Accelerated Data-flow Analysis

Jérôme Leroux and Grégoire Sutre

LaBRI, Université de Bordeaux, CNRS, France

LSV Seminar, Laboratoire Spécification et Vérification, Cachan May 27, 2008

Leroux \& Sutre. Accelerated Data-flow Analysis. SAS'07.
Leroux \& Sutre. Acceleration in Convex Data-Flow Analysis. FSTTCS'07.

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems
(4cceleration-Based Interval Constraint Solving
(5) Conclusion

Motivating Example

$$
\begin{aligned}
& \text { Example (Code Snippet) } \\
& \begin{array}{lll}
1 & x=1 ; \\
2 & \text { while }(x \leq 100)\{ \\
3 & \text { if } \quad(x \geq 75) & x=x+5 \\
4 & \text { else if }(x \geq 50) & x=x-3 \\
5 & \text { else } & x=x+2 \\
6 & &
\end{array}
\end{aligned}
$$

Question

Does the program leave the while loop?

Answer
 No iff the value of variable x at line 2 remains not greater than 100

Motivating Example

$$
\begin{aligned}
& \text { Example (Code Snippet) } \\
& \begin{array}{lll}
1 & x=1 ; \\
2 & \text { while }(x \leq 100)\{ \\
3 & \text { if } \quad(x \geq 75) & x=x+5 \\
4 & \text { else if }(x \geq 50) & x=x-3 \\
5 & \text { else } & x=x+2 \\
6 & &
\end{array}
\end{aligned}
$$

Question

Does the program leave the while loop?

Answer

No iff the value of variable x at line 2 remains not greater than 100

Motivating Example (Reachability Set)

Example (Code Snippet)

$1 \quad x=1$;
2 while $(x \leq 100)$

3	if	$(x \geq 75)$	$x=x+5$
4	else if	$(x \geq 50)$	$x=x-3$
5	else		$x=x+2$

\}

Reachability Set

Values of x at lines 1, 2, 3, 6:

1	$\mapsto \mathbb{Z}$
2	$\mapsto\{1,3, \ldots, 51\} \cup\{48,50\}$
3	$\mapsto\{1,3, \ldots, 51\} \cup\{48,50\}$
6	$\mapsto\{3,5, \ldots, 51\} \cup\{48,50\}$

Features and Drawbacks

- The reachability set is the most precise invariant
- The computation of the reachability set may not terminate
- Its precision is often unnecessary to prove the property of interest

Motivating Example (Reachability Set)

Example (Code Snippet)

$$
\begin{aligned}
& x=1 \\
& \text { while }(x \leq 100)\{ \\
& \quad \begin{array}{ll}
\text { if } & (x \geq 75) \\
\text { else if }(x \geq 50) & x=x+5 \\
\text { else } & x=x-3 \\
\text { f } &
\end{array}
\end{aligned}
$$

Reachability Set

Values of x at lines $1,2,3,6$:

1	$\mapsto \mathbb{Z}$
2	$\mapsto\{1,3, \ldots, 51\} \cup\{48,50\}$
3	$\mapsto\{1,3, \ldots, 51\} \cup\{48,50\}$
6	$\mapsto\{3,5, \ldots, 51\} \cup\{48,50\}$

Features and Drawbacks

- The reachability set is the most precise invariant
- The computation of the reachability set may not terminate
- Its precision is often unnecessary to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$$
\begin{aligned}
& x=1 \\
& \text { while }(x \leq 100)\{ \\
& \quad \text { if } \quad(x \geq 75) \\
& \text { else if }(x \geq 50) \\
& \text { els } \begin{array}{l}
x=x-3 \\
\text { else }
\end{array} \\
& \text { \} }
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

```
x = 1;
while (x \leq 100) {
    if }\quad(x\geq75) x = x+5
        else if (x \geq 50) x = x-3;
        else }x=x+2
        }
```


Interval Analysis with ∇ \& Δ

Bounds of x at lines 1, 2, 3, 6:
$1 \mapsto]-\infty,+\infty[$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

```
x = 1;
while (x \leq 100) {
    if }(x\geq75) x = x+5
        else if (x \geq 50) x = x-3;
        else }x=x+2
        }
```

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:
$1 \mapsto]-\infty,+\infty[$
$2 \mapsto\{1\}$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 \quad x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines $1,2,3,6$:
$1 \mapsto]-\infty,+\infty[$
$2 \mapsto\{1\}$
$3 \mapsto\{1\}$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (\triangle) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 \quad x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:
$1 \mapsto]-\infty,+\infty[$
$2 \mapsto\{1\}$
$3 \mapsto\{1\}$
$6 \mapsto\{3\}$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto\{1\} \sqcup\{3\}=[1,3] \\
3 & \mapsto\{1\} \\
6 & \mapsto\{3\}
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 \quad x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,3] \\
3 & \mapsto\{1\} \\
6 & \mapsto\{3\}
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,3] \\
3 & \mapsto[1,3] \\
6 & \mapsto\{3\}
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,3] \\
3 & \mapsto[1,3] \\
6 & \mapsto[3,5]
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,3] \nabla[3,5] \\
3 & \mapsto[1,3] \\
6 & \mapsto[3,5]
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,+\infty[\\
3 & \mapsto[1,3] \\
6 & \mapsto[3,5]
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{array}{ll}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,+\infty[\\
3 & \mapsto[1,100] \\
6 & \mapsto[3,5]
\end{array}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,+\infty[\\
3 & \mapsto[1,100] \\
6 & \mapsto[3,105]
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)\{$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,+\infty[\Delta[3,105] \\
3 & \mapsto[1,100] \\
6 & \mapsto[3,105]
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

$1 x=1$;
2 while $(x \leq 100)$
3 if $\quad(x \geq 75) \quad x=x+5$;
4 else if $(x \geq 50) \quad x=x-3$;
5 else $x=x+2$; $6\}$

Interval Analysis with ∇ \& Δ
Bounds of x at lines 1, 2, 3, 6:

$$
\begin{aligned}
1 & \mapsto]-\infty,+\infty[\\
2 & \mapsto[1,105] \\
3 & \mapsto[1,100] \\
6 & \mapsto[3,105]
\end{aligned}
$$

Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Interval Analysis with ∇ and Δ)

Example (Code Snippet)

```
x = 1;
while (x \leq 100) {
    if }(x\geq75)\quadx=x+5
    else if (x \geq 50) (x = x-3;
    else }x=x+2
    }
```


Features and Drawbacks

- The use of widening (∇) ensures termination of the analysis
- The use of narrowing (Δ) improves precision
- The invariant may be too coarse to prove the property of interest

Motivating Example (Exact Interval Analysis)

Example (Code Snippet)

```
x = 1;
while (x \leq 100) {
    if (x\geq75) x = x+5;
        else if (x \geq 50) x = x-3;
        else }x=x+2
    }
```


Exact Interval Analysis

Bounds of x at lines 1, 2, 3, 6:

1	\mapsto	$]-\infty,+\infty[$
2	\mapsto	$[1,51]$
3	\mapsto	$[1,51]$
6	\mapsto	$[3,51]$

Observations

- Intervals are actually sufficient to prove the property of interest, i.e. that this program never leaves the while loop
- Imprecision in the previous analysis came from widening

Motivating Example (Exact Interval Analysis)

Example (Code Snippet)

```
    x = 1;
    while (x \leq 100) {
    if (x\geq75) x = x+5;
        else if (x \geq 50) x = x-3;
        else }x=x+2
}
```


Exact Interval Analysis

Bounds of x at lines 1, 2, 3, 6:

1	\mapsto	$]-\infty,+\infty[$
2	\mapsto	$[1,51]$
3	\mapsto	$[1,51]$
6	\mapsto	$[3,51]$

Observations

- Intervals are actually sufficient to prove the property of interest, i.e. that this program never leaves the while loop
- Imprecision in the previous analysis came from widening

Problematics

Invariants for Verification of Safety Properties

- Efficient computation of precise enough invariants
- Data-flow analysis, abstract interpretation
- Widenings/narrowings: successful approach, but might lead to invariants to coarse for verification

```
Our Objective
Computation of the exact solution to data-flow analysis problems
- Meet Over all Paths
- Minimum Fix Point
```

\square

- When and how can exact analysis be algorithmically performed?

Problematics

Invariants for Verification of Safety Properties

- Efficient computation of precise enough invariants
- Data-flow analysis, abstract interpretation
- Widenings/narrowings: successful approach, but might lead to invariants to coarse for verification

Our Objective

Computation of the exact solution to data-flow analysis problems

- Meet Over all Paths
- Minimum Fix Point
\square
- When and how can exact analysis be algorithmically performed ?

Problematics

Invariants for Verification of Safety Properties

- Efficient computation of precise enough invariants
- Data-flow analysis, abstract interpretation
- Widenings/narrowings: successful approach, but might lead to invariants to coarse for verification

Our Objective

Computation of the exact solution to data-flow analysis problems

- Meet Over all Paths
- Minimum Fix Point

Challenge

- When and how can exact analysis be algorithmically performed?

Our Approach

Acceleration in Symbolic Verification

- Symbolically compute the effect of iterating a given cycle
- Speed up Kleene fix-point iteration in concrete data-flow analysis
- Developped for several data types: integer variables, continuous variables, fifo queues, ...
- Implemented in tools (LASH, FASt, TReX)
- No theoretical termination guarantee, but good results in practice
- Extend acceleration to abstract data-flow analysis
- Apply the framework to convex / intervals data-flow an alysis
- Investigate completeness of the approach

Our Approach

Acceleration in Symbolic Verification

- Symbolically compute the effect of iterating a given cycle
- Speed up Kleene fix-point iteration in concrete data-flow analysis
- Developped for several data types: integer variables, continuous variables, fifo queues, ...
- Implemented in tools (LASH, FASt, TREX)
- No theoretical termination guarantee, but good results in practice

This Work

- Extend acceleration to abstract data-flow analysis
- Apply the framework to convex / intervals data-flow analysis
- Investigate completeness of the approach

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems
4. Acceleration-Based Interval Constraint Solving
(5) Conclusion

Outline

(4) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems
(4) Acceleration-Based Interval Constraint Solving
(5) Conclusion

Data-Flow Programs (Syntax)

Consider a complete lattice (A, \sqsubseteq) and a finite set \mathcal{X} of variables

Definition

A transition on \mathcal{X} is any tuple $\left\langle X_{1}, \ldots, X_{n} ; f ; X\right\rangle$ where :

- $X_{1}, \ldots, X_{n} \in \mathcal{X}$ are pairwise disjoint input variables
- $f \in A^{n} \rightarrow A$ is a monotonic transfer function
- $X \in \mathcal{X}$ is an output variable

Notation : $\left\langle X_{1}, \ldots, X_{n} ; f ; X\right\rangle$ is also written $X:=f\left(X_{1}, \ldots, X_{n}\right)$
\square
Definition
A data-flow program over (A, \sqsubseteq) is any pair $\mathcal{S}=(\mathcal{X}, T)$ where

- \mathcal{X} is a finite set of variables
- T is a finite set of transitions on \mathcal{X}

Data-Flow Programs (Syntax)

Consider a complete lattice (A, \sqsubseteq) and a finite set \mathcal{X} of variables

Definition

A transition on \mathcal{X} is any tuple $\left\langle X_{1}, \ldots, X_{n} ; f ; X\right\rangle$ where :

- $X_{1}, \ldots, X_{n} \in \mathcal{X}$ are pairwise disjoint input variables
- $f \in A^{n} \rightarrow A$ is a monotonic transfer function
- $X \in \mathcal{X}$ is an output variable

Notation : $\left\langle X_{1}, \ldots, X_{n} ; f ; X\right\rangle$ is also written $X:=f\left(X_{1}, \ldots, X_{n}\right)$

Definition

A data-flow program over (A, \sqsubseteq) is any pair $\mathcal{S}=(\mathcal{X}, T)$ where:

- \mathcal{X} is a finite set of variables
- T is a finite set of transitions on \mathcal{X}

Motivating Example (Intervals)

Example (Code Snippet)

$1 \quad x=1$;

2	while $(x \leq 100)\{$	
3	if $\quad(x \geq 75)$	$x=x+5 ;$
4	else if $(x \geq 50)$	$x=x-3 ;$
5	else	$x=x+2$

$$
\begin{array}{ll}
\text { Data-Flow Program } \\
\left(t_{0}\right) & X_{1}:=\top \\
\left(t_{1}\right) & X_{2}:=\left(\{0\} . X_{1}\right)+\{1\} \\
\left(t_{2}\right) & \left.\left.X_{3}:=X_{2} \sqcap\right]-\infty, 100\right] \\
\left(t_{3}\right) & X_{7}:=X_{2} \sqcap[101,+\infty[\\
\left(t_{4}\right) & X_{6}:=\left(X_{3} \sqcap[75,+\infty[)+\{5\}\right. \\
\left(t_{5}\right) & X_{6}:=\left(X_{3} \sqcap[50,74]\right)-\{3\} \\
\left(t_{6}\right) & \left.\left.X_{6}:=\left(X_{3} \sqcap\right]-\infty, 49\right]\right)+\{2\} \\
\left(t_{7}\right) & X_{2}:=X_{6}
\end{array}
$$

Example with Multiple Inputs (Intervals)

Example

Self-Loop GTS Example (2-Dim Closed Convex)

Example

1 while $(x \geq 0 \wedge y \geq 0)\{x=x-1 ; y=y+1 ;\}$

Data-Flow Program

- Lattice: closed convex subsets of \mathbb{R}^{2}
- $\mathcal{X}=\{X\}$
- $T=\{t\}$
- (t) $X:=(G \cap X)+\vec{d}$
with $\left\{\begin{array}{l}G=\mathbb{R}_{+}^{2} \\ \vec{d}=(-1,1)\end{array}\right.$

Self-Loop GTS Example (2-Dim Closed Convex)

Example

1 while $(x \geq 0 \wedge y \geq 0)\{x=x-1 ; y=y+1 ;\}$

Data-Flow Program

- Lattice: closed convex subsets of \mathbb{R}^{2}
- $\mathcal{X}=\{X\}$
- $T=\{t\}$
- ($t) \quad X:=(G \cap X)+\vec{d}$
with $\left\{\begin{array}{l}G=\mathbb{R}_{+}^{2} \\ \vec{d}=(-1,1)\end{array}\right.$

Data-Flow Programs (Semantics)

Definition (Recall)

A data-flow program over (A, \sqsubseteq) is any pair $\mathcal{S}=(\mathcal{X}, T)$ where:

- \mathcal{X} is a finite set of variables
- T is a finite set of transitions on \mathcal{X}
(A, \sqsubseteq) is extended to the complete lattice of valuations $(\mathcal{X} \rightarrow A, \sqsubseteq)$

Definition

The data-flow semantics $\llbracket t \rrbracket$ of any transition $t=X:=f\left(X_{1}, \ldots, X_{n}\right)$ is the monotonic function in $(\mathcal{X} \rightarrow A) \rightarrow(\mathcal{X} \rightarrow A)$ defined by:

$$
\begin{aligned}
& \llbracket t \rrbracket(\rho)(X)=f\left(\rho\left(X_{1}\right), \ldots, \rho\left(X_{n}\right)\right) \\
& \llbracket t \rrbracket(\rho)(Y)=\rho(Y) \text { for all } Y \neq X
\end{aligned}
$$

Initialized Data-Flow Programs

Definition

An initialized data-flow program over (A, \sqsubseteq) is any pair $\left(\mathcal{S}, \rho_{0}\right)$ where:

- $\mathcal{S}=(\mathcal{X}, T)$ is a data-flow program over (A, \sqsubseteq)
- $\rho_{0}: \mathcal{X} \rightarrow A$ is an initial valuation

We identify $\left(\mathcal{S}, \rho_{0}\right)$ with the data-flow program:

$$
\mathcal{S}^{\prime}=\left(\mathcal{X}, T \cup\left\{X:=\rho_{0}(X) \mid X \in \mathcal{X}\right\}\right)
$$

Self-Loop GTS Example (2-Dim Closed Convex)

Data-Flow Program

- $\mathcal{X}=\{X\}$
- $T=\{t\}$
- (t) $X:=(G \cap X)+\vec{d}$

$$
\text { with }\left\{\begin{array}{l}
G=\mathbb{R}_{+}^{2} \\
\vec{d}=(-1,1)
\end{array}\right.
$$

- $\rho_{0}=\{X \mapsto 1 \times[-1,1]\}$

Semantics

Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution

$\operatorname{MFP}(\mathcal{S})=\Pi\{\rho \in \mathcal{X} \rightarrow \boldsymbol{A} \mid \llbracket t \rrbracket(\rho) \sqsubseteq \rho$ for all $t \in T\}$

- $\operatorname{MFP}(\delta)$ is the least fix-point of $\llbracket T \rrbracket=\bigsqcup_{t \in T} \llbracket t \rrbracket$

Meet Over all Paths (MOP) Solution

- Can be viewed as the "abstraction" of the reachability set

Keene Fix-Point Iteration

Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution

$$
\operatorname{MFP}(\mathcal{S})=\Pi\{\rho \in \mathcal{X} \rightarrow \boldsymbol{A} \mid \llbracket t \rrbracket(\rho) \sqsubseteq \rho \text { for all } t \in T\}
$$

- $\operatorname{MFP}(S)$ is the least fix-point of $\llbracket T \rrbracket=\bigsqcup_{t \in T} \llbracket t \rrbracket$

Meet Over all Paths (MOP) Solution

$$
\operatorname{MOP}(\mathcal{S})=\sqcup\left\{\llbracket t_{k} \rrbracket \circ \cdots \circ \llbracket t_{1} \rrbracket(\perp) \mid t_{1} \cdots t_{k} \in T^{*}\right\}
$$

- Can be viewed as the "abstraction" of the reachability set
\square

Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution

$$
\operatorname{MFP}(\mathcal{S})=\Pi\{\rho \in \mathcal{X} \rightarrow \boldsymbol{A} \mid \llbracket t \rrbracket(\rho) \sqsubseteq \rho \text { for all } t \in T\}
$$

- $\operatorname{MFP}(\mathcal{S})$ is the least fix-point of $\llbracket T \rrbracket=\bigsqcup_{t \in T} \llbracket t \rrbracket$

Meet Over all Paths (MOP) Solution

$$
\operatorname{MOP}(\delta)=\sqcup\left\{\llbracket t_{k} \rrbracket \circ \cdots \circ \llbracket t_{1} \rrbracket(\perp) \mid t_{1} \cdots t_{k} \in T^{*}\right\}
$$

- Can be viewed as the "abstraction" of the reachability set

Kleene Fix-Point Iteration
$\operatorname{MOP}(\mathcal{S}) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \llbracket T \rrbracket^{i}(\perp) \sqsubseteq \operatorname{MFP}(\mathcal{S})$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$\rho_{1}=\llbracket t \rrbracket\left(\rho_{0}\right)$
$\rho_{2}=\llbracket t \rrbracket\left(\rho_{1}\right)$
$\rho_{3}=\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}$

MFP Solution

$$
\tau^{1}(\perp)=\rho_{0}
$$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$\rho_{1}=\llbracket t \rrbracket\left(\rho_{0}\right)$
$\rho_{2}=\llbracket t \rrbracket\left(\rho_{1}\right)$
$\rho_{3}=\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}$

MFP Solution

$$
\begin{aligned}
& \tau^{1}(\perp)=\rho_{0} \\
& \tau^{2}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right)
\end{aligned}
$$

$$
4>4 \text { 它 }
$$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$$
\begin{aligned}
& \rho_{1}=\llbracket t \rrbracket\left(\rho_{0}\right) \\
& \rho_{2}=\llbracket t \rrbracket\left(\rho_{1}\right) \\
& \rho_{3}=\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\begin{aligned}
& \tau^{1}(\perp)=\rho_{0} \\
& \tau^{2}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right) \\
& \tau^{i}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{-1-1}(\perp)\right)
\end{aligned}
$$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$$
\begin{aligned}
& \rho_{1}=\llbracket t \rrbracket\left(\rho_{0}\right) \\
& \rho_{2}=\llbracket t \rrbracket\left(\rho_{1}\right) \\
& \rho_{3}=\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\begin{aligned}
& \tau^{1}(\perp)=\rho_{0} \\
& \tau^{2}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right) \\
& \tau^{i}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{-1}(\perp)\right)
\end{aligned}
$$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$$
\begin{aligned}
& \rho_{1}=\llbracket t \rrbracket\left(\rho_{0}\right) \\
& \rho_{2}=\llbracket t \rrbracket\left(\rho_{1}\right) \\
& \rho_{3}=\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

$$
\begin{aligned}
& \tau^{1}(\perp)=\rho_{0} \\
& \tau^{2}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{1}(\perp)\right) \\
& \tau^{i}(\perp)=\rho_{0} \sqcup \llbracket t \rrbracket\left(\tau^{-1}(\perp)\right)
\end{aligned}
$$

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

$$
\begin{aligned}
\rho_{1} & =\llbracket t \rrbracket\left(\rho_{0}\right) \\
\rho_{2} & =\llbracket t \rrbracket\left(\rho_{1}\right) \\
\rho_{3} & =\llbracket t \rrbracket\left(\rho_{2}\right)=\{X \mapsto \emptyset\}
\end{aligned}
$$

MFP Solution

Remark

Kleene fix-point iteration does not stabilize

Acceleration of Cyclic Sub-Programs

Goal

Speed up Kleene fix-point iteration, without loosing precision

Idea : extract a cyclic sub-program and accelerate it!

- Copies are allowed in the sub-program
- Renaming κ
- $\kappa^{-1}\left(\rho^{\prime}\right)(X)=$

(with $\kappa^{-1}\left(\rho^{\prime}\right)(X)=\perp$ if $X \notin \kappa\left(\mathcal{X}^{\prime}\right)$)

Acceleration of Cyclic Sub-Programs

Goal

Speed up Kleene fix-point iteration, without loosing precision
Idea : extract a cyclic sub-program and accelerate it!

- Copies are allowed in the sub-program

- Renaming $\kappa: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$
- $\kappa^{-1}\left(\rho^{\prime}\right)(X)=\bigsqcup_{\kappa\left(X^{\prime}\right)=X} \rho^{\prime}\left(X^{\prime}\right) \quad\left(\right.$ with $\kappa^{-1}\left(\rho^{\prime}\right)(X)=\perp$ if $\left.X \notin \kappa\left(\mathcal{X}^{\prime}\right)\right)$

Accelerated Computation of the MFP Solution (1)

13 return ρ

Accelerated Computation of the MFP Solution (2)

$$
\begin{array}{ll}
10 & \rho_{0}^{\prime} \leftarrow \rho \circ \kappa \\
{ }^{11} & \rho^{\prime \prime} \leftarrow \operatorname{MFP}\left(\mathcal{S}^{\prime}, \rho_{0}^{\prime}\right) \\
12 & \rho \leftarrow \rho \sqcup \kappa^{-1}\left(\rho^{\prime \prime}\right)
\end{array}
$$

Correctness

$$
\kappa^{-1}\left(\rho^{\prime \prime}\right) \sqsubseteq \operatorname{MFP}(\delta, \rho)
$$

Alternatives

- line 10: any ρ_{0}^{\prime} such that $\rho_{0}^{\prime} \sqsubseteq \rho \circ \kappa$
e.g. pick $X^{\prime} \in \mathcal{X}^{\prime}$ and define ρ_{0}^{\prime} by $\begin{cases}\rho_{0}^{\prime}\left(X^{\prime}\right) & =\rho \circ \kappa\left(X^{\prime}\right) \\ \rho_{0}^{\prime}\left(Y^{\prime}\right) & =\perp \text { for all } Y^{\prime} \neq X^{\prime}\end{cases}$
- line 11: any $\rho^{\prime \prime}$ such that $\rho^{\prime \prime} \sqsubseteq \operatorname{MFP}\left(\mathcal{S}^{\prime}, \rho_{0}^{\prime}\right)$ e.g. replace MFP with MOP

[^0]
Accelerated Computation of the MFP Solution (2)

$$
\begin{array}{ll}
10 & \rho_{0}^{\prime} \leftarrow \rho \circ \kappa \\
{ }^{11} & \rho^{\prime \prime} \leftarrow \operatorname{MFP}\left(\mathcal{S}^{\prime}, \rho_{0}^{\prime}\right) \\
12 & \rho \leftarrow \rho \sqcup \kappa^{-1}\left(\rho^{\prime \prime}\right)
\end{array}
$$

Correctness

$$
\kappa^{-1}\left(\rho^{\prime \prime}\right) \sqsubseteq \operatorname{MFP}(\delta, \rho)
$$

Alternatives

- line 10: any ρ_{0}^{\prime} such that $\rho_{0}^{\prime} \sqsubseteq \rho \circ \kappa$
e.g. pick $X^{\prime} \in \mathcal{X}^{\prime}$ and define ρ_{0}^{\prime} by $\begin{cases}\rho_{0}^{\prime}\left(X^{\prime}\right) & =\rho \circ \kappa\left(X^{\prime}\right) \\ \rho_{0}^{\prime}\left(Y^{\prime}\right) & =\perp \text { for all } Y^{\prime} \neq X^{\prime}\end{cases}$
- line 11: any $\rho^{\prime \prime}$ such that $\rho^{\prime \prime} \sqsubseteq \operatorname{MFP}\left(\mathcal{S}^{\prime}, \rho_{0}^{\prime}\right)$
e.g. replace MFP with MOP

Challenge

Computation the MOP/MFP solution for cyclic initialized data-flow programs

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems

- Acceleration for Self-Loops
- Acceleration for Cycles

4. Acceleration-Based Interval Constraint Solving
(5) Conclusion

Closed Convex Subsets of \mathbb{R}^{n}

Complete Lattice (A, \sqsubseteq)

Set of all topologically closed convex subsets of \mathbb{R}^{n}, partially ordered by set inclusion

- greatest lower bound \sqcap is set intersection \cap
- least upper bound \sqcup is set union followed by closed convex hull

Closed Convex Polyhedra

Closed Convex Subsets of \mathbb{R}^{n}

Complete Lattice (A, \sqsubseteq)

Set of all topologically closed convex subsets of \mathbb{R}^{n}, partially ordered by set inclusion

- greatest lower bound \sqcap is set intersection \cap
- least upper bound \sqcup is set union followed by closed convex hull

Closed Convex Polyhedra

$\{\vec{x} \mid M \vec{x} \leq \vec{b}\}$ is called a $\left\{\begin{array}{l}\text { (real) polyhedron when } M \in \mathbb{R}^{n \times m} \\ \text { rational polyhedron when } M \in \mathbb{Q}^{n \times m}\end{array}\right.$

Guarded Translation Systems

Idea

Guarded commands of the form: if $\vec{x} \in G$ then $\vec{x}:=\vec{x}+\vec{d}$

Definition

An n-dim guarded translation is any single input transition whose transfer function $f: A \rightarrow A$ is of the form:

Notation : $X^{\prime}:=(G \cap X)+\vec{d}$ is also written $X \xrightarrow{G, \vec{d}} X^{\prime}$

Definition

An n-dim guarded translation system (GTS) is any data-flow program over (A, \sqsubseteq) whose transitions are n-dim guarded translations

Guarded Translation Systems

Idea

Guarded commands of the form: if $\vec{x} \in G$ then $\vec{x}:=\vec{x}+\vec{d}$

Definition

An n-dim guarded translation is any single input transition whose transfer function $f: A \rightarrow A$ is of the form:

$$
f(C)=(G \cap C)+\vec{d} \quad \text { where } \quad\left\{\begin{array}{l}
G \in A \text { is the guard } \\
\vec{d} \in \mathbb{R}^{n} \text { is the displacement }
\end{array}\right.
$$

Notation : $X^{\prime}:=(G \cap X)+\vec{d}$ is also written $X \xrightarrow{G, \vec{d}} X^{\prime}$
\square
An n-dim guarded translation system (GTS) is any data-flow program over (A, \sqsubseteq) whose transitions are n-dim guarded translations

Guarded Translation Systems

Idea

Guarded commands of the form: if $\vec{x} \in G$ then $\vec{x}:=\vec{x}+\vec{d}$

Definition

An n-dim guarded translation is any single input transition whose transfer function $f: A \rightarrow A$ is of the form:

$$
f(C)=(G \cap C)+\vec{d} \quad \text { where } \quad\left\{\begin{array}{l}
G \in A \text { is the guard } \\
\vec{d} \in \mathbb{R}^{n} \text { is the displacement }
\end{array}\right.
$$

Notation : $X^{\prime}:=(G \cap X)+\vec{d}$ is also written $X \xrightarrow{G, \vec{d}} X^{\prime}$

Definition

An n-dim guarded translation system (GTS) is any data-flow program over (A, \sqsubseteq) whose transitions are n-dim guarded translations

Guarded Translation Systems (Semantics Rephrase)

Definition (Recall)

An n-dim $G T S$ is any pair $\mathcal{S}=(\mathcal{X}, T)$ where:

- \mathcal{X} is a finite set of variables
- T is a finite set of n-dim guarded translations $X \xrightarrow{G, \vec{a}} X^{\prime}$

The complete lattice (A, \sqsubseteq) of closed convex subsets of \mathbb{R}^{n} is extended to the complete lattice of valuations $(\mathcal{X} \rightarrow A, \sqsubseteq)$

Definition

The data-flow semantics $\llbracket t \rrbracket$ of any transition $t=X \xrightarrow{G, \vec{d}} X^{\prime}$ is the monotonic function in $(\mathcal{X} \rightarrow A) \rightarrow(\mathcal{X} \rightarrow A)$ defined by:

$$
\begin{aligned}
\llbracket t \rrbracket(\rho)\left(X^{\prime}\right) & =(G \cap \rho(X))+\vec{d} \\
\llbracket t \rrbracket(\rho)(Y) & =\rho(Y) \text { for all } Y \neq X^{\prime}
\end{aligned}
$$

Self-Loop GTS Example (2-Dim Closed Convex)

Data-Flow Program

- $\mathcal{X}=\{X\}$
- $T=\{t\}$
- (t) $X:=(G \cap X)+\vec{d}$

$$
\text { with }\left\{\begin{array}{l}
G=\mathbb{R}_{+}^{2} \\
\vec{d}=(-1,1)
\end{array}\right.
$$

- $\rho_{0}=\{X \mapsto 1 \times[-1,1]\}$

Semantics

Instanciating the Acceleration Framework

Challenge

Computation the MOP/MFP solution for cyclic initialized guarded translation systems (IGTS)

- Permits (exact) acceleration of the Kleene fix-point iteration
- Raises new interesting theoretical questions !

Outline
 a Acceleration for Self-Loops
 (2) Acceleration for Cycles

Instanciating the Acceleration Framework

Challenge

Computation the MOP/MFP solution for cyclic initialized guarded translation systems (IGTS)

- Permits (exact) acceleration of the Kleene fix-point iteration
- Raises new interesting theoretical questions !

Outline

(1) Acceleration for Self-Loops
(2) Acceleration for Cycles

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems

- Acceleration for Self-Loops
- Acceleration for Cycles

4. Acceleration-Based Interval Constraint Solving

- From Interval Constraint Systems to Integer Constraint Systems
- Solving Integer Constraint Systems
(5) Conclusion

MOP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS $S=\left(\{X\},\{X \xrightarrow{G, \vec{a}} X\}, \rho_{0}\right)$, if G and $\rho_{0}(X)$ are polyhedra then $\operatorname{MOP}\left(\mathcal{S}, \rho_{0}\right)$ is a polyhedron

Proof Sketch

$\operatorname{MOP}\left(S, \rho_{0}\right)(X)=\rho_{0}(X) \sqcup\left(\operatorname{cloconv}\left(G \cap\left(\left(G \cap \rho_{0}(X)\right)+\mathbb{N} \vec{d}\right)\right)+\vec{d}\right)$

- Poly-based semilinear subsets of $\mathbb{R}^{n}: U\left(B+\sum_{\vec{p} \in P} \mathbb{N} \vec{p}\right)$
- Closure of this class under sum, union and intersection
- cloconv (S) is a polyhedron when S is poly-based semilinear

Remark

The proof is constructive

MOP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS $\mathcal{S}=\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$, if G and $\rho_{0}(X)$ are polyhedra then $\operatorname{MOP}\left(\mathcal{S}, \rho_{0}\right)$ is a polyhedron

Proof Sketch

$\operatorname{MOP}\left(\delta, \rho_{0}\right)(X)=\rho_{0}(X) \sqcup\left(\operatorname{cloconv}\left(G \cap\left(\left(G \cap \rho_{0}(X)\right)+\mathbb{N} \vec{d}\right)\right)+\vec{d}\right)$

- Poly-based semilinear subsets of $\mathbb{R}^{n}: \cup\left(B+\sum_{\vec{p} \in P} \mathbb{N} \vec{p}\right)$
- Closure of this class under sum, union and intersection
- cloconv (S) is a polyhedron when S is poly-based semilinear

Remark

The proof is constructive

MFP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$, the MFP solution is the valuation:

$$
X \mapsto \begin{cases}\rho_{0}(X) & \text { if } G \cap \rho_{0}(X)=\emptyset \\ \rho_{0}(X) \sqcup\left(\left(G \cap\left(\rho_{0}(X)+\mathbb{R}_{+} \vec{d}\right)\right)+\vec{d}\right) & \text { otherwise }\end{cases}
$$

Proof Ideas

\subseteq The given expression is a post-fix-point of $\llbracket x \xrightarrow{G, \vec{d}} X \rrbracket$.
ЭProof by contradiction, using topological and convexity properties of both the guard and MFP solution.

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Iteration with Widening

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

- Application of widening
- Coarser than the MFP Solution!

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!
Solution!

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

- Application of widening
- Coarser than the MFP Solution!

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

Iteration with Widening

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Iteration with Widening

Comparison with Standard Widening on Polyhedra [Cousot \& Halbwachs, POPL'78]

IGTS

$$
\rho_{0}=\{X \mapsto 1 \times[-1,1]\}
$$

- Application of widening
- Coarser than the MFP Solution!

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.
Iteration with Abs. Acc.

Comparison with Polyhedral Abstract Acceleration [Gonnord \& Halbwachs, SAS'06]

- Consider an IGTS $\mathcal{S}=$ $\left(\{X\},\{X \xrightarrow{G, \vec{d}} X\}, \rho_{0}\right)$

Abstract Acceleration

$\operatorname{AbAc}(\mathcal{S})=\rho_{0}(X) \sqcup \operatorname{MFP}\left(\mathcal{S}^{\prime}\right)$ where \mathcal{S}^{\prime} is equal to \mathcal{S} except on its initial valuation:
$\rho_{0}^{\prime}(X)=G \cap \rho_{0}(X)$.

Remark

Iteration does not terminate!

Iteration with Abs. Acc.

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems

- Acceleration for Self-Loops
- Acceleration for Cycles
(4) Acceleration-Based Interval Constraint Solving
- From Interval Constraint Systems to Integer Constraint Systems
- Solving Integer Constraint Systems
(5) Conclusion

MOP Solution for Cyclic IGTS

Consider a cyclic IGTS $\delta=\left(\left\{X_{1}, \ldots, X_{k}\right\},\left\{t_{1}, \ldots, t_{k}\right\}, \rho_{0}\right)$ with $t_{i}=X_{i} \xrightarrow{G_{i}, \vec{d}_{i}} X_{i+1}$ and $X_{k+1}=X_{1}$, i.e. $X_{1} \xrightarrow{G_{1}, \vec{d}_{1}} X_{2} \cdots X_{k} \xrightarrow{G_{k}, \vec{d}_{k}} X_{1}$ Let $\delta^{\prime}=\left(\left\{X_{1}\right\},\left\{X_{1} \xrightarrow{G, \vec{a}} X_{1}\right\}\right)$, where :

$$
\left\{\begin{array}{l}
G=G_{1} \cap\left(G_{2}-\vec{d}_{1}\right) \cap \cdots \cap\left(G_{k}-\left(\vec{d}_{1}+\cdots+\vec{d}_{k-1}\right)\right) \\
\vec{d}=\vec{d}_{1}+\cdots+\vec{d}_{k}
\end{array}\right.
$$

The transition $X_{1} \xrightarrow{G, \vec{d}} X_{1}$ "simulates" the cycle $t_{1} \cdots t_{k}$ w.r.t. to X_{1}

MOP Solution for Cyclic IGTS

Consider a cyclic IGTS $\mathcal{S}=\left(\left\{X_{1}, \ldots, X_{k}\right\},\left\{t_{1}, \ldots, t_{k}\right\}, \rho_{0}\right)$ with $t_{i}=X_{i} \xrightarrow{G_{i}, \vec{d}_{i}} X_{i+1}$ and $X_{k+1}=X_{1}$, i.e. $X_{1} \xrightarrow{G_{1}, \vec{d}_{i}} X_{2} \cdots X_{k} \xrightarrow{G_{k}, \vec{d}_{k}} X_{1}$ Let $\delta^{\prime}=\left(\left\{X_{1}\right\},\left\{X_{1} \xrightarrow{G, \vec{a}} X_{1}\right\}\right)$, where :

$$
\left\{\begin{array}{l}
G=G_{1} \cap\left(G_{2}-\vec{d}_{1}\right) \cap \cdots \cap\left(G_{k}-\left(\vec{d}_{1}+\cdots+\vec{d}_{k-1}\right)\right) \\
\vec{d}=\vec{d}_{1}+\cdots+\vec{d}_{k}
\end{array}\right.
$$

The transition $X_{1} \xrightarrow{G, \vec{a}} X_{1}$ "simulates" the cycle $t_{1} \cdots t_{k}$ w.r.t. to X_{1}

Reduction to the Self-Loop Case

$$
\operatorname{MOP}\left(\mathcal{S}, \rho_{0}\right)\left(X_{1}\right)=\bigsqcup_{i=1}^{k-1} \operatorname{MOP}\left(\mathcal{S}^{\prime},\left\{X_{1} \mapsto\left(\llbracket t_{k} \rrbracket \circ \cdots \circ \llbracket t_{i+1} \rrbracket\left(\rho_{0}\right)\right)\left(X_{1}\right)\right\}\right)
$$

MFP Solution for Singly-Initialized Cyclic IGTS

Consider a cyclic IGTS $\mathcal{S}=\left(\left\{X_{1}, \ldots, X_{k}\right\},\left\{t_{1}, \ldots, t_{k}\right\}, \rho_{0}\right)$ with $t_{i}=X_{i} \xrightarrow{G_{i}, \vec{d}_{i}} X_{i+1}$ and $X_{k+1}=X_{1}$, i.e. $X_{1} \xrightarrow{G_{1}, \vec{d}_{1}} X_{2} \ldots X_{k} \xrightarrow{G_{k}, \vec{d}_{k}} X_{1}$ Let $\mathcal{S}^{\prime}=\left(\left\{X_{1}\right\},\left\{X_{1} \xrightarrow{G, \vec{a}} X_{1}\right\}\right)$, where :

$$
\left\{\begin{aligned}
G & =G_{1} \cap\left(G_{2}-\vec{d}_{1}\right) \cap \cdots \cap\left(G_{k}-\left(\vec{d}_{1}+\cdots+\vec{d}_{k-1}\right)\right) \\
\vec{d} & =\vec{d}_{1}+\cdots+\vec{d}_{k}
\end{aligned}\right.
$$

The transition $X_{1} \xrightarrow{G, \vec{d}} X_{1}$ "simulates" the cycle $t_{1} \cdots t_{k}$ w.r.t. to X_{1}
Reduction to the Self-Loop Case
If $\rho(Y)=\perp$ for all $Y \neq X_{1}$ then

$$
\operatorname{MFP}\left(S, \rho_{0}\right)=\llbracket t_{k-1} \rrbracket \circ \cdots \circ \llbracket t_{1} \rrbracket\left(\operatorname{MFP}\left(S^{\prime},\left\{X_{1} \mapsto \rho_{0}\left(X_{1}\right)\right\}\right)\right)
$$

MFP Solution for Singly-Initialized Cyclic IGTS

Consider a cyclic IGTS $\mathcal{S}=\left(\left\{X_{1}, \ldots, X_{k}\right\},\left\{t_{1}, \ldots, t_{k}\right\}, \rho_{0}\right)$ with $t_{i}=x_{i} \xrightarrow{G_{i}, \vec{d}_{i}} x_{i+1}$ and $X_{k+1}=x_{1}$, i.e. $x_{1} \xrightarrow{G_{1}, \vec{d}_{1}} x_{2} \cdots x_{k} \xrightarrow{G_{k}, \vec{d}_{k}} x_{1}$ Let $\mathcal{S}^{\prime}=\left(\left\{X_{1}\right\},\left\{X_{1} \xrightarrow{G, \vec{a}} X_{1}\right\}\right)$, where :

$$
\left\{\begin{array}{l}
G=G_{1} \cap\left(G_{2}-\vec{d}_{1}\right) \cap \cdots \cap\left(G_{k}-\left(\vec{d}_{1}+\cdots+\vec{d}_{k-1}\right)\right) \\
\vec{d}=\vec{d}_{1}+\cdots+\vec{d}_{k}
\end{array}\right.
$$

The transition $X_{1} \xrightarrow{G, \vec{d}} X_{1}$ "simulates" the cycle $t_{1} \cdots t_{k}$ w.r.t. to X_{1}

Reduction to the Self-Loop Case

If $\rho(Y)=\perp$ for all $Y \neq X_{1}$ then

$$
\operatorname{MFP}\left(\mathcal{S}, \rho_{0}\right)=\llbracket t_{k-1} \rrbracket \circ \cdots \circ \llbracket t_{1} \rrbracket\left(\operatorname{MFP}\left(\mathcal{S}^{\prime},\left\{X_{1} \mapsto \rho_{0}\left(X_{1}\right)\right\}\right)\right)
$$

2-dim Cyclic Example

GTS

$$
\begin{aligned}
& \left.\left.G_{1}=\right]-\infty,-1\right] \times[1,+\infty[\\
& G_{2}=[1,+\infty[\times[1,+\infty[\\
& G_{3}=[1,+\infty[\times]-\infty,-1] \\
& \left.\left.\left.\left.G_{4}=\right]-\infty,-1\right] \times\right]-\infty,-1\right]
\end{aligned}
$$

Initial Valuation

$$
\begin{aligned}
& x_{1} \mapsto\{(-2,2)\} \\
& X_{2} \mapsto\{(2,2)\} \\
& x_{3} \mapsto\{(2,-2)\} \\
& X_{4} \mapsto\{(-2,-2)\}
\end{aligned}
$$

Kleene iteration on 2-dim Cyclic Example

MFP Solution for 2-dim Example

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

Remark
 The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

MFP Solution for 2-dim Example

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

Remark
 The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

MFP Solution for 2-dim Example

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

[^1]
MFP Solution for 2-dim Example

$$
1
$$

- $\left(h_{k}\right)_{k \in \mathbb{N}}$ is nondecreasing, and $\lim _{k \rightarrow \infty} h_{k}=2-\sqrt{3}$

Remark

The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

3-dim Cyclic Example

GTS

$$
\begin{aligned}
& G_{1}=\mathbb{R}_{-} \times \mathbb{R}^{+} \times \mathbb{R} \\
& G_{2}=\mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R} \\
& G_{3}=\mathbb{R}^{+} \times \mathbb{R}_{-} \times \mathbb{R} \\
& G_{4}=\mathbb{R}^{-} \times \mathbb{R}^{-} \times \mathbb{R}
\end{aligned}
$$

Initial Valuation

$$
\begin{array}{ll}
X_{1} & \mapsto\{(-1,1)\} \times \mathbb{R}^{+} \\
X_{2} & \mapsto\{(1,1)\} \times \mathbb{R}^{+} \\
X_{3} & \mapsto\{(1,-1)\} \times \mathbb{R}^{+} \\
X_{4} & \mapsto\{(-1,-1)\} \times \mathbb{R}^{+}
\end{array}
$$

Kleene iteration on 3-dim Cyclic Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Cyclic Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Cyclic Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Cyclic Example

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Cyclic Example

e_{1}

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Cyclic Example

e_{1}

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Cyclic Example

e_{1}

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Kleene iteration on 3-dim Cyclic Example

e_{1}

Remark

The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

- An algebraic number is any real number definable in $\langle\mathbb{R}$.
- Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

$$
\begin{aligned}
& \text { Theorem } \\
& \text { The MFP solution of any 2-dim IGTS is an algebraic polyhedron. } \\
& \text { - An algebraic number is any real number definable in }\langle\mathbb{R},+, \cdot, \leq \\
& \text { - Algebraic polyhedrality is required even for cyclic } 2 \text {-dim IGTS }
\end{aligned}
$$

Acceleration Results for Cycles

- 2-dim cyclic example with a real (non rational) polyhedral MFP solution
- 3-dim cyclic example with a non-polyhedral MFP solution

Question

Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem

The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

- An algebraic number is any real number definable in $\langle\mathbb{R},+, \cdot, \leq\rangle$
- Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Proof (1)

MFP Solution Expression

$$
\operatorname{MFP}(X)=\bigsqcup_{\substack{x_{0} \in \mathcal{X} \\ t_{1} \cdots t_{k} \in L_{x_{0}, x}}} \llbracket t_{k} \rrbracket \circ \cdots \circ \llbracket t_{1} \rrbracket\left(\Delta\left(X_{0}\right)\right)+0^{+\operatorname{MFP}(X)}
$$

where:
$\Delta(X)=\rho_{0}(X) \sqcup \bigsqcup_{X \xrightarrow[G, \vec{d}]{ } X^{\prime}} \operatorname{bd}(G) \cap \operatorname{MFP}(X)$

- $\operatorname{bd}(G)$ is the topological boundary of G
- $L_{x_{0}, X}$ is the set of simple paths from X_{0} to X
- $0^{+} C=\left\{\vec{d} \mid C+\mathbb{R}_{+} \vec{d} \subseteq C\right\}$

Proof (2)

Observe that $0^{+} \operatorname{MFP}(X)$ is a cone in dimension 2.

0^{+}MFP (X)

There exists $\vec{d}_{1}, \vec{d}_{2}, \vec{d}_{3} \in \mathbb{R}^{2}$ such that:
$0^{+} \operatorname{MFP}(X)=\mathbb{R}_{+} \vec{d}_{1}+\mathbb{R}_{+} \vec{d}_{1}+\mathbb{R}_{+} \vec{d}_{1}$
Reduce to the case G is an half-space.
$\Longrightarrow \mathrm{bd}(G)$ is a line.

bd $(G) \cap \operatorname{MFP}(X)$

There exists two half-spaces H_{1}, H_{2} such that: $\operatorname{bd}(G) \cap \operatorname{MFP}(X)=\operatorname{bd}(G) \cap H_{1} \cap H_{2}$

Therefore the MFP solution is definable by a formula in $\langle\mathbb{R},+, \cdot, \leq\rangle$.

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems
4. Acceleration-Based Interval Constraint Solving

- From Interval Constraint Systems to Integer Constraint Systems
- Solving Integer Constraint Systems
(5) Conclusion

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems

- Acceleration for Self-Loops
- Acceleration for Cycles

4. Acceleration-Based Interval Constraint Solving

- From Interval Constraint Systems to Integer Constraint Systems
- Solving Integer Constraint Systems

(5) Conclusion

Intervals of \mathbb{Z}^{n}

Complete Lattice (\mathcal{Z}, \leq)

Let $\mathcal{Z}=\mathbb{Z} \cup\{-\infty,+\infty\}$ with natural partial order \leq defined by:

$$
-\infty<\cdots<-2<-1<0<1<2<\cdots<+\infty
$$

- greatest lower bound \wedge satisfies: $a \wedge b=\min (a, b)$ and $\wedge \emptyset=+\infty$
- least upper bound \vee satisfies: $a \vee b=\max (a, b)$ and $\bigvee \emptyset=-\infty$

Complete Lattice (\mathcal{I}, \sqsubseteq)

Set of all intervals $I=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$ where $a, b \in \mathcal{Z}$, partially ordered by set inclusion

- greatest lower bound \sqcap is set intersection \cap
- least upper bound \sqcup is set union followed by "discrete convex hull"

Interval Constraint Systems

We consider data-flow programs over $(\mathcal{I}, \sqsubseteq)$ with transitions of the form:

$$
\begin{array}{lll}
X:=I & X:=X_{1}+X_{2} & X:=X_{1} \sqcap I \\
& X:=-X_{1} & X:=X_{1} \sqcup X_{2} \\
& X:=X_{1} \cdot X_{2} &
\end{array}
$$

Allowed transfer functions

- constants
- full addition and subtraction
- full multiplication
- intersection with constants

We focus on the MFP solution, equivalently to the least solution of the constraint system where $:=$ is replaced with \sqsupseteq

Interval Constraints to Integer Constraints

Represent intervals by pairs of integers in \mathcal{Z}

$$
I \mapsto\left(I^{-}, I^{+}\right) \quad \text { where } \quad\left\{\begin{array}{l}
I^{+}=\bigvee I \\
I^{-}=\bigvee(-I)=-\wedge I
\end{array}\right.
$$

Translations

But

is not equivalent to

Because $\rho\left(X_{1}\right) \sqcap I$ might be empty

Interval Constraints to Integer Constraints

Represent intervals by pairs of integers in \mathcal{Z}

$$
I \mapsto\left(I^{-}, I^{+}\right) \quad \text { where } \quad\left\{\begin{array}{l}
I^{+}=\bigvee I \\
I^{-}=\bigvee(-I)=-\bigwedge I
\end{array}\right.
$$

Translations

$$
\begin{aligned}
x \sqsupseteq x_{1} & \Leftrightarrow\left\{\begin{array}{l}
x^{+} \geq x_{1}^{+} \\
x^{-} \geq x_{1}^{-}
\end{array}\right. \\
x \sqsupseteq-x_{1} & \Leftrightarrow\left\{\begin{array}{l}
x^{+} \geq x_{1}^{-} \\
x^{-} \geq x_{1}^{+}
\end{array}\right. \\
x \sqsupseteq x_{1}+x_{2} & \Leftrightarrow\left\{\begin{array}{l}
x^{+} \geq x_{1}^{+}+x_{2}^{+} \\
x^{-} \geq x_{1}^{-}+x_{2}^{-}
\end{array}\right.
\end{aligned}
$$

But

$$
X \sqsupseteq X_{1} \sqcap I
$$

is not equivalent to

$$
\left\{\begin{array}{l}
x^{+} \geq X_{1}^{+} \wedge 1^{+} \\
x^{-} \geq x_{1}^{-} \wedge I^{-}
\end{array}\right.
$$

Because $\rho\left(X_{1}\right) \sqcap /$ might be empty!

The Test Functions

Definition

For every $v \in \mathcal{Z}$ and $\succ \in\{\geq,>\}$, define $\theta_{\succ v}: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathcal{Z}$ by:

$$
\theta_{\succ v}\left(z_{1}, z_{2}\right)= \begin{cases}z_{2} & \text { if } z_{1} \succ v \\ -\infty & \text { otherwise }\end{cases}
$$

$$
\text { - } I_{1} \sqcap I_{2} \neq \emptyset \quad \text { iff } \quad I_{1}^{-} \geq-I_{2}^{+} \text {and } I_{1}^{+} \geq-I_{2}^{-}
$$

Translation of $X \sqsubseteq X_{1} \sqcap /$

The Test Functions

Definition

For every $v \in \mathcal{Z}$ and $\succ \in\{\geq,>\}$, define $\theta_{\succ v}: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathcal{Z}$ by:

$$
\theta_{\succ v}\left(z_{1}, z_{2}\right)= \begin{cases}z_{2} & \text { if } z_{1} \succ v \\ -\infty & \text { otherwise }\end{cases}
$$

- $I_{1} \sqcap I_{2} \neq \emptyset$ iff $I_{1}^{-} \geq-l_{2}^{+}$and $I_{1}^{+} \geq-I_{2}^{-}$
- if $I_{1} \sqcap I_{2} \neq \emptyset$ then $\left\{\begin{array}{l}\left(I_{1} \sqcap I_{2}\right)^{-}=I_{1}^{-} \wedge I_{2}^{-} \\ \left(I_{1} \sqcap I_{2}\right)^{+}=I_{1}^{+} \wedge I_{2}^{+}\end{array}\right.$

Translation of X

The Test Functions

Definition

For every $v \in \mathcal{Z}$ and $\succ \in\{\geq,>\}$, define $\theta_{\succ v}: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathcal{Z}$ by:

$$
\theta_{\succ v}\left(z_{1}, z_{2}\right)= \begin{cases}z_{2} & \text { if } z_{1} \succ v \\ -\infty & \text { otherwise }\end{cases}
$$

- $I_{1} \sqcap I_{2} \neq \emptyset \quad$ iff $\quad I_{1}^{-} \geq-I_{2}^{+}$and $I_{1}^{+} \geq-I_{2}^{-}$
- if $I_{1} \sqcap I_{2} \neq \emptyset$ then $\begin{cases}\left(I_{1} \sqcap I_{2}\right)^{-} & =I_{1}^{-} \wedge I_{2}^{-} \\ \left(I_{1} \sqcap I_{2}\right)^{+} & =I_{1}^{+} \wedge I_{2}^{+}\end{cases}$

Translation of $X \sqsubseteq X_{1} \sqcap /$

$$
X \sqsupseteq X_{1} \sqcap I \Leftrightarrow\left\{\begin{array}{l}
X^{-} \geq \theta_{\geq-I^{+}}\left(X_{1}^{-}, \theta_{\geq-I^{-}}\left(X_{1}^{+}, X_{1}^{-} \wedge I^{-}\right)\right) \\
X^{+} \geq \theta_{\geq-^{+}}\left(X_{1}^{-}, \theta_{\geq-I^{-}}\left(X_{1}^{+}, X_{1}^{+} \wedge I^{+}\right)\right)
\end{array}\right.
$$

The Multiplication Functions

Definition

Define the multiplication functions mul $_{+}$, mul_ : $\mathcal{Z} \times \mathcal{Z} \rightarrow \mathcal{Z}$ by:

$$
\begin{aligned}
& \text { mul }_{+}\left(z_{1}, z_{2}\right)= \begin{cases}z_{1} \cdot z_{2} & \text { if } z_{1}, z_{2}>0 \\
0 & \text { otherwise }\end{cases} \\
& \text { mul }_{-}\left(z_{1}, z_{2}\right)= \begin{cases}-z_{1} \cdot z_{2} & \text { if } z_{1}, z_{2}<0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Translation of
 When $\rho\left(X_{1}\right) \subseteq \mathbb{N}$ and $\rho\left(X_{2}\right) \subseteq \mathbb{N}$ then $X \sqsupseteq X_{1} \cdot X_{2}$ is equivalent to:

The Multiplication Functions

Definition

Define the multiplication functions mul $_{+}$, mul_ : $\mathcal{Z} \times \mathcal{Z} \rightarrow \mathcal{Z}$ by:

$$
\begin{aligned}
& \text { mul }_{+}\left(z_{1}, z_{2}\right)= \begin{cases}z_{1} \cdot z_{2} & \text { if } z_{1}, z_{2}>0 \\
0 & \text { otherwise }\end{cases} \\
& \text { mul }_{-}\left(z_{1}, z_{2}\right)= \begin{cases}-z_{1} \cdot z_{2} & \text { if } z_{1}, z_{2}<0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Translation of $X \sqsubseteq X_{1} \cdot X_{2}$

When $\rho\left(X_{1}\right) \subseteq \mathbb{N}$ and $\rho\left(X_{2}\right) \subseteq \mathbb{N}$ then $X \sqsupseteq X_{1} \cdot X_{2}$ is equivalent to:

$$
\left\{\begin{array}{l}
X^{-} \geq \theta_{>-\infty}\left(X_{1}^{-}, \theta_{>-\infty}\left(X_{1}^{+}, \theta_{>-\infty}\left(X_{2}^{-}, \theta_{>-\infty}\left(X_{2}^{+}, \operatorname{mul}_{-}\left(X_{1}^{-}, X_{2}^{-}\right)\right)\right)\right)\right) \\
X^{+} \geq \theta_{>-\infty}\left(X_{1}^{+}, \theta_{>-\infty}\left(X_{1}^{-}, \theta_{>-\infty}\left(X_{2}^{+}, \theta_{>-\infty}\left(X_{2}^{-}, \operatorname{mul}_{+}\left(X_{1}^{+}, X_{2}^{+}\right)\right)\right)\right)\right)
\end{array}\right.
$$

Translation into Positive Multiplication Form

Replace each constraint $X \sqsupseteq X_{1} \cdot X_{2}$ by:

$$
\begin{array}{lll}
X \sqsupseteq X_{1, u} \cdot X_{2, u} & X_{1, u} \sqsupseteq X_{1} \sqcap \mathbb{N} & \\
X \sqsupseteq X_{1, I} \cdot X_{2, I} & X_{2, u} \sqsupseteq X_{2} \sqcap \mathbb{N} & \\
X \sqsupseteq-X^{\prime} & & \\
X^{\prime} \sqsupseteq X_{1, u} \cdot X_{2, I} & X_{1, I} \sqsupseteq X_{1}^{\prime} \sqcap \mathbb{N} & X_{1}^{\prime} \sqsupseteq-X_{1} \\
X^{\prime} \sqsupseteq X_{1, I} \cdot X_{2, u} & X_{2, I} \sqsupseteq X_{2}^{\prime} \sqcap \mathbb{N} & X_{2}^{\prime} \sqsupseteq-X_{2}
\end{array}
$$

- $X_{i, u}$ corresponds to the "positive part" of X_{i}
- $X_{i, I}$ corresponds to the "negative part" of X_{i}

Property of Transformed Contraint System

The least solution ρ satisfies $\rho\left(X_{1}\right) \subseteq \mathbb{N}$ and $\rho\left(X_{2}\right) \subseteq \mathbb{N}$ for any multiplicative constraint $X \sqsupseteq X_{1} \cdot X_{2}$

Outline

(1) Introduction
(2) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems

- Acceleration for Self-Loops
- Acceleration for Cycles

4. Acceleration-Based Interval Constraint Solving

- From Interval Constraint Systems to Integer Constraint Systems
- Solving Integer Constraint Systems
(5) Conclusion

Bounded-Increasing Integer Constraint Systems

We have reduced interval contraint systems to constraint systems over (\mathcal{Z}, \leq) with constraints of the form:

$$
\begin{array}{lll}
X \geq z & X \geq X_{1}+X_{2} & X \geq X_{1} \wedge z \\
& X \geq \operatorname{mul}_{+}\left(X_{1}, X_{2}\right) & X \geq \theta_{\geq z}\left(X_{1}, X_{2}\right) \\
& X \geq \operatorname{mul}_{-}\left(X_{1}, X_{2}\right) & X \geq \theta_{>z}\left(X_{1}, X_{2}\right)
\end{array}
$$

Definition

A monotonic function $f \in z^{k} \rightarrow z$ is bounded-increasing if $f(\vec{a})$ for every $\vec{a}<\vec{b}$ such that $f(\perp)<f(\vec{a})$ and $f(\vec{b})<f(T)$

Except for test functions, all of the above transfer functions are bounded-increasing

Bounded-Increasing Integer Constraint Systems

We have reduced interval contraint systems to constraint systems over (\mathcal{Z}, \leq) with constraints of the form:

$$
\begin{array}{lll}
X \geq z & X \geq X_{1}+X_{2} & X \geq X_{1} \wedge z \\
& X \geq \operatorname{mul}_{+}\left(X_{1}, X_{2}\right) & X \geq \theta_{\geq z}\left(X_{1}, X_{2}\right) \\
& X \geq \operatorname{mul}_{-}\left(X_{1}, X_{2}\right) & X \geq \theta_{>z}\left(X_{1}, X_{2}\right)
\end{array}
$$

Definition

A monotonic function $f \in \mathcal{Z}^{k} \rightarrow \mathcal{Z}$ is bounded-increasing if $f(\vec{a})<f(\vec{b})$ for every $\vec{a}<\vec{b}$ such that $f(\perp)<f(\vec{a})$ and $f(\vec{b})<f(\top)$

Except for test functions, all of the above transfer functions are bounded-increasing

Computation of the Least Solution

Definition

A constraint $X \geq f\left(X_{1}, \ldots, X_{n}\right)$ is called saturated by a valuation ρ when $\rho(X) \geq f(T)$

Main Ideas of the Algorithm

- Iterative forward propagation
- Keep track for each variable of the last constraint that updated its value
- When a cycle of updates appears, accelerate it to saturate at least one constraint
- Inject test constraints only once they become "active"

Cyclic Constraint Systems

$\cdots x_{0}$

Algorithm for the Cyclic Bounded-Increasing Case

```
CyclicSolve \((\mathcal{S}=(\mathcal{X}, C)\) : cyclic bounded-increasing constraint system,
\(\rho_{0}\) : valuation)
let \(X_{0} \rightarrow c_{1} \rightarrow X_{1} \cdots \rightarrow c_{n} \rightarrow X_{n}=X_{0}\) be the "unique" elementary cycle
\(\rho \leftarrow \rho_{0}\)
for \(i=1\) to \(n\) do
\(\rho \leftarrow \rho \vee \llbracket c_{i} \rrbracket(\rho)\)
for \(i=1\) to \(n\) do
    \(\rho \leftarrow \rho \vee \llbracket c_{i} \rrbracket(\rho)\)
    if \(\rho \geq \llbracket C \rrbracket(\rho)\)
    return \(\rho\)
for \(i=1\) to \(n\) do
    \(\rho\left(X_{i}\right) \leftarrow+\infty\)
for \(i=1\) to \(n\) do
    \(\rho \leftarrow \rho \wedge \llbracket c_{i} \rrbracket(\rho)\)
for \(i=1\) to \(n\) do
    \(\rho \leftarrow \rho \wedge \llbracket c_{i} \rrbracket(\rho)\)
    return \(\rho\)
```


Algorithm for the General Bounded-Increasing Case

SolveBI $(\mathcal{S}=(\mathcal{X}, C)$: bounded-increasing constraint system,

```
    \rho0 : valuation)
\rho\leftarrow\mp@subsup{\rho}{0}{}\vee\llbracketC\rrbracket(\mp@subsup{\rho}{0}{})
while\llbracketC\rrbracket( }\rho)\not\subseteq
    \lambda\leftarrow\emptyset
                            {\lambda is a partial function from }\mathcal{X}\mathrm{ to C }
    repeat }|C|+1\mathrm{ times
        for each c\inC
            if }\rho\not\geq\llbracketc\rrbracket(\rho
        \rho\leftarrow\rho\vee\llbracketc\rrbracket(\rho)
            \lambda(X)\leftarrowc, where X is the input variable of c
            if there is a cycle }\mp@subsup{X}{0}{}->\lambda(\mp@subsup{X}{1}{})->\mp@subsup{X}{1}{}\cdots\lambda(\mp@subsup{X}{n}{})->\mp@subsup{X}{0}{
                \mp@subsup{\mathcal{S}}{}{\prime}\leftarrow(\mathcal{X},{\lambda(\mp@subsup{X}{1}{}),\ldots,\lambda(\mp@subsup{X}{n}{})})
                \rho
                \rho}\leftarrow\rho\vee\mp@subsup{\rho}{}{\prime
    return }
```


Algorithm for General Integer Constraint Systems

Active Test Constraints

- A test constraint $c=X \geq \theta_{\succ z}\left(X_{1}, X_{2}\right)$ is active for ρ if $\rho\left(X_{1}\right) \succ z$
- Its active form $\operatorname{act}(c)$ is the constraint $X \geq X_{2}$

1 SolveInteger $(\mathcal{S}=(\mathcal{X}, \mathcal{C})$: integer constraint system $)$
$2 \quad \rho \leftarrow \perp$
${ }_{\text {з }} \quad C_{t} \leftarrow$ set of test constraints in C
$4 \quad C^{\prime} \leftarrow$ set of bounded-increasing constraints in C
5 while $\llbracket C \rrbracket(\rho) \nsubseteq \rho$
6

11 return ρ

Correctness and Complexity Results

Size $|\mathcal{S}|$ of a constraint system $\mathcal{S}=(\mathcal{X}, C)$ defined by $|\mathcal{S}|=|\mathcal{X}|+|C|$

Theorem

The algorithm Solvelnteger computes the least solution of a system of (test and bounded-increasing) integer constraints \mathcal{S} by performing $O\left(|S|^{3}\right)$ integer comparisons and image computations by bounded-increasing transfer functions of \mathcal{S}

Theorem

The least solution of an interval constraint system \mathcal{S} can by computed in time $O\left(|\mathcal{S}|^{3}\right)$ with integer operations performed in $O(1)$

Outline

(1) Introduction
(3) Acceleration Framework for Data-Flow Analysis
(3) Convex Data Flow Analysis of Guarded Translation Systems
(4) Acceleration-Based Interval Constraint Solving
(5) Conclusion

Summary (1)

Acceleration Framework for Data-Flow Analysis

- Generalizes "standard" acceleration principles from concrete to abstract data-flow analysis
- Tradeoff between reachability set computation and data-flow analysis with widenings/ narrowings

```
Application of Framework
- Convex data-flow analysis
- computation of the MOP and MFP solution for cyclic GTS
- better acceleration strategy than previous work for self-loops
- Interval Constraint Solving
- interval constraints with full multiplication (but restricted 7 )
- instanciation of the generic AcceleratedMFP semi-algorithm
- efficient approach: cubic-time complexity, on-the-fly
```


Summary (1)

Acceleration Framework for Data-Flow Analysis

- Generalizes "standard" acceleration principles from concrete to abstract data-flow analysis
- Tradeoff between reachability set computation and data-flow analysis with widenings/ narrowings

Application of Framework

- Convex data-flow analysis
- computation of the MOP and MFP solution for cyclic GTS
- better acceleration strategy than previous work for self-loops
- Interval Constraint Solving
- interval constraints with full multiplication (but restricted \sqcap)
- instanciation of the generic AcceleratedMFP semi-algorithm
- efficient approach: cubic-time complexity, on-the-fly

Summary (2)

Guarded Translation Systems

Self-loops \quad Cyclic \quad General

MOP	$n \geq 1$	Rational Poly.	Rational Poly.	Not Polyhedral
MFP	1	Rational Poly.	Rational Poly.	Rational Poly.
	2	Rational Poly.	Algebraic Poly.	Algebraic Poly.
	$n \geq 3$	Rational Poly.	Not Polyhedral	Not Polyhedral

- Polyhedra are computable for Rational Poly. and Algebraic Poly.
- Results on self-loops carry over to singly initialized cycles

Related Work \& Future Work

Related Work

- Interval analysis [Su \& Wagner, TACAS'04], [Seidl \& Gawlitza, ESOP'07]
- No polynomial-time algorithm for constraints with full multiplication
- Abstract acceleration for convex polyhedra [Gonnord \& Halbwachs, SAS'06]
- Acceleration technique for two self-loops, operations include reset
- Incomplete for single self-loops
- Multiple self-loops
- Other abstract lattices
- octogons [Miné, AST'01]
- templates [Sankaranarayanan et al., VMCAl'05]
- two variables per linear inequality [Simon et al., LOPSTR'02]

Related Work \& Future Work

Related Work

- Interval analysis [Su \& Wagner, TACAS’04], [Seidl \& Gawlitza, ESOP'07]
- No polynomial-time algorithm for constraints with full multiplication
- Abstract acceleration for convex polyhedra [Gonnord \& Halbwachs, SAS'06]
- Acceleration technique for two self-loops, operations include reset
- Incomplete for single self-loops

Future Work

- Multiple self-loops
- Other abstract lattices
- octogons [Miné, AST’01]
- templates [Sankaranarayanan et al., VMCAl'05]
- two variables per linear inequality [Simon et al., LOPSTR'02]

[^0]: Challenge
 Computation the MOP/MFP solution for cyclic initialized data-flow programs

[^1]: Remark
 The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

