http://www.labri.fr/~sutre/Teaching/B

This document provides a summary of the B notation, both mathematical and ASCII, for B expressions and predicates. In the remainder, E, F, G denote arbitrary expressions, S, T denote set expressions, r denotes a relational expression, f, g denote functional expressions, P, Q denote predicates, n, p denote natural numbers, and z denotes a variable.

1 Predicates

\wedge	conjunction	&
\vee	disjunction	or
-	negation	not
\Rightarrow	implication	=>
\Leftrightarrow	equivalence	<=>
Ξ	existential quantification	#
\forall	universal quantification	!
•	dot	
=	equality	=
\neq	disequality	/=
$E\mapsto F$	ordered pair	E -> F

2 Integers

\mathbb{Z}	set of all integers	INTEGER
\mathbb{N}	set of all nonnegative integers	NATURAL
\mathbb{N}_1	set of all positive integers	NATURAL1
$\{n, n+1, \ldots, p\}$	interval of integers	np
>	strictly greater	>
\geq	greater or equal	>=
<	strictly less	<
\leq	less or equal	<=
+	addition	+
-	subtraction	-
×	multiplication	*
/	integer division	/
mod	modulo	mod
$\min(S)$	minimum of S	min(S)
$\max(S)$	maximum of S	max(S)
$\sum z \cdot (P \mid E)$	sum of E for z satisfying P	SIGMA(z).(P E)
$\prod z \cdot (P E)$	product of E for z satisfying P	PI(z).(P E)

3

Sets		
$\mathbb{P}(S)$	set of all subsets of S	POW(S)
$\mathbb{P}_1(S)$	set of all non-empty subsets of S	POW1(S)
$\mathbb{F}(S)$	set of all finite subsets of S	FIN(S)
$\mathbb{F}_1(S)$	set of all non-empty finite subsets of S	FIN1(S)
Ø	empty set	{}
$\{E, F, \ldots, G\}$	set enumeration	{E, F,, G}
$\{z P\}$	set comprehension	{z P}
\in	membership	:
¢	negation of membership	/:
\subseteq	inclusion	<:
⊈	negation of inclusion	/<:
\subset	strict inclusion	<<:
¢	negation of strict inclusion	/<<:
U	union	$\backslash/$
\cap	intersection	\land
-	difference	-
×	cartesian product	*
card(S)	cardinal of S	card(S)

4 Relations

$S \leftrightarrow T$	set of all relations from S to T	S <> T
dom(r)	domain of r	dom(r)
ran(r)	co-domain of r	ran(r)
id(S)	identity on S	id(S)
;	composition	;
$s \lhd r$	domain restriction of r by s	s < r
$r \rhd t$	co-domain restriction of r by t	r > t
$s \lhd r$	domain subtraction of r by s	s << r
$r \triangleright t$	co-domain subtraction of r by t	r >> t
r^{-1}	inverse of r	r~
r[s]	image of s under r	r[s]
$r \Leftrightarrow r'$	overriding of r by r'	r <+ r'
r^n	n-th iterate of r	<pre>iterate(r, n)</pre>
r^*	reflexive-transitive closure of r	closure(r)

5 Functions

$S \twoheadrightarrow T$	set of all partial functions from S to T	S +-> T
$S \to T$	set of all total functions from S to T	S> T
$S \rightarrowtail T$	set of all partial injections from S to T	S >+> T
$S \rightarrowtail T$	set of all total injections from S to T	S >-> T
$S \twoheadrightarrow T$	set of all partial surjections from S to T	S +->> T
$S \twoheadrightarrow T$	set of all total surjections from S to T	S>> T
$S \rightarrowtail T$	set of all total bijections from S to T	S >->> T
$\lambda z \cdot (P \mid E)$	lambda expression	%(z).(P E)
f(E)	value of f in E	f(E)