Exercises on Range Analysis with Widening/Narrowing, with Solutions

Grégoire Sutre

http://www.labri.fr/~sutre/Teaching/SV/

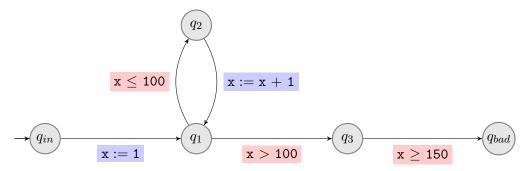
1 A Classical Example

We start this lab session with a classical example, which corresponds to the following ${\sf C}$ source code snippet:

```
int x;
for (x = 1; x <= 100; x++);
assert (x < 150);</pre>
```

Exercise 1 Translate this program into a control-flow automaton, and perform, manually, range analysis on it, with widening and narrowing. Is the analysis successful?

Solution. The control-flow automaton is depicted below. Its set of variables is $X = \{x\}$, where x ranges over integers.



Let us analyze this control-flow automaton with the interval abstract domain. The widening ∇ is applied without delay (and at each location). Round-robin iteration proceeds as follows. Locations are processed in this order: $q_{in}, q_1, q_2, q_3, q_{bad}$.

	x	x	x	x
q_{in}	\perp	$(-\infty, +\infty)$	$(-\infty, +\infty)$	$(-\infty, +\infty)$
q_1	\perp	(1, 1)	$(1, +\infty)^1$	$(1, +\infty)^3$
q_2	\perp	(1, 1)	$(1,+\infty)^2$	$(1, +\infty)$
q_3	\perp	\perp	$(101, +\infty)$	$(101, +\infty)$
q_{bad}		\bot	$(150, +\infty)$	$(150, +\infty)$

Let us explain how these abstract values are computed:

$$(1,1)\nabla((1,1)\sqcup(2,2)) = (1,1)\nabla(1,2) = (1,+\infty)$$
(1)

$$(1,1)\nabla(1,100) = (1,+\infty)$$
(2)

$$(1, +\infty) \nabla ((1, 1) \sqcup (2, +\infty)) = (1, +\infty) \nabla (1, +\infty) = (1, +\infty)$$
(3)

	x	х	х	x	
q_{in}	$(-\infty, +\infty)$	$(-\infty, +\infty)$	$(-\infty, +\infty)$	$(-\infty, +\infty)$	
q_1	$(1, +\infty)$	$(1, +\infty)^4$	$(1, 101)^7$	(1, 101)	
q_2	$(1, +\infty)$	$(1, 100)^5$	(1, 100)	(1, 100)	
q_3	$(101, +\infty)$	$(101, +\infty)^6$	$(101, 101)^8$	(101, 101)	
q_{bad}	$(150, +\infty)$	$(150, +\infty)$	\perp^9	\perp	

From the previously computed abstract value, a descending iteration with narrowing (and without delay) is performed as follows:

$$(1, +\infty) \Delta ((1, 1) \sqcup (2, +\infty)) = (1, +\infty) \Delta (1, +\infty) = (1, +\infty)$$
(4)

 $(1, +\infty) \Delta (1, 100) = (1, 100)$ (5)

$$(101, +\infty) \Delta (101, +\infty) = (101, +\infty)$$
 (6)

$$(1, +\infty)\Delta((1, 1) \sqcup (2, 101)) = (1, +\infty)\Delta(1, 101) = (1, 101)$$
(7)

$$(101, +\infty) \Delta (101, 101) = (101, 101) \tag{8}$$

$$(150, +\infty)\Delta \perp = \perp \tag{9}$$

The abstract value in location q_{bad} is \perp , meaning that q_{bad} is not reachable, as the concretization of \perp is the empty set. So the analysis is successful. The crucial point is that the analysis is able to infer that **x** is equal to 101 after the loop.

Exercise 2 Implement the functions widen and narrow of the modules DomConstant, DomSign and DomInterval. Run make test-dom to check your implementation.

Exercise 3 Analyze the above program with sai, and compare the result with your manual analysis.

Solution. The range analysis performed by **sai** coincides with the manual analysis performed in the previous exercise.

2 Analysis of the Lecture's Running Example

In this section, sai is applied to the lecture's running example, which is provided in the file examples/aut/running_example.aut. Various options are passed to sai in order to obtain the analyses presented in the lecture.

Exercise 4 Use widening without delay. Is the analysis successful before descending iterations?

Solution. The command to use is:

./sai.byte -v -domain interval examples/aut/running_example.aut

The analysis is not successful before descending iterations.

Exercise 5 Still before descending iterations, find the least widening delay that makes the analysis successful. Is the analysis successful without widening?

Solution. The command to use is:

./sai.byte -v -domain interval -widening-delay 11 .../running_example.aut

The analysis is successful before descending iterations with this delay. With smaller delays, the analysis is not successful before descending iterations.

Exercise 6 Use widening and narrowing, both without delay. Is the analysis successful?

Solution. The command to use is:

./sai.byte -v -domain interval .../running_example.aut

The analysis is successful (after descending iterations).

Exercise 7 Use widening without delay and disable narrowing. Does the analysis converge? Is it successful?

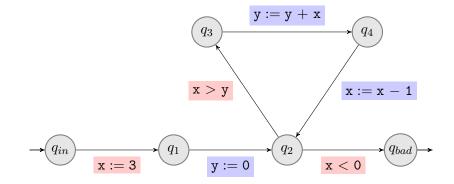
Solution. The command to use is:

```
./sai.byte -v -domain interval -narrowing-delay -1 .../running_example.aut
```

The analysis converges and is successful (after descending iterations).

3 Analysis of Another Example

We consider the control-flow automaton depicted below, with variables $X = \{x, y\}$, both ranging over integers, with initial location q_{in} and bad location q_{bad} .



This section performs range analysis of this control-flow automaton. As usual, an analysis will be called *successful* when the abstract value obtained for q_{bad} is \perp . Roundrobin iteration shall use the following order on locations: $q_{in}, q_1, q_2, q_3, q_4, q_{bad}$. The first two exercises are independent. The third exercise depends on the result of the second exercise.

Exercise 8 Apply the round-robin algorithm to compute the minimal fixpoint solution. Do not use widening and do not perform descending iterations. Is the analysis successful?

	x	у	x	у	x	у	x	у	x	У	x	У
q_{in}	\perp	\perp	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
q_1		\perp	(3,3)	Т								
q_2		\perp	(3,3)	(0,0)	(2,3)	(0,3)	(1,3)	(0,5)	(0,3)	(0,5)	(0,3)	(0, 5)
q_3	\perp	\perp	(3,3)	(0, 0)	(2,3)	(0,2)	(1,3)	(0,2)	(1,3)	(0, 2)	(1,3)	(0, 2)
q_4	\perp	\perp	(3,3)	(3,3)	(2,3)	(2,5)	(1,3)	(1,5)	(1,3)	(1,5)	(1,3)	(1,5)
q_{bad}				\perp								

Solution. We simply write \top in place of $(-\infty, +\infty)$ to gain space.

The abstract value in location q_{bad} is \perp , meaning that q_{bad} is not reachable, as the concretization of \perp is the empty set. So the analysis is successful.

Exercise 9 Apply the round-robin algorithm with widening applied in location q_2 only. Do not perform descending iterations. Is the analysis successful?

Solution. We simply write \top in place of $(-\infty, +\infty)$ to gain space. The superscript \star indicates the values that would have been larger (w.r.t. the partial order on intervals) if they had been widened.

	x	у	x	у	x	у	x	у
q_{in}	\perp	\perp	Т	Т	Т	Т	Т	Т
q_1		\perp	(3,3)	Т	(3,3)	Т	(3,3)	Т
q_2	\perp	\perp	(3,3)	(0,0)	$(-\infty,3)$	$(0, +\infty)$	$(-\infty,3)$	$(0, +\infty)$
q_3		\perp	(3,3)	(0,0)	$(1,3)^{\star}$	$(0,2)^{\star}$	(1,3)	(0,2)
q_4		\perp	(3,3)	(3,3)	(1,3)	(1, 5)	(1,3)	(1,5)
q_{bad}		\perp	\perp	\perp	$(-\infty, -1)$	$(0, +\infty)$	$(-\infty,-1)$	$(0, +\infty)$

The abstract value in location q_{bad} concretizes to a non-empty set of environments (i.e., a non-empty subset of \mathbb{Z}^X), meaning that q_{bad} might be reachable. So the analysis is not successful.

Exercise 10 Starting from the result of the previous exercise, perform a descending iteration with narrowing. Is the analysis successful?

Solution.

	x	У	x	У	x	у
q_{in}	Т	Т	Т	Т	Т	Т
q_1	(3,3)	Т	(3,3)	Т	(3,3)	Т
q_2	$(-\infty,3)$	$(0, +\infty)$	(0,3)	(0, 5)	(0,3)	(0,5)
q_3	(1,3)	(0,2)	(1,3)	(0, 2)	(1,3)	(0, 2)
q_4	(1,3)	(1, 5)	(1,3)	(1, 5)	(1,3)	(1,5)
q_{bad}	$(-\infty, -1)$	$(0, +\infty)$		\perp		\perp

The abstract value in location q_{bad} concretizes to an empty set of environments, meaning that q_{bad} is not reachable. So the analysis is successful.

4 Example Hunt

Exercise 11 Find a control-flow automaton (or a program) that can be successfully verified with the sign domain and that cannot be verified with the interval domain (regardless of widening/narrowing use).

Solution. The following program is successfully verified with the sign domain.

At the third line, just before the assertion, the concrete environments $\{\mathbf{x} \mapsto -1\}$ and $\{\mathbf{x} \mapsto 1\}$ are reachable. By convexity of intervals, this entails that every interval containing all reachable concrete environments before the assertion also contains the environment $\{\mathbf{x} \mapsto 0\}$ which violates the assertion. So this program cannot be verified with the interval domain.

Exercise 12 Find a control-flow automaton (or a program) that can be successfully verified backwards with the sign and interval domains and that cannot be verified forwards with these domains.

Solution. The control-flow automaton examples/aut/pre_only.aut works.

Exercise 13 Find a control-flow automaton (or a program) for which interval analysis with widening enabled and with narrowing disabled¹ has a diverging descending iteration.

Solution. The control-flow automaton examples/aut/infinite_descent.aut works.

¹The corresponding command is ./sai.byte -v -domain interval -narrowing-delay -1 <file>.