Acceleration in Convex Data-Flow Analysis

Jérôme Leroux and Grégoire Sutre

LaBRI, Université de Bordeaux, CNRS, France

Conference on Foundations of Software Technology and Theoretical Computer Science, 2007

Motivations

Invariants for Verification

- Verification of safety properties
- Efficient computation of precise enough invariants
- Data-flow analysis, abstract interpretation
- Widenings/narrowings: successful approach, but might lead to invariants to coarse for verification

Our Objective

Computation of the exact solution to data-flow analysis problems

- Meet Over all Paths
- Minimum Fix Point
- Acceleration-based techniques

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivations

Invariants for Verification

- Verification of safety properties
- Efficient computation of precise enough invariants
- Data-flow analysis, abstract interpretation
- Widenings/narrowings: successful approach, but might lead to invariants to coarse for verification

Our Objective

Computation of the exact solution to data-flow analysis problems

- Meet Over all Paths
- Minimum Fix Point
- Acceleration-based techniques

< A > < > >

Introduction

2 Convex Data Flow Analysis of Guarded Translation Systems

3 Acceleration for Self-Loops

4 Acceleration for Cycles

Leroux, Sutre (LaBRI)

Guarded Translation Systems (Syntax)

- We focus on topologically closed convex subsets of \mathbb{R}^n
- $\{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ is called a $\begin{cases} (real) & polyhedron when A \in \mathbb{R}^{n \times m} \\ rational polyhedron when A \in \mathbb{Q}^{n \times m} \end{cases}$

• guarded commands of the form if $ec{x} \in G$ then $ec{x}$:= $ec{x} + ec{d}$

Definition

An *n*-dim guarded translation system (GTS) is any pair S = (X, T) where:

- X is a finite set of variables
- *T* is a finite set of transitions of the form $X \xrightarrow{G,\overline{d}} X'$

• Transition $X \xrightarrow{G, \vec{d}} X'$ represents the assignment $X' := (X \cap G) + \vec{d}$

(a)

Guarded Translation Systems (Syntax)

- We focus on topologically closed convex subsets of \mathbb{R}^n
- $\{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ is called a $\begin{cases} (real) & polyhedron when A \in \mathbb{R}^{n \times m} \\ rational polyhedron when A \in \mathbb{Q}^{n \times m} \end{cases}$

• guarded commands of the form if $ec{x} \in G$ then $ec{x}$:= $ec{x} + ec{d}$

Definition

An *n*-dim guarded translation system (GTS) is any pair S = (X, T) where:

• X is a finite set of variables

• T is a finite set of transitions of the form $X \xrightarrow{G,d} X'$

• Transition $X \xrightarrow{G, \vec{d}} X'$ represents the assignment $X' := (X \cap G) + \vec{d}$

(日)

Guarded Translation Systems (Semantics)

Definition

An *n*-dim guarded translation system (GTS) is any pair S = (X, T) where:

- X is a finite set of variables
- *T* is a finite set of transitions of the form $X \xrightarrow{G,\vec{d}} X'$
- Valuation: function ρ from X to closed convex subsets of Rⁿ
- Semantics $\llbracket t \rrbracket$ of transition $t = X \xrightarrow{G, \vec{d}} X'$ defined by:

$$(\llbracket t \rrbracket(\rho))(\mathsf{Y}) = \begin{cases} (\rho(\mathsf{X}) \cap \mathsf{G}) + \vec{d} & \text{if } \mathsf{Y} = \mathsf{X}' \\ \rho(\mathsf{Y}) & \text{if } \mathsf{Y} \neq \mathsf{X}' \end{cases}$$

• An *n*-dim initialized GTS (IGTS) is any triple $S = (X, T, \rho_0)$

< 回 > < 三 > < 三

IGTS G, \vec{d} X • $\mathcal{X} = \{X\}$ • $T = \{X \xrightarrow{G,\vec{d}} X\}$ with $\begin{cases} \mathbf{G} = \mathbb{R}^2_+\\ \vec{d} = (-1,1) \end{cases}$ • $\rho_0 = \{X \mapsto 1 \times [-1, 1]\}$

Semantics 3 -2 0 $\rho_1 = [t](\rho_0)$ $\rho_2 = [t](\rho_1)$ $\rho_3 = \llbracket t \rrbracket (\rho_2) = \{ X \mapsto \emptyset \}$

イロト イヨト イヨト イヨト

Convex Data-Flow Analysis

- We consider the complete lattice of convex closed subsets of \mathbb{R}^n .
 - partial order is set inclusion \subseteq
 - greatest lower bound is set intersection \cap
 - least upper bound ⊔ is set union followed by closed convex hull
- Extended to valuations

Minimum Fix-Point (MFP) Solution

 $\mathsf{MFP}(\mathbb{S}) = \bigcap \{ \rho : valuation \mid \rho_0 \subseteq \rho \text{ and } \llbracket t \rrbracket(\rho) \subseteq \rho \text{ for all } t \in T \}$

• MFP(S) is the least fix-point of $\tau(\rho) = \rho_0 \sqcup \bigsqcup [t](\rho)$.

• Kleene fix-point iteration: $\bigsqcup_{i \in \mathbb{N}} \tau^i(\bot) \subseteq MFP(\mathbb{S})$

Meet Over all Paths (MOP) Solution

 $\mathsf{MOP}(\mathbb{S}) = \bigsqcup \{ \llbracket t_1 \rrbracket \circ \cdots \circ \llbracket t_k \rrbracket (\rho_0) \mid t_1 \cdots t_k \in T^* \text{ is a path} \}$

Convex Data-Flow Analysis

- We consider the complete lattice of convex closed subsets of ℝⁿ.
 - partial order is set inclusion \subseteq
 - greatest lower bound is set intersection \cap
 - least upper bound ⊔ is set union followed by closed convex hull
- Extended to valuations

Minimum Fix-Point (MFP) Solution

 $\mathsf{MFP}(\mathbb{S}) = \bigcap \{ \rho : valuation \mid \rho_0 \subseteq \rho \text{ and } \llbracket t \rrbracket(\rho) \subseteq \rho \text{ for all } t \in T \}$

 $t \in T$

- MFP(\$) is the least fix-point of $\tau(\rho) = \rho_0 \sqcup \bigsqcup [t](\rho)$.
- Kleene fix-point iteration: $\bigsqcup_{i \in \mathbb{N}} \tau^i(\bot) \subseteq \mathsf{MFP}(S)$

Meet Over all Paths (MOP) Solution

 $\mathsf{MOP}(\mathbb{S}) = \bigsqcup \{ \llbracket t_1 \rrbracket \circ \cdots \circ \llbracket t_k \rrbracket (\rho_0) \mid t_1 \cdots t_k \in T^* \text{ is a path} \}$

Convex Data-Flow Analysis

- We consider the complete lattice of convex closed subsets of \mathbb{R}^n .
 - partial order is set inclusion \subseteq
 - greatest lower bound is set intersection \cap
 - least upper bound ⊔ is set union followed by closed convex hull
- Extended to valuations

Minimum Fix-Point (MFP) Solution

 $\mathsf{MFP}(\mathbb{S}) = \bigcap \{ \rho : valuation \mid \rho_0 \subseteq \rho \text{ and } \llbracket t \rrbracket(\rho) \subseteq \rho \text{ for all } t \in T \}$

 $t \in T$

- MFP(\$) is the least fix-point of $\tau(\rho) = \rho_0 \sqcup \bigsqcup [t](\rho)$.
- Kleene fix-point iteration: $\bigsqcup_{i \in \mathbb{N}} \tau^i(\bot) \subseteq \mathsf{MFP}(S)$

Meet Over all Paths (MOP) Solution

 $\mathsf{MOP}(\mathbb{S}) = \bigsqcup \{ \llbracket t_1 \rrbracket \circ \cdots \circ \llbracket t_k \rrbracket (\rho_0) \mid t_1 \cdots t_k \in T^* \text{ is a path} \}$

MOP Solution

MOP Solution 3 2: 1 0 -1 ò -2 -1 2 $\rho_1 = \llbracket t \rrbracket (\rho_0)$ $\begin{array}{rcl} \rho_2 & = & \llbracket t \rrbracket (\rho_1) \\ \rho_3 & = & \llbracket t \rrbracket (\rho_2) = \{ X \mapsto \emptyset \} \end{array}$

MOP Solution

MFP Solution

Remark

Kleene fix-point iteration does not stabilize

▲圖 ▶ ▲ 圖 ▶

Acceleration in Data-Flow Analysis [L. & S., SAS'07]

Objectives

- Speed up Kleene fix-point iteration
- Don't loose precision

Minimum Fix-Point Computation with Acceleration

① do
$$\rho \leftarrow \rho \sqcup \llbracket t \rrbracket(\rho)$$
 for some transition $t = X \xrightarrow{G, \vec{d}} X'$

- 2 or select a cycle in S and:
 - let S' denote the cyclic sub-IGTS, initialized with ρ (restricted to X')
 ρ ← ρ ⊔ MFP(S') (or ρ ← ρ ⊔ MOP(S'))

Acceleration Problem

Compute the MOP/MFP solution for cyclic IGTS

Leroux, Sutre (LaBRI)

Acceleration in Data-Flow Analysis [L. & S., SAS'07]

Objectives

- Speed up Kleene fix-point iteration
- Don't loose precision

Minimum Fix-Point Computation with Acceleration

• do
$$ho \leftarrow
ho \sqcup \llbracket t \rrbracket(
ho)$$
 for some transition $t = X \xrightarrow{G, \vec{d}} X'$

Or select a cycle in S and:

let S' denote the cyclic sub-IGTS, initialized with ρ (restricted to X')
 ρ ← ρ ⊔ MFP(S') (or ρ ← ρ ⊔ MOP(S'))

Acceleration Problem

Compute the MOP/MFP solution for cyclic IGTS

Leroux, Sutre (LaBRI)

Acceleration in Data-Flow Analysis [L. & S., SAS'07]

Objectives

- Speed up Kleene fix-point iteration
- Don't loose precision

Minimum Fix-Point Computation with Acceleration

• do
$$ho \leftarrow
ho \sqcup \llbracket t \rrbracket (
ho)$$
 for some transition $t = X \xrightarrow{\mathsf{G}, \vec{d}} X'$

let S' denote the cyclic sub-IGTS, initialized with ρ (restricted to X')
 ρ ← ρ ⊔ MFP(S') (or ρ ← ρ ⊔ MOP(S'))

Acceleration Problem

Compute the MOP/MFP solution for cyclic IGTS

Leroux, Sutre (LaBRI)

(a)

Introduction

Acceleration for Self-Loops

4 Acceleration for Cycles

5 Conclusion

Leroux, Sutre (LaBRI)

MFP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS ({X}, { $X \xrightarrow{G,\vec{d}} X$ }, ρ_0), the MFP solution is the valuation:

$$X \mapsto \left\{ egin{array}{ll}
ho_0(X) & ext{if } G \cap
ho_0(X) = \
ho_0(X) \sqcup \ ((G \cap (
ho_0(X) + \mathbb{R}_+ \vec{d})) + \vec{d}) & ext{otherwise} \end{array}
ight.$$

Proof Ideas

The given expression is a post-fix-point of X

of
$$\left[X \xrightarrow{G,\vec{d}} X\right]$$
.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof by contradiction, using topological and convexity properties of both the guard and MFP solution.

- Application of widening
- Coarser than the MFP Solution!

- Application of widening
- Coarser than the MFP Solution!

- Application of widening
- Coarser than the MFP Solution!

- Application of widening
- Coarser than the MFP Solution!

- Application of widening
- Coarser than the MFP Solution!

- Application of widening
- Coarser than the MFP Solution!

• Consider an IGTS
$$S = ({X}, {X \xrightarrow{G,\vec{d}} X}, \rho_0)$$

Abstract Acceleration

AbAc(S) = $\rho_0(X) \sqcup MFP(S')$ where S' is equal to S except on its initial valuation: $\rho'_0(X) = G \cap \rho_0(X).$

• Consider an IGTS
$$S = ({X}, {X \xrightarrow{G,\vec{d}} X}, \rho_0)$$

Abstract Acceleration

AbAc(S) = $\rho_0(X) \sqcup MFP(S')$ where S' is equal to S except on its initial valuation: $\rho'_0(X) = G \cap \rho_0(X).$

• Consider an IGTS
$$S = ({X}, {X \xrightarrow{G,\vec{d}} X}, \rho_0)$$

Abstract Acceleration

AbAc(S) = $\rho_0(X) \sqcup MFP(S')$ where S' is equal to S except on its initial valuation: $\rho'_0(X) = G \cap \rho_0(X).$

• Consider an IGTS
$$S = ({X}, {X \xrightarrow{G,\vec{d}} X}, \rho_0)$$

Abstract Acceleration

AbAc(S) = $\rho_0(X) \sqcup MFP(S')$ where S' is equal to S except on its initial valuation: $\rho'_0(X) = G \cap \rho_0(X).$

Remark

Iteration does not terminate!

Introduction

- 2 Convex Data Flow Analysis of Guarded Translation Systems
- 3 Acceleration for Self-Loops
- Acceleration for Cycles
- 5 Conclusion

-

2-dim Example

GTS

$$\begin{array}{rcl} G_2 &=& [1, +\infty[\times [1, +\infty[\\ G_3 &=& [1, +\infty[\times] -\infty, -1] \\ G_4 &=&] -\infty, -1] \times] -\infty, -1] \end{array}$$

Initial Valuation

イロト イ理ト イヨト イヨト

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

3

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 1

16/25

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 1

16/25

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

Acceleration in Convex Data-Flow Analysis

Acceleration in Convex Data-Flow Analysis

FSTTCS 2007 16/25

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 16

16/25

• $(h_k)_{k\in\mathbb{N}}$ is nondecreasing, and $\lim_{k\to\infty} h_k = 2 - \sqrt{3}$

Remark

The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

• $(h_k)_{k\in\mathbb{N}}$ is nondecreasing, and $\lim_{k\to\infty} h_k = 2 - \sqrt{3}$

Remark

The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

• $(h_k)_{k\in\mathbb{N}}$ is nondecreasing, and $\lim_{k\to\infty}h_k=2-\sqrt{3}$

Remark

The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

• $(h_k)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim_{k \to \infty} h_k = 2 - \sqrt{3}$

Remark

The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

3-dim Example

Initial Valuation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Acceleration in Convex Data-Flow Analysis

3

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 19 / 25

< A > < > >

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 19 / 25

< A > < > >

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI),

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 19 / 25

4 A N

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 19 / 25

4 A N

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

FST TCS 2007 19 / 25

< 同 > < ∃ >

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI)

Acceleration in Convex Data-Flow Analysis

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem

The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

- An algebraic number is any real number definable in $\langle \mathbb{R}, +, \cdot, \leq \rangle$
- Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem

The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

- An algebraic number is any real number definable in $\langle \mathbb{R}, +, \cdot, \leq \rangle$
- Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem

The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

- An algebraic number is any real number definable in $\langle \mathbb{R}, +, \cdot, \leq \rangle$
- Algebraic polyhedrality is required even for cyclic 2-dim IGTS

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Proof (1)

MFP Solution Expression

$$\mathsf{MFP}(X) = \bigsqcup_{\substack{X_0 \in \mathcal{X} \\ t_1 \cdots t_k \in L_{X_0, X}}} \llbracket t_1 \rrbracket \circ \cdots \circ \llbracket t_k \rrbracket (\Delta(X_0)) + \boxed{0^+ \mathsf{MFP}(X)}$$

where:

$$\Delta(X) = \rho_0(X) \sqcup \bigsqcup_{X \xrightarrow{G,\vec{\partial}} X'} bd(G) \cap MFP(X)$$

- bd(G) is the topological boundary of G
- $L_{X_0,X}$ is the set of simple paths from X_0 to X

•
$$0^+C = \{ \vec{d} \mid C + \mathbb{R}_+ \vec{d} \subseteq C \}$$

(日)

Proof (2)

Observe that $0^+ MFP(X)$ is a cone in dimension 2.

$0^+ \operatorname{MFP}(X)$

There exists $\vec{d_1}, \vec{d_2}, \vec{d_3} \in \mathbb{R}^2$ such that: $0^+ \mathsf{MFP}(X) = \mathbb{R}_+ \vec{d_1} + \mathbb{R}_+ \vec{d_1} + \mathbb{R}_+ \vec{d_1}$

Reduce to the case G is an half-space. \implies bd (G) is a line.

$bd(G) \cap MFP(X)$

There exists two half-spaces H_1, H_2 such that: bd $(G) \cap MFP(X) = bd (G) \cap H_1 \cap H_2$

Therefore the MFP solution is definable by a formula in $\langle \mathbb{R}, +, \cdot, \leq \rangle$.

Leroux, Sutre (LaBRI)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Introduction

- 2 Convex Data Flow Analysis of Guarded Translation Systems
- 3 Acceleration for Self-Loops
- 4 Acceleration for Cycles

- 4 ∃ ▶

		Guarded Translation Systems		
		Self-loops	Cyclic	General
MOP	<i>n</i> ≥ 1	Rational Poly.	Rational Poly.	Not Polyhedral
MFP	1	Rational Poly.	Rational Poly.	Rational Poly.
	2	Rational Poly.	Algebraic Poly.	Algebraic Poly.
	<i>n</i> ≥ 3	Rational Poly.	Not Polyhedral	Not Polyhedral

• Polyhedra are computable for Rational Poly. and Algebraic Poly.

Results on self-loops carry over to singly initialized cycles

- 4 ∃ →

Related Work & Future Work

Related Work

- Interval analysis [Su & Wagner, TACAS'04], [Seidl & Gawlitza, ESOP'07], [L. & S., SAS'07]
- Abstract acceleration for convex polyhedra [Gonnord & Halbwachs, SAS'06]
 - Acceleration technique for two self-loops, operations include reset
 - Incomplete for single self-loops

Future Work

- Multiple self-loops
- Other abstract lattices
 - octogons [Miné, AST'01]
 - templates [Sankaranarayanan et al., VMCAI'05]
 - two variables per linear inequality [Simon et al., LOPSTR'02]

FSTTCS 2007 25 / 25

Related Work & Future Work

Related Work

- Interval analysis [Su & Wagner, TACAS'04], [Seidl & Gawlitza, ESOP'07], [L. & S., SAS'07]
- Abstract acceleration for convex polyhedra [Gonnord & Halbwachs, SAS'06]
 - Acceleration technique for two self-loops, operations include reset
 - Incomplete for single self-loops

Future Work

- Multiple self-loops
- Other abstract lattices
 - octogons [Miné, AST'01]
 - templates [Sankaranarayanan et al., VMCAI'05]
 - two variables per linear inequality [Simon et al., LOPSTR'02]

(日)