
The complexity of separation for levels in1

concatenation hierarchies2

Thomas Place3

LaBRI Bordeaux University and IUF, France4

Marc Zeitoun5

LaBRI Bordeaux University, France6

Abstract7

We investigate the complexity of the separation problem associated to classes of regular languages.8

For a class C, C-separation takes two regular languages as input and asks whether there exists9

a third language in C which includes the first and is disjoint from the second. First, in contrast10

with the situation for the classical membership problem, we prove that for most classes C, the11

complexity of C-separation does not depend on how the input languages are represented: it is12

the same for nondeterministic finite automata and monoid morphisms. Then, we investigate13

specific classes belonging to finitely based concatenation hierarchies. It was recently proved14

that the problem is always decidable for levels 1/2 and 1 of any such hierarchy (with inefficient15

algorithms). Here, we build on these results to show that when the alphabet is fixed, there16

are polynomial time algorithms for both levels. Finally, we investigate levels 3/2 and 2 of the17

famous Straubing-Thérien hierarchy. We show that separation is PSpace-complete for level 3/218

and between PSpace-hard and EXPTime for level 2.19

2012 ACM Subject Classification F.4.3 Formal Languages20

Keywords and phrases Regular languages, separation, concatenation hierarchies, complexity21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

Funding Both authors acknowledge support from the DeLTA project (ANR-16-CE40-0007).23

1 Introduction24

For more than 50 years, a significant research effort in theoretical computer science was25

made to solve the membership problem for regular languages. This problem consists in26

determining whether a class of regular languages is decidable, that is, whether there is an27

algorithm inputing a regular language and outputing ‘yes’ if the language belongs to the28

investigated class, and ‘no’ otherwise.29

Many results were obtained in a long and fruitful line of research. The most prominent30

one is certainly Schützenberger’s theorem [19], which gives such an algorithm for the class of31

star-free languages. For most interesting classes also, we know precisely the computational32

cost of the membership problem. As can be expected, this cost depends on the way the33

input language is given. Indeed, there are several ways to input a regular language. For34

instance, it can be given by a nondeterministic finite automaton (NFA), or, alternately, by a35

morphism into a finite monoid. While obtaining an NFA representation from a morphism into36

a monoid has only a linear cost, the converse direction is much more expensive: from an NFA37

with n states, the smallest monoid recognizing the same language may have an exponential38

number of elements (the standard construction yields 2n2 elements). This explains why the39

complexity of the membership problem depends on the representation of the input. For40

© Thomas Place and Marc Zeitoun;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 The complexity of separation for levels in concatenation hierarchies

instance, for the class of star-free languages, it is PSpace-complete if one starts from NFAs41

(and actually, even from DFAs [2]) while it is NL when starting from monoid morphisms.42

Recently, another problem, called separation, has replaced membership as the cornerstone43

in the investigation of regular languages. It takes as input two regular langages instead44

of one, and asks whether there exists a third language from the class under investigation45

including the first input language and having empty intersection with the second one. This46

problem has served recently as a major ingredient in the resolution of difficult membership47

problems, such as the so-called dot-depth two problem [16] which remained open for 40 years48

(see [13, 18, 6] for recent surveys on the topic). Dot-depth two is a class belonging to a49

famous concatenation hierarchy which stratifies the star-free languages: the dot-depth [1]. A50

specific concatenation hierarchy is built in a generic way. One starts from a base class (level 051

of the hierarchy) and builds increasingly growing classes (called levels and denoted by 1/2, 1,52

3/2, 2, . . .) by alternating two standard closure operations: polynomial and Boolean closure.53

Concatenation hierarchies account for a significant part of the open questions in this research54

area. The state of the art regarding separation is captured by only three results [17, 9]: in55

finitely based concatenation hierarchies (i.e. those whose basis is a finite class) levels 1/2, 156

and 3/2 have decidable separation. Moreover, using specific transfer results [15], this can57

be pushed to the levels 3/2 and 2 for the two most famous finitely based hierarchies: the58

dot-depth [1] and the Straubing-Thérien hierarchy [21, 22].59

Unlike the situation for membership and despite these recent decidability results for60

separability in concatenation hierarchies, the complexity of the problems and of the corres-61

ponding algorithms has not been investigated so far (except for the class of piecewise testable62

languages [3, 11, 5], which is level 1 in the Straubing-Thérien hierarchy). The aim of this63

paper is to establish such complexity results. Our contributions are the following:64

We present a generic reduction, which shows that for many natural classes, the way65

the input is given (by NFAs or finite monoids) has no impact on the complexity of the66

separation problem. This is proved using two LogSpace reductions from one problem to67

the other. This situation is surprising and opposite to that of the membership problem,68

where an exponential blow-up is unavoidable when going from NFAs to monoids.69

Building on the results of [17], we show that when the alphabet is fixed, there are70

polynomial time algorithms for levels 1/2 and 1 in any finitely based hierarchy.71

We investigate levels 3/2 and 2 of the famous Straubing-Thérien hierarchy, and we show72

that separation is PSpace-complete for level 3/2 and between PSpace-hard and EXPTime73

for level 2. The upper bounds are based on the results of [17] while the lower bounds are74

based on independent reductions.75

Organization. In Section 2, we give preliminary terminology on the objects investigated in76

the paper. Sections 3, 4 and 5 are then devoted to the three above points. Due to space77

limitations, many proofs are postponed to the full version of the paper.78

2 Preliminaries79

In this section, we present the key objects of this paper. We define words and regular80

languages, classes of languages, the separation problem and finally, concatenation hierarchies.81

2.1 Words and regular languages82

An alphabet is a finite set A of symbols, called letters. Given some alphabet A, we denote83

by A+ the set of all nonempty finite words and by A∗ the set of all finite words over A (i.e.,84

T. Place and M. Zeitoun 23:3

A∗ = A+ ∪ {ε}). If u ∈ A∗ and v ∈ A∗ we write u · v ∈ A∗ or uv ∈ A∗ for the concatenation85

of u and v. A language over an alphabet A is a subset of A∗. Abusing terminology, if86

u ∈ A∗ is some word, we denote by u the singleton language {u}. It is standard to extend87

concatenation to languages: given K,L ⊆ A∗, we write KL = {uv | u ∈ K and v ∈ L}.88

Moreover, we also consider marked concatenation, which is less standard. Given K,L ⊆ A∗,89

a marked concatenation of K with L is a language of the form KaL, for some a ∈ A.90

We consider regular languages, which can be equivalently defined by regular expressions,91

nondeterministic finite automata (NFAs), finite monoids or monadic second-order logic (MSO).92

In the paper, we investigate the separation problem which takes regular languages as input.93

Since we are focused on complexity, how we represent these languages in our inputs matters.94

We shall consider two kinds of representations: NFAs and monoids. Let us briefly recall these95

objects and fix the terminology (we refer the reader to [7] for details).96

NFAs. An NFA is a tuple A = (A,Q, δ, I, F) where A is an alphabet, Q a finite set of states,97

δ ⊆ Q × A × Q a set of transitions, I ⊆ Q a set of initial states and F ⊆ Q a set of final98

states. The language L(A) ⊆ A∗ consists of all words labeling a run from an initial state to a99

final state. The regular languages are exactly those which are recognized by an NFA. Finally,100

we write “DFA” for deterministic finite automata, which are defined in the standard way.101

Monoids. We turn to the algebraic definition of regular languages. A monoid is a set M102

endowed with an associative multiplication (s, t) 7→ s · t (also denoted by st) having a neutral103

element 1M , i.e., such that 1M · s = s · 1M = s for every s ∈M . An idempotent of a monoid104

M is an element e ∈M such that ee = e.105

Observe that A∗ is a monoid whose multiplication is concatenation (the neutral element106

is ε). Thus, we may consider monoid morphisms α : A∗ → M where M is an arbitrary107

monoid. Given such a morphism, we say that a language L ⊆ A∗ is recognized by α when108

there exists a set F ⊆M such that L = α−1(F). It is well-known that the regular languages109

are also those which are recognized by a morphism into a finite monoid. When representing a110

regular language L by a morphism into a finite monoid, one needs to give both the morphism111

α : A∗ →M (i.e., the image of each letter) and the set F ⊆M such that L = α−1(F).112

2.2 Classes of languages and separation113

A class of languages C is a correspondence A 7→ C(A) which, to an alphabet A, associates a114

set of languages C(A) over A.115

I Remark. When two alphabets A,B satisfy A ⊆ B, the definition of classes does not116

require C(A) and C(B) to be comparable. In fact, it may happen that a particular language117

L ⊆ A∗ ⊆ B∗ belongs to C(A) but not to C(B) (or the opposite). For example, we may118

consider the class C defined by C(A) = {∅, A∗} for every alphabet A. When A (B, we have119

A∗ ∈ C(A) while A∗ 6∈ C(B).120

We say that C is a lattice when for every alphabet A, we have ∅, A∗ ∈ C(A) and C(A) is121

closed under finite union and finite intersection: for any K,L ∈ C(A), we have K ∪ L ∈ C(A)122

and K ∩ L ∈ C(A). Moreover, a Boolean algebra is a lattice C which is additionally closed123

under complement: for any L ∈ C(A), we have A∗ \L ∈ C(A). Finally, a class C is quotienting124

if it is closed under quotients. That is, for every alphabet A, L ∈ C(A) and word u ∈ A∗, the125

following properties hold:126

u−1L
def= {w ∈ A∗ | uw ∈ L} and Lu−1 def= {w ∈ A∗ | wu ∈ L} both belong to C(A).127

CVIT 2016

23:4 The complexity of separation for levels in concatenation hierarchies

All classes that we consider in the paper are (at least) quotienting lattices consisting of128

regular languages. Moreover, some of them satisfy an additional property called closure under129

inverse image.130

Recall that A∗ is a monoid for any alphabet A. We say that a class C is closed under131

inverse image if for every two alphabets A,B, every monoid morphism α : A∗ → B∗ and132

every language L ∈ C(B), we have α−1(L) ∈ C(A). A quotienting lattice (resp. quotienting133

Boolean algebra) closed under inverse image is called a positive variety (resp. variety).134

Separation. Consider a class of languages C. Given an alphabet A and two languages135

L1, L2 ⊆ A∗, we say that L1 is C-separable from L2 when there exists a third language136

K ∈ C(A) such that L1 ⊆ K and L2 ∩K = ∅. In particular, K is called a separator in C.137

The C-separation problem is now defined as follows:138

Input: An alphabet A and two regular languages L1, L2 ⊆ A∗.
Output: Is L1 C-separable from L2 ?

139

I Remark. Separation generalizes the simpler membership problem, which asks whether a140

single regular language belongs to C. Indeed L ∈ C if and only if L is C-separable from A∗ \L141

(which is also regular and computable from L).142

Most papers on separation are mainly concerned about decidability. Hence, they do not143

go beyond the above presentation of the problem (see [3, 16, 12, 17] for example). However,144

this paper specifically investigates complexity. Consequently, we shall need to be more precise145

and take additional parameters into account. First, it will be important to specify whether146

the alphabet over which the input languages is part of the input (as above) or a constant.147

When considering separation for some fixed alphabet A, we shall speak of “C(A)-separation”.148

When the alphabet is part of the input, we simply speak of “C-separation”.149

Another important parameter is how the two input languages are represented. We shall150

consider NFAs and monoids. We speak of separation for NFAs and separation for monoids.151

Note that one may efficiently reduce the latter to the former. Indeed, given a language152

L ⊆ A∗ recognized by some morphism α : A∗ →M , it is simple to efficiently compute a NFA153

with |M | states recognizing L (see [7] for example). Hence, we have the following lemma.154

I Lemma 1. For any class C, there is a LogSpace reduction from C-separation for monoids155

to C-separation for NFAs.156

Getting an efficient reduction for the converse direction is much more difficult since going157

from NFAs (or even DFAs) to monoids usually involves an exponential blow-up. However, we158

shall see in Section 3 that for many natural classes C, this is actually possible.159

2.3 Concatenation hierarchies160

We now briefly recall the definition of concatenation hierarchies. We refer the reader to [18]161

for a more detailed presentation. A particular concatenation hierarchy is built from a starting162

class of languages C, which is called its basis. In order to get robust properties, we restrict C163

to be a quotienting Boolean algebra of regular languages. The basis is the only parameter in164

the construction. Once fixed, the construction is generic: each new level is built from the165

previous one by applying generic operators: either Boolean closure, or polynomial closure.166

Let us first define these two operators.167

Definition. Consider a class C. We denote by Bool(C) the Boolean closure of C: for168

every alphabet A, Bool(C)(A) is the least set containing C(A) and closed under Boolean169

operations. Moreover, we denote by Pol(C) the polynomial closure of C: for every alphabet A,170

T. Place and M. Zeitoun 23:5

Pol(C)(A) is the least set containing C(A) and closed under union and marked concatenation171

(if K,L ∈ Pol(C)(A) and a ∈ A, then K ∪ L,KaL ∈ Pol(C)(A)).172

Consider a quotienting Boolean algebra of regular languages C. The concatenation173

hierarchy of basis C is defined as follows. Languages are classified into levels of two kinds:174

full levels (denoted by 0, 1, 2,. . .) and half levels (denoted by 1/2, 3/2, 5/2,. . .). Level 0 is175

the basis (i.e., C) and for every n ∈ N,176

The half level n+ 1/2 is the polynomial closure of the previous full level, i.e., of level n.177

The full level n+ 1 is the Boolean closure of the previous half level, i.e., of level n+ 1/2.178

0 1/2 1 3/2 2 5/2Pol

Bool

Pol

Bool

Pol

179

We write 1
2N = {0, 1/2, 1, 2, 3/2, 3, . . . } for the set of all possible levels in a concatenation180

hierarchy. Moreover, for any basis C and n ∈ 1
2N, we write C[n] for level n in the concatenation181

hierarchy of basis C. It is known that every half-level is a quotienting lattice and every full182

level is a quotienting Boolean algebra (see [18] for a recent proof).183

We are interested in finitely based concatenation hierarchies: if C is the basis, then C(A) is184

finite for every alphabet A. Indeed, it was shown in [17] that for such hierarchies separation185

is always decidable for the levels 1/2 and 1 (in fact, while we do not discuss this in the186

paper, this is also true for level 3/2, see [9] for a preliminary version). In Section 4, we187

build on the results of [17] and show that when the alphabet is fixed, this can be achieved in188

polynomial time for both levels 1/2 and 1. Moreover, we shall also investigate the famous189

Straubing-Thérien hierarchy in Section 5. Our motivation for investigating this hierarchy in190

particular is that the results of [17] can be pushed to levels 3/2 and 2 in this special case.191

3 Handling NFAs192

In this section, we investigate how the representation of input languages impact the complexity193

of separation. We prove that for many natural classes C (including most of those considered194

in the paper), C-separation has the same complexity for NFAs as for monoids. Because of195

these results, we shall be able to restrict ourselves to monoids in later sections.196

I Remark. This result highlights a striking difference between separation and the simpler197

membership problem. For most classes C, C-membership is strictly harder for NFAs than for198

monoids. This is because when starting from a NFA, typical membership algorithms require199

to either determinize A or compute a monoid morphism recognizing L(A) which involves an200

exponential blow-up in both cases. Our results show that the situation differs for separation.201

We already have a generic efficient reduction from C-separation for monoids to C-separation202

for NFAs (see Lemma 1). Here, we investigate the opposite direction: given some class C, is203

it possible to efficiently reduce C-separation for NFAs to C-separation for monoids ? As far204

as we know, there exists no such reduction which is generic to all classes C.205

I Remark. There exists an inefficient generic reduction from separation for NFAs to the sep-206

aration for monoids. Given as input two NFAs A1,A2, one may compute monoid morphisms207

recognizing L(A1) and L(A2). This approach is not satisfying as it involves an exponential208

blow-up: we end-up with monoids Mi of size 2|Qi|2 where Qi is the set of states of Ai.209

Here, we present a set of conditions applying to a pair of classes (C,D). When they are210

satisfied, there exists an efficient reduction from C-separation for NFAs to D-separation for211

monoids. By themselves, these conditions are abstract. However, we highlight two concrete212

applications. First, for every positive variety C, the pair (C, C) satisfies the conditions. Second,213

CVIT 2016

23:6 The complexity of separation for levels in concatenation hierarchies

for every finitely based concatenation hierarchies of basis C, there exists another finite basis214

D such that for every n ∈ 1
2N, the pair (C[n],D[n]) satisfies the conditions215

We first introduce the notions we need to present the reduction and the conditions216

required to apply it. Then, we state the reduction itself and its applications.217

3.1 Generic theorem218

We fix a special two letter alphabet E = {0, 1}. For the sake of improved readability, we219

abuse terminology and assume that when considering an arbitrary alphabet A, it always has220

empty intersection with E. This is harmless as we may work up to bijective renaming.221

We exhibit conditions applying to a pair of classes (C,D). Then, we prove that they222

imply the existence of an efficient reduction from C-separation for NFAs to D-separation for223

monoids. This reduction is based on a construction which takes as input a NFA A (over224

some arbitrary alphabet A) and builds a modified version of the language L(A) (over A ∪E)225

which is recognized by a “small” monoid. Our conditions involve two kinds of hypotheses:226

1. First, we need properties related to inverse image: “D must be an an extension of C”.227

2. The construction is parametrized by an object called “tagging”. We need an algorithm228

which builds special taggings (with respect to D) efficiently.229

We now make these two notions more precise. Let us start with extension.230

Extensions. Consider two classes C and D. We say that D is an extension of C when for231

every alphabet A, the two following conditions hold:232

If γ : (A ∪ E)∗ → A∗ is the morphism defined by γ(a) = a for a ∈ A and γ(b) = ε for233

b ∈ E, then for every K ∈ C(A), we have γ−1(K) ∈ D(A ∪E).234

For every u ∈ E∗, if λu : A∗ → (A ∪ E)∗ is the morphism defined by λu(a) = au for235

a ∈ A, then for every K ∈ D(A ∪E), we have λ−1
u (K) ∈ C(A).236

Positive varieties give an important example of extension. Since they are closed under inverse237

image, it is immediate that for every positive variety C, C is an extension of itself.238

Taggings. A tagging is a pair P = (τ : E∗ → T,G) where τ is a morphism into a finite239

monoid and G ⊆ T . We call |G| the rank of P and |T | its size. Moreover, given some NFA240

A = (A,Q, δ, I, F), P is compatible with A when the rank |G| is larger than |δ|.241

For our reduction, we shall require special taggings. Consider a class D and a tagging242

P = (τ : E∗ → T,G). We say that P fools D when, for every alphabet A and every morphism243

α : (A ∪ E)∗ → M into a finite monoid M , if all languages recognized by α belong to244

Bool(D)(A∪E), then, there exists s ∈M , such that for every t ∈ G, we have wt ∈ E∗ which245

satisfies α(wt) = s and τ(wt) = t.246

Our reduction requires an efficient algorithm for computing taggings which fool the output247

class D. Specifically, we say that a class D is smooth when, given as input k ∈ N, one may248

compute in LogSpace (with respect to k) a tagging of rank at least k which fools D.249

Main theorem. We may now state our generic reduction theorem. The statement has two250

variants depending on whether the alphabet is fixed or not.251

I Theorem 2. Let C,D be quotienting lattices such that D is smooth and extends C. Then252

the two following properties hold:253

There is a LogSpace reduction from C-separation for NFAs to D-separation for monoids.254

For every fixed alphabet A, there is a LogSpace reduction from C(A)-separation for NFAs255

to D(A ∪E)-separation for monoids.256

T. Place and M. Zeitoun 23:7

We have two main applications of Theorem 2 which we present at the end of the section.257

Let us first describe the reduction. As we explained, we use a construction building a language258

recognized by a “small” monoid out of an input NFA and a compatible tagging.259

Consider a NFA A = (A,Q, δ, I, F) and let P = (τ : E∗ → T,G) be a compatible tagging260

(i.e. |δ| ≤ |G|). We associate a new language L[A, P] over the alphabet A ∪ E and show261

that one may efficiently compute a recognizing monoid whose size is polynomial with respect262

to |Q| and the rank of P (i.e |G|). The construction involves two steps. We first define an263

intermediary language K[A, P] over the alphabet A× T and then define L[A, P] from it.264

We define K[A, P] ⊆ (A× T)∗ as the language recognized by a new NFA A[P] which is265

built by relabeling the transitions of A. Note that the definition of A[P] depends on arbitrary266

linear orders on G and δ. We let A[P] = (A × T,Q, δ[P], I, F) where δ[P] is obtained by267

relabeling the transitions of A as follows. Given i ≤ |δ|, if (qi, ai, ri) ∈ δ is the i-th transition268

of A, we replace it with the transition (qi, (ai, ti), ri) ∈ δ[P] where ti ∈ G is the i-th element269

of G (recall that |δ| ≤ |G| by hypothesis).270

I Remark. A key property of A[P] is that, by definition, all transitions are labeled by distinct271

letters in A× T . This implies that K[A, P] = L(A[P]) is recognized by a monoid of size at272

most |Q|2 + 2.273

We may now define the language L[A, P] ⊆ (A ∪E)∗. Observe that we have a natural274

map µ : (AE∗)∗ → (A × T)∗. Indeed, consider w ∈ (AE∗)∗. Since A ∩ E = ∅ (recall275

that this is a global assumption), it is immediate that w admits a unique decomposition276

w = a1w1 · · · anwn with a1, . . . , an ∈ A and w1, . . . , wn ∈ E∗. Hence, we may define277

µ(w) = (a1, P (w1)) · · · (an, P (wn)) ∈ (A× T)∗. Finally, we define,278

L[A, P] = E∗ · µ−1(K[A, P]) ⊆ (A ∪E)∗279

We may now state the two key properties of L[A, P] upon which Theorem 2 is based. It is280

recognized by a small monoid and the construction is connected to the separation.281

I Proposition 3. Given a NFA A = (A,Q, δ, I, F) and a compatible tagging P of rank n,282

one may compute in LogSpace a monoid morphism α : (A ∪E)∗ →M recognizing L[A, P]283

and such that |M | ≤ n+ |A| × n2 × (|Q|2 + 2).284

I Proposition 4. Let C,D be quotienting lattices such that D extends C. Consider two NFAs285

A1 and A2 over some alphabet A and let P be a compatible tagging that fools D. Then, L(A1)286

is C(A)-separable from L(A2) if and only if L[A1, P] is D(A ∪E)-separable from L[A2, P].287

Let us explain why these two propositions imply Theorem 2. Let C,D be quotienting288

lattices such that D is smooth and extends C. We show that the second assertion in the289

theorem holds (the first one is proved similarly).290

Consider two NFAs Ai = (A,Qj , δj , Ij , Fj) for j = 1, 2. We let k = max(|δ1|, |δ2|). Since291

D is smooth, we may compute (in LogSpace) a tagging P = (τ : E∗ → T,G) of rank |G| ≥ k.292

Then, we may use Proposition 3 to compute (in LogSpace) monoid morphisms recognizing293

L[A1, P] and L[A2, P]. Finally, by Proposition 4, L(A1) is C(A)-separable from L(A2) if294

and only if L[A1, P] is D(A ∪E)-separable from L[A2, P]. Altogether, this construction is a295

LogSpace reduction to D-separation for monoids which concludes the proof.296

3.2 Applications297

We now present the two main applications of Theorem 2. We start with the most simple one298

positive varieties. Indeed, we have the following lemma.299

CVIT 2016

23:8 The complexity of separation for levels in concatenation hierarchies

I Lemma 5. Let C be a positive variety. Then, C is an extension of itself. Moreover, if300

Bool(C) 6= REG, then C is smooth.301

That a positive variety is an extension of itself is immediate (one uses closure under302

inverse image). The difficulty is to prove smoothness. We may now combine Theorem 2 with303

Lemma 5 to get the following corollary.304

I Corollary 6. Let C be a positive variety such that Bool(C) 6= REG. There exists a LogSpace305

reduction from C-separation for NFAs to C-separation for monoids.306

Corollary 6 implies that for any positive variety C, the complexity of C-separation is the307

same for monoids and NFAs. We illustrate this with an example: the star-free languages.308

I Example 7. Consider the star-free languages (SF): for every alphabet A, SF(A) is the309

least set of languages containing all singletons {a} for a ∈ A and closed under Boolean310

operations and concatenation. It is folklore and simple to verify that SF is a variety. It is311

known that SF-membership is in NL for monoids (this is immediate from Schützenberger’s312

theorem [19]). On the other hand, SF-membership is PSpace-complete for NFAs. In fact, it313

is shown in [2] that PSpace-completeness still holds for deterministic finite automata (DFAs).314

For SF-separation, we may combine Corollary 6 with existing results to obtain that the315

problem is in EXPTime and PSpace-hard for both NFAs and monoids. Indeed, the EXPTime316

upper bounds is proved in [14] for monoids and we may lift it to NFAs with Corollary 6.317

Finally, the PSpace lower bound follows from [2]: SF-membership is PSpace-hard for DFAs.318

This yields that SF-separation is PSpace-hard for both DFAs and NFAs (by reduction from319

membership to separation which is easily achieved in LogSpace when starting from a DFA).320

Using Corollary 6 again, we get that SF-separation is PSpace-hard for monoids as well. J321

We turn to our second application: finitely based concatenation hierarchies. Consider322

a finite quotienting Boolean algebra C. We associate another finite quotienting Boolean323

algebra CE which we only define for alphabets of the form A ∪ E (this is harmless: CE is324

used as the output class of our reduction). Let A be an alphabet and consider the morphism325

γ : (A ∪E)∗ → A∗ defined by γ(a) = a for a ∈ A and γ(0) = γ(1) = ε. We define,326

CE(A ∪E) = {γ−1(L) | L ∈ C(A)}327

It is straightforward to verify that CE remains a finite quotienting Boolean algebra. Moreover,328

we have the following lemma.329

I Lemma 8. Let C be a finite quotienting Boolean algebra. For every n ∈ 1
2N, CE[n] is330

smooth and an extension of C[n].331

In view of Theorem 2, we get the following corollary which provides a generic reduction332

for levels within finitely based hierarchies.333

I Corollary 9. Let C be a finite basis and n ∈ 1
2N. There exists a LogSpace reduction from334

C[n]-separation for NFAs to CE[n]-separation for monoids.335

4 Generic upper bounds for low levels in finitely based hierarchies336

In this section, we present generic complexity results for the fixed alphabet separation problem337

associated to the lower levels in finitely based concatenation hierarchies. More precisely, we338

show that for every finite basis C and every alphabet A, C[1/2](A)- and C[1](A)-separation339

are respectively in NL and in P. These upper bounds hold for both monoids and NFAs: we340

prove them for monoids and lift the results to NFAs using the reduction of Corollary 9.341

T. Place and M. Zeitoun 23:9

I Remark. We do not present new proofs for the decidability of C[1/2]- and C[1]-separation342

when C is a finite quotienting Boolean algebra. These are difficult results which are proved343

in [17]. Instead, we recall the (inefficient) procedures which were originally presented in [17]344

and carefully analyze and optimize them in order to get the above upper bounds.345

For the sake of avoiding clutter, we fix an arbitrary finite quotienting Boolean algebra C346

and an alphabet A for the section.347

4.1 Key sub-procedure348

The algorithms C[1/2](A)- and C[1](A)-separation presented in [17] are based on a common349

sub-procedure. This remains true for the improved algorithms which we present in the350

paper. In fact, this sub-procedure is exactly what we improve to get the announced upper351

complexity bounds. We detail this point here. Note that the algorithms require considering352

special monoid morphisms (called “C-compatible”) as input. We first define this notion.353

C-compatible morphisms. Since C is finite, one associates a classical equivalence ∼C354

defined on A∗. Given u, v ∈ A∗, we write u ∼C v if and only if u ∈ L ⇔ v ∈ L for all355

L ∈ C(A). Given w ∈ A∗, we write [w]C ⊆ A∗ for its ∼C-class. Since C is a finite quotienting356

Boolean algebra, ∼C is a congruence of finite index for concatenation (see [18] for a proof).357

Hence, the quotient A∗/∼C is a monoid and the map w 7→ [w]C a morphism.358

Consider a morphism α : A∗ →M into a finite monoid M . We say that α is C-compatible359

when there exists a monoid morphism s 7→ [s]C fromM to A∗/∼C such that for every w ∈ A∗,360

we have [w]C = [α(w)]C . Intuitively, the definition means that α “computes” the ∼C-classes361

of words in A∗. The following lemma is used to compute C-compatible morphisms (note that362

the LogSpace bound holds because C and A is fixed).363

I Lemma 10. Given two morphisms recognizing regular languages L1, L2 ⊆ A∗ as input,364

one may compute in LogSpace a C-compatible morphism which recognizes both L1 and L2.365

In view of Lemma 10, we shall assume in this section without loss of generality that366

our input in separation for monoids is a single C-compatible morphism recognizing the two367

languages that need to be separated.368

Sub-procedure. Consider two C-compatible morphisms α : A∗ →M and β : A∗ → N . We369

say that a subset of N is good (for β) when it contains β(A∗) and is closed under multiplication.370

For every good subset S of N , we associate a subset of M × 2N . We then consider the371

problem of deciding whether specific elements belong to it (this is the sub-procedure used in372

the separation algorithms).373

I Remark. The set M × 2N is clearly a monoid for the componentwise multiplication. Hence374

we may multiply its elements and speak of idempotents in M × 2N .375

An (α, β, S)-tree is an unranked ordered tree. Each node x must carry a label lab(x) ∈376

M × 2N and there are three possible kinds of nodes:377

Leaves: x has no children and lab(x) = (α(w), {β(w)}) for some w ∈ A∗.378

Binary: x has exactly two children x1 and x2. Moreover, if (s1, T1) = lab(x1) and379

(s2, T2) = lab(x2), then lab(x) = (s1s2, T) with T ⊆ T1T2.380

S-Operation: x has a unique child y. Moreover, the following must be satisfied:381

1. The label lab(y) is an idempotent (e, E) ∈M × 2N .382

2. lab(x) = (e, T) with T ⊆ E · {t ∈ S | [e]C = [t]C ∈ S} · E.383

CVIT 2016

23:10 The complexity of separation for levels in concatenation hierarchies

We are interested in deciding whether elements in M × 2N are the root label of some384

computation tree. Observe that computing all such elements is easily achieved with a least385

fixpoint procedure: one starts from the set of leaf labels and saturates this set with three386

operations corresponding to the two kinds of inner nodes. This is the approach used in [17]387

(actually, the set of all root labels is directly defined as a least fixpoint and (α, β, S)-trees388

are not considered). However, this is costly since the computed set may have exponential389

size with respect to |N |. Hence, this approach is not suitable for getting efficient algorithms.390

Fortunately, solving C[1/2](A)- and C[1](A)-separation does not require to have the whole391

set of possible root labels in hand. Instead, we shall only need to consider the elements392

(s, T) ∈M × 2N which are the root label of some tree and such that T is a singleton set.393

It turns out that these specific elements can be computed efficiently. We state this in the394

next theorem which is the key technical result and main contribution of this section.395

I Theorem 11. Consider two C-compatible morphisms α : A∗ →M and β : A∗ → N and a396

good subset S ⊆ N . Given s ∈ M and t ∈ N , one may test in NL with respect to |M | and397

|N | whether there exists an (α, β, S)-tree with root label (s, {t}).398

Theorem 11 is proved in the full version of the paper. We only present a brief outline399

which highlights two propositions about (α, β, S)-trees upon which the theorem is based.400

We first define a complexity measure for (α, β, S)-trees. Consider two C-compatible401

morphisms α : A∗ → M and β : A∗ → N as well as a good subset S ⊆ N . Given an402

(α, β, S)-tree T, we define the operational height of T as the greatest number h ∈ N such403

that T contains a branch with h S-operation nodes.404

Our first result is a weaker version of Theorem 11. It considers the special case when we405

restrict ourselves to (α, β, S)-trees whose operational heights are bounded by a constant.406

I Proposition 12. Let h ∈ N be a constant and consider two C-compatible morphisms407

α : A∗ →M and β : A∗ → N and a good subset S ⊆ N . Given s ∈M and t ∈ N , one may408

test in NL with respect to |M | and |N | whether there exists an (α, β, S)-tree of operational409

height at most h and with root label (s, {t}).410

Our second result complements the first one: in Theorem 11, it suffices to consider411

(α, β, S)-trees whose operational heights are bounded by a constant (depending only on the412

class C and the alphabet A which are fixed here). Let us first define this constant. Given a413

finite monoid M , we define the J -depth of M as the greatest number h ∈ N such that one414

may find h pairwise distinct elements s1, . . . , sh ∈M such that for every i < h, si+1 = xsiy415

for some x, y ∈M416

I Remark. The term “J -depth” comes from the Green’s relations which are defined on any417

monoid [4]. We do not discuss this point here.418

Recall that the quotient set A∗/∼C is a monoid. Consequently, it has a J -depth. Our419

second result is as follows.420

I Proposition 13. Let h ∈ N be the J -depth of A∗/∼C. Consider two C-compatible421

morphisms α : A∗ → M and β : A∗ → N , and a good subset S ⊆ N . Then, for every422

(s, T) ∈M × 2N , the following properties are equivalent:423

1. (s, T) is the root label of some (α, β, S)-tree.424

2. (s, T) is the root label of some (α, β, S)-tree whose operational height is at most h.425

In view of Proposition 13, Theorem 11 is an immediate consequence of Proposition 12426

applied in the special case when h is the J -depth of A∗/∼C and m = 1.427

T. Place and M. Zeitoun 23:11

4.2 Applications428

We now combine Theorem 11 with the results of [17] to get the upper complexity bounds for429

C[1/2](A)- and C[1](A)-separation that we announced at the begging of the section.430

Application to C[1/2]. Let us first recall the connection between C[1/2]-separation and431

(α, β, S)-trees. The result is taken from [17].432

I Theorem 14 ([17]). Let α : A∗ → M be a C-compatible morphism and F0, F1 ⊆ M .433

Moreover, let S = α(A∗) ⊆M . The two following properties are equivalent:434

α−1(F0) is C[1/2]-separable from α−1(F1).435

for every s0 ∈ F0 and s1 ∈ F1, there exists no (α, α, S)-tree with root label (s0, {s1}).436

By Theorem 11 and the Immerman–Szelepcsényi theorem (which states that NL = co-NL),437

it is straightforward to verify that checking whether the second assertion in Theorem 14438

holds can be done in NL with respect to |M |. Therefore, the theorem implies that C[1/2](A)-439

separation for monoids is in NL. This is lifted to NFAs using Corollary 9.440

I Corollary 15. For every finite basis C and alphabet A, C[1/2](A)-separation is in NL for441

both NFAs and monoids.442

Application to C[1]. We start by recalling the C[1]-separation algorithm which is again taken443

from [17]. In this case, we consider an auxiliary sub-procedure which relies on (α, β, S)-trees.444

Consider a C-compatible morphism α : A∗ → M . Observe that M2 is a monoid for445

the componentwise multiplication. We let β : A∗ → M2 as the morphism defined by446

β(w) = (α(w), α(w)) for every w ∈ A∗. Clearly, β is C-compatible: given (s, t) ∈ M2, it447

suffices to define [(s, t)]C = [s]C . Using (α, β, S)-trees, we define a procedure S 7→ Red(α, S)448

which takes as input a good subset S ⊆M2 (for β) and outputs a subset Red(α, S) ⊆ S.449

Red(α, S) = {(s, t) ∈ S | (s, {(t, s)}) ∈M × 2M2
is the root label of an (α, β, S)-tree} ⊆ S450

It is straightforward to verify that Red(α, S) remains a good subset of M2. We now have451

the following theorem which is taken from [17].452

I Theorem 16 ([17]). Let α : A∗ →M be a morphism into a finite monoid and F0, F1 ⊆M .453

Moreover, let S ⊆ M2 be the greatest subset of α(A∗) × α(A∗) such that Red(α, S) = S.454

Then, the two following properties are equivalent:455

α−1(F0) is Bool(Pol(C))-separable from α−1(F1).456

for every s0 ∈ F0 and s1 ∈ F1, (s0, s1) 6∈ S.457

Observe that Theorem 11 implies that given an arbitrary good subset S of α(A∗)×α(A∗),458

one may compute Red(α, S) ⊆ S in P with respect to |M |. Therefore, the greatest subset S459

of α(A∗)× α(A∗) such that Red(α, S) = S can be computed in P using a greatest fixpoint460

algorithm. Consequently, Theorem 16 yields that C[1](A)-separation for monoids is in P.461

Again, this is lifted to NFAs using Corollary 9.462

I Corollary 17. For every finite basis C and alphabet A, C[1](A)-separation is in P for both463

NFAs and monoids.464

5 The Straubing-Thérien hierarchy465

In this final section, we consider one of the most famous concatenation hierarchies: the466

Straubing-Thérien hierarchy [21, 22]. We investigate the complexity of separation for the467

levels 3/2 and 2.468

CVIT 2016

23:12 The complexity of separation for levels in concatenation hierarchies

I Remark. Here, the alphabet is part of the input. For fixed alphabets, these levels can be469

handled with the generic results presented in the previous section (see Theorem 18 below).470

The basis of the Straubing-Thérien hierarchy is the trivial variety ST[0] defined by471

ST[0](A) = {∅, A∗} for every alphabet A. It is known and simple to verify (using induction)472

that all half levels are positive varieties and all full levels are varieties.473

The complexity of separation for the level one (ST[1]) has already been given a lot of474

attention. Indeed, this level corresponds to a famous class which was introduced independ-475

ently from concatenation hierarchies: the piecewise testable languages [20]. It was shown476

independently in [3] and [11] that ST[1]-separation is in P for NFAs (and therefore for DFAs477

and monoids as well). Moreover, it was also shown in [5] that the problem is actually478

P-complete for NFAs and DFAs1. Additionally, it is shown in [3] that ST[1/2]-separation is479

in NL.480

In the paper, we are mainly interested in the levels ST[3/2] and ST[2]. Indeed, the481

Straubing-Thérien hierarchy has a unique property: the generic separation results of [17]482

apply to these two levels as well. Indeed, these are also the levels 1/2 and 1 in another finitely483

based hierarchy. Consider the class AT of alphabet testable languages. For every alphabet A,484

AT(A) is the set of all Boolean combinations of languages A∗aA∗ for a ∈ A. One may verify485

that AT is a variety and that AT(A) is finite for every alphabet A. Moreover, we have the486

following theorem which is due to Pin and Straubing [8] (see [18] for a modern proof).487

I Theorem 18 ([8]). For every n ∈ 1
2N, we have AT[n] = ST[n+ 1].488

The theorem implies that ST[3/2] = AT[1/2] and ST[2] = AT[1]. Therefore, the results489

of [17] yield the decidability of separation for both ST[3/2] and ST[2] (the latter is the main490

result of [17]). As expected, this section investigates complexity for these two problems.491

5.1 The level 3/2492

We have the following tight complexity bound for ST[3/2]-separation.493

I Theorem 19. ST[3/2]-separation is PSpace-complete for both NFAs and monoids.494

The PSpace upper bound is proved by building on the techniques introduced in the495

previous section for handling the level 1/2 of an arbitrary finitely based hierarchies. Indeed,496

we have ST[3/2] = AT[1/2] by Theorem 18. However, let us point out that obtaining this497

upper bound requires some additional work: the results of Section 4 apply to the setting in498

which the alphabet is fixed, this is not the case here. In particular, this is why we end up499

with a PSpace upper bound instead of the generic NL upper presented in Corollary 15. The500

detailed proof is postponed to the full version of the paper.501

In this abstract, we focus on proving that ST[3/2]-separation is PSpace-hard. The proof502

is presented for NFAs: the result can then be lifted to monoids with Corollary 6 since ST[3/2]503

is a positive variety. We use a LogSpace reduction from the quantified Boolean formula504

problem (QBF) which is among the most famous PSpace-complete problems.505

We first describe the reduction. For every quantified Boolean formula Ψ, we explain how506

to construct two languages LΨ and L′Ψ. It will be immediate from the presentation that507

given Ψ as input, one may compute NFAs for LΨ and L′Ψ in LogSpace. Then, we show that508

1 Since ST[1] is a variety, P-completeness for ST[1]-separation can also be lifted to monoids using
Corollary 6.

T. Place and M. Zeitoun 23:13

this construction is the desired reduction: Ψ is true if and only if LΨ is not ST[3/2]-separable509

from L′Ψ.510

Consider a quantified Boolean formula Ψ and let n be the number of variables it involves.511

We assume without loss of generality that Ψ is in prenex normal form and that the quantifier-512

free part of Ψ is in conjunctive normal form (QBF remains PSpace-complete when restricted513

to such formulas). That is,514

Ψ = Qn xn · · ·Q1 x1 ϕ515

where x1 . . . xn are the variables of Ψ, Q1, . . . , Qn ∈ {∃,∀} are quantifiers and ϕ is a quantifier-516

free Boolean formula involving the variables x1 . . . xn which is in conjunctive normal form.517

We describe the two regular languages LΨ, L
′
Ψ by providing regular expressions recognizing518

them. Let us first specify the alphabet over which these languages are defined. For each519

variable xi occurring in Ψ, we create two letters that we write xi and xi. Moreover, we let,520

X = {x1, . . . , xn} and X = {x1, . . . , xn}521

Additionally, our alphabet also contains the following letters: #1, . . . ,#i, $. For 0 ≤ i ≤ n,522

we define an alphabet Bi. We have:523

B0 = X ∪X and Bi = X ∪X ∪ {#1, . . . ,#i, $}524

Our languages are defined over the alphabet Bn: LΨ, L
′
Ψ ⊆ B∗n. They are built by induction:525

for 0 ≤ i ≤ n we describe two languages Li, L
′
i ⊆ B∗i (starting with the case i = 0). The526

languages LΨ, L
′
Ψ are then defined as Ln, L

′
n.527

Construction of L0, L
′
0. The language L0 is defined as L0 = (B0)∗. The language L′0528

is defined from the quantifier-free Boolean formula ϕ. Recall that by hypothesis ϕ is in529

conjunctive normal form: ϕ =
∧

j≤k ϕj were ϕi is a disjunction of literals. For all j ≤ k, we530

let Cj ⊆ B0 = X ∪X as the following alphabet:531

Given x ∈ X, we have x ∈ Cj , if and only x is a literal in the disjunction ϕj .532

Given x ∈ X, we have x ∈ Cj , if and only ¬x is a literal in the disjunction ϕj .533

Finally, we define L′0 = C1C2 · · ·Ck.534

Construction of Li, L
′
i for i ≥ 1. We assume that Li−1, L

′
i−1 are defined and describe Li535

and L′i. We shall use the two following languages in the construction:536

Ti = (#ixi(Bi−1 \ {xi})∗$xi)∗ and Ti = (#ixi(Bi−1 \ {xi})∗$xi)∗537

The definition of Li, L
′
i from Li−1, L

′
i−1 now depends on whether the quantifierQi is existential538

or universal.539

If Qi is an existential quantifier (i.e. Qi = ∃):540

Li = (#i(xi + xi)Li−1$(xi + xi))∗#i

L′i = (#i(xi + xi)L′i−1$(xi + xi))∗#i$
(
Ti#i + Ti#i

)541

If the Qi is an universal quantifier (i.e. Qi = ∀):542

Li = (#i(xi + xi)Li−1$(xi + xi))∗#i

L′i = Ti#i$(#i(xi + xi)L′i−1$(xi + xi))∗#i$Ti#i
543

Finally, LΨ, L
′
Ψ are defined as the languages Ln, L

′
n ⊆ (Bn)∗. It is straightforward to544

verify from the definition, than given Ψ as input, one may compute NFAs for LΨ and L′Ψ in545

LogSpace. Consequently, it remains to prove that this construction is the desired reduction.546

We do so in the following proposition.547

CVIT 2016

23:14 The complexity of separation for levels in concatenation hierarchies

I Proposition 20. For every quantified Boolean formula Ψ, Ψ is true if and only if LΨ is548

not ST[3/2]-separable from L′Ψ.549

Proposition 20 is proved by considering a stronger result which states properties of all550

the languages Li, L
′
i used in the construction of LΨ, L

′
Ψ (the argument is an induction on i).551

While we postpone the detailed proof to the full version of the paper, let us provide a sketch552

which presents this stronger result.553

Proof of Proposition 20 (sketch). Consider a quantified Boolean formula Ψ. Moreover, let554

B0, . . . , Bn and Li, L
′
i ⊆ (Bi)∗ as the alphabets and languages defined above. The key idea555

is to prove a property which makes sense for all languages Li, L
′
i. In the special case when556

i = n, this property implies Proposition 20.557

Consider 0 ≤ i ≤ n. We write Ψi for the sub-formula Ψi := Qi xi · · ·Q1 x1 ϕ (with558

the free variables xi+1, . . . , xn). In particular, Ψ0 := ϕ and Ψn := Ψ. Moreover, we call559

“i-valuation” a sub-alphabet V ⊆ Bi such that,560

1. #1, . . . ,#i, $ ∈ V and x1, x1, . . . , xi, xi ∈ V , and,561

2. for every j such that i < j ≤ n, one of the two following property holds:562

xj ∈ V and xj 6∈ V , or,563

xj 6∈ V and xj ∈ V .564

Clearly, an i-valuation corresponds to a truth assignment for all variables xj such that j > i565

(i.e. those that are free in Ψi): when the first (resp. second) assertion in Item 2 holds, xj566

is assigned to > (resp. ⊥). Hence, abusing terminology, we shall say that an i-valuation V567

satisfies Ψi if Ψi is true when replacing its free variables by the truth values provided by V .568

Finally, for 0 ≤ i ≤ n, if V ⊆ Bi is an i-valuation, we let [V] ⊆ V ∗ as the following569

language. Given w ∈ V ∗, we have w ∈ [V] if and only if for every j > i either xj ∈ alph(w)570

or xj ∈ alph(w) (by definition of i-valuations, exactly one of these two properties must hold).571

Proposition 20 is now a consequence of the following lemma.572

I Lemma 21. Consider 0 ≤ i ≤ n. Then given an i-valuation V , the two following properties573

are equivalent:574

1. Ψi is satisfied by V .575

2. Li ∩ [V] is not ST[3/2]-separable from L′i ∩ [V].576

Lemma 21 is proved by induction on i using standard properties of the polynomial closure577

operation (see [18] for example). The proof is postponed to the full version of the paper. Let578

us explain why the lemma implies Proposition 20.579

Consider the special case of Lemma 21 when i = n. Observe that V = Bn is an n-valuation580

(the second assertion in the definition of n-valuations is trivially true since there are no j581

such that n < j ≤ n). Hence, since Ψ = Ψn and LΨ, L
′
Ψ = Ln, L

′
n, the lemma yields that,582

1. Ψ is satisfied by V (i.e. Ψ is true).583

2. LΨ ∩ [V] is not ST[3/2]-separable from L′Ψ ∩ [V].584

Moreover, we have [V] = (Bn)∗ by definition. Hence, we obtain that Ψ is true if and only if585

L is not ST[3/2]-separable from L′ which concludes the proof of Proposition 20. J586

5.2 The level two587

For the level two, there is a gap between the lower and upper bound that we are able to588

prove. Specifically, we have the following theorem.589

I Theorem 22. ST[2]-separation is in EXPTime and PSpace-hard for both NFAs and monoids.590

T. Place and M. Zeitoun 23:15

Similarly to what happened with ST[3/2], the EXPTime upper bound is obtained by591

building on the techniques used in the previous section. Proving PSpace-hardness is achieved592

using a reduction from ST[3/2]-separation (which is PSpace-hard by Theorem 19). The593

reduction is much simpler than what we presented for ST[3/2] above. It is summarized by594

the following proposition.595

I Proposition 23. Consider an alphabet A and H,H ′ ⊆ A∗. Let B = A ∪ {#, $} with596

#, $ 6∈ A, L = #(H ′#(A∗$#)∗)∗H#(A∗$#)∗ ⊆ B∗ and L′ = #(H ′#(A∗$#)∗)∗ ⊆ B∗. The597

two following properties are equivalent:598

1. H is ST[3/2]-separable from H ′.599

2. L is ST[2]-separable from L′.600

Proposition 23 is proved using standard properties of the polynomial and Boolean closure601

operations. The argument is postponed ot the full version of the paper. It is clear than602

given as input NFAs for two languages H,H ′, one may compute NFAs for the languages603

L,L′ defined Proposition 23 in LogSpace. Consequently, the proposition yields the desired604

LogSpace reduction from ST[3/2]-separation for NFAs to ST[2]-separation for NFAs. This605

proves that ST[2]-separation is PSpace-hard for NFAs (the result can then be lifted to monoids606

using Corollary 6) since ST[2] is a variety).607

6 Conclusion608

We showed several results, all of them raising new questions. First we proved that for many609

important classes of languages (including all positive varieties), the complexity of separation610

does not depend on how the input languages are represented. A natural question is whether611

the technique can be adapted to encompass more classes. In particular, one may define612

more permissive notions of positive varieties by replacing closure under inverse image by613

weaker notions. For example, many natural classes are length increasing positive varieties:614

closure under inverse image only has to hold for length increasing morphisms (i.e., morphisms615

α : A∗ → B∗ such that |α(w)| ≥ |w| for every w ∈ A∗). For example, the levels of another616

famous concatenation hiearchy, the dot-depth [1] (whose basis is {∅, {ε}, A+, A∗}) are length617

increasing positive varieties. Can our techniques be adapted for such classes? Let us point618

out that there exists no example of natural class C for which separation is decidable and619

strictly harder for NFAs than for monoids. However, there are classes C for which the question620

is open (see for example the class of locally testable languages in [10]).621

We also investigated the complexity of separation for levels 1/2 and 1 in finitely based622

concatenation hierarchies. We showed that when the alphabet is fixed, the problems are623

respectively in NL and P for any such hierarchy. An interesting follow-up question would624

be to push these results to level 3/2, for which separation is also known to be decidable in625

any finitely based concatenation hierarchy [9]. A rough analysis of the techniques used in [9]626

suggests that this requires moving above P.627

Finally, we showed that in the famous Straubing-Thérien hierarchy, ST[3/2]-separation628

is PSpace-complete and ST[2]-separation is in EXPTime and PSpace-hard. Again, a natural629

question is to analyze ST[5/2]-separation whose decidability is established in [9].630

References631

1 Janusz A. Brzozowski and Rina S. Cohen. Dot-depth of star-free events. Journal of632

Computer and System Sciences, 5(1):1–16, 1971.633

CVIT 2016

23:16 The complexity of separation for levels in concatenation hierarchies

2 Sang Cho and Dung T. Huynh. Finite automaton aperiodicity is PSPACE-complete. The-634

oretical Computer Science, 88(1):99 – 116, 1991.635

3 Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular636

languages by subsequences and suffixes. In Proceedings of the 40th International Colloquium637

on Automata, Languages, and Programming (ICALP’13), pages 150–161. Springer-Verlag,638

2013.639

4 James Alexander Green. On the structure of semigroups. Annals of Mathematics, 54(1):163–640

172, 1951.641

5 Tomás Masopust. Separability by piecewise testable languages is PTIME-complete. The-642

oretical Computer Science, 711:109–114, 2018.643

6 Jean-Éric Pin. The dot-depth hierarchy, 45 years later. In The Role of Theory in Computer644

Science - Essays Dedicated to Janusz Brzozowski, pages 177–202, 2017.645

7 Jean-Éric Pin. Mathematical foundations of automata theory. In preparation, 2018. URL:646

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf.647

8 Jean-Eric Pin and Howard Straubing. Monoids of upper triangular Boolean matrices. In648

Semigroups. Structure and Universal Algebraic Problems, volume 39 of Colloquia Mathem-649

atica Societatis Janos Bolyal, pages 259–272. North-Holland, 1985.650

9 Thomas Place. Separating regular languages with two quantifier alternations. Unpublished,651

a preliminary version can be found at https://arxiv.org/abs/1707.03295, 2018.652

10 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by loc-653

ally testable and locally threshold testable languages. In Proceedings of the 33rd IARCS An-654

nual Conference on Foundations of Software Technology and Theoretical Computer Science,655

FSTTCS’13, pages 363–375, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum656

fuer Informatik.657

11 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by658

piecewise testable and unambiguous languages. In Proceedings of the 38th International659

Symposium on Mathematical Foundations of Computer Science, MFCS’13, pages 729–740.660

Springer-Verlag, 2013.661

12 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. In662

Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on Computer663

Science Logic (CSL’14) and the 29th Annual ACM/IEEE Symposium on Logic in Computer664

Science (LICS’14), pages 75:1–75:10. ACM, 2014.665

13 Thomas Place and Marc Zeitoun. The tale of the quantifier alternation hierarchy of first-666

order logic over words. SIGLOG News, 2(3):4–17, 2015.667

14 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Lo-668

gical Methods in Computer Science, 12(1), 2016.669

15 Thomas Place and Marc Zeitoun. Adding successor: A transfer theorem for separation and670

covering. Unpublished, a preliminary version can be found at http://arxiv.org/abs/671

1709.10052, 2017.672

16 Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation673

hierarchy on words. Unpublished, a preliminary version can be found at https://arxiv.674

org/abs/1404.6832, 2017.675

17 Thomas Place and Marc Zeitoun. Separation for dot-depth two. In Proceedings of the 32th676

Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS’17), pages 202–213.677

IEEE Computer Society, 2017.678

18 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of679

Computing Systems (ToCS), 2018. Selected papers from CSR’17.680

19 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information681

and Control, 8:190–194, 1965.682

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://arxiv.org/abs/1707.03295
http://arxiv.org/abs/1709.10052
http://arxiv.org/abs/1709.10052
http://arxiv.org/abs/1709.10052
https://arxiv.org/abs/1404.6832
https://arxiv.org/abs/1404.6832
https://arxiv.org/abs/1404.6832

T. Place and M. Zeitoun 23:17

20 Imre Simon. Piecewise testable events. In 2nd GI Conference on Automata Theory and683

Formal Languages, pages 214–222, 1975.684

21 Howard Straubing. A generalization of the schützenberger product of finite monoids. The-685

oretical Computer Science, 13(2):137–150, 1981.686

22 Denis Thérien. Classification of finite monoids: The language approach. Theoretical Com-687

puter Science, 14(2):195–208, 1981.688

CVIT 2016

23:18 The complexity of separation for levels in concatenation hierarchies

A Appendix to Section 3689

In this appendix, we present the missing proofs for the statements of Section 3.690

A.1 Proof of Proposition 3691

We start with Proposition 3 which is used to build morphisms recognizing the languages we692

associate to NFAs and tagging pairs. Let us recall the statement.693

I Proposition 3. Given a NFA A = (A,Q, δ, I, F) and a compatible tagging P of size n, one694

may compute in LogSpace a monoid morphism α : (A ∪E)∗ →M recognizing L[A, P] and695

such that |M | ≤ n+ |A| × n2 × (|Q|2 + 2).696

Let P = (τ : E∗ → T,G) (n = |T |). We construct the morphism α : (A ∪ E)∗ → M697

recognizing L[A, P] ⊆ (A∪E)∗. That it has size |M | ≤ n+ |A| × n2 × (|Q|2 + 2) and can be698

computed in LogSpace is immediate from the construction.699

Recall that L[A, P] is defined from an intermediary language K[A, P] ⊆ (A× T)∗ which700

is recognized by the NFA A[P]. We first prove the following preliminary result about K[A, P]701

which uses the fact that, by construction, all transitions in A[P] are labeled by distinct702

letters in A× T .703

I Lemma 24. The language K[A, P] is recognized by a morphism β : (A× T)∗ → N such704

that monoid N has size |N | ≤ |Q|2 + 2.705

Proof. Recall that A[P] = (A × T,Q, δ[P], I, F) where δ[P] is obtained by relabeling the706

transition ofA. We letN = Q2∪{0N , 1N} and equipN with the following multiplication. The707

elements 0N and 1N are respectively a zero and a neutral element. For (q1, r1), (q2, r2) ∈ Q2,708

we define,709

(q1, r1) · (q2, r2) =
{

(q1, r2) if r1 = q2
0N otherwise710

We now define a morphism β : (A× T)∗ → N . Given (a, t) ∈ A× T , we know by definition711

that there exists at most one transition in δ[P] whose label is (a, t). Therefore, either there712

is no such transition and we let β((a, t)) = 0N or there exists exactly one pair (q, r) ∈ Q2
713

such that (q, (a, t), r) ∈ δ[P] and we define β((a, t)) = (q, r). One may now verify that β714

recognizes L(A[P]) = K[A, P]. J715

Let us briefly recall how L[A, P] ⊆ (A ∪E)∗ is defined from K[A, P]. We have a map716

µ : (AE∗)∗ → (A×T)∗ defined as follows. Consider w ∈ (AE∗)∗. Since A∩E = ∅, w admits717

a unique decomposition w = a1w1 · · · anwn with a1, . . . , an ∈ A and w1, . . . , wn ∈ E∗. We718

define, µ(w) = (a1, τ(w1)) · · · (an, τ(wn)). Finally, recall that,719

L[A, P] = E∗ · µ−1(K[A, P]) ⊆ E∗(AE∗)∗ = (A ∪E)∗720

We may now define the morphism α : (A ∪ E)∗ → M . We let β : (A × T)∗ → N as the721

morphism given by Lemma 24. Consider the following set M :722

M = T ∪ (T ×N ×A× T)723

Note that since |N | ≤ |Q|2 + 2, we do have |M | ≤ n+ |A| × n2 × (|Q|2 + 2) as desired. We724

equip M with the following multiplication. Since M is defined as a union there are two kinds725

of elements which means that we have to consider four cases:726

T. Place and M. Zeitoun 23:19

If t, t′ ∈ T , then their multiplication as element of M is the one in T , i.e. tt′.727

If t ∈ T and (t1, s, a, t2) ∈ T ×N ×A× T , we let,728

t · (t1, s, a, t2) = (tt1, s, a, t2)
(r, t1, s, a, t2) · t = (t1, s, a, t2t)

729

If (t1, s, a, t2), (t′1, s′, a′, t′2) ∈ T ×N ×A× T , we let,730

(t1, s, a, t2) · (t′1, s′, a′, t′2) = (t1, sβ((a, t2t′1))s′, a′, t′2)731

One may verify that this multiplication is associative and that 1T ∈ T is a neutral element732

for M . Finally, we define a morphism α : (A ∪ E)∗ → M as follows. For a ∈ A, we let733

α(a) = (1T , 1N , a, 1T) ∈ T ×N ×A×T and for b ∈ E, we let α(b) = τ(b) ∈ T . The following734

fact can be verified from the definition of α.735

I Fact 25. Consider a word u ∈ (A ∪E)∗. Then, one of the two following properties holds:736

1. u ∈ E∗ and α(u) = τ(u) ∈ T .737

2. u = u0u1au2 with u0 ∈ E∗, u1 ∈ (AE∗)∗, a ∈ A and u2 ∈ E∗ and we have,738

α(u) = (τ(u0), β(µ(u1)), a, τ(u2))739

It remains to verify that α recognizes L[A, P]. Since K[A, P] is recognized by β, we have740

H ⊆ N such that K[A, P] = β−1(H). We define H ′ ⊆M as the following set:741

H ′ =
{
{(t1, s, a, t2) ∈ T ×N ×A× T | sβ((a, t2)) ∈ H} if 1N 6∈ H
{(t1, s, a, t2) ∈ T ×N ×A× T | sβ((a, t2)) ∈ H} ∪ T if 1N ∈ H

742

Since L[A, P] = E∗ · µ−1(K[A, P]) by definition, it can be verified from Fact 25 that743

L[A, P] = α−1(H ′) which concludes the proof.744

A.2 Proof of Proposition 4745

We first recall Proposition 4.746

I Proposition 4. Let C,D be quotienting lattices such that D extends C. Consider two NFAs747

A1 and A2 over some alphabet A and let P be a compatible tagging that fools D. Then, L(A1)748

is C(A)-separable from L(A2) if and only if L[A1, P] is D(A ∪E)-separable from L[A2, P].749

We fix A1 = (A,Q1, δ1, I1, F1) and A2 = (A,Q2, δ2, I2, F2) for the proof. Moreover, we750

let P = (τ : E∗ → T,G) as the tagging pair which fools D.751

There are two directions to prove. First, we assume that L(A1) is C-separable from752

L(A2). We prove that L[A1, P] is D-separable from L[A2, P]. Note that this direction is753

independent from the hypothesis that P fools D. Let K ∈ C(A) be a separator for L(A1)754

and L(A2): L(A1) ⊆ K and L(A2) ∩K = ∅. Consider the morphism γ : (A ∪ E)∗ → A∗755

defined by γ(a) = a for a ∈ A and γ(b) = ε for b ∈ E. Since D is an extension of C, we756

have γ−1(K) ∈ D(A ∪E) by definition. Moreover, it is straightforward to verify from the757

definitions of γ, L[A1, P] and L[A2, P] that γ−1(K) separates L[A1, P] from L[A2, P] which758

concludes this direction of the proof.759

Assume now that L[A1, P] is D-separable from L[A2, P]. We show that L(A1) is C-760

separable from L(A2). Let K ∈ D(A ∪E) which separates L[A1, P] from L[A2, P]. Clearly,761

K ∈ Bool(D)(A∪E). Moreover, since D is a quotienting lattice, one may verify that Bool(D)762

is a quotienting Boolean algebra (quotients commute with Boolean operations). Therefore,763

CVIT 2016

23:20 The complexity of separation for levels in concatenation hierarchies

it follows from standard results about quotienting Boolean algebras that there exists a764

morphism α : (A ∪ E)∗ → M into a finite monoid M which recognizes K and such that765

every language recognized by α belongs to Bool(D) (it suffices to choose α as the “syntactic766

morphism” of K, see [7] for details). By definition of α and since P fools D, we get the767

following fact.768

I Fact 26. There exists s ∈ M such that for every t ∈ G, we have wt ∈ E∗ satisfying769

α(wt) = s and τ(wt) = t.770

Let u = wt ∈ E∗ for some arbitrary t ∈ G and consider the morphism λu : A∗ → (A∪E)∗771

defined by γ(a) = au ∈ (A ∪ E)∗ for every a ∈ A. Finally, we let K ′ = λ−1
u (K). Since772

K ∈ D(A ∪E) and D is an extension of C, it is immediate that K ′ ∈ C(A). We now show773

that K ′ separates L(A1) from L(A2) which concludes the argument.774

We concentrate on proving that L(A1) ⊆ K ′. That L(A2)∩K ′ = ∅ is showed symmetric-775

ally and left to the reader. Consider some word v = a1 · · · an ∈ L(A1). We show that v ∈ K ′.776

By definition of L[A1, P], it is straightforward to verify that there exists t1, . . . , tn ∈ G777

(each depending on the whole word v) such that a1wt1 · · · anwtn
∈ L[A1, P]. Moreover, by778

definition in Fact 26, we know that α(wt) = α(u) = s for every t ∈ G. Consequently, we get,779

α(a1wt1 · · · anwtn
) = α(a1u · · · anu) = α(λu(v))780

Since α recognizes L[A1, P] which contains a1wt1 · · · anwtn , it follows that λu(v) ∈ L[A1, P]781

as well. Hence, since L[A1, P] ⊆ K, we obtain that λu(v) ∈ K. Finally, this yields782

v ∈ λ−1
u (K) = K ′, finishing the proof.783

A.3 Proof of Lemma 5784

We first recall the statement of Lemma 5.785

I Lemma 5. Let C be a positive variety. Then, C is an extension of itself. Moreover, if786

Bool(C) 6= REG, then C is smooth.787

We fix the positive variety C for the proof. Clearly, C is an extension of itself since positive788

varieties are closed under inverse image by definition. We now assume that Bool(C) 6= REG789

and show that C is smooth: given as input k ∈ N, one may compute in LogSpace (with respect790

to k) a tagging of rank at least k and which fools C. We describe how to construct a tagging791

of rank k and size polynomial in k, that it can be computed in LogSpace is straightforward792

to verify and left to the reader. Furthermore, we consider the special case when k = 2h for793

some h ≥ 1 (when k is not of this form, it suffices to consider the least h such that k ≤ 2h).794

The construction is based on the following preliminary lemma.795

I Lemma 27. There exist constants `,m ∈ N such that for every h ≥ 1, there exists a796

morphism γ : B∗ → T and F ⊆ T such that,797

1. B ≤ h× `, |T | ≤ mh and |F | ≥ 2h.798

2. for every alphabet A and every morphism α : (A ∪B)∗ →M into a finite monoid M , if799

all languages recognized by α belongs to Bool(C)(A ∪B), then, there exists s ∈M , such800

that for every t ∈ T , we have wt ∈ B∗ which satisfies α(wt) = s and τ(wt) = t.801

Before we prove Lemma 27, let us use it to finish the construction of smooth taggings.802

We fix h ≥ 1 and build a tagging of rank 2h and size polynomial in 2h. Let γ : B∗ → T and803

F ⊆ T be as defined in Lemma 27. We fix some binary encoding of the alphabet B over the804

T. Place and M. Zeitoun 23:21

two letter alphabet E given by the morphism η : B∗ → E∗: for every b ∈ B, η(b) is distinct805

word of length log2(|B|).806

It is straightforward to build a morphism τ : E∗ → T ′ which recognizes the languages807

η(γ−1(s)) for s ∈ T . Moreover, one may verify that it is possible to do so with a monoid T ′808

of size polynomial with respect to |T | and |B|. Therefore the size of T ′ is polynomial with809

respect to 2h since B ≤ h ×m, |T | ≤ mh. One may now verify from our hypothesis on γ810

that there exists F ′ ⊆ T ′ such that |F ′| ≥ 2h and (τ : E∗ → T ′, F ′) fools C. This concludes811

the main proof. It remains to handle Lemma 27.812

Proof of Lemma 27. We start by proving the following fact which handles the special case813

when h = 1. We shall use this fact to define the constants `,m ∈ N.814

I Fact 28. There exists a morphism η : D∗ → R and G ⊆ R such that |G| = 2 and for every815

alphabet A and every morphism α : (A ∪D)∗ →M into a finite monoid M , if all languages816

recognized by α belongs to Bool(C)(A ∪ D), then, there exists s ∈ M , such that for every817

r ∈ R, we have wr ∈ D∗ which satisfies α(wr) = s and η(wt) = t.818

Proof. Since Bool(C) 6= REG, there exist an alphabet D and a regular language L ⊆ D∗ such819

that L 6∈ Bool(C)(D). Since L is regular, we have a morphism η : D∗ → R into a finite monoid820

R and XF ⊆ R such that L = η−1(X). Since L 6∈ Bool(C), it is not Bool(C)-separable from821

D∗ \ L = η−1(R \X). This implies the existence of r ∈ X and r′ ∈ R \X such that η−1(r)822

is not Bool(C)-separable from η−1(r′). We let G = {r, r′}. It remains to show the property823

described in the fact is satisfied.824

Consider a morphism α : (A∪D)∗ →M such that every language recognized by α belongs825

to Bool(C)(A dD). We have to exhibit s ∈M and w,w′ ∈ D∗ such that α(w) = α(w′) = s,826

η(w) = r and η(w′) = r′. Let β : D∗ → M be the restriction of α to D∗. Since Bool(C)827

is a variety, one may verify that every language recognized by β belongs to Bool(C)(D).828

Since η−1(r) ⊆ D∗ is not Bool(C)-separable from η−1(r′) ⊆ D∗, it follows that there exists829

s ∈ M such that β−1(s) intersects both η−1(r) and η−1(r′) (otherwise a separator in830

Bool(C) would be recognized by β). This exactly says that we have w,w′ ∈ D∗ such that831

β(w) = α(w) = β(w′) = α(w′) = s, η(w) = r and η(w′) = r′, finishing the proof. J832

We fix the tagging η : D∗ → R and G for the remainder of the argument. We define833

` = |D| and m = |R|. We may now prove the Lemma 27. We proceed by induction on h ≥ 1.834

The case h = 1 has already been handled with Fact 26. Assume now that h ≥ 2. Induction835

to h− 1 yields a morphism γ′ : (B′)∗ → T ′ and F ′ ⊆ T ′ satisfying the two assertions in the836

lemma. Recall that Bool(C) is a variety by hypothesis. Hence, it is closed under bijective837

renaming of letters and we may assume without loss of generality that D ∩ B′ = ∅. We838

define the alphabet B as the disjoint union B = B′ ∪D. Moreover, we let T as the monoid839

T = T ′ × R equipped with the componentwise multiplication. We let γ : B∗ → T as the840

morphism such for every b ∈ B,841

γ(b) =
{

(γ′(b), 1R) if b ∈ B′
(1T ′ , η(b)) if b ∈ D842

Finally, we let F = F ′ × G. Observe that by definition, we have |F | = 2 × |F ′| ≥ 2h.843

Moreover, |B| = |D|+ |B′| ≤ h× ` and |T | = |T ′| × |R| ≤ mh. It remains to show that the844

second assertion in Lemma 27 holds.845

We consider an alphabet and a morphism α : (A ∪B)∗ →M such that every language846

recognized by α belong to Bool(C)(A ∪B). We have to exhibit s ∈M such for every t ∈ F ,847

CVIT 2016

23:22 The complexity of separation for levels in concatenation hierarchies

there exists wt ∈ B∗ satisfying α(wt) = s and γ(wt) = t. By hypothesis on η and γ′, we have848

the following fact.849

I Fact 29. We have two elements sB′ , sD ∈M which satisfy the following properties:850

for every t′ ∈ F ′, we have wt′ ∈ (B′)∗ such that α(wt′) = sB′ and γ′(wt′) = t′.851

for every r ∈ G, we have wr ∈ D∗ such that α(wr) = sD and η(wr) = r.852

Proof. We prove the existence of sB′ , the argument for sD is symmetrical. Recall that853

B = B′ ∪D and let β : (A∪B′)∗ →M be the restriction of α to (A∪B′)∗. Since Bool(C) is854

a variety, and all languages recognized by α belong to Bool(C)(A ∪ B), it straightforward855

to verify that all languages recognized by β belong to Bool(C)(A ∪ B′). Hence, since by856

hypothesis on γ′ : (B′)∗ → T ′ and F ′, we obtain sB′ ∈ M such that for every t′ ∈ F ′, we857

have wt′ ∈ (B′)∗ such that α(wt′) = β(wt′) = sB′ and γ′(wt′) = t′. J858

We define s = sB′sD. It remains to show that s satisfies the desired property. Consider859

t ∈ F = F ′ ×G. We have t = (t′, r) with t′ ∈ F ′ and r ∈ G. Let wt = wt′wr. By definition860

of γ, since wt′ ∈ (B′)∗ and wr ∈ D∗, we have,861

γ(wt) = γ(wt′)γ(wr) = (γ′(wt′), 1R) · (1T ′ , η(wr)) = (t′, 1R) · (1T ′ , r) = (t′, r) = t862

This concludes the proof. J863

A.4 Proof of Lemma 8864

We now prove Lemma 8. Let us first recall the statement.865

I Lemma 8. Let C be a finite quotienting Boolean algebra. For every n ∈ 1
2N, CE[n] is866

smooth and an extension of C[n].867

We fix the finite quotienting Boolean algebra C for the proof. We start by proving that868

CE[n] is smooth for every n ∈ 1
2N.869

Let k ∈ N, we describe a tagging of rank k. we let Tk = {t0, . . . , tk−1} as the monoid870

whose multiplication is defined by titj = ti+j mod k for i, j ≤ k − 1 (i.e. T is isomorphic to871

Z/kZ). We now consider the morphism τk : E∗ → Tk defined by β(0) = β(1) = t1 (i.e. τk872

counts the length of words modulo k). Clearly the tagging (τk : E∗ → Tk, Tk) has rank k873

and can be computed in LogSpace. Moreover, the following lemma can be verified from the874

definition of CE and that of concatenation hierarchies (the proof is left to the reader).875

I Lemma 30. For every k ∈ N and every n ∈ 1
2N, the tagging (τk : E∗ → Tk, Tk) fools876

CE[n].877

Altogether, we obtain that CE[n] is smooth for every n ∈ 1
2N. It remains to show that878

CE[n] is an extension of C[n] for every n ∈ 1
2N. Both conditions involved in extension are879

verified using induction on n (this amounts to proving that they are preserved by polynomial880

and Boolean closure). The arguments are straightforward and left to the reader.881

B Appendix to Section 4882

In this appendix we present the missing proofs of Section 4. Let us first take care of Lemma 10.883

Recall that in this section, an arbitrary alphabet A and a finite quotienting Boolean algebra884

C are fixed.885

T. Place and M. Zeitoun 23:23

B.1 Proof of Lemma 10886

Let us first recall the statement of Lemma 10887

I Lemma 10. Given two morphisms recognizing regular languages L1, L2 ⊆ A∗ as input,888

one may compute in LogSpace a C-compatible morphism which recognizes both L1 and L2.889

We let α1 : A∗ → M1 and α2 : A∗ → M2 as the morphisms recognizing L1 and L2.890

Recall that the relation ∼C associated to C is a congruence over A∗ for word concatenation891

(∼C compares words which belong to the same languages in C). Therefore, the quotient set892

A∗/∼C is a monoid (we write “•” for its multiplication) and the map w 7→ [w]C which maps893

each word to its ∼C-class is a monoid morphism.894

We letM = M1×M2×(A∗/∼C) as the monoid equipped with the componentwise multiplic-895

ation. Moreover, we let β : A∗ →M as the morphism defined by β(w) = (α1(w), α2(w), [w]C).896

Clearly, β recognizes both L1 and L2. Moreover, β is C-compatible: given s = (s1, s2, D) ∈M ,897

it suffices to define [s]C = D. It then immediate that the two axioms in the definition of898

C-compatibility are satisfied:899

Given w ∈ A∗ we [β(w)]C = [w]C .900

Given s, s′ ∈M [ss′]C = [s]C • [s′]C .901

Finally, it is clear that β ca be computed in LogSpace from α1 and α2.902

I Remark. It is important here that the alphabet A is fixed. This implies that the monoid903

A∗/∼C is a constant. When A is a parameter, it may not be possible to compute β in904

LogSpace (this depends on C).905

B.2 Proof of Proposition 12906

We actually prove a statement which is slightly stronger than Proposition 12 (this is required907

to use induction in the proof). It is as follows.908

I Proposition 31. Let h,m ∈ N be constants. Consider two C-compatible morphisms909

α : A∗ →M and β : A∗ → N and a good subset S ⊆ N . Given s ∈M and T ∈ 2N such that910

|T | ≤ m, one may test in NL with respect to |M | and |N | whether there exists an (α, β, S)-tree911

of operational height at most h and with root label (s, T).912

Clearly, Proposition 12 is the special case of Proposition 31 when m = 1. Hence, we may913

concentrate on proving Proposition 31.914

Consider two C-compatible morphisms α : A∗ → M and β : A∗ → N and a good915

subset S ⊆ N . Given h,m ∈ N, we shall write Xh,m ⊆ M × 2N for the set of all elements916

(s, T) ∈ M × 2N such that |T | ≤ m and (s, T) is the root label of an (α, β, S)-tree of917

operational height is a most h.918

We have to show that when h and m are fixed, one may test in NL with respect to |M |919

and |N | whether some input pair (s, T) ∈M ×2N belongs to Xh,m. We proceed by induction920

on h.921

When h = 0, (α, β, S)-trees of operational height 0 contain only leaves and binary922

nodes. Therefore, one may verify from the definition that their labels are always of the923

form (α(w), {β(w)}) for some w ∈ A∗. Consequently, the problem of deciding whether (s, T)924

belongs to Xh,m amounts to verifying that T is a singleton {t} and that there exists w ∈ A∗925

such that α(w) = s and β(w) = t. This is easily achieved in NL.926

We now assume that h ≥ 1. We introduce an auxiliary set Yh,m ⊆ M × 2N . Given927

(s, T) ∈M×2N , we have (s, T) ∈ Yh,m when |T | ≤ m and one of the two following conditions928

holds:929

CVIT 2016

23:24 The complexity of separation for levels in concatenation hierarchies

(s, T) ∈ Xh−1,m, or,930

(s, T) is the root label of an (α, β, S)-tree having operational height h and whose root is931

an S-operation node (i.e. the unique child of the root has operational height h− 1).932

By induction on h, we have the following lemma.933

I Lemma 32. Let s ∈ M and T ∈ 2N , one may test in NL with respect to |M | and |N |934

whether (s, T) ∈ Yh,m935

Proof. It suffices to verify that given as input (s, T) ∈ Yh,m such that |T | ≤ m, one may936

check in NL whether one of the two conditions in the definition of Yh,m is satisfied. Testing937

whether (s, T) ∈ Xh−1,m can be achieved in NL by induction on h − 1. For the second938

condition, we know that the two following properties are equivalent:939

(s, T) is the root label of an (α, β, S)-tree having operational height at h and whose root940

is an S-operation node.941

there exists an (α, β, S)-tree having operational height h− 1 whose root label (e, E) is an942

idempotent satisfying:943

e = s and T ⊆ E · {t ∈ S | [e]C = [t]C ∈ S} · E944

Since |T | ≤ m, it is straightforward to verify that the second assertion is satisfied if and only945

if E can be chosen such that |E| ≤ 2m (i.e. (e, E) ∈ Xh−1,2m). Hence, the second conditions946

can be checked in NL by induction which concludes the proof. J947

Moreover, the next lemma is immediate from the definition of (α, β, S)-trees of operational948

height h and a pigeon-hole principle argument.949

I Lemma 33. Let (s, T) ∈ M × 2N . Then, (s, T) ∈ Xh,m if and only if there exists950

` ≤ |M | × |N |m and ` elements (r1, T1), . . . , (r`, T`) ∈ Yh,m such that,951

s = r1 · · · r` and {t1, . . . , tm} ⊆ T1 · · ·T`952

It is now immediate from Lemma 32 and 33 that one may test in NL with respect to953

|M | and |N | whether some input pair (s, T) ∈M × 2N belongs to Xh,m. This concludes the954

proof.955

B.3 Proof of Proposition 13956

Let us first recall the statement of Proposition 13.957

I Proposition 13. Let h ∈ N be the J -depth of A∗/∼C. Consider two C-compatible958

morphisms α : A∗ → M and β : A∗ → N , and a good subset S ⊆ N . Then, for every959

(s, T) ∈M × 2N , the following properties are equivalent:960

1. (s, T) is the root label of some (α, β, S)-tree.961

2. (s, T) is the root label of some (α, β, S)-tree whose operational height is at most h.962

We fix h as the J -depth of A∗/∼C. Moreover, we let α : A∗ → M and β : A∗ → N963

as two C-compatible morphisms and fix S ⊆ N as a good subset. The direction 2) ⇒ 1)964

in Proposition 13 is trivial. Therefore, we concentrate on proving that 1) ⇒ 2). Given965

(s, T) ∈M ×2N and a (α, β, S)-tree T whose root label is (s, T), we explain how to construct966

a second tree with the same root label and whose operational height is bounded by h.967

For the proof, we call operational size of an (α, β, S)-tree the total number of operation968

nodes it contains (clearly, this number is always larger than the operational height). The969

result is a consequence of the following lemma.970

T. Place and M. Zeitoun 23:25

I Lemma 34. Consider an (α, β, S)-tree T and assume that it contains a branch with two971

distinct operation nodes x and x′ whose labels (s, T) and (s′, T ′) satisfy [s]C = [s′]C. Then,972

there exists a second tree T′ with strictly smaller operational size than T and with the same973

root label.974

Starting from an arbitrary (α, β, S)-tree T, one may use Lemma 34 recursively to build975

T′ which has the same label as T and such that for any two operation nodes x and x′ on976

the same branch of T′, their labels (s, T) and (s′, T ′) satisfy [s]C 6= [s′]C . Clearly, this tree977

T′ has operational height bounded by h (by definition of h as the J -depth of A∗/∼C). This978

concludes the proof for the implication 1)⇒ 2) in Proposition 13.979

We now concentrate on proving Lemma 34. We let T and x 6= x′ the nodes defined in the980

lemma. Since x, x′ are on the same branch, one is an ancestor of the other. By symmetry,981

we assume that x is an ancestor of x′. We let S as the subtree of T which is rooted in x. We982

let (s, T) as the label (s, T) = lab(S) = lab(x). We build a new tree S′ with the same label983

as S and strictly smaller operational size. It will then be simple to build the desired tree T′984

by replacing the subtree S with S′ in T.985

Given two nodes z, z′ of S, we write z < z′ to denote the fact that z is a (strict) ancestor986

of z′. By hypothesis, we have x < x′, hence we may consider the sequence of operations987

nodes which are between the two. We let x1, . . . , xk as the sequence of all nodes which satisfy988

the following properties:989

For all i, xi is an operation node.990

x = xk < · · · < x1 = x′.991

Note that since xk = x and x1 = x′, we have k ≥ 2. For all i ≥ 1, we let (fi, Ti) as label of xi.992

By definition of operation nodes, fi ∈M must be an idempotent. Moreover, (fk, Tk) = (s, T)993

is the label of S and we know by hypothesis that [f1]C = [fk]C . Finally, consider the unique994

child of x1 and let (e, E) be the label of this child (which is an idempotent of M × 2N since995

x1 is an operation node). Recall that by definition of operation nodes, we have e = f1 and996

T1 ⊆ E · {t ∈ S | [e]C = [t]C} · E.997

We now classify the nodes within S in several categories. We call backbone of S the path998

made of all (strict) ancestors of x1. Since xk is the root, there are k − 1 ≥ 1 operation nodes999

on the backbone (the nodes x2, . . . , xk). Furthermore, we call lower nodes all nodes within1000

the subtree rooted in x1 (including x1). We denote by m the number operation nodes which1001

are lower nodes. Finally, all nodes which are neither backbone nor lower nodes are called1002

side nodes. Observe that any side node z has a closest ancestor y on the backbone which has1003

to be a binary node. We say that z is a left (resp. right) side node when it belongs to the1004

subtree whose root is the left (resp. right) child of y. Finally, we associate a rank to each1005

side node z: the rank of z is the smallest i ≤ k such that xi is an ancestor of z (i must exist1006

since xk is the root). For all i ≤ k, we write `i (resp. ri) the number of operation nodes1007

which are left (resp. right) side nodes of rank i. We illustrate these definitions in Figure 1.1008

Observe that by definition, backbone nodes, lower nodes and side nodes account for all1009

nodes in the tree. Thus, we have the following fact.1010

I Fact 35. The total number of operation nodes in S is,1011

k − 1 +m+ `1 + · · · `k + r1 + · · ·+ rk1012

Essentially, the desired tree S′ is built by removing all backbone nodes from S and1013

replacing them with binary nodes. Thus, we obtain a tree S′ whose operational size is1014

m+ `1 + · · · `k + r1 + · · ·+ rk which is strictly smaller than that of S since k − 1 ≥ 1. We1015

use an inductive construction which is formalized in the following lemma.1016

CVIT 2016

23:26 The complexity of separation for levels in concatenation hierarchies

xk

x3

x2

x1

Lower nodes

B
ac
kb

on
e

Le
ft

sid
e
no

de
s

of
ra
nk

2
Le

ft
sid

e
no

de
s

of
ra
nk

3

R
ig
ht

sid
e
no

de
s

of
ra
nk

3

Operation
Binary

Figure 1 Classification of the nodes in S (here, there are no right side nodes of rank 2).

I Lemma 36. For every i ≤ k, there exist two (α, β, S)-trees Ui and Vi of labels (ui, Ui)1017

and (vi, Vi) with operational heights `1 + · · · + `i and r1 + · · · + ri respectively. Moreover,1018

there exist u′i, v′i ∈M satisfying the following two conditions:1019

1. For q ∈ {ui, u
′
i} and r ∈ {vi, v

′
i}, fi = qer.1020

2. Ti ⊆ UiE · {t ∈ S | [t]C = [ev′ifiu
′
ie]C} · EVi.1021

Before we show Lemma 36, we use it to build the desired tree S′ and finish the proof1022

of Lemma 34. Recall that we need S′ to have label lab(S) = (s, T) = (fk, Tk). We apply1023

Lemma 36 in the special case when i = k. This yields two (α, β, S)-trees Uk and Vk with1024

labels (uk, Uk) and (vk, Vk) which have operational heights `1 + · · · + `i and r1 + · · · + ri.1025

Moreover, we let u′k, v′k ∈M which satisfy the two assertions in the lemma.1026

It follows from the first assertion in Lemma 36 that ukevk = v′keu
′
k = fk = s. This implies1027

the following fact.1028

I Fact 37. [e]C = [ev′kfku
′
ke]C.1029

Proof. By definition of C-compatible morphisms we have,1030

[ev′kfku
′
ke]C = [e]C • [v′k]C • [fk]C • [u′k]C • [e]C1031

Therefore, since [fk]C = [e]C , it suffices to prove that, [e]C = [e]C • [v′k]C • [e]C • [u′k]C • [e]C .1032

By the first assertion in Lemma 36, we have e = fk = u′kev
′
k. Hence, [e]C = [u′k]C •[e]C •[v′k]C .1033

Moreover, since e is idempotent of M , [e]C = [ee]C = [e]C • [e]C is an idempotent of A∗/∼C .1034

This yields,1035

[e]C = [e]C • [u′k]C • [e]C • [v′k]C • [e]C
[e]C = ([e]C • [u′k]C)ω

• [e]C • ([v′k]C • [e]C)ω

[e]C = [e]C • ([v′k]C • [e]C)ω

[e]C = [e]C • [v′k]C • [e]C • ([v′k]C • [e]C)ω−1

1036

T. Place and M. Zeitoun 23:27

We may now replace the second copy of [e]C in the above with [e]C • [u′k]C • [e]C • [v′k]C • [e]C1037

which yields,1038

[e]C = [e]C • [v′k]C • [e]C • [u′k]C • [e]C • ([v′k]C • [e]C)ω
1039

Finally, since [e]C = [e]C • ([v′k]C • [e]C)ω, this yields [e]C = [e]C • [v′k]C • [e]C • [u′k]C • [e]C as1040

desired. J1041

In view of Fact 37 and the second assertion in Lemma 36, we obtain that,1042

Tk ⊆ UkE · {t ∈ S | [t]C = [e]C} · EVk (1)1043

Finally, we have a tree of root label (e, E) whose operational size is m− 1: the child of x1.1044

Hence, using one operation node, we may build a tree of operational size m whose root label1045

is:1046

(e, E · {t ∈ S | [t]C = [e]C})1047

Finally, by (1), we may combine this tree with Uk and Vk using two binary nodes to get a1048

tree S′ whose root label is:1049

(s, T) = (fk, Tk) = (ukevk, Tk)1050

By definition, this tree S′ has operational size m+m+ `1 + · · ·+ `k +r1 + · · ·+rk. As desired,1051

this is strictly smaller than S (its operational size is k− 1 +m+ `1 + · · · `k + r1 + · · ·+ rk by1052

Fact 35 and k − 1 ≥ 1). This terminates the proof of Lemma 34.1053

It now remains to prove Lemma 36. We proceed by induction on i. When i = 1,1054

since x1 is an operation node whose unique child has label (e, E), we have f1 = e and1055

T1 ⊆ E · {t ∈ S | [e]C = [t]C} · E. We define both U1 and V1 as the same tree made of a1056

single leaf whose label is (1M , {1N}) = (α(ε), {β(ε)}). It is then simple to verify that the1057

two assertions in the lemma are satisfied for u′1 = v′1 = 1M .1058

We now assume that i ≥ 2. By definition, xi has a unique child whose label is an1059

idempotent (fi, Fi) such that,1060

Ti ⊆ Fi · {t ∈ S | [fi]C = [t]C} · Fi1061

We use the following fact to choose our new trees Ui,Vi.1062

I Fact 38. There exist two (α, β, S)-trees P and Q whose operational sizes are respectively1063

bounded by `i and ri and whose labels (p, P) and (q,Q) satisfy the following two properties,1064

fi = p · fi−1 · q1065

Fi ⊆ PTi−1Q1066

Proof. We build P (resp. Q) by combining all subtrees made of left (resp. right) side nodes1067

of rank i into a single one using binary nodes only. In the degenerate case when there are no1068

left (resp. right) side nodes P (resp. Q) is a single leaf with label (1M , {1N}).1069

Let us describe this construction in more details when the set of left and right side nodes1070

of rank i are nonempty Consider all nodes between xi and xi−1 (which are all binary by1071

definition). For each such node, one child is an ancestor of xi−1 (or xi−1 itself) and the other1072

is a side node. We define,1073

xi < zh1 < · · · < z1 < xi−1 as all binary nodes whose left children are side nodes (in1074

particular these children and all their descendants are left side nodes of rank i).1075

CVIT 2016

23:28 The complexity of separation for levels in concatenation hierarchies

xi < z′h2
< · · · < z′1 < xi−1 as all binary nodes whose right children are side nodes (in1076

particular these children and all their descendants are right side nodes of rank i).1077

We may now define P and Q. We start with P. For all j ≤ h1, we let (pj , Pj) as the label of1078

the left child of zj . Clearly, one may combine all subtrees rooted in the left children of the1079

zj with binary nodes into a single one whose label is,1080

(p, P) = (ph1 , Ph1) · · · · · (p1, P1)1081

By definition, the operational size of P is `i: the sum of those for the subtrees we have1082

combined (we only added binary nodes). Symmetrically, one may build Q of operational size1083

ri whose label is,1084

(q,Q) = (q1, Q1) · · · · · (qh2 , Qh2)1085

where (qj , Qj) is the label of the right child of z′j for all j ≤ h2. One may now verify from1086

the definition that the two assertions in the fact are satisfied. J1087

We are now ready to define our new trees Ui and Vi. We first use induction to obtain1088

two trees Ui−1 and Vi−1 of labels (ui−1, Ui−1) and (vi−1, Vi−1) which satisfy the conditions1089

of Lemma 36 for i− 1. We define,1090

Ui as the tree of label (ui, Ui) = (p · ui−1, PUi−1) obtained by combining P and Ui−11091

with a single binary node.1092

Vi as the tree of label (vi, Vi) = (vi−1 · q, Vi−1S) obtained by combining Vi−1 and Q1093

with a single binary node.1094

It remains to prove that this definition for the trees Ui and Vi satisfies the conditions1095

in Lemma 36. By definition, the operational size of Ui is the sum of that of P (i.e. `i by1096

definition in Fact 38) with that ofUi−1 (i.e. `1+· · · `i−1 since we obtainedUi−1 by induction).1097

This exactly says that the operational size of Ui is `1 + · · · `i as desired. Symmetrically, one1098

may verify that the operational size of Vi is r1 + · · ·+ ri.1099

We now have to find u′i, v′i ∈M which satisfy the two assertions in the lemma. Since we1100

obtained Ui−1 and Vi−1 by induction, we also have u′i−1, v
′
i−1 ∈ L which satisfy these two1101

assertions for i− 1. We define,1102

u′i = pfi−1u
′
i−1 and v′i = v′i−1fi−1q1103

It remains to verify that the two assertions in Lemma 36 hold for this choice of u′i, v′i.1104

We begin with the first one.1105

Assertion 1. We have four equalities to verify. Since the argument is similar for all four, we1106

concentrate on fi = uievi and fi = u′iev
′
i whose proofs encompass all arguments. By Fact 38,1107

we know that fi = pfi−1q. Moreover, since fi−1 = ui−1evi−1 by the inductive definition of1108

ui−1 and vi−1, we get,1109

fi = pui−1evi−1q = uievi1110

Furthermore, fi−1 is idempotent. Thus, fi = pfi−1q = p(fi−1)3q and since by construction1111

of u′i−1 and v′i−1, we have fi−1 = u′i−1ev
′
i−1, we obtain,1112

fi = pfi−1u
′
i−1ev

′
i−1fi−1q = u′iev

′
i1113

T. Place and M. Zeitoun 23:29

Assertion 2. We finish with the second assertion which is the most involved. In particular,1114

this is where we use the fact that S is good. We need to show that,1115

Ti ⊆ UiE · {t ∈ S | [t]C = [ev′ifiu
′
ie]C} · EVi1116

We start with a simple fact.1117

I Fact 39. For any (s, T) ∈ M × 2N which is the label of an (α, β, S)-tree, we have1118

T ⊆ {t ∈ S | [t]C = [s]C}.1119

Proof. This is immediate by induction on the height of (α, β, S)-trees using the hypothesis1120

that S is good. J1121

We now start the proof. By definition, (fi, Ti) is the label of the operation node xi whose1122

child has label (fi, Fi). Hence, Ti ⊆ Fi · {t ∈ S | [t]C = [fi]C} · Fi and it follows from the1123

second item in Fact 38 that,1124

Ti ⊆ PTi−1Q · {t ∈ S | [t]C = [fi]C} · PTi−1Q1125

The result is now a consequence of the two following inclusions:1126

PTi−1Q ⊆ UiE · {t ∈ S | [t]C = [ev′i]C}
PTi−1Q ⊆ {t ∈ S | [t]C = [u′ie]C} · EVi

(2)1127

Indeed, one may combine these two inequalities with the previous one using the hypothesis1128

that S is good to obtain the desired inclusion:1129

Ti ⊆ UiE · {t ∈ S | [t]C = [ev′i]C} · {t ∈ S | [t]C = [fi]C} · {t ∈ S | [t]C = [u′ie]C} · EVi

⊆ UiE · {t ∈ S | [t]C = [ev′ifiu
′
ie]C} · EVi

1130

It remains to prove the two inequalities in (2). As they are based on symmetrical arguments,1131

we concentrate on the first one and leave the other to the reader. Since we built Ui−1 and1132

Vi−1 with induction, we have,1133

Ti−1 ⊆ Ui−1E · {t ∈ S | [t]C = [ev′i−1fi−1u
′
i−1e]C} · EVi−11134

By Fact 39, E ⊆ {t ∈ S | [t]C = [e]C} and Vi−1 ⊆ {t ∈ S | [t]C = [vi−1]C}. Hence, using the1135

fact that S is good, we may simplify the above inclusion as follows:1136

Ti−1 ⊆ Ui−1E · {t ∈ S | [t]C = [ev′i−1fi−1u
′
i−1evi−1]C}1137

Since u′i−1 and vi−1 were built by induction, we know that u′i−1evi−1 = fi−1. Hence, since1138

fi−1 is an idempotent,1139

Ti−1 ⊆ Ui−1E · {t ∈ S | [t]C = [ev′i−1fi−1]C}1140

Using Fact 39 again, we have Q ⊆ {t ∈ S | [t]C = [q]C}. Thus, using the hypothesis that S is1141

good together with the fact that v′i = v′i−1fi−1q by definition, this yields the following,1142

Ti−1Q ⊆ Ui−1E · {t ∈ S | [t]C = [ev′i−1fi−1q]C}
⊆ Ui−1E · {t ∈ S | [t]C = [ev′i]C}

1143

Finally, since Ui = PUi−1 by definition, we have1144

PTi−1Q ⊆ PUi−1E · {t ∈ S | [t]C = [ev′i]C}
⊆ UiE · {t ∈ S | [t]C = [ev′i]C}

1145

This conclude the proof of Lemma 36.1146

CVIT 2016

23:30 The complexity of separation for levels in concatenation hierarchies

C Appendix to Section 51147

This section provides the missing proofs in Section 5. We start by introducing additional1148

terminology and preliminary results that we shall need to present these proofs.1149

C.1 Stratifications1150

We present a stratification of ST[3/2] = Pol(AT) into finite quotienting lattices. It was1151

introduced in [17]. We refer the reader to [17] for the proofs of the statements presented1152

here.1153

For any natural number k ∈ N, we define a finite quotienting lattice Polk(AT) ⊆ Pol(AT).1154

The definition uses induction on k:1155

When k = 0, we simply define Pol0(AT) = AT.1156

When k ≥ 1, we define Polk(AT) as the smallest lattice which contains Polk−1(AT) and1157

such for any L1, L2 ∈ Polk−1(AT) and any a ∈ A,1158

L1aL2 ∈ Polk(AT)1159

One may verify from the definitions that for every k ∈ N, Polk(AT) is a finite quotienting1160

lattice and that Polk(AT) ⊆ Polk+1(AT). Moreover, by definition of Pol(AT), we have,1161

ST[3/2] = Pol(AT) =
⋃
k≥0

Polk(AT)1162

Given any alphabet A, we associate preorder relations to the strata Polk(AT). For every1163

k ∈ N and u, v ∈ A∗, we write u 6k v when the following condition is satisfied,1164

For every L ∈ Polk(AT)(A), u ∈ L⇒ v ∈ L1165

It is immediate by definition that 6k is a preorder relation on A∗. The key point is that we1166

may use it to characterize separability for Pol(AT) = ST[3/2].1167

I Lemma 40. Let A be an alphabet and L,L′ ⊆ A∗ two languages. Then, the two following1168

properties are equivalent:1169

1. L is not ST[3/2]-separable from L′.1170

2. For every k ∈ N, there exists w ∈ L and w′ ∈ L′ such that w 6k w
′.1171

Moreover, we may also use 6k to characterize separability for BPol(AT) = ST[2].1172

I Lemma 41. Let A be an alphabet and L,L′ ⊆ A∗ two languages. Then, the two following1173

properties are equivalent:1174

1. L is not ST[2]-separable from L′.1175

2. For every k ∈ N, there exists w ∈ L and w′ ∈ L′ such that w 6k w
′ and w′ 6k w.1176

We finish the presentation with three properties of the relations 6k. The first one is1177

simple and states that they are compatible with word (this is because the strata Polk(AT)1178

are closed under quotients).1179

I Lemma 42. Let A be an alphabet and k ∈ N. For every u1, u2; v1, v2 ∈ A∗ such that1180

u1 6k v1 and u2 6k v2, we have u1u2 6k v1v2.1181

The second lemma holds because Pol(AT) is a sub-class of the star-free languages. It is1182

as follows.1183

T. Place and M. Zeitoun 23:31

I Lemma 43. Let A be an alphabet and k ∈ N. Consider h1, h2 ≥ 3k+1 − 1 and any u ∈ A∗.1184

Then, we have uh1 6k u
h2 .1185

Finally, the third lemma states a characteristic property of Pol(AT). The proof is rather1186

technical (see [17] for details). Given an alphabet A and a word w ∈ A∗, we write alph(w)1187

for the alphabet of w, i.e. the least sub-alphabet B ⊆ A such w ∈ B∗.1188

I Lemma 44. Let A be an alphabet and k ∈ N. Consider h, h1, h2 ≥ 3k+1 − 1 and any1189

u, v ∈ A∗ such that alph(v) ⊆ alph(u), we have uh 6k u
h1vuh2 .1190

C.2 Upper bound in Theorem 191191

We explain why ST[3/2]-separation is in PSpace for monoids (as usual, the result may then1192

be lifted to NFAs using Corollary 6). The argument reuses the results of Section 4 and1193

Appendix B, and the fact that ST[3/2] = Pol(AT). In particular, we adapt Theorem 11 to1194

this setting. We start with some preliminary observations about the class AT.1195

By definition of AT, it is straightforward to verify that the equivalence ∼AT compares1196

words with the same alphabet. For u, v ∈ A∗, we have u ∼AT v if and only if alph(u) = alph(v).1197

Therefore, the monoid A∗/∼AT corresponds to 2A (the set of sub-alphabets) equipped with1198

union as the multiplication. Moreover, for every w ∈ A∗, we have [AT]w = alph(w).1199

We shall consider AT-compatible morphisms. If α : A∗ → M is AT-compatible, given1200

s ∈ M , we shall write alph(s) for [AT]s. We reuse the notion of (α, β, S)-trees which we1201

introduced in Section 4 (here, we use them in the special case when C = AT). Consider an1202

alphabet A and two AT-compatible morphisms α : A∗ →M and β : A∗ → N . Given a pair1203

(s, T) ∈M × 2N , we say that (s, T) is alphabet safe when alph(s) = alph(t) for every t ∈ T .1204

The following lemma follows from definitions.1205

I Lemma 45. Consider an alphabet A and two AT-compatible morphisms α : A∗ →M and1206

β : A∗ → N . Moreover, let S ⊆ N be a good subset of N . Then, every (s, T) ∈ M × 2N
1207

which is the root label of some (α, β, S)-tree is alphabet safe.1208

Note that in the Appendix, the alphabet is one of our parameters which means that the1209

size of the monoid A∗/∼AT = 2A may not be constant. Consequently, building AT-compatible1210

morphisms is costly. Hence, we shall have to manipulate the construction explicitly. Given an1211

arbitrary morphism α : A∗ →M into a finite monoidM , we write αAT for the AT-compatible1212

morphism αAT : A∗ →M × 2A defined by αAT(w) = (α(w), alph(w)).1213

We may now adapt Theorem 11 to this setting. This is the key result for proving that1214

ST[3/2]-separation is in PSpace for monoids.1215

I Proposition 46. Consider two morphisms α : A∗ → M and β : A∗ → N . Moreover, let1216

αAT : A∗ →M × 2A and βAT : A∗ → N × 2A be the corresponding AT-compatible morphisms.1217

Finally, let S ⊆ N × 2A be a good subset of N × 2A for βAT.1218

Given an alphabet safe pair (s, T) ∈ (M × 2A) × 2N×2A , one may test in PSpace with1219

respect to |A|, |M | and |N | whether there exists an (αAT, βAT, S)-tree with root label (s, T).1220

Proof sketch. By Lemma 45, the set of possible labels for nodes in (αAT, βAT, S)-trees1221

has size at most |M | × 2|N | × 2|A| (this is the size of the set of all alphabet safe pairs1222

in (M × 2A) × 2N×2A). This observation yields an EXPTime least fixpoint algorithm for1223

computing the set of all root labels of (αAT, βAT, S)-tree with root label (s, T).1224

This can be improved to PSpace by observing that it suffices to consider (αAT, βAT, S)-1225

trees whose heights are polynomially bounded with respect to |A|, |M | and |N |. This is a1226

CVIT 2016

23:32 The complexity of separation for levels in concatenation hierarchies

simple consequence of Proposition 13 since the J -depth of A∗/∼AT = 2A is easily verified to1227

be |A|+ 1. J1228

Since ST[3/2] = Pol(AT), it is now simple to combine Theorem 14 with Proposition 461229

to get a PSpace algorithm for ST[3/2]-separation which concludes the proof.1230

C.3 Proof of Lemma 211231

Let us recall the statement of Lemma 21 (we refer the reader to Section 5 for the definition1232

of the relevant notations).1233

I Lemma 21. Consider 0 ≤ i ≤ n. Then given an i-valuation V , the two following properties1234

are equivalent:1235

1. Ψi is satisfied by V .1236

2. Li ∩ [V] is not ST[3/2]-separable from L′i ∩ [V].1237

We proceed by induction on 0 ≤ i ≤ n. Let us start with the base case i = 0. In that1238

case, Ψ0 is the quantifier-free formula ϕ. Consider some 0-valuation V ⊆ (B0)∗. One may1239

verify the following fact from the definitions of L′ ⊆ (B0)∗ and [V].1240

I Fact 47. The two following properties are equivalent:1241

1. Ψ0 is satisfied by V .1242

2. L′0 ∩ [V] 6= ∅.1243

Since L0 = (B0)∗ by definition, we have L0 ∩ [V] = [V]. Hence, it is immediate that1244

L0 ∩ [V] = [V] is not ST[3/2]-separable from L′0 ∩ [V] if and only if L′0 ∩ [V] 6= ∅. Combined1245

with Fact 47, this yields Lemma 21 in the case i = 0.1246

We now assume that i ≥ 1. There are two cases depending on whether the quantifier Qi1247

is existential or universal (this is expected since the definitions of Li and L′i depend on this1248

parameter). Since these two cases are similar, we handle the one when Qi is existential and1249

leaver the other to the reader. Consider an i-valuation V ⊆ (Bi)∗. We have to show that the1250

two following properties are equivalent:1251

1. Ψi is satisfied by V .1252

2. Li ∩ [V] is not ST[3/2]-separable from L′i ∩ [V].1253

Let us start with some terminology that we shall use for both directions. We let V⊥ and V>1254

as the following (i− 1)-valuations built from V :1255

V> = V \ {#i, xi} ⊆ Bi−1 and V⊥ = V \ {#i, xi} ⊆ Bi−11256

We may now prove the equivalence. There are two directions to show.1257

Direction 1) ⇒ 2). Assume that Ψi is satisfied by V . We show that Li ∩ [V] is not1258

ST[3/2]-separable from L′i ∩ [V]. We use Lemma 40: given an arbitrary k ∈ N, we have to1259

exhibit w ∈ Li ∩ [V] and w′ ∈ L′i ∩ [V] such that w 6k w
′. We fix k for the proof.1260

Recall that by hypothesis, we have Ψi = ∃xi Ψi−1. Hence, since Ψi is satisfied by V ,1261

the definitions yield that either V> or V⊥ satisfies Ψi−1. By symmetry, we assume that1262

we are in the former case: V> satisfies Ψi−1. By induction hypothesis this implies that1263

Li−1 ∩ [V>] is not ST[3/2]-separable from L′i−1 ∩ [V>]. Consequently, Lemma 40 yields1264

u ∈ Li−1 ∩ [V>] and u′ ∈ L′i−1 ∩ [V>] such that u 6k u
′. Note that by definition of V>, we1265

have u, u′ ∈ (Bi−1 \ {xi})∗. We define,1266

w = (#ixiu$xi)3k+1#i

y = (#ixiu$xi)3k+1#i$(#ixiu$xi)3k+1#i

w′ = (#ixiu
′$xi)3k+1#i$(#ixiu

′$xi)3k+1#i

1267

T. Place and M. Zeitoun 23:33

Clearly, alph(#i$) ⊆ alph(#ixiu$xi). Therefore, Lemma 44 yields that w 6k y. Moreover,1268

since u 6k u
′, we get from Lemma 42 that y 6k w

′. By transitivity, we get w 6k w
′. Finally,1269

one may verify from the definition of Li and L′i that w ∈ Li∩ [V] and w′ ∈ L′i∩ [V]. Therefore,1270

Lemma 40 yields that Li ∩ [V] is not ST[3/2]-separable from L′i ∩ [V] as desired.1271

Direction 2) ⇒ 1). We actually prove the contrapositive of this implication. Assuming1272

that Ψi is not satisfied by V , we show that Li ∩ [V] is ST[3/2]-separable from L′i ∩ [V].1273

Since Ψi = ∃xi Ψi−1, our hypothesis yields that Ψi−1 is neither satisfied by V> nor by V⊥.1274

Therefore, induction yields the two following properties:1275

1. Li−1 ∩ [V>] is ST[3/2]-separable from L′i−1 ∩ [V>]. We let K> ∈ ST[3/2] as a separator.1276

Note that since [V>] ∈ ST[3/2] (actually [V>] ∈ AT), we may assume without loss of1277

generality that K> ⊆ [V>].1278

2. Li−1 ∩ [V⊥] is ST[3/2]-separable from L′i−1 ∩ [V⊥]. We let K⊥ ∈ ST[3/2] as a separator.1279

Again, we may assume without loss of generality that K> ⊆ [V⊥].1280

We now define a language K ∈ ST[3/2] from K> and K⊥. We then show that it separates1281

Li ∩ [V] from L′i ∩ [V]. We let,1282

K =

{#i}
∪ A∗#i((A∗xiA

∗ ∩A∗xiA
∗) \ (A∗#iA

∗))#i

∪ #ixiK>$xi#i(A \ {xi})∗
∪ A∗#i((A∗xiA

∗) \ (A∗#iA
∗))#ixiK>$xi#i(A \ {xi})∗

∪ #ixiK⊥$xi#i(A \ {xi})∗
∪ A∗#i((A∗xiA

∗) \ (A∗#iA
∗))#ixiK⊥$xi#i(A \ {xi})∗

1283

It is straightforward to verify that K ∈ Pol(AT) = ST[3/2]. It remains to verify that K1284

separates Li ∩ [V] from L′i ∩ [V].1285

We first show that Li ∩ [V] ⊆ K. Consider a word w ∈ Li ∩ [V], we show that w ∈ K.1286

Recall that we have Li = (#i(xi + xi)Li−1$(xi + xi))∗#i. Consequently, there exists k ≥ 01287

and w1, . . . , wk ∈ (xi + xi)Li−1$(xi + xi) such that,1288

w = #iw1 · · ·#iwk#i1289

Observe first that if k = 0, then w = #i ∈ K and we are finished. Assume now that k = 1. By1290

definition of K, when wk ∈ (A∗xiA
∗ ∩A∗xiA

∗) \ (A∗#iA
∗), we also have w ∈ K. Therefore,1291

we assume that wk 6∈ (A∗xiA
∗ ∩ A∗xiA

∗) \ (A∗#iA
∗). Since wk ∈ (xi + xi)Li−1$(xi + xi),1292

the letter #i cannot occur in wk (by definition of Li−1). Hence, our hypothesis on wk implies1293

one of the two following properties holds:1294

xi ∈ alph(wk) and xi 6∈ alph(wk), or,1295

xi ∈ alph(wk) and xi 6∈ alph(wk).1296

By symmetry, we handle the case when the first property holds and leave the other to the1297

reader. We now assume that xi ∈ alph(wk) and xi 6∈ alph(wk).1298

There are two sub-cases depending on whether xi ∈ alph(w) or not. Assume first that1299

xi 6∈ alph(w). Since w1 ∈ (xi +xi)Li−1$(xi +xi), it follows that w1 = xiu$xi where u ∈ Li−1.1300

Moreover, recall that w ∈ [V] by definition which implies that u ∈ [V]. Moreover, alph(u)1301

contains neither xi nor #i (the latter holds by definition of Li−1). Altogether, this yields that1302

u ∈ Li−1 ∩ [V>] and therefore u ∈ K> by definition of K>. It follows that w1 ∈ xiK>$xi1303

which implies that w ∈ #ixiK>$xi#i(A \ {xi})∗ ⊆ K which concludes this case.1304

Finally, assume that xi ∈ alph(w). Therefore, there exists some factor wj for j ≤ k such1305

that xi ∈ alph(wj). We consider the rightmost one. Note that we have j < k by hypothesis1306

CVIT 2016

23:34 The complexity of separation for levels in concatenation hierarchies

on wk. By definition, we know that xi 6∈ alph(#iwj+1 · · ·#iwk#i). We may now reuse the1307

argument of the previous case to obtain that,1308

#iwj+1 · · ·#iwk#i ∈ #ixiK>$xi#i(A \ {xi})∗1309

Moreover, by definition of wj , we have wj ∈ (A∗xiA
∗) \ (A∗#iA

∗). Therefore, we obtain,1310

w ∈ A∗#i((A∗xiA
∗) \ (A∗#iA

∗))#ixiK>$xi#i(A \ {xi})∗ ⊆ K1311

This concludes the proof that Li ⊆ K.1312

It remains to show that L′i ∩ [V] ∩K = ∅. We proceed by contradiction and assume that1313

there exists w ∈ L′i ∩ [V] ∩K. Recall that by definition, we have1314

Ti = (#ixi(Bi−1 \ {xi})$xi)∗ and Ti = (#ixi(Bi−1 \ {xi})$xi)∗
L′i = (#i(xi + xi)L′i−1$(xi + xi))∗#i$

(
Ti#i ∪ Ti#i

)1315

Therefore, since w ∈ L′i, we have w = u#i$v#i with u ∈ (#i(xi + xi)L′i−1$(xi + xi))∗1316

and v ∈ Ti ∪ Ti. By symmetry, we shall assume that v ∈ Ti. We obtain that k, ` ≥ 0 and1317

u1, . . . , uk ∈ (xi + xi)L′i−1$(xi + xi) and v1, . . . , v` ∈ #ixi(Bi−1 \ {xi})$xi such that,1318

u = #iu1 · · ·#iuk and v = #iv1 · · ·#iv`1319

Since K is defined as a union, w belongs to some member of this union. We treat each1320

case independently. If w ∈ {#i}, we have a contradiction since w contains the letter $ by1321

definition.1322

Assume now that w ∈ A∗#i((A∗xiA
∗ ∩ A∗xiA

∗) \ (A∗#iA
∗))#i. If ` = 0, this means1323

that $ ∈ (A∗xiA
∗ ∩ A∗xiA

∗) \ (A∗#iA
∗) which is a contradiction. Otherwise ` ≥ 1 and1324

we obtain that v` ∈ (A∗xiA
∗ ∩ A∗xiA

∗) \ (A∗#iA
∗). This is also a contradiction since1325

v` ∈ #ixi(Bi−1 \ {xi})$xi and cannot contain the letter xi.1326

We now treat the case when w ∈ #ixiK>$xi#i(A \ {xi})∗. If k = 0, this implies that1327

$ ∈ xiK>$xi which is a contradiction. Otherwise, we have u1 ∈ xiK>$xi. Recall that1328

u1 ∈ (xi + xi)Li−1$(xi + xi). Therefore, u1 ∈ xiL
′
i−1$xi which implies that L′i−1 ∩K> 6= ∅.1329

Furthermore, since K> ⊆ [V>] by definition, we get that L′i−1 ∩ [V>] ∩ K> 6= ∅. This1330

contradicts the definition ofK>. One may handle the case when w ∈ #ixiK⊥$xi#i(A\{xi})∗1331

symmetrically using the definition of K⊥.1332

We turn to the case when w ∈ A∗#i((A∗xiA
∗) \ (A∗#iA

∗))#ixiK>$xi#i(A \ {xi})∗.1333

Since the factors vj cannot contain the letter xi, it follows that there exists j ≤ k such that1334

uj ∈ (A∗xiA
∗) \ (A∗#iA

∗) and,1335

#iuj+1 · · ·#iuk#i$v#i ∈ #ixiK>$xi#i(A \ {xi})∗1336

One may now reuse the argument of the previous case to derive a contradiction. Finally,1337

one may handle that case when w ∈ A∗#i((A∗xiA
∗) \ (A∗#iA

∗))#ixiK⊥$xi#i(A \ {xi})∗1338

symmetrically which concludes the proof.1339

C.4 Proof of Theorem 161340

It is straightforward to verify from Proposition 46 and Theorem 16 that ST[2]-separation is in1341

EXPTime for monoids (since ST[2] is a variety, this is also the case for NFAs by Corollary 6).1342

We focus on proving that ST[2]-separation is PSpace-hard for NFAs (again this is lifted to1343

monoids with Corollary 6). As explained in the main paper, this boils down to proving1344

Proposition 23.1345

T. Place and M. Zeitoun 23:35

I Proposition 23. Consider an alphabet A and H,H ′ ⊆ A∗. Let B = A ∪ {#, $} with1346

#, $ 6∈ A, L = #(H ′#(A∗$#)∗)∗H#(A∗$#)∗ ⊆ B∗ and L′ = #(H ′#(A∗$#)∗)∗ ⊆ B∗. The1347

two following properties are equivalent:1348

1. H is ST[3/2]-separable from H ′.1349

2. L is ST[2]-separable from L′.1350

We start with the direction 1)⇒ 2). Assume that H is ST[3/2]-separable from H ′ and1351

let K ⊆ A∗ be a separator in ST[3/2]. Consider the following language S ⊆ B∗:1352

S = B∗#K#B∗1353

Clearly, S ∈ ST[3/2] ⊆ ST[2]. Moreover, since L = #(H ′#(A∗$#)∗)∗H#(A∗$#)∗ and1354

H ⊆ K by definition of K, we have L ⊆ S. Finally, we have H ′ ∩K = ∅ by definition of1355

K. Moreover, L′ = #(H ′#(A∗$#)∗)∗. Since #, $ 6∈ A, given w ∈ L′, the only factors of w1356

belonging to #A∗# actually belong to #H ′#. Therefore, since K ⊆ A∗, we get L′ ∩K = ∅1357

which concludes the proof for the direction 1)⇒ 2).1358

We turn to the direction 2)⇒ 1). Actually, we prove the contrapositive. Assuming that1359

H is not ST[3/2]-separable from H ′, we show that L is not ST[2]-separable from L′. By1360

Lemma 41, we have to show that for every k ∈ N, there exists w ∈ L and w′ ∈ L′ such that1361

w 6k w
′ and w′ 6k w. we fix k for the proof.1362

Since H is not ST[3/2]-separable from H ′, Lemma 41 yields u ∈ H and u′ ∈ H ′ such1363

that u 6k u
′. We define,1364

w = #(u′#(u$#)3k+1)3k+1
u#(u$#)3k+1

w′ = #(u′#(u$#)3k+1)3k+11365

Since u ∈ H and u′ ∈ H ′, it is clear from the definitions of L and L′ that w ∈ L and w′ ∈ L′.1366

It remains to show that w 6k w
′ and w′ 6k w. We start with the former.1367

Since u 6k u
′, we may use Lemma 42 to obtain the following inequality:1368

w 6k #(u′#(u$#)3k+1
)3k+1

u′#(u$#)3k+1
= #(u′#(u$#)3k+1

)3k+1+1
1369

Moreover, it is immediate from Lemma 43 that we have,1370

#(u′#(u$#)3k+1
)3k+1+1 6k w

′
1371

By transitivity, this yields w 6k w
′.1372

We finish with the converse inequality. Clearly, alph(u#) ⊆ alph(u$#). Therefore,1373

Lemma 44 yields that,1374

(u$#)3k+1
6k (u$#)3k+1

u#(u$#)3k+1
1375

We may apply Lemma 42 to obtain,1376

#(u′#(u$#)3k+1
)3k+1

6k #(u′#(u$#)3k+1
)3k+1

u#(u$#)3k+1
1377

This exactly says that w′ 6k w, finishing the proof.1378

CVIT 2016

	Introduction
	Preliminaries
	Words and regular languages
	Classes of languages and separation
	Concatenation hierarchies

	Handling NFAs
	Generic theorem
	Applications

	Generic upper bounds for low levels in finitely based hierarchies
	Key sub-procedure
	Applications

	The Straubing-Thérien hierarchy
	The level 3/2
	The level two

	Conclusion
	Appendix to Section 3
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Lemma 5
	Proof of Lemma 8

	Appendix to Section 4
	Proof of Lemma 10
	Proof of Proposition 12
	Proof of Proposition 13

	Appendix to Section 5
	Stratifications
	Upper bound in Theorem 19
	Proof of Lemma 21
	Proof of Theorem 16

