking [BHV04], we use quotienting
under equivalence relations on Q to obtain over-approximations of the automa-
ton. However, we follow the approach of [LGJJ06], and focus on bounded-depth
bisimulation equivalence (other equivalence relations were used in [BHV04]).

Given a priori an equivalence relation col on Q, also called “coloring”, and a
bound k ∈ N, the (colored) bisimulation equivalence of depth k is the equivalence
relation ∼colk on Q defined as expected: ∼col0 = col and two states are equivalent
for ∼colk+1 if (1) they are ∼colk -equivalent and (2) they have ∼colk -equivalent m-
successors for each letter m ∈ M . The ultimately stationary sequence ∼col0 ⊇
∼col1 ⊇ · · · ⊇ ∼colk ⊇ ∼colk+1 ⊇ · · · of equivalence relations on Q leads to the
colored bisimulation-based extrapolation.

We define a coloring std, called standard coloring, by (q1, q2) ∈ std if either
q1 and q2 are both final states or q1 and q2 are both non-final states. The bisim-
ulation extrapolation is the function ρ from N to Rec (M∗)→ Rec (M∗) defined
by ρk(L) = L/∼stdk , where L is identified to a finite automaton accepting it.
Notice that ρ is a restricted extrapolation.

Remark 6.1. We could also choose other colorings or define the sequence of
equivalences in a different way. For instance, better results are sometimes ob-
tained in practice with the extrapolation ρ′ that first (for k = 0) applies a
quotienting with respect to the equivalence relation Q × Q (i.e., all states are
merged), and then behaves as ρk−1 (for k ≥ 1). Analogously, the extrapolation
ρ′′ defined by ρ′′0 = ρ′0 and ρ′′k = ρk for k ≥ 1 was used in Example 4.8.

Example 6.2. Consider the regular language L = {aac, baaa} over the alphabet
M = {a, b, c, d, e}, represented by the automaton FAL of Figure 5a. The previ-
ously defined extrapolation ρ applies to L as follows: ρ0 splits the states of FAL
according to std, hence, ρ0(L) = {a, b}∗ · {a, c} (viz. Figure 5c). Then ρ1 merges
the states that are bisimulation equivalent up to depth 1, i.e., the states of
FAL (Figure 5d). As all states of FAL are non equivalent for ∼stdk with k ≥ 2, we
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Fig. 5. Finite Automata Representations for Extrapolating L (Example 6.2)

have ρk(L) = L (again Figure 5a). The variants ρ′ and ρ′′ mentioned previously
would lead to ρ′0(L) = ρ′′0(L) = (alph(L))∗ = {a, b, c}∗ (viz. Figure 5b).

The benefits of the bisimulation extrapolation for the abstraction of fifo sys-
tems were already discussed in [LGJJ06]. The following example shows that this
extrapolation can, in some common cases, discover exact repetitions of message
sequences in queues, without the need for acceleration techniques.

Example 6.3. Let us continue the running example of the c/d protocol, consid-
ered here as having a single-queue by restricting it to operations on the first
queue. The application of acceleration techniques on the path (00, ε) 1!o−−→ 1!c−−→
(00, oc) 1!o−−→ 1!c−−→ (00, ococ) · · · would produce the set of queue contents (oc)+.
The bisimulation extrapolation ρ applied to the singleton language {ococ}, rep-
resented by the obvious automaton, produces the following results for the first
two parameters: ρ0({ococ}) = {o, c}∗ · c and ρ1({ococ}) = (oc)+.

7 Experimental Evaluation

Our prototypical tool Mcscm that implements the previous algorithms is written
in Ocaml and relies on a library by Le Gall and Jeannet [Scm] for the classical
finite automata and Qdd operations, the fifo post/pre symbolic computations,
as well as the colored bisimulation-based extrapolation. The standard coloring
with final and non-final states is used by default in our tool, but several other
variants are also available.

Our implementation includes the two path invariant generation algorithms
UPInv and APInv of Section 4. We actually implemented a “single split” backward
variant of APInv, reminiscent of the classical Cegar implementation [CGJ+03]
(analogous to APInv but applying the split solely to the “failure” abstract config-
uration). Therefore our implemented variant APInv’ leads to more Cegar loops
than would be obtained with APInv, and this explains in part why UPInv glob-
ally outperforms APInv’ for larger examples. Several pluggable subroutines can
be used to search for counterexamples (depth-first or breadth-first exploration).

We tested the prototype on a suite of protocols that includes the classical
alternating bit protocol Abp [AJ96], a simplified version of Tcp – also in the
setting of one server with two clients that interfere on their shared channels, a
sliding window protocol, as well as protocols for leader election due to Peterson
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protocol states/trans. refmnt. time [s] mem [MiB] loops states]/trans]

Abp 16/64
APInv’ 0.30 1.09 72 87/505
UPInv 2.13 1.58 208 274/1443

c/d protocol 5/17
APInv’ 0.02 0.61 8 12/51
UPInv 0.01 0.61 6 11/32

nested c/d protocol 6/17
APInv’ 0.68 1.09 80 85/314
UPInv 1.15 1.09 93 100/339

non-regular protocol 9/18
APInv’ 0.02 0.61 13 21/47
UPInv 0.06 0.61 14 25/39

Peterson 10648/56628
APInv’ 7.05 32.58 299 10946/58536
UPInv 2.14 32.09 51 10709/56939

(simplified) Tcp 196/588
APInv’ 2.19 3.03 526 721/3013
UPInv 1.38 2.06 183 431/1439

server with 2 clients 255/2160
APInv’ (> 1h) — — —
UPInv 9.61 4.97 442 731/7383

token ring 625/4500
APInv’ 85.15 19.50 1720 2344/19596
UPInv 4.57 6.42 319 1004/6956

sliding window 225/2010
APInv’ 16.43 9.54 1577 1801/15274
UPInv 0.93 2.55 148 388/2367

Table 1. Benchmark results of Mcscm on a suite of protocols.

and token passing in a ring topology. Further, we provide certain touchstones
for our approach: an enhancement of the c/d protocol with nested loops for the
exchange of data, and a protocol with a non-recognizable reachability set. A
detailed presentation of the protocols is provided in the long version. Except for
the c/d protocol, which is unsafe, all other examples are safe.

Table 1 gives a summary of the results obtained by Mcscm on an off-the-shelf
computer (2.4 GHz Intel Core 2 Duo). Breadth-first exploration was applied in all
examples to search for abstract counterexamples. The bisimulation extrapolation
ρ presented in Section 6 was used except for the server with 2 clients, where we
applied the variant ρ′ of ρ presented in Remark 6.1, as the analysis did not
terminate after one hour with ρ. All examples are analyzed with UPInv in a few
seconds, and memory is not a limitation.

We compared Mcscm with Trex [Tre], which is, to the best of our knowledge,
the sole publicly available and directly usable model-checker for the verification
of unbounded fifo systems. Note, however, that the comparison is biased as Trex
focuses on lossy channels. We applied Trex to the first six examples of Table 1.
Trex has an efficient implementation based on simple regular expressions (and
not general Qdds as we do), and needs in most cases less than 1 second to build
the reachability set (the latter allows to decide the reachability of bad configura-
tions by a simple additional look-up). Further, Trex implements communicating
timed and counter automata that are – at this stage – beyond the focus of our
tool. Nonetheless, Trex assumes a lossy fifo semantics, and, therefore, is not able
to verify all reliable fifo protocols correctly (e.g., when omitting the disconnect
messages in the c/d protocol, Trex is still able to reach Bad due to the possible
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loss of messages, albeit the protocol is safe). Moreover, Trex suffers (as would
also a symbolic model-checker based on the Lash library [Las]) from the main
drawback of acceleration techniques, which in general cannot cope with nested
loops, whereas they seem to have no adverse effect on our tool (viz. nested c/d
protocol on which Trex did not finish after one hour). Mcscm can also handle a
simple non-regular protocol (with a counting loop) that is beyond the Qdd-based
approaches [BG99], as the representation of the reachability set would require
recognizable languages equipped with Presburger formulas (Cqdds [BH99]).

To obtain a finer evaluation of our approach, we prototypically implemented
the global abstraction refinement scheme of [BHV04] in our tool. While this
Armc implementation seems to be advantageous for some small protocols, larger
examples confirm that the local and adaptive approach refinement approach de-
veloped in this paper outperforms a global refinement one in protocols that
demand a “highly” precise abstraction only for a few control loops (e.g., Peter-
son’s leader election and token ring). Further, our Armc implementation was
not able to handle the non-regular protocol nor the server with 2 clients.

8 Conclusion and Perspectives

Our prototypical implementation confirms our expectations that the proposed
Cegar framework with extrapolation-based path invariants is a promising al-
ternative approach to the automatic verification of fifo systems.

Our approach relies on partition abstractions where equivalence classes are
recognizable languages of queue contents. Our main contribution is the design
of generic path invariant generation algorithms based on parametrized extrap-
olation operators for queue contents. Because of the latter, our CEGAR semi-
algorithm enjoys additional partial termination properties.

The framework developed in this paper is not specific to fifo systems, and we
intend to investigate its practical relevance to other families of infinite-state mod-
els. Future work also includes the safety verification of more complex fifo systems
that would allow the exchange of unbounded numerical data over the queues,
or include parametrization (e.g., over the number of clients). Several decidable
classes of fifo systems have emerged in the literature (in particular lossy fifo
systems) and we intend to investigate termination of our CEGAR semi-algorithm
(when equipped with the path invariant generation algorithms developed in this
paper) for these classes.
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