Acceleration in Convex Data-Flow Analysis

Jérôme Leroux and Grégoire Sutre

LaBRI, Université de Bordeaux, CNRS, France
Conference on Foundations of Software Technology and Theoretical Computer Science, 2007

Motivations

Invariants for Verification

- Verification of safety properties
- Efficient computation of precise enough invariants
- Data-flow analysis, abstract interpretation
- Widenings/narrowings: successful approach, but might lead to invariants to coarse for verification

```
Our Objective
Computation of the exact solution to data-flow analysis problems
    - Meet Over all Paths
    - Minimum Fix Point
    - Acceleration-based techniques
```


Motivations

Invariants for Verification

- Verification of safety properties
- Efficient computation of precise enough invariants
- Data-flow analysis, abstract interpretation
- Widenings/narrowings: successful approach, but might lead to invariants to coarse for verification

Our Objective

Computation of the exact solution to data-flow analysis problems

- Meet Over all Paths
- Minimum Fix Point
- Acceleration-based techniques

Outline

(9) Introduction
(2) Convex Data Flow Analysis of Guarded Translation Systems
(3) Acceleration for Self-Loops

4 Acceleration for Cycles
(5) Conclusion

Guarded Translation Systems (Syntax)

- We focus on topologically closed convex subsets of \mathbb{R}^{n}
- $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ is called a $\left\{\begin{array}{l}\text { (real) polyhedron when } A \in \mathbb{R}^{n \times m} \\ \text { rational polyhedron when } A \in \mathbb{Q}^{n \times m}\end{array}\right.$
- guarded commands of the form if $\vec{x} \in G$ then $\vec{x}:=\vec{x}+\vec{d}$

Guarded Translation Systems (Syntax)

- We focus on topologically closed convex subsets of \mathbb{R}^{n}
- $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ is called a $\left\{\begin{array}{l}\text { (real) polyhedron when } A \in \mathbb{R}^{n \times m} \\ \text { rational polyhedron when } A \in \mathbb{Q}^{n \times m}\end{array}\right.$
- guarded commands of the form if $\vec{x} \in G$ then $\vec{x}:=\vec{x}+\vec{d}$

Definition

An n-dim guarded translation system (GTS) is any pair $\mathcal{S}=(\mathcal{X}, T)$ where:

- \mathcal{X} is a finite set of variables
- T is a finite set of transitions of the form $X \xrightarrow{G, \vec{d}} X^{\prime}$
- Transition $X \xrightarrow{G, \vec{d}} X^{\prime}$ represents the assignment $X^{\prime}:=(X \cap G)+\vec{d}$

Guarded Translation Systems (Semantics)

Definition

An n-dim guarded translation system (GTS) is any pair $\mathcal{S}=(\mathcal{X}, T)$ where:

- \mathcal{X} is a finite set of variables
- T is a finite set of transitions of the form $X \xrightarrow{G, \vec{d}} X^{\prime}$
- Valuation: function ρ from \mathcal{X} to closed convex subsets of \mathbb{R}^{n}
- Semantics $\llbracket t \rrbracket$ of transition $t=X \xrightarrow{G, \vec{d}} X^{\prime}$ defined by:

$$
(\llbracket t \rrbracket(\rho))(Y)= \begin{cases}(\rho(X) \cap G)+\vec{d} & \text { if } Y=X^{\prime} \\ \rho(Y) & \text { if } Y \neq X^{\prime}\end{cases}
$$

- An n-dim initialized GTS (IGTS) is any triple $\mathcal{S}=\left(\mathcal{X}, T, \rho_{0}\right)$

Example

IGTS

- $\mathcal{X}=\{X\}$
- $T=\{X \xrightarrow{G, \vec{a}} X\}$ with

$$
\left\{\begin{aligned}
G & =\mathbb{R}_{+}^{2} \\
\vec{d} & =(-1,1)
\end{aligned}\right.
$$

- $\rho_{0}=\{X \mapsto 1 \times[-1,1]\}$

Semantics

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

Convex Data-Flow Analysis

- We consider the complete lattice of convex closed subsets of \mathbb{R}^{n}.
- partial order is set inclusion \subseteq
- greatest lower bound is set intersection \cap
- least upper bound \sqcup is set union followed by closed convex hull
- Extended to valuations

- $\operatorname{MFP}(\mathcal{S})$ is the least fix-point of $\tau(\rho)=\rho_{0} \sqcup \bigsqcup \llbracket t \rrbracket(\rho)$.
- Kleene fix-point iteration: ' ' $\tau^{i}(\perp) \subseteq \operatorname{MFP}(S)$

Meet Over all Paths (MOP) Solution
 $\operatorname{MOP}(\delta)=| |\left\{\llbracket t_{1} \rrbracket \circ \cdots \circ \llbracket t_{k} \rrbracket\left(\rho_{0}\right) \mid t_{1} \cdots t_{k} \in T^{*}\right.$ is a path $\}$

Convex Data-Flow Analysis

- We consider the complete lattice of convex closed subsets of \mathbb{R}^{n}.
- partial order is set inclusion \subseteq
- greatest lower bound is set intersection \cap
- least upper bound \sqcup is set union followed by closed convex hull
- Extended to valuations

Minimum Fix-Point (MFP) Solution

$\operatorname{MFP}(\mathcal{S})=\bigcap\left\{\rho:\right.$ valuation $\mid \rho_{0} \subseteq \rho$ and $\llbracket t \rrbracket(\rho) \subseteq \rho$ for all $\left.t \in T\right\}$

- MFP (\mathcal{S}) is the least fix-point of $\tau(\rho)=\rho_{0} \sqcup \bigsqcup_{t \in T} \llbracket t \rrbracket(\rho)$.
- Kleene fix-point iteration: $\bigsqcup_{i \in \mathbb{N}} \tau^{i}(\perp) \subseteq \operatorname{MFP}(\mathcal{S})$

Convex Data-Flow Analysis

- We consider the complete lattice of convex closed subsets of \mathbb{R}^{n}.
- partial order is set inclusion \subseteq
- greatest lower bound is set intersection \cap
- least upper bound \sqcup is set union followed by closed convex hull
- Extended to valuations

Minimum Fix-Point (MFP) Solution

$\operatorname{MFP}(\mathcal{S})=\bigcap\left\{\rho:\right.$ valuation $\mid \rho_{0} \subseteq \rho$ and $\llbracket t \rrbracket(\rho) \subseteq \rho$ for all $\left.t \in T\right\}$

- MFP (\mathcal{S}) is the least fix-point of $\tau(\rho)=\rho_{0} \sqcup \bigsqcup_{t \in T} \llbracket t \rrbracket(\rho)$.
- Kleene fix-point iteration: $\bigsqcup_{i \in \mathbb{N}} \tau^{i}(\perp) \subseteq$ MFP (\mathcal{S})

Meet Over all Paths (MOP) Solution

$\operatorname{MOP}(\delta)=\bigsqcup\left\{\llbracket t_{1} \rrbracket \circ \cdots \circ \llbracket t_{k} \rrbracket\left(\rho_{0}\right) \mid t_{1} \cdots t_{k} \in T^{*}\right.$ is a path $\}$

Example

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

Example

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

Example

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{\boldsymbol{X} \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\tau^{1}(\perp)=\rho_{0}
$$

Example

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\begin{aligned}
& \tau^{1}(\perp)=\rho_{0} \\
& \tau^{2}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right)
\end{aligned}
$$

Example

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\begin{aligned}
\tau^{1}(\perp) & =\rho_{0} \\
\tau^{2}(\perp) & =\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right) \\
\tau^{i}(\perp) & =\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{i-1}(\perp)\right)
\end{aligned}
$$

Example

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\begin{aligned}
\tau^{1}(\perp) & =\rho_{0} \\
\tau^{2}(\perp) & =\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right) \\
\tau^{i}(\perp) & =\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{i-1}(\perp)\right)
\end{aligned}
$$

Example

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\begin{aligned}
\tau^{1}(\perp) & =\rho_{0} \\
\tau^{2}(\perp) & =\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right) \\
\tau^{i}(\perp) & =\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{i-1}(\perp)\right)
\end{aligned}
$$

Example

MOP Solution

 $$
\rho_{1}=\llbracket t \rrbracket\left(\rho_{0}\right)
$$
 $$
\rho_{2}=\llbracket t \rrbracket\left(\rho_{1}\right)
$$
 $$
\rho_{3}=\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
$$

MFP Solution

Remark

Kleene fix-point iteration does not stabilize

Acceleration in Data-Flow Analysis [L. \& S., SAS'07]

Objectives

- Speed up Kleene fix-point iteration
- Don't loose precision

Minimum Fix-Point Computation with Acceleration

(1) do $\rho \leftarrow \rho \sqcup \llbracket t \rrbracket(\rho)$ for some transition $t=X \xrightarrow{G, \vec{d}} X^{\prime}$
2) or select a cycle in δ and:
(9) let δ^{\prime} denote the cyclic sub-IGTS, initialized with ρ (restricted to \mathcal{X}^{\prime}) (2) $\rho \leftarrow \rho \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right) \quad$ (or $\left.\rho \leftarrow \rho \sqcup \operatorname{MOP}\left(\delta^{\prime}\right)\right)$

Acceleration Problem

Compute the MOP/MFP solution for cyclic IGTS

Acceleration in Data-Flow Analysis [L. \& S., SAS'07]

Objectives

- Speed up Kleene fix-point iteration
- Don't loose precision

Minimum Fix-Point Computation with Acceleration

(1) do $\rho \leftarrow \rho \sqcup \llbracket t \rrbracket(\rho)$ for some transition $t=X \xrightarrow{G, \vec{d}} X^{\prime}$
(2) or select a cycle in δ and:
(1) let δ^{\prime} denote the cyclic sub-IGTS, initialized with ρ (restricted to \mathcal{X}^{\prime})
(2) $\rho \leftarrow \rho \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right) \quad\left(\right.$ or $\left.\rho \leftarrow \rho \sqcup \operatorname{MOP}\left(\mathcal{S}^{\prime}\right)\right)$

Acceleration Problem
 Compute the MOP/MFP solution for cyclic IGTS

Acceleration in Data-Flow Analysis [L. \& S., SAS'07]

Objectives

- Speed up Kleene fix-point iteration
- Don't loose precision

Minimum Fix-Point Computation with Acceleration

(1) do $\rho \leftarrow \rho \sqcup \llbracket t \rrbracket(\rho)$ for some transition $t=X \xrightarrow{G, \vec{d}} X^{\prime}$
(2) or select a cycle in S and:
(1) let \mathcal{S}^{\prime} denote the cyclic sub-IGTS, initialized with ρ (restricted to \mathcal{X}^{\prime}) (2) $\rho \leftarrow \rho \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right) \quad\left(\right.$ or $\left.\rho \leftarrow \rho \sqcup \operatorname{MOP}\left(\mathcal{S}^{\prime}\right)\right)$

Acceleration Problem

Compute the MOP/MFP solution for cyclic IGTS

Outline

(4) Introduction
(2) Convex Data Flow Analysis of Guarded Translation Systems
(3) Acceleration for Self-Loops
(4) Acceleration for Cycles
(5) Conclusion

MFP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$, the MFP solution is the valuation:

$$
X \mapsto \begin{cases}\rho_{0}(X) & \text { if } G \cap \rho_{0}(X)=\emptyset \\ \rho_{0}(X) \sqcup\left(\left(G \cap\left(\rho_{0}(X)+\mathbb{R}_{+} \vec{d}\right)\right)+\vec{d}\right) & \text { otherwise }\end{cases}
$$

Proof Ideas

\subseteq The given expression is a post-fix-point of $\llbracket x \xrightarrow{G, \vec{d}} X \rrbracket$.
ЭProof by contradiction, using topological and convexity properties of both the guard and MFP solution.

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

- Application of widening
- Coarser than the MFP Solution!

Iteration with Widening

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Iteration with Widening

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.

Remark

Iteration does not terminate!

Outline

(4) Introduction
(2) Convex Data Flow Analysis of Guarded Translation Systems
(3) Acceleration for Self-Loops
(4) Acceleration for Cycles
(5) Conclusion

2-dim Example

GTS

$$
\begin{aligned}
& \left.\left.G_{1}=\right]-\infty,-1\right] \times[1,+\infty[\\
& G_{2}=[1,+\infty[\times[1,+\infty[\\
& G_{3}=[1,+\infty[\times]-\infty,-1] \\
& \left.\left.\left.\left.G_{4}=\right]-\infty,-1\right] \times\right]-\infty,-1\right]
\end{aligned}
$$

Initial Valuation

$$
\begin{aligned}
x_{1} & \mapsto\{(-2,2)\} \\
x_{2} & \mapsto\{(2,2)\} \\
x_{3} & \mapsto\{(2,-2)\} \\
x_{4} & \mapsto\{(-2,-2)\}
\end{aligned}
$$

Kleene iteration on 2-dim Example

MFP Solution for 2-dim Example

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

Remark
 The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

MFP Solution for 2-dim Example

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

Remark
 The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

MFP Solution for 2-dim Example

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

[^0]
MFP Solution for 2-dim Example

$$
h_{k+1}=\frac{1}{4-h_{k}}
$$

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

Remark

The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

3-dim Example

GTS

$$
\begin{aligned}
& G_{1}=\mathbb{R}_{-} \times \mathbb{R}^{+} \times \mathbb{R} \\
& G_{2}=\mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R} \\
& G_{3}=\mathbb{R}^{+} \times \mathbb{R}_{-} \times \mathbb{R} \\
& G_{4}=\mathbb{R}^{-} \times \mathbb{R}^{-} \times \mathbb{R}
\end{aligned}
$$

Initial Valuation

Kleene iteration on 3-dim Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Example

e_{1}

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Example

e_{1}

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

- An algebraic number is any real number definable in $\langle\mathbb{R}$.
- Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

$$
\begin{aligned}
& \text { Theorem } \\
& \text { The MFP solution of any 2-dim IGTS is an algebraic polyhedron. } \\
& \text { - An algebraic number is any real number definable in }\langle\mathbb{R},+, \cdot, \leq \\
& \text { - Algebraic polyhedrality is required even for cyclic } 2 \text {-dim IGTS }
\end{aligned}
$$

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem

The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

- An algebraic number is any real number definable in $\langle\mathbb{R},+, \cdot, \leq\rangle$
- Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Proof (1)

MFP Solution Expression

$\operatorname{MFP}(X)=\quad \bigsqcup \llbracket t_{1} \rrbracket \circ \cdots \circ \llbracket t_{k} \rrbracket\left(\Delta\left(X_{0}\right)\right)+0^{+} \operatorname{MFP}(X)$

$$
\begin{gathered}
x_{0} \in \mathcal{X} \\
t_{1} \cdots t_{k} \in L x_{0}, x
\end{gathered}
$$

where:
$\Delta(X)=\rho_{0}(X) \sqcup \bigsqcup_{X \xrightarrow{G, \vec{d}} X^{\prime}} \quad \operatorname{bd}(G) \cap \operatorname{MFP}(X)$

- $\operatorname{bd}(G)$ is the topological boundary of G
- $L_{x_{0}, X}$ is the set of simple paths from X_{0} to X
- $0^{+} C=\left\{\vec{d} \mid C+\mathbb{R}_{+} \vec{d} \subseteq C\right\}$

Proof (2)

Observe that $0^{+} \operatorname{MFP}(X)$ is a cone in dimension 2.

0^{+}MFP (X)

There exists $\vec{d}_{1}, \vec{d}_{2}, \vec{d}_{3} \in \mathbb{R}^{2}$ such that:
$0^{+} \operatorname{MFP}(X)=\mathbb{R}_{+} \vec{d}_{1}+\mathbb{R}_{+} \vec{d}_{1}+\mathbb{R}_{+} \vec{d}_{1}$
Reduce to the case G is an half-space.
$\Longrightarrow \mathrm{bd}(G)$ is a line.

bd $(G) \cap \operatorname{MFP}(X)$

There exists two half-spaces H_{1}, H_{2} such that: $\operatorname{bd}(G) \cap \operatorname{MFP}(X)=\operatorname{bd}(G) \cap H_{1} \cap H_{2}$

Therefore the MFP solution is definable by a formula in $\langle\mathbb{R},+, \cdot, \leq\rangle$.

Outline

(1) Introduction

(2) Convex Data Flow Analysis of Guarded Translation Systems
(3) Acceleration for Self-Loops
(4) Acceleration for Cycles
(5) Conclusion

Summary

		Guarded Translation Systems		
		Self-loops	Cyclic	General
MOP	$n \geq 1$	Rational Poly.	Rational Poly.	Not Polyhedral
MFP	1	Rational Poly	Rational Poly.	Rational Poly.
	2	Rational Poly.	Algebraic Poly.	Algebraic Poly.
	$n \geq 3$	Rational Poly.	Not Polyhedral	Not Polyhedral

- Polyhedra are computable for Rational Poly. and Algebraic Poly.
- Results on self-loops carry over to singly initialized cycles

Related Work \& Future Work

Related Work

- Interval analysis [Su \& Wagner, TACAS'04], [Seidl \& Gawlitza, ESOP'07], [L. \& S., SAS'07]
- Abstract acceleration for convex polyhedra [Gonnord \& Halbwachs, SAS'06]
- Acceleration technique for two self-loops, operations include reset
- Incomplete for single self-loops
- Multiple self-loops
- Other abstract lattices
- octogons [Miné, AST'01]
- templates [Sankaranarayanan et al., VMCAl'05]
- two variables per linear inequality [Simon et al., LOPSTR'02]

Related Work \& Future Work

Related Work

- Interval analysis [Su \& Wagner, TACAS'04], [Seidl \& Gawlitza, ESOP'07], [L. \& S., SAS'07]
- Abstract acceleration for convex polyhedra [Gonnord \& Halbwachs, SAS'06]
- Acceleration technique for two self-loops, operations include reset
- Incomplete for single self-loops

Future Work

- Multiple self-loops
- Other abstract lattices
- octogons [Miné, AST’01]
- templates [Sankaranarayanan et al., VMCAl'05]
- two variables per linear inequality [Simon et al., LOPSTR'02]

[^0]: Remark
 The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

