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Abstract—The dot-depth hierarchy of Brzozowski and Cohen
is a classification of all first-order definable languages. It rose to
prominence following the work of Thomas, who established an
exact correspondence with the quantifier alternation hierarchy
of first-order logic: each level contains languages that can be
defined with a prescribed number of quantifier blocks. One of
the most famous open problems in automata theory is to obtain
membership algorithms for all levels in this hierarchy.

For a fixed level, the membership problem asks whether an
input regular language belongs to this level. Despite a significant
research effort, membership by itself has only been solved for
low levels. Recently, a breakthrough was made by replacing
membership with a more general problem called separation. This
problem asks whether, for two input languages, there exists
a third language in the investigated level containing the first
language and disjoint from the second. The motivation for
looking at separation is threefold: (1) while more difficult, it
is more rewarding; (2) being more general, it provides a more
convenient framework, and (3) all recent membership algorithms
are actually reductions to separation for lower levels.

This paper presents a separation algorithm for dot-depth 2.
A crucial point is that while dot-depth 2 is our main application,
we prove a much more general theorem. Indeed, dot-depth
belongs to a family of hierarchies which all share the same generic
construction process: starting from an initial class of languages
called the basis, one applies generic operations to build new levels.
We prove that for any such hierarchy whose basis is a finite class,
level 1 has decidable separation. In the special case of dot-depth,
this generic result can easily be lifted to level 2.

I. INTRODUCTION

Concatenation hierarchies. Many fundamental problems
about regular languages [19] led to considerable advances, not
only in automata theory but also in logic and algebra, thanks to
the discovery of deep connections between these areas that led
to the problems’ solutions. Even if some of these questions are
now well understood, a few others remain wide open, despite
a wealth of research work spanning several decades. This is
the case for the fascinating dot-depth problem [20], which has
two elementary formulations: a language-theoretic one and a
logical one. The language-theoretic one is the older of the
two. It takes its roots in a theorem of Schützenberger [30] (see
also [11], [9]), which gives an algorithm to decide whether a
regular language is star-free, i.e., can be expressed using union,
complement and concatenation, but without Kleene star. This
celebrated result was highly influential for three reasons:
• First, Schützenberger precisely formalized the objective

of “understanding the expressive power of a formalism”
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through a decision problem called membership, which asks
whether an input language belongs to a class under study.

• Next, he developed a methodology for tackling it, which he
applied to membership for the class of star-free languages.

• Finally, McNaughton and Papert [16] established that star-
free languages are exactly the first-order definable ones.

This work highlighted the robustness of the notion of regularity,
underlining the ties between automata theory and logic, and re-
vealing new links with algebra. It also established membership
as the reference problem for investigating classes of languages.

Schützenberger’s theorem led Brzozowski and Cohen to
define the dot-depth hierarchy [5], an infinite classification
of all star-free languages counting the number of alternations
between concatenations and complements needed to define
them. This definition is a particular instance of a generic
construction process, which was formalized later and named
concatenation hierarchies. Any such hierarchy has a single
parameter: a “level 0 class” (its basis). Then, one uses two
operations, polynomial and Boolean closure, to build two kinds
of classes: half levels 1

2 ,
3
2 ,

5
2 . . . and full levels 1, 2, 3 . . . .

Given a class of languages C, its polynomial closure Pol(C) is
the smallest class of languages containing C and closed under
union and marked product K,L 7→ KaL, where a is a letter.
Its Boolean closure Bool(C) is the smallest class containing C

and closed under union and complement. For any full level n,
the next half and full levels are built as follows:
• Level n+ 1

2 is the polynomial closure of level n.
• Level n+ 1 is the Boolean closure of level n+ 1

2 .
Thus, a concatenation hierarchy is fully determined by its basis.
In the paper, we are interested in hierarchies with a finite basis.

The most prominent hierarchies of this kind in the literature
are the dot-depth and the Straubing-Thérien hierarchy [33], [35].
They acquired this status when it was discovered [36], [17] that
each of them coincides with the quantifier alternation hierarchy
within an appropriate variant of first-order logic. These two
variants have the same overall expressiveness but slightly
different signatures (which impacts the properties that one can
define at a given level of their quantifier alternation hierarchies).

These correspondences motivated a research program to
solve membership for all levels of both hierarchies, thus also
characterizing the alternation hierarchies of first-order logic.
However, progress has been slow. The classes that were solved
for both variants are only level 1

2 [2], [22], level 1 [31], [14]
and level 3

2 [2], [22], [12]. See [10] for a survey. Following
these results, membership for level 2 remained open for a long
time and was named the “dot-depth two problem”.978-1-5090-3018-7/17/$31.00 ©2017 European Union



Separation. Recently [25], [23], solutions were found for levels
2, 5

2 and 7
2 . The key ingredient is a new problem stronger than

membership: separation, initially introduced in the context of
semigroup theory [1]. Rather than asking whether an input
language belongs to the class C under investigation, the C-
separation problem takes as input two languages, and asks
whether there exists a third one from C containing the first
and disjoint from the second. While the interest in separation
is recent, it has quickly replaced membership as the central
question. A first practical reason is that separation proved itself
to be a key ingredient in obtaining all recent membership results.
See [27] for an overview. A striking example is provided by
a crucial theorem of [25]. It establishes a generic reduction
from Pol(C)-separation to C-membership which holds for any
class C. Combined with a separation algorithm for level 3

2 and a
little extra work, this yields a membership algorithm for level 5

2 .
However, the main reason is deeper. The primary motivation

for considering such problems is to thoroughly understand
the classes under investigation. In this respect, while harder,
separation is also far more rewarding than membership. On one
hand, a membership algorithm for a class C only applies to
languages of C: it can detect them and build a description
witnessing membership. On the other hand, a separation
algorithm for C is universal: it applies to any language. Indeed,
one may view separation as an approximation problem: given
an input pair (L1, L2) one wants to over-approximate L1 by
a language in C, and L2 serves to specify what a satisfying
approximation is. This is why we look at separation: it yields
a more robust understanding of the classes than membership.

The state of the art for separation is the following: it was
shown to be decidable for levels 1

2 , 1, 3
2 and 5

2 in the Straubing-
Thérien hierarchy [8], [24], [25], [23]. These results can be
lifted to dot-depth using a generic transfer theorem [26]. Notice
the gap between levels 3

2 and 5
2 : no algorithm is known for

level 2. This is explained by the fact that obtaining separation
algorithms presents very different challenges for half levels
and for full levels. Indeed, it turns out that most separation
algorithms rely heavily on closure under marked concatenation,
which holds for half levels by definition, but not for full levels.

Contributions. Our main result is a separation algorithm for
level 2 in the Straubing-Thérien hierarchy. Furthermore, by
the aforementioned transfer theorem [26], this can be lifted to
separation for dot-depth 2. A crucial point is that this separation
result is actually an instance of a generic theorem, which applies
to any finite class C satisfying a few standard properties (namely
closure under Boolean operations and quotients). It states
that for such a class C, both Pol(C) and Bool(Pol(C)) have
decidable separation. This has two important consequences,

• In any hierarchy whose basis is such a class, levels 1
2

and 1 both have decidable separation.
• In the specific case of the Straubing-Thérien hierarchy, this

extends to levels 3
2 and 2, since they are also levels 1

2 and 1
in another concatenation hierarchy of finite basis [21].

Being generic, this approach yields separation algorithms for
a whole family of classes. Moreover, it serves to pinpoint the

key hypotheses which are critical in order to solve separation
for dot-depth 2. Let us also stress that we obtain new direct
proofs that separation is decidable for the levels 1 in the dot-
depth and Straubing-Thérien hierarchies. This is of particular
interest for dot-depth 1 since the previous solution was indirect,
as it relied on a transfer result from [26]. Moreover, while
the separation algorithm for level 2 in the Straubing-Thérien
hierarchy relies on a (nontrivial) generalization of the work
of [25] for level 3

2 , the arguments are new after this point.
Finally, our approach is amenable to complexity analysis.

Due to space limitations, we leave this development for further
work. Let us just outline here the main results. When the
alphabet is fixed, one obtains a generic PTIME upper bound for
both algorithms (i.e., for levels 1

2 and 1) if the inputs are given
by nondeterministic finite automata. When the alphabet is taken
into account, this upper bound still holds for levels 1

2 and 1 of
both the Straubing-Thérien and dot-depth hierarchies. While
this was known for the former [8], [24], this is a new result for
the latter. Finally, for levels 3

2 and 2 in the Straubing-Thérien
hierarchy, we obtain a PSPACE upper bound.
Organization. The paper is organized as follows. Section II
gives preliminary definitions. We introduce concatenation
hierarchies and state our generic separation theorem in Sec-
tion III. The remainder of the paper is devoted to its proof.
In Sections IV and V, we outline our general approach and
introduce the framework we use. Our algorithms for Pol(C)-
and Bool(Pol(C))-separation (when C is finite) are given
in Sections VI and VII, respectively. Finally, Section VIII
presents the main ideas used for proving the correctness of
our Bool(Pol(C))-separation algorithm. Due to lack of space,
some proofs are postponed to the full version of the paper.

II. PRELIMINARIES

In this section, we provide standard definitions for the objects
investigated in the paper and we state our main result.

A. Words, Languages and Classes
For the whole paper, we fix a finite alphabet A. We denote

by A∗ the set of all words over A, including the empty word ε.
We let A+ = A∗ \ {ε}. If u, v ∈ A∗ are words, we write u · v
or uv the word obtained by concatenating u and v.

A subset of A∗ is called a language. We denote the singleton
language {u} by u. It is standard to extend the concatenation
operation to languages: given K,L ⊆ A∗, we denote by KL
the language KL = {uv | u ∈ K and v ∈ L}. Moreover, we
will also consider marked concatenation, which is less standard.
Given K,L ⊆ A∗, a marked concatenation of K with L is a
language of the form KaL for some a ∈ A.

A class of languages is simply a set of languages. All classes
that we consider are included in the class of regular languages.
These are the languages that can be equivalently defined by
monadic second-order logic, finite automata or finite monoids.

B. Separation for Hierarchies of First-Order Languages
Our goal is to investigate classes corresponding to fragments

within the quantifier alternation hierarchy of first-order logic.
Let us recall these notions.



A word w ∈ A∗ may be viewed as a logical structure made of
a linearly ordered sequence of positions. Each position carries
a label in A and can be quantified. We denote by “<” the
(strict) linear order over these positions. We consider first-order
logic, denoted by FO(<), using the following predicates:

• For each a ∈ A, a unary predicate Pa selecting positions
labeled with an “a”.

• A binary predicate “<” for the linear order.

To every first-order sentence ϕ, one may associate the language
{w ∈ A∗ | w |= ϕ} of words that satisfy ϕ. Hence, FO(<)
defines a class of languages: the class of all languages that
can be defined using an FO(<) sentence. It is usual to abuse
notation and to denote this class by FO(<) as well.

One may classify FO(<) sentences by counting their number
of quantifier alternations. For n ∈ N, a sentence is said to be
Σn(<) (resp. Πn(<)) if its prenex normal form has either:

• Exactly n blocks of quantifiers, the leftmost one being
an “∃” (resp. a “∀”) block, or

• Strictly less than n blocks of quantifiers.

For example, a formula whose prenex normal form is

∃x1∃x2 ∀x3 ∃x4 ϕ(x1, x2, x3, x4) (ϕ quantifier-free)

is Σ3(<). In general, the negation of a Σn(<) sentence is
not a Σn(<) sentence (it is Πn(<)), and the corresponding
classes of languages are not closed under complement. It is
therefore relevant to define BΣn(<) sentences as Boolean
combinations of Σn(<) and Πn(<) sentences. This gives a
strict hierarchy of classes of languages [6] depicted in Figure 1,
where again, slightly abusing notation, each level denotes the
class of languages defined by the corresponding set of formulas.

Σ0 = Π0 = BΣ0

Σ1

Π1

BΣ1

Σ2

Π2
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(

(
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Fig. 1. Quantifier Alternation Hierarchy

As we explained, our objective is to obtain algorithms for the
separation problem associated to classes in this hierarchy. We
briefly recall it now. Let C be a class of languages. Given two
languages L0 and L1, we say that L0 is C-separable from L1

when there exists a third language K ∈ C such that L0 ⊆ K
and L1∩K = ∅. In that case, we say that K is a (C-)separator.

Remark 1. Observe that when C is not closed under com-
plement (for example when C = Σn(<) where n ≥ 1), the
definition is not symmetrical: L0 may be C-separable from L1

even when L1 is not C-separable from L0.

The separation problem for C is as follows:

INPUT: Two regular languages L0 and L1.
OUTPUT: Is L0 C-separable from L1?

Separation is a mathematical tool designed to investigate
classes of languages: given a fixed class C, obtaining a C-
separation algorithm usually requires a solid understanding of C.
In particular, a typical objective when considering separation is
to not only get an algorithm that decides it, but also a generic
method for computing a separator, when it exists.

For the hierarchy, separation algorithms are currently known
for FO(<) itself [28] and for the levels Σ1(<) [8], BΣ1(<) [8],
[24], Σ2(<) [25] and Σ3(<) [23]. As announced, a corollary
of our main result is an algorithm for BΣ2(<).

Theorem 2. Separation is decidable for BΣ2(<).

We actually prove a more general theorem, which establishes
that separation is decidable for several classes—BΣ2(<) being
just one among them. We present this theorem in Section III.

Remark 3. Together with the decidability of separation for
Σ3(<) [23], Theorem 2 is the most advanced result of this kind
for the hierarchy. While both proofs build on the ideas used
in [25] to decide Σ2(<)-separation, they do so in orthogonal
directions. As a result, they are very different. The reason is that
our techniques rely heavily on the concatenation operation, and
while Σ3(<) is closed under concatenation, BΣ2(<) is not.

Let us finish with an interesting corollary of Theorem 2. It
is standard to consider another quantifier alternation hierarchy,
called enriched hierarchy. It is associated to a variant of first-
order logic allowing the following additional predicates:
• “+1” interpreted as the successor relation,
• “min” and “max”, which are unary and select the leftmost

and rightmost positions in a word,
• “ε”, which is nullary and holds for the empty word only.

While adding these new predicates does not change FO(<) as
a whole (since they can be defined from “<”), this changes
the hierarchy, as defining them costs quantifier alternations.

We denote by Σn(<,+1) and BΣn(<,+1) the levels in this
enriched hierarchy. The languages in BΣn(<,+1) are called
the languages of dot-depth n (which explains the title of the
paper). It is known that for any level of the enriched hierarchy,
separation reduces to the same problem for the corresponding
level in the first hierarchy [26]. Hence, the decidability of
BΣ2(<,+1)-separation is a corollary of Theorem 2.

Corollary 4. Separation is decidable for BΣ2(<,+1).

III. A GENERAL SEPARATION THEOREM

As explained above, Theorem 2 is a corollary of general
statement, which applies to many classes. In this section, we
present this result and we connect it to Theorem 2.

A. Statement of the Main Result

Recall that classes we consider consist of regular languages
only. This will be understood from now on. Furthermore, our
results apply to classes satisfying standard closure properties:
• A lattice is a class of languages C closed under finite

union and intersection, and such that ∅ ∈ C and A∗ ∈ C.
• A Boolean algebra is a lattice closed under complement.



• We say that a class C is quotienting when it is closed
under quotients, i.e., when for all L ∈ C and all w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} and

Lw−1
def
= {u ∈ A∗ | uw ∈ L}

both belong to C.
Our generic theorem states that separation is decidable for

any class built from a finite quotienting Boolean algebra by
applying two operations (at most once for each operation):
polynomial and Boolean closure. Given a class C, its Boolean
closure Bool(C) is the smallest Boolean algebra containing C.
Moreover, the polynomial closure Pol(C) of C is the smallest
lattice containing C and closed under marked concatenation:

for all K,L ∈ Pol(C) and all a ∈ A, KaL ∈ Pol(C).

We shall write BPol(C) for Bool(Pol(C)). The following easy
fact entails that under mild hypotheses, being quotienting is
preserved under polynomial and Boolean closure.

Fact 5. Let C be a quotienting Boolean algebra. Then,
1) Pol(C) is a quotienting lattice and is closed under

concatenation and marked concatenation.
2) BPol(C) is a quotienting Boolean algebra.

Observe that in contrast to Pol(C), in general, BPol(C) is
not closed under concatenation. This should be emphasized,
as our techniques for solving separation rely on this operation:
Boolean closure is usually much harder to deal with than
polynomial closure. We can now state our main theorem.

Theorem 6. Let C be a finite quotienting Boolean algebra.
Then separation is decidable for both Pol(C) and BPol(C).

The proof of Theorem 6 spans the four remaining sections.
Before we present this proof, let us first give a few applications
of the theorem (such as the decidability of BΣ2(<)-separation).

B. Applications of the Main Result

Classes of the form Pol(C) and BPol(C) are important as
they serve to build natural hierarchies of classes of languages,
called concatenation hierarchies. Let us briefly recall what they
are (see [18], [22], [20], [34] for details). Each such hierarchy
depends on a single parameter: a quotienting Boolean algebra
of regular languages C, called its basis. Once the basis is
chosen, the construction is uniform. Languages are classified
into levels of two kinds: full levels (denoted by 0, 1, 2, . . . )
and half levels (denoted by 1

2 ,
3
2 ,

5
2 , . . . ):

• Level 0 is the basis (i.e., our parameter class C).
• Each half level n+ 1

2 , for n ∈ N, is the polynomial closure
of the previous full level, i.e., of level n.

• Each full level n+ 1, for n ∈ N, is the Boolean closure
of the previous half level, i.e., of level n+ 1

2 .

0 1
2 1 3

2 2 5
2

Pol

Bool

Pol

Bool

Pol

Fig. 2. A concatenation hierarchy

Hence, a reformulation of Theorem 6 is that for any
concatenation hierarchy whose basis is finite, separation is
decidable for its levels 1

2 and 1. There are two famous examples:
• The Straubing-Thérien hierarchy [33], [35], whose basis

is the class {∅, A∗}.
• The dot-depth hierarchy of Brzozowski and Cohen [5],

whose basis is the class {∅, {ε}, A+, A∗}.
It was shown [36], [17] that these two hierarchies correspond
respectively to the original and enriched quantifier alternation
hierarchies defined in the previous section: level n corresponds
to BΣn and level n + 1

2 to Σn+1. Actually, such correspon-
dences are not coincidental, as stated in the next proposition.

Proposition 7. For any quotienting Boolean algebra of regular
languages C, there is a natural set SC of first order predicates,
such that the corresponding quantifier alternation levels
BΣn(SC) and Σn+1(SC) are exactly levels n and n+ 1

2 , resp.,
in the concatenation hierarchy of basis C.

Proof sketch. For a word w = a1a2 · · · an (n ≥ 0, ai ∈ A)
and i, j ∈ {1, . . . , n}, we let w[i, j] be the word aiai+1 · · · aj .
Likewise, we write w[i, j[= w[i, j−1], w]i, j] = w[i+1, j] and
w]i, j[= w[i+ 1, j − 1]. For each language L ∈ C, we define
four predicates IL, PL, SL, WL. Assume that the interpretation
of the free variables x, y are i, j ∈ {1, . . . , n}, respectively.
Then,

• w |= IL(x, y) when w]i, j[ belongs to L.
• w |= PL(y) when w[1, j[ belongs to L.
• w |= SL(x) when w]i, n] belongs to L.
• w |= WL when w belongs to L.

In this notation, I stands for infix, P for prefix, S for suffix and
W for word. We denote by SC the signature consisting of the
predicates IL, PL, SL, WL (L ∈ C) in addition to < and Pa

(a ∈ A). Using arguments similar to the ones of [36], one can
verify that levels n and n+ 1

2 in the concatenation hierarchy
of basis C correspond respectively to the fragments BΣn(SC)
and Σn+1(SC) of first-order logic over this signature.

Theorem 6 already provides a new proof for the decidability
of BΣ1-separation, and in particular a new self-contained proof
of separation for BΣ1(<,+1), thus subsuming the nontrivial
decidability result for membership of Knast [14]. Regarding
the hierarchies, it actually proves more, as BΣ2(<) is also
level 1 in another concatenation hierarchy whose basis is finite:
let us denote by AT the class of languages consisting of all
Boolean combinations of languages A∗aA∗, for some a ∈ A.

Remark 8. Though this terminology is not standard, “AT”
stands for “alphabet testable”: L ∈ AT iff membership of a
word w in L depends only on the set of letters occurring in w.

The following lemma is a direct consequence of a result of [21].

Lemma 9. Σ2(<) = Pol(AT) and BΣ2(<) = BPol(AT).

It is easy to verify that AT is a finite quotienting Boolean
algebra. Hence, Theorem 2 is now an immediate consequence
of Lemma 9 and Theorem 6: BΣ2(<)-separation is decidable.



Remark 10. We also obtain from Lemma 9 that Σ2(<)-
separation is decidable, which reproves a result of [25]. In fact,
the proof that Pol(C)-separation is decidable is a (nontrivial)
generalization of the corresponding result in [25] for Σ2(<).
Moreover, since membership reduces to separation, we obtain
a proof for BΣ2(<)-membership based on new arguments.

IV. SEPARATION FOR BOOLEAN CLOSURES

We now start the proof of Theorem 6. An important remark is
that we focus on BPol(C)-separation: the algorithm for Pol(C)
is obtained as a byproduct. In this section we devise a general
approach to Bool(D)-separation when D is an arbitrary lattice.
We will develop it when D = Pol(C) in Sections VI to VIII.
The crux of this approach is to reduce Bool(D)-separation to
another decision problem (harder than separation, unfortunately)
for the simpler class D. We first present this reduction and
then explain how to tackle this new decision problem.

A. Generalized Separation

Let us fix a lattice D. Given an integer n ≥ 1, a tuple
(L1, . . . , Ln) of n languages is called a n-tuple. We define a
generalized notion of D-separation that applies to n-tuples (the
case n = 2 boils down to classical separation). Our goal is to
connect Bool(D)-separation to this generalized notion for D.

We start with a notation. Given an integer n ≥ 1, an n-tuple
(H1, . . . ,Hn) and a single language K, we write:

(H1, . . . ,Hn) ∩K def
= (H1 ∩K, . . . ,Hn ∩K).

We now generalize D-separation to n-tuples. Let (L1, . . . , Ln)
be an n-tuple. We use induction on n to define whether or not
(L1, . . . , Ln) is D-separable.
• If n = 1, (L1) is D-separable when L1 = ∅.
• If n ≥ 2, (L1, . . . , Ln) is D-separable when there exists
K ∈ D such that L1 ⊆ K and (L2, . . . , Ln) ∩K is D-
separable. We call K a (D-)separator of (L1, . . . , Ln).

Remark 11. For n = 2, we recover the classical notion:
(L1, L2) is D-separable iff there exists K ∈ D such that
L1 ⊆ K and L2 ∩K = ∅.

This generalized notion makes sense for any lattice D.
However, it is tailored to be used with those that are not closed
under complement as a way to investigate Bool(D)-separation.
Let us explain this reduction. We start with a simple observation:
long n-tuples are “easier” to separate than short ones.

Lemma 12. Let n ≥ m ≥ 1, let (L1, . . . , Ln) be an n-tuple
and i1, . . . , im ∈ N such that 1 ≤ i1 < i2 < · · · < im ≤ n. If
(Li1 , . . . , Lim) is D-separable, then so is (L1, . . . , Ln).

Given two languages H,L and p ≥ 1, we write (H,L)p

for the 2p-tuple built by concatenating p copies of (H,L)
(for example (H,L)3 = (H,L,H,L,H,L)). A particular
consequence of Lemma 12 is that for all p, the tuple (H,L)p+1

is “more likely” to be D-separable than (H,L)p. Hence, a
natural problem is to ask whether there exists p ≥ 1 such
that (H,L)p is D-separable. It turns out that this problem is
equivalent to Bool(D)-separation.

Theorem 13. Let D be a lattice and let L1, L2 be two
languages. The following properties are equivalent:

1) L1 is Bool(D)-separable from L2.
2) There exists p ≥ 1 such that (L1, L2)p is D-separable.

Theorem 13 applied to D = Pol(C) provides the intended re-
duction: for a finite quotienting Boolean algebra C, we are
now faced with a problem on Pol(C) instead of BPol(C)-
separation. Let us prove the direction 2)⇒ 1) (the converse
is postponed to the full version of the paper). Our approach
is constructive: one combines separators in D witnessing that
(L1, L2)p is D-separable for some p into a Bool(D)-separator
of L1 and L2.

Proof. Assume that (L1, L2)p is D-separable for some p ≥ 1.
Using induction on p, we prove that L1 is Bool(D)-separable
from L2. When p = 1, L1 is D-separable from L2 and since
D ⊆ Bool(D), the result is trivial. Assume that p ≥ 2. By
definition, we have K,K ′ ∈ D such that L1 ⊆ K, L2 ∩K ⊆
K ′ and (L1, L2)p−1∩K∩K ′ is D-separable. Using induction,
we then obtain a language G ∈ Bool(D) separating L1∩K∩K ′
from L2 ∩K ∩K ′. Consider the following language:

H = (K ∩G) ∪ (K \K ′).

Clearly, H ∈ Bool(D). We prove that H separates L1 from L2.
We begin with L1 ⊆ H . Let w ∈ L1, we prove that w ∈ H .

Clearly, w ∈ K since L1 ⊆ K. Moreover, either w ∈ K ′ and
therefore w ∈ K ∩G since L1 ∩K ∩K ′ ⊆ G, or w 6∈ K ′ and
therefore w ∈ K \K ′. Altogether, we conclude that w ∈ H .

It remains to prove that L2 ∩H = ∅. Let w ∈ L2, we prove
that w 6∈ H . There are two cases depending on whether w ∈ K.
If w 6∈ K, then clearly w 6∈ K ∩ G and w 6∈ K \K ′, hence
w 6∈ H . Otherwise, w ∈ L2∩K ⊆ K ′. Therefore, w 6∈ K \K ′
and w 6∈ K∩G since L2∩K∩K ′∩G = ∅ by the choice of G.
We conclude that w 6∈ H , which terminates the proof.

Now that Bool(D)-separation is reduced to a new problem
on the more manageable class D, we present our approach.

B. Non-separability and Alternating Pairs

Theorem 13 gives a means to tackle BPol(C)-separation by
reducing it to generalized separation for the simpler class
Pol(C). We now describe our strategy to solve this new
problem.

D-tied n-tuples. A first key point is that we shall actually
work with the complement of separation: we try to decide
whether languages are not BPol(C)-separable. We say that:
• An n-tuple (L1, . . . , Ln) is D-tied if it is not D-separable.
• A pair (L1, L2) is D-alternating if (L1, L2)p is D-tied

for all p ≥ 1.
Theorem 13 can then be reformulated as follows.

Corollary 14. Let D be a lattice and let L1, L2 be two
languages. The following properties are equivalent:

1) L1 is not Bool(D)-separable from L2.
2) (L1, L2) is D-alternating.



This new viewpoint is just symmetrical with the previous one.
However, it has the advantage that D-tied n-tuples have better
properties than D-separable n-tuples (see Section VI). This is
our motivation for now focusing on Item 2 of Corollary 14.
From input pairs to input multisets. A second key point
is that to decide whether two languages L1, L2 are Bool(D)-
separable, one never deals with L1, L2 alone. Instead, we work
with a finite multiset of languages L, built from L1, L2.

Remark 15. We speak of “multiset” of languages to allow
several copies of the same language in L. This is needed in
practice, see for example the languages Lq,r below.

Typically, if A is an automaton recognizing both L1 and L2

(thanks to two sets of accepting states), then we solve separation
for all pairs of languages of the form Lq,r = {w | q w−→ r}, for
q, r states of A. The benefit of doing so is that this multiset of
languages has an algebraic structure, upon which our separation
algorithms rely crucially. Therefore, we now consider as input
a whole finite multiset of languages L.

Motivated by these two key points, given a finite multiset
of languages L and an integer n ≥ 1, we introduce:
• Tn

D[L], the set of all n-tuples in Ln which are D-tied.
• AD[L], the set of all pairs in L2 which are D-alternating.

Our new goal is now to solve this problem for D = Pol(C):
INPUT: A finite multiset of languages L.

OUTPUT: The set AD[L].
Indeed, by Corollary 14 applied to D = Pol(C), this is
equivalent to computing pairs that are not BPol(C)-separable.

C. Computing Alternating Pairs: Proof Outline

To compute the set of all Pol(C)-alternating pairs from a
multiset L of languages, we design an algorithm in two steps.
Step 1: computing Pol(C)-tied tuples. We first obtain an
algorithm solving the following simpler problem:

INPUT: A finite multiset of languages L and n ≥ 1.
OUTPUT: The set Tn

Pol(C)[L].

Remark 16. The correctness proof is constructive in the
following sense. When a tuple (L1, . . . , Ln) is not computed
(i.e., is Pol(C)-separable), we have a generic method for
computing a separator in Pol(C).

Remark 17. The special case n = 2 is a Pol(C)-separation
algorithm. Thus, we get the first part of Theorem 6. Moreover,
by the previous remark, we also get a generic method for
building separators in Pol(C), when they exist.

Remark 18. By Theorem 13, this gives a semi-algorithm for
BPol(C)-separation as well as a generic method for computing
separators in BPol(C). If there exists p ≥ 1 such that (L1, L2)p

is Pol(C)-separable (i.e., not Pol(C)-tied), one may find it
with the above algorithm and compute a separator in Pol(C).
One may then use induction to build a separator of L1, L2 in
BPol(C) by following the proof of Theorem 13.

A point that will be crucial for Step 2 is that our algorithm is
recursive: for n ≥ 2, computing the Pol(C)-tied tuples in Ln

requires us to have computed those in Ln−1 beforehand (the
case n = 1 is simple, as (L) is Pol(C)-tied iff L 6= ∅).

Each induction step is based on a least fixpoint procedure.
For n ≥ 2, we compute the set of all Pol(C)-tied tuples in
Ln, first starting from a subset of “trivial” ones, and using
operations to add new ones until a fixpoint is reached. Again,
implementing one of these operations requires us to know all
Pol(C)-tied tuples in Ln−1 (this is where we use recursion).

Remark 19. While we only aim at computing Pol(C)-tied
tuples, our fixpoint computation requires us to compute more
information. This is not surprising as it happens in many
separation algorithms, as for FO(<) [28] or for Σ2(<) [25].

Remark 20. While the presentation is very different and the
generalization is nontrivial, the ideas used for this step are
built upon those used in [25] for solving Σ2(<)-separation
(which is a special case: Σ2(<) = Pol(AT) by Lemma 9).

Step 2: computing Pol(C)-alternating pairs. We present our
final algorithm, which computes all Pol(C)-alternating pairs
in an input multiset. By Corollary 14, this solves BPol(C)-
separation. The correctness of this procedure relies on a difficult
analysis of the least fixpoint procedure of Step 1. However,
the algorithm itself is simple, let us now describe it.

Let D = Pol(C). Recall that (L1, L2) being D-alternating
means (L1, L2)p being D-tied for every p ≥ 1. In particular,
a D-alternating pair is a D-tied 2-tuple: AD[L] ⊆ T2

D[L]. The
algorithm relies on a greatest fixpoint: it computes a decreasing
sequence of finite sets,

T2
D[L] = T0 ⊇ T1 ⊇ T2 ⊇ · · · ,

until a fixpoint is reached: Tp = Tp+1 entails AD[L] = Tp.
Since T2

D[L] can be computed from Step 1, it remains to
explain how to compute Ti+1 from Ti. We rely again on the
algorithm of Step 1, which computes inductively the set of
D-tied n-tuples in Ln from the set of D-tied (n− 1)-tuples
obtained at the previous step. In particular, to compute the set
T3
D[L] of D-tied 3-tuples, the algorithm is fed with T2

D[L]. To
compute Ti+1 from Ti, we feed the very same algorithm with
Ti ⊆ T2

D[L] instead of T2
D[L]. This produces a set of 3-tuples.

At last, we define Ti+1 as the set of pairs (L1, L2) of Ti such
that (L1, L2, L1) appears as one of these produced 3-tuples.

V. REDUCTION TO TAME AND C-COMPATIBLE INPUTS

Our general approach to separation decisively exploits the
fact that our input languages are regular. Here, we explain what
we gain from this assumption. Recall from the previous section
that in order to decide a separation problem, one actually
deals with a whole multiset of languages L built from the
inputs L1, L2 of our original separation question. One then
solves separability for all pairs of languages in L × L. The
special algebraic structure of L is what we gain from this
generalization, and it is crucial for our algorithms to work. In
this section, we present the structural properties of these sets.

Our algorithms are restricted to input multisets having two
special properties, of different importance. The first one appears



in most separation algorithms and was introduced in [29]:
our inputs must be tame. On the other hand, the second one
is specific to the classes that we consider (i.e., Pol(C) and
BPol(C) for some finite C): our inputs must be C-compatible.

We present these properties and explain why we may restrict
our algorithms to sets fulfilling them without loss of generality.

A. Tame Multisets

A multiset of languages is said to be tame when it has a
partial semigroup structure. Let us first define partial semi-
groups. These are sets S equipped with a partial multiplication
(i.e., st may not be defined for some s, t ∈ S). Moreover,
for all r, s, t ∈ S, the three following conditions must be
equivalent: a) rs and st are defined, b) (rs)t is defined and c)
r(st) is defined. In that case, (rs)t = r(st). Additionally, an
idempotent is any element e of S such that ee is defined and
equal to e. It is folklore that for any finite partial semigroup
there exists a number ω(S) (denoted ω when S is understood)
such for any s ∈ S, if ss is defined, then sω is idempotent.

Let L be a finite multiset of languages. A tame multiplication
for L is a partial semigroup multiplication “�” over L (we use
this notation to avoid confusion with language concatenation)
satisfying the following properties:
(1) For all L,L′ ∈ L, if L�L′ is defined, then LL′ ⊆ L�L′.
(2) For all H ∈ L and all words w ∈ H , if w can be

decomposed as w = uu′, then there exist L,L′ ∈ L such
that u ∈ L, u′ ∈ L′ and H = L� L′.

The multiset L is tame when it can be equipped with a
tame multiplication. When working with tame multisets, we
implicitly assume that we have the multiplication “�” in hand.
The notion is designed to capture the following typical example.

Example 21. Given a nondeterministic finite automaton A =
(Q, I, F, δ), let LA = {Lq,r | (q, r) ∈ Q2}, where Lq,r denotes
the language {w | q w−→ r}. Note that this is a multiset: if
(q, r) 6= (q′, r′), we count Lq,r and Lq′,r′ as two elements
in LA, even if they are the same language. This multiset is tame
for the following multiplication: for q, r, s, t ∈ Q, Lq,r � Ls,t

is undefined if r 6= s and equal to Lq,t if r = s.

B. C-compatible Multisets

We further restrict our algorithms to C-compatible inputs.
This notion depends on an arbitrary finite quotienting Boolean
algebra C that we fix for the definition. Contrary to tameness,
this notion is specific to separation for Pol(C) and BPol(C).

First note that one may associate a canonical equivalence
∼C over A∗ to C: two words are equivalent when they belong
to the same languages in C. Given w,w′ ∈ A∗,

w ∼C w
′ if and only if ∀L ∈ C, w ∈ L⇔ w′ ∈ L.

Given a word w, we denote by [w]C its ∼C-equivalence class.

Example 22. When C is the class AT of alphabet testable
languages, w ∼AT w

′ when w and w′ have the same alphabet
(the alphabet of w is the smallest B ⊆ A such that w ∈ B∗).
Hence, in that case, [w]AT corresponds to the alphabet of w.

Because C is both finite and a quotienting Boolean algebra,
the equivalence ∼C has the following convenient properties.

Lemma 23. The equivalence ∼C has finite index and the
languages of C are exactly the unions of equivalence classes.
Moreover, ∼C is a congruence for the concatenation operation
(if u ∼C u

′ and v ∼C v
′ then uv ∼C u

′v′).

We are now ready to define C-compatibility. Let L be any
finite multiset of languages. We say that L is C-compatible
when all L ∈ L satisfy the two following conditions:

1) L is non-empty.
2) L is included in some equivalence class of ∼C.
Observe that if L is C-compatible, then given any L ∈ L,

one can define the C-type of L as the unique equivalence class
containing L, denoted by [L]C. That is, [L]C = [w]C for any
word w ∈ L. Notice that in particular, L ⊆ [L]C ∈ C.

C. Reduction to Tame and C-Compatible Multisets

While our separation algorithms are restricted to inputs that
are both tame and C-compatible, it turns out that we may
always reduce the general case to this one. The reason stems
from the notion of extension, introduced in [29]. Given two
multisets of languages H and L, we say that H extends L
when any language in L is a union of languages in H: for any
language L ∈ L, there exists H′ ⊆ H with L =

⋃
H∈H′ H .

Lemma 24. Let D be a lattice and let H,L be two multisets of
languages. Assume that H extends L. Then, for any L1, L2 ∈ L,
the following are equivalent:

1) L1 is D-separable from L2.
2) For all H1, H2 ∈ H such that H1 ⊆ L1 and H2 ⊆ L2,

H1 is D-separable from H2.

Lemma 25. Given as input a finite multiset of regular
languages L, one may construct a finite tame and C-compatible
multiset H extending L.

Lemmas 24 and 25 are proved similarly as results of [29]
(the reduction to a tame set is essentially given in Example 21).

Remark 26. The construction in Lemma 25 entails a poly-
nomial blow-up in size. Consider L = {L1, . . . , Ln} and
assume that each Li is recognized by a nondeterministic finite
automaton Ai. Then, the size of the tame and C-compatible
multiset H extending L is bounded by (|A1|2+· · ·+|An|2)×|C|
(where |Ai| stands for the number of states in Ai).

In view of Lemmas 24 and 25, we may restrict ourselves
to tame and C-compatible multisets without loss of generality.
Indeed, in order to decide whether L1 is D-separable from L2

when L1, L2 are regular, one may proceed as follows:
1) Build a tame multiset H extending {L1, L2} (Lemma 25).
2) Decide D-separability for all pairs of languages in H×H.
3) The answer for L1 and L2 is then given by Lemma 24.
Therefore, we may now assume without loss of generality

that our input is a tame and C-compatible multiset L and that
our objective is to get an algorithm that decides generalized
Pol(C)-separability for all pairs in L× L.



VI. SOLVING GENERALIZED SEPARATION FOR Pol(C)

This section is devoted to the first step in our quest for a
BPol(C)-separation algorithm. Given a fixed finite quotienting
Boolean algebra C, our objective is to present an algorithm
taking as input a tame and C-compatible multiset L together
with n ≥ 1, and that outputs the set Tn

Pol(C)[L]. In particular,
the case n = 2 solves Pol(C)-separation.

As explained in Remark 19, we need to compute some extra
information in order to carry out this computation. Given an
arbitrary lattice D, we first present the notion of D-tied n-
join, which precisely encodes the needed information. Then,
we describe our algorithm which computes all D-tied n-joins,
when D = Pol(C).

A. D-tied Joins

Let us fix an arbitrary lattice D. As explained, in order to
inductively compute the set Tn

D[L] of D-tied n-tuples when
D = Pol(C), we actually need to compute more information.
To describe this information, we lift the notion of D-separability
to objects called n-joins. An n-join is a pair (H,H) where H
is a language and H is a finite set of n-tuples.

We say that an n-join (H,H) is D-separable when there
exists a finite set of languages K ⊆ D such that:
• H ⊆

⋃
K∈KK

• For all K ∈ K, there exists (H1, . . . ,Hn) ∈ H such that
(H1, . . . ,Hn) ∩K is D-separable.

Remark 27. Let us mention that this definition is inspired by
that of another problem: pointed covering, introduced in [29].

We say that K is a separating cover of (H,H). We
first explain the connection with separability for n-tuples.
It corresponds to the case where the set H is a singleton
{(H1, . . . ,Hn)}.

Lemma 28. Let n ≥ 1 and consider an (n + 1)-tuple
(L1, . . . , Ln+1). The two following properties are equivalent:

1) The (n+ 1)-tuple (L1, . . . , Ln+1) is D-separable.
2) The n-join (L1, {(L2, . . . , Ln+1)}) is D-separable.

Proof. If (L1, . . . , Ln+1) is D-separable, then there is a
separator K ∈ D. One may verify that (L1, {(L2, · · · , Ln+1)})
is D-separable for the separating cover K = {K} ⊆ D.

Conversely, assume that (L1, {(L2, · · · , Ln+1)}) is D-
separable and let K = {K1, . . . ,Km} ⊆ D be the separating
cover. One may verify that K = K1 ∪ · · · ∪ Km ∈ D is a
separator of (L1, . . . , Ln+1), which terminates the proof.

As for n-tuples, we mainly work with n-joins that are not
D-separable, which we call the D-tied n-joins. Moreover, if L
is a finite multiset of languages and n ≥ 1, we write JnD[L]
the set of all D-tied n-joins in L× 2L

n

.
Let us briefly recall our motivation for introducing n-

joins. What we want in Step 1 of our quest for a BPol(C)-
separation algorithm is a least fixpoint procedure computing
the set Tn+1

D [L] for every n ≥ 1. By Lemma 28, one may
view this set as a subset of JnD[L]. More precisely, Tn+1

D [L] is
the set of all (n+ 1)-tuples (L1, . . . , Ln+1) ∈ Ln+1 such that

(L1, {(L2, · · · , Ln+1)}) ∈ JnD[L]. It turns out that our fixpoint
computation requires us to compute the whole set JnD[L]. Even
though we are only interested in computing a strict subset of it,
namely Tn+1

D [L], the extra elements of JnD[L] may be required
as intermediaries in this computation.

We finish the section by presenting properties of the set
JnD[L] which are crucial in the algorithm. Two are generic to
all lattices D, one requires D to be a quotienting lattice, and
the final one is specific to the case D = Pol(C).

The first property states that there are always “trivial” n-
joins. Given n ≥ 1, we define Jntriv [L] ⊆ L× 2L

n

as the set
of all n-joins (S,S) such that the intersection of all languages
in (S,S) is nonempty. More precisely, (S,S) ∈ Jntriv [L] when
there exists w ∈ A∗ such that (1) the word w belongs to S,
and (2) for all (S1, . . . , Sn) ∈ S, the word w belongs to

⋂
i Si.

Lemma 29. Let n ≥ 1 and L be a finite multiset of languages.
Then, Jntriv [L] ⊆ JnD[L].

Proof. Let (S,S) ∈ Jntriv [L]. We prove that (S,S) is D-tied.
Consider K ⊆ D such that S ⊆

⋃
K∈KK, we have to

find K ∈ K such that (S1, . . . , Sn) ∩ K is D-tied for all
(S1, . . . , Sn) ∈ S. Let w be as defined above for (S,S). Since
w ∈ S, we have w ∈ K for some K ∈ K. Now, for all
(S1, . . . , Sn) ∈ S, we have w ∈

⋂
1≤i≤n(Si ∩K). This entails

that the n-tuple (S1, . . . , Sn) ∩K is D-tied.

Another property is closure under downset. Let n ≥ 1 and
(S,S) and (T,T) be two n-joins. We write (S,S) ⊆ (T,T)
when S = T and S ⊆ T. Furthermore, if L is a finite multiset
of languages and S is a subset of L× 2L

n

, the downset of S,
denoted by ↓ S, is the following set:

↓ S = {(S,S) | ∃(T,T) ∈ S such that (S,S) ⊆ (T,T)}.

Lemma 30. Let n ≥ 1 and L be a finite multiset of languages.
Then, JnD[L] = ↓ JnD[L].

Proof. This amounts to proving that if (S,S) ⊆ (T,T), then
(T,T) D-tied implies (S,S) D-tied. The contrapositive is
immediate: if K ⊆ D is a separating cover for (S,S), then it
must be a separating cover for (T,T).

The third property, closure under multiplication, requires D

to be a quotienting lattice and the multiset L to be tame. Recall
that this makes L a partial semigroup for the multiplication “�”.
This implies that for any n ≥ 1, Ln is a partial semigroup as
well for the componentwise multiplication defined as follows:
(L1, . . . , Ln) � (H1, . . . ,Hn) is defined when Li � Hi is
defined for all i and in that case,

(L1, . . . , Ln)� (H1, . . . ,Hn) = (L1 �H1, . . . , Ln �Hn).

This may be lifted to a true semigroup multiplication for the
set 2L

n

. Given S,T ∈ 2L
n

, we define:

S�T = {S � T | S ∈ S, T ∈ T}.

It now follows that the set L × 2L
n

is a partial semigroup
for the componentwise multiplication. In summary, Ln (which
contains Tn

D[L]) and L × 2L
n

(which contains JnD[L]) are



both partial semigroups. It turns out that both properties get
transferred to Tn

D[L] and JnD[L] provided D is quotienting.

Lemma 31. Assume that D is a quotienting lattice and let L
be a tame multiset. For n ≥ 1, the following properties hold:

1) Tn
D[L] is closed under multiplication: if S, T ∈ Tn

D[L],
then S � T ∈ Tn

D[L] when defined.
2) JnD[L] is closed under multiplication: if (S,S), (T,T) ∈

JnD[L], then (S,S)� (T,T) ∈ JnD[L] when defined.

We finish with our last property which is specific to the case
D = Pol(C) and requires L to be C-compatible: all languages
in a Pol(C)-tied n-join carry the same C-type.

Lemma 32. Let C be a finite quotienting Boolean algebra, L
a finite C-compatible multiset of languages and n ≥ 1. For any
(S,S) ∈ JnPol(C)[L] and any (S1, . . . , Sn) ∈ S, all Si share
the C-type of S, i.e., [S]C = [S1]C = [S2]C = · · · = [Sn]C.

Proof. The contrapositive is simple. Since [S]C ∈ Pol(C),
one may verify that when there exists (S1, . . . , Sn) ∈ S and
i ≤ n such that [S]C 6= [Si]C (which means S ∩ Si = ∅ by C-
compatiblity), then {[S]C} is a separating cover for (S,S).

B. Algorithm for Computing Pol(C)-tied Joins

We are now ready to present our algorithm computing
Pol(C)-tied n-joins where C is an arbitrary finite quotienting
Boolean algebra, which we assume fixed until the end of the
section. The procedure takes three inputs: an integer n ≥ 1, a
C-compatible tame multiset L, and a set T ⊆ Ln of n-tuples.
From these inputs, it uses a least fixpoint to compute a set

Satn(L,T) ⊆ L× 2L
n

.

We then prove that for the appropriate set T, the set Satn(L,T)
is exactly JnPol(C)[L].

In the algorithm, we will use an operation that restricts a
set of n-tuples T ⊆ Ln to n-tuples involving only languages
of a given C-type, say [L]C for some L ∈ L. We denote this
restriction T|[L]C

⊆ T. Formally:

T|[L]C
= {(T1, . . . , Tn) ∈ T | [Ti]C = [L]C for all i ≤ n}.

We define Satn(L,T) as the smallest subset of L × 2L
n

containing Jntriv [L] and closed under the following operations:
1) Downset: Satn(L,T) = ↓Satn(L,T).
2) Multiplication: for all (R,R), (S,S) ∈ Satn(L,T) such

that R� S is defined,

(R,R)� (S,S) ∈ Satn(L,T).

3) For any (E,E) ∈ Satn(L,T) which is idempotent,

(E,E�T|[E]C
�E) ∈ Satn(L,T).

Observe that given L, n and T as input, one may easily
compute Satn(L,T) with a least fixpoint procedure. We
may now state the correctness of our algorithm: for the
appropriate T, the set Satn(L,T) is exactly JnPol(C)[L].

Theorem 33. Let L be a multiset of languages which is both
tame and C-compatible and let n ≥ 1. Then,

JnPol(C)[L] = Satn(L,Tn
Pol(C)[L]).

Theorem 33 yields an inductive procedure for computing
JnPol(C)[L] from a tame and C-compatible multiset L and n ≥ 1.
Indeed, as explained above, knowing L, n and Tn

Pol(C)[L] is
enough to compute Satn(L,Tn

Pol(C)[L]). We have the inputs L
and n in hand. For the set Tn

Pol(C)[L], there are two cases:

1) T1
Pol(C)[L] is by definition the set of all nonempty

languages in L (which is L itself by C-compatibility).
2) If n ≥ 2, one may compute Jn−1Pol(C)[L] by induction and

Tn
Pol(C)[L] can be extracted from this set by Lemma 28.

This solves Step 1 in our quest for a BPol(C)-separation algo-
rithm: computing Tn

Pol(C)[L] from L (tame and C-compatible)
and n. As announced, this algorithm is recursive: computing
Tn
Pol(C)[L] requires us to compute Tn−1

Pol(C)[L] beforehand.

Before we move to Step 2, let us make a few additional
comments. First, observe that Theorem 33 proves half of
Theorem 6: Pol(C)-separation is decidable. Indeed, the special
case n = 1 of Theorem 33 yields an algorithm taking as input
a C-compatible tame multiset L and computing T2

Pol(C)[L], i.e.,
all pairs in L2 which are not Pol(C)-separable. By Lemmas 24,
and 25, this is enough to get a Pol(C)-separation algorithm.

Corollary 34. For any finite quotienting Boolean algebra C,
the Pol(C)-separation problem is decidable.

Note that the proof of the left to right inclusion in Theo-
rem 33 is constructive. One proves that Satn(L,Tn

Pol(C)[L])
computes all n-joins JnPol(C)[L] by exhibiting separating
covers in Pol(C) for those that are not computed (thus
proving that they are Pol(C)-separable and therefore outside
of =JnPol(C)[L]).

VII. SOLVING BPol(C)-SEPARATION

We now turn to our main result and present a separation
algorithm for BPol(C) where C is an arbitrary finite quotienting
Boolean algebra, which we assume fixed for the section.
We showed in Corollary 14 that this amounts to finding an
algorithm which performs the following computation:

INPUT: A tame and C-compatible multiset L.
OUTPUT: The set APol(C)[L] ⊆ L2.

The section is organized in two parts. First, we present
an algorithm for the above problem, thus solving BPol(C)-
separation. Then, we discuss the problem of constructing an
actual separator when this algorithm answers positively.

A. Algorithm for BPol(C)-Separation

Let us briefly recap what we have so far. Given a tame and C-
compatible multiset L, the set APol(C)[L] consists by definition
of all pairs (L1, L2) ∈ L2 such that (L1, L2)p ∈ T

2p
Pol(C)[L] for

all p ≥ 1. While we do not have an algorithm for computing
APol(C)[L] yet, we already have a combinatorial description.
For any n ≥ 1, we have a procedure for computing the set



Tn
Pol(C)[L]. Indeed, this is trivial for n = 1 and for n ≥ 2, one

may use the procedure Satn−1: by Theorem 33, we have,

Jn−1Pol(C)[L] = Satn−1(L,Tn−1
Pol(C)[L])

and Jn−1Pol(C)[L] encodes the set Tn
Pol(C)[L] by Lemma 28.

Our algorithm for computing APol(C)[L] is a greatest fixpoint
based on the procedure Sat2. The crux is the next theorem,
whose proof is based on a hard analysis of the procedures Satn.

Theorem 35. Let L be a tame and C-compatible multiset.
There exists a largest subset T of T2

Pol(C)[L] (with respect to
inclusion) satisfying the following property:

For all (L1, L2) ∈ T, (L1, {(L2, L1)}) ∈ Sat2(L,T). (1)

Moreover, T = APol(C)[L].

As announced, Theorem 35 yields a greatest fixpoint
algorithm for computing APol(C)[L] from an input tame and
C-compatible multiset L. We start from the set T = T2

Pol(C)[L]
(which can be computed, see Theorem 33). Then, we repeat
the two following operations until T satifies (1):

1) Use the procedure Sat2 to compute the set T′ of all pairs
(L1, L2) ∈ T such that (L1, {(L2, L1)}) ∈ Sat2(L,T).

2) Replace T with T′.
When the computation ends, it follows from Theorem 35

that T = APol(C)[L].
Hence, one may compute APol(C)[L] from any input tame

and C-compatible multiset L. By Corollary 14 and Lemmas 24
and 25, this solves BPol(C)-separation. Thus, we get the
following corollary which completes the proof of Theorem 6.

Corollary 36. For any finite quotienting Boolean algebra C,
the BPol(C)-separation problem is decidable.

The main difficulty in Theorem 35 consists in proving
that APol(C)[L] ⊆ T (and more precisely that APol(C)[L]
satisfies (1)). We outline this proof in section VIII. The converse
inclusion is simpler and presented thoroughly in Section VIII.
Before we turn to the proof, let us say a few words about the
construction of separators in BPol(C) when they exist.

B. Constructing BPol(C)-Separators

We sketch a methodology for constructing separators in
BPol(C) when they exist. Assume that we have two input
regular languages L1, L2 which are known to be BPol(C)-
separable (this can be decided by Theorem 35 above). We
explain how to build K ∈ BPol(C) separating L1 from L2.

We know from Theorem 13 that there exists p ≥ 1 such
that (L1, L2)p is Pol(C)-separable. Moreover, it follows from
the proof of this theorem that if we have this number p in
hand together with Pol(C)-separators witnessing the fact that
(L1, L2)p is Pol(C)-separable, we may use them to construct
K ∈ BPol(C) separating L1 from L2. This is possible since
we have an algorithm which decides Pol(C)-separation for any
input tuple (see Theorem 33). Hence, since we know that p
exists, we may find it with this algorithm. Finally, the proof
of Theorem 33 (presented in the full version) is constructive:

once we have p such that (L1, L2)p is Pol(C)-separable in
hand, we may follow it to build Pol(C)-separators witnessing
this fact.

VIII. PROOF OF THEOREM 35

This section is devoted to proving Theorem 35. For the
whole section, we assume fixed a finite quotienting Boolean
algebra C as well as a tame and C-compatible multiset L.
Moreover, for the sake of improved readability, given n ≥ 1,
we write A[L] for APol(C)[L], Tn[L] for Tn

Pol(C)[L] and Jn[L]
for JnPol(C)[L].

Theorem 35 states that there exists a largest subset T of
T2[L] which satisfies (1):

For all (L1, L2) ∈ T, (L1, {(L2, L1)}) ∈ Sat2(L,T),

and that this subset is exactly A[L]. This is an immediate
consequence of the two following propositions.

Proposition 37. Any subset T of T2[L] which satisfies (1) is
a subset of A[L].

Proposition 38. A[L] is a subset of T2[L] and satisfies (1).

In this section, we give a complete proof of Proposition 37.
Moreover, we introduce the main ideas needed to prove
Proposition 38 (which is far more involved) and reduce this
proof to two other propositions.

A. Proof of Proposition 37

We begin with a few definitions. Recall that for (H,L) ∈
L2 and p ≥ 1, we write (H,L)p the 2p-tuple obtained by
concatenating p copies of (H,L). We extend this notation and
write (H,L)p+

1
2 the (2p+ 1)-tuple obtained by concatenating

p copies of (H,L) plus one copy of (H). For example,

(H,L)2+
1
2 = (H,L,H,L,H)

We now introduce a new notion: n-iterations. Consider a set
of pairs S ∈ 2L

2

. For any n ≥ 2, we define the n-iteration
of S, denoted by itn(S) as the following subset of Ln:

1) If n is even, then n = 2p for p ≥ 1 and we define
itn(S) = {(S1, S2)p | (S1, S2) ∈ S}.

2) If n is odd, then n = 2p + 1 for p ≥ 1, and we define
itn(S) = {(S1, S2)p+

1
2 | (S1, S2) ∈ S}.

Note that itn(S) ⊆ Ln. The definition of n-iterations entails
the following simple lemma.

Lemma 39. Let T ∈ 2L
2

. For any n ≥ 2, and any (S,S) ∈
Sat2(L,T), we have (S, itn(S)) ∈ Satn(L, itn(T)).

Proof. By hypothesis, (S,S) ∈ Sat2(L,T) can be built from
J2triv [L] using downset, multiplication and Operation 3. We
use an induction on this construction. If (S,S) ∈ J2triv [L], then
by definition there exists w ∈ S such that w ∈ S1 ∩ S2 for all
(S1, S2) ∈ S. It is now immediate by definition of itn(S) that
w ∈ S and w ∈ S1 ∩ · · · ∩ Sn for all (S1, . . . , Sn) ∈ itn(S).
Hence, (S, itn(S)) ∈ Jntriv [L] ⊆ Satn(L, itn(T)).

Otherwise, there are three cases depending on the last
operation of Sat2(L,T) used to build (S,S). As all cases



are similar, let us concentrate on Operation 3. In that case,
(S,S) = (E,E�T|[E]C

�E) for some idempotent (E,E) of
Sat2(L,T). By induction, (E, itn(E)) ∈ Satn(L, itn(T)). It
is immediate from the definition of n-iterations that (E, itn(E))
is idempotent as well and that:

(S, itn(S)) = (E, itn(E)� itn(T)|[E]C
� itn(E)).

Hence, we conclude from Operation 3 in the definition of Satn

that (S, itn(S)) belongs to Satn(L, itn(T)).

We may now proceed with the proof of Proposition 37.
Let T be a subset of T2[L] satisfying (1). By definition of
A[L], we have to prove that for all p ≥ 1 and (T1, T2) ∈ T,
(T1, T2)p ∈ T2p[L]. This is a consequence of the following
result, based on Lemma 39 (note that this is where we use our
two hypotheses on T).

Lemma 40. For all n ≥ 2, itn(T) ⊆ Tn[L].

Given p ≥ 1 and (T1, T2) ∈ T, we have (T1, T2)p ∈ it2p(T)
by definition of 2p-iteration. It then immediate from the lemma
that (T1, T2)p ∈ T2p[L], which proves Proposition 37.

It remains to prove Lemma 39. The argument is by
induction on n. For n = 2, we know that T ⊆ T2[L] by
hypothesis. Let us now assume that n ≥ 3. Let (T1, . . . , Tn) ∈
itn(T), we prove that (T1, . . . , Tn) ∈ Tn[L]. By definition
(T1, T2) ∈ T. Since T satisfies (1) by hypothesis, we know
that (T1, {(T2, T1)}) belongs to Sat2(L,T). Therefore, we
obtain by Lemma 39,

(T1, itn−1({(T2, T1)})) ∈ Satn−1(L, itn−1(T)).

Moreover, since (T1, . . . , Tn) ∈ itn(T), it follows from the
definition of iteration that itn−1({(T2, T1)}) = {(T2, . . . , Tn)}.
Finally, since itn−1(T) ⊆ Tn−1[L] by induction, we obtain
Satn−1(L, itn−1(T)) ⊆ Satn−1(L,Tn−1[L]). Altogether, we
get

(T1, {(T2, . . . , Tn)}) ∈ Satn−1(L,Tn−1[L]).

Since Satn−1(L,Tn−1[L]) = Jn−1[L] by Theorem 33, we
conclude using Lemma 28 that (T1, . . . , Tn) ∈ Tn[L].

B. Proof of Proposition 38

We have to prove that A[L] is a subset of T2[L] and satis-
fies (1). That A[L] ⊆ T2[L] is immediate. Indeed, A[L] is the
set of all (L1, L2) ∈ L2 such that (L1, L2)p ∈ T2p[L] for all p.
Hence, the case p = 1 yields that A[L] ⊆ T2[L]. Therefore,
we may concentrate on proving that A[L] satisfies (1).

We have to prove that for any (L1, L2) ∈ A[L], we have
(L1, {(L2, L1)}) ∈ Sat2(L,A[L]). The argument is based on
a combinatorial analysis of the procedure computing the set
Satn(L,Tn[L]) from n ≥ 1 and L. We introduce a new object
which represent computations of this procedure: computation
trees. They will be central in the proof.

For any n ≥ 1, we associate a set of computation trees of
level n: each tree represents the computation of some n-join
in Satn(L,Tn[L]). More precisely, a computation tree T of
level n is an unranked ordered tree. Each node x in T must

carry a label lab(x) which is an n-join in L× 2L
n

and there
are four possible kinds of nodes:
• Leaves: x has no children and lab(x) ∈ Jntriv [L].
• Downset: x has a unique child y and lab(x) ⊆ lab(y).
• Binary: x has exactly two children x` and xr. Moreover,
lab(x) = lab(x`)� lab(xr) (in particular, this multiplica-
tion must be defined).

• Operation: x has a unique child y. Moreover, the two
following conditions must be satisfied:

1) The label lab(y) is an idempotent (E,E).
2) lab(x) = (E,E� Tn[L]|[E]C

�E).
If T is a computation tree, we write lab(T) for the label

of its root. Moreover, we define the operational height of a
computation tree T as the maximal number g such that T
contains a branch with g operation nodes.

Computation trees of level n are designed to represent com-
putations of the procedure Satn(L,Tn[L]): leaves correspond
to the starting set Jntriv [L] and each kind of node corresponds
to an operation. We state this fact in the following proposition,
which reformulates Theorem 33 on computation trees.

Proposition 41. Let n ≥ 1. For any (S,S) ∈ L × 2L
n

. The
two following properties are equivalent:

1) (S,S) ∈ Jn[L].
2) There exists a computation tree T of level n such that

(S,S) = lab(T).

We may now come back to Proposition 38. The argument is
based on two intermediary results. The first one states that for
any computation tree, there exists another one with the same
label but with operational height at most |C| (observe that this
bound is independent from the level n of the trees).

Proposition 42. For any n ≥ 1 and any computation tree T
of level n, there exists a computation tree T′ with the same
label as T and whose operational height is at most |C|.

Presenting the second result requires one more definition.
Let S ⊆ Ln for some n ≥ 1. For any p ≥ 1, we define
the p-extraction of S as the set exp(S) ⊆ L2 of all pairs
(H,L) ∈ L2 such that (H,L)p is a subsequence of some n-
tuple (S1, . . . , Sn) ∈ S, i.e., there exist 1 ≤ i1 < · · · < i2p ≤
n such that,

(H,L)p = (Si1 , . . . , Si2p).

Observe that exp(S) is necessarily empty when n < 2p. We
may now present our second proposition.

Proposition 43. For all g ∈ N, there exists pg ≥ 1 such that
for any n ≥ 1 and any computation tree T of level n and
operational height at most g, if (S,S) = lab(T), we have:

(S, expg (S)) ∈ Sat2(L,A[L]).

Proposition 42 and Proposition 43 are based on involved
combinatorial arguments (presented in the full version of the
paper). Here, we use them to finish the proof of Proposition 38.

Consider a pair (L1, L2) ∈ A[L], we have to show that
(L1, {(L2, L1)}) ∈ Sat2(L,A[L]). Let g = |C| and pg ≥ 1 be
as defined in Proposition 43 for this g.



By definition of A[L], we have (L1, L2)2pg+2 ∈ T2pg+2[L].
Therefore, it follows from Lemmas 12 and 28 that:

(L1, {(L2, L1)pg}) ∈ J2pg [L].

By Proposition 41, we get a computation tree T of level
2pg whose label is (L1, {(L2, L1)pg}). Moreover, since g =
|C|, it follows from Proposition 42 that we may choose T
with operational height smaller than g. By choice of pg in
Proposition 43, we have,

(L1, expg ({(L2, L1)pg})) ∈ Sat2(L,A[L]).

By definition, we have expg
({(L2, L1)pg}) = {(L2, L1)}.

Hence, we conclude that (L1, {(L2, L1)}) ∈ Sat2(L,A[L])
which terminates the proof of Proposition 38.

IX. CONCLUSION

We proved that separation is decidable for all classes of
the form Pol(C) or BPol(C) when C is a finite quotienting
Boolean algebra. In practice, this yields separation algorithms
a whole family of classes. The most important one is the level
2 in the Straubing-Thérien hierarchy (which corresponds to the
logic BΣ2(<)). Moreover, using a known transfer theorem [26],
this result can be lifted to dot-depth 2.

Further work. While we leave the details for further work, let
us briefly discuss complexity. Starting from nondeterministic
finite automata A1 and A2 recognizing two input languages
L1, L2, one first builds a tame and C-compatible multiset L
extending {L1, L2} of size (|A1|2+|A2|2)×|C|. Note that since
the size of L depends on |C| which might not be a constant
(it may depend on the alphabet A, see the class AT defined in
Section III). Hence, the complexity of our algorithms depend
on C. For example, one may obtain a PSPACE upper bound
for Pol(AT) and BPol(AT) (i.e., the levels 3

2 and 2 in the
Straubing-Thérien hierarchy) with respect to |A1| and |A2|.

However, there is one case when performing a generic
complexity analysis is possible: when the alphabet is fixed
or when |C| is a constant independent from it. In that
case, one may derive PTIME procedures for both Pol(C)-
and BPol(C)-separation (with respect to |A1| and |A2|). An
interesting consequence is that this yields a PTIME separation
algorithm for dot-depth one (which is the class BPol(C) where
C = {∅, {ε}, A+, A∗}, which is of size 4 for any alphabet A).

Another interesting consequence of our results is that
since we proved the decidability of BΣ2(<)-separation, the
main theorem of [25] is an immediate corollary: BΣ2(<)-
membership is decidable. Moreover, the algorithm of [25]
was actually based on a characterization theorem: languages
in BΣ2(<) are characterized by a syntactic property of a
canonical recognizer (i.e., the syntactic monoid). It turns out
that one can also deduce this characterization theorem from our
results (this does require a little combinatorial work however).
In fact, one may generalize it to all classes BPol(C) when C

is a finite quotienting Boolean algebra.
Finally, the main and most natural follow-up question is

much harder: can our results be pushed to higher levels within

concatenation hierarchies? For now, we know that given any
finite quotienting Boolean algebra C, Pol(C) and BPol(C) have
decidable separation. Moreover, one may combine our generic
approach together with ideas of [23] to obtain a procedure
for Pol(BPol(C))-separation (the main result of [23] is an
algorithm for Σ3(<), i.e. Pol(BPol(AT))). Thus, the next
relevant levels are BPol(BPol(C)) and Pol(BPol(BPol(C))).
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APPENDIX A
OMITTED PROOFS IN SECTION III

In this appendix, we prove the statements of Section III
whose proofs were omitted in the main text. We begin with the
fact that in a hierarchy whose basis is a quotienting Boolean
algebra, all half levels are quotienting lattices closed under
concatenation and marked concatenation, and all full levels are
quotienting Boolean algebras.

Fact 5. Let C be a quotienting Boolean algebra. Then,
1) Pol(C) is a quotienting lattice and is closed under

concatenation and marked concatenation.
2) BPol(C) is a quotienting Boolean algebra.

Proof. We first prove Item 1). We already know by definition of
Pol(C) that it is a lattice closed under marked concatenation. It
remains to establish closure under quotient and concatenation.

For closure under quotient, let L ∈ Pol(C) and w ∈ A∗,
and let us show that w−1L and Lw−1 both belong to Pol(C).
By symmetry, it suffices to prove that w−1L ∈ Pol(C). By
definition of Pol(C), the language L is built from languages
of C using a finite number of times union, intersection and
marked concatenation. We argue by induction on this construc-
tion. If L belongs to C, then so does w−1L since C is closed
under quotient, so in particular w−1L ∈ Pol(C). If L = K∪H
with K,H ∈ Pol(C), then w−1L = (w−1K) ∪ (w−1H). By
induction, both w−1K and w−1H belong to Pol(C), and
since Pol(C) is closed under union, w−1L also belongs to
Pol(C). If L = K ∩ H with K,H ∈ Pol(C), we argue
similarly using w−1L = (w−1K) ∩ (w−1H). Finally, if
L = KaH , let V be the finite set {v ∈ A∗ | w ∈ Kav}.
Then w−1L = (w−1K)aH ∪

⋃
v∈V v

−1H . By induction, all
languages w−1K and v−1H belong to Pol(C), hence so does L
since Pol(C) is closed under union and marked concatenation.

It remains to show that Pol(C) is closed under concatenation.
Let K,L ∈ Pol(C). We can verify that

KL =

{
K ∪

⋃
a∈AKa(a−1L) if ε ∈ L,⋃
a∈AKa(a−1L) if ε /∈ L.

Since we already know that Pol(C) is closed under union,
quotient and marked concatenation, we obtain KL ∈ Pol(C),
which proves closure under concatenation.

It remains to prove Item 2). By definition, BPol(C) is closed
under boolean operations. To show that it is closed under
quotient, one can proceed as above, noting that for any L ⊆ A∗
and any w ∈ A∗, we have w−1(A∗ \ L) = A∗ \ (w−1L).

Remark 44. When C is a quotienting lattice, an alternate
definition of Pol(C) is the following: Pol(C) is the smallest
class of languages containing C and closed under union and
marked concatenation. It turns out that if C is a quotienting
lattice, this definition coincides with the one used in this
paper. In other words, closing a quotienting lattice under union
and marked concatenation entails closure under intersection
as well.

Lemma 9. Σ2(<) = Pol(AT) and BΣ2(<) = BPol(AT).

Proof. We already know that Σ2(<) = Pol(BΣ1(<)) from the
correspondences between logical hierarchies and concatenation
hierarchies [36], [17] (see also Proposition 7). Furthermore,
AT ⊆ BΣ1(<), since any language of the form A∗aA∗ can
be expressed by the BΣ1(<) formula ∃xPa(x). Therefore, we
obtain Pol(AT) ⊆ Pol(BΣ1(<)) = Σ2(<). For the converse
inclusion, we use the fact that the class Σ2(<) consists of
all finite unions of languages of the form A∗0a1A

∗
1 . . . anA

∗
n

(see [21], [2] for original proofs or [3], [4] for a short and
direct proof). Now, for any B ⊆ A, the language B∗ belongs to
AT, since B∗ = A∗ \

⋃
a/∈B A

∗aA∗. Therefore, any language
of the form A∗0a1A

∗
1 . . . anA

∗
n belongs to Pol(AT), whence

so does any finite union of such languages, which shows that
Σ2(<) ⊆ Pol(AT).

APPENDIX B
OMITTED PROOFS IN SECTION IV

This appendix presents the proof of Lemma 12 as well as
the missing direction in the proof of Theorem 13. Recall that
D denotes an arbitrary lattice.

A. Proof of Lemma 12

Lemma 12. Let n ≥ m ≥ 1, (L1, . . . , Ln) an n-tuple and
i1, . . . , im ∈ N such that 1 ≤ i1 < i2 < · · · < im ≤ n.
If the m-tuple (Li1 , . . . , Lim) is D-separable, then so is
(L1, . . . , Ln).

We use an induction on n+m. If n = m = 1, then this is
trivial. Otherwise, we have n+m > 2 and we distinguish two
cases depending on whether i1 > 1 or i1 = 1. Assume first that
i1 > 1. We prove that A∗ ∈ D is a separator for (L1, . . . , Ln).
Clearly, L1 ⊆ A∗ and since 2 ≤ i1 < · · · < im ≤ n, it is
immediate by induction hypothesis that (L2, . . . , Ln) ∩A∗ =
(L2, . . . , Ln) is D-separable.

Finally, assume that i1 = 1. There are two sub-cases
depending on whether m = 1 or not. If m = 1, then (Li1) is
D-separable and therefore, Li1 = ∅. Since L1 = Li1 = ∅,
it is now simple to verify that ∅ ∈ D is a separator for
(L1, . . . , Ln). Otherwise, m > 1 and we get a separator
K ∈ D for (Li1 , . . . , Lim). We prove that K is a separator
of (L1, . . . , Ln) as well. By definition, L1 = Li1 ⊆ K
and since (Li2 , . . . , Lim) ∩ K is D-separable, we know by
induction that (L2, . . . , Ln) ∩K is D-separable as well since
2 ≤ i2 < · · · < im ≤ n. This terminates the proof.

B. Proof of Theorem 13

Theorem 13. Let D be a lattice and let L1, L2 be two
languages. The following properties are equivalent:

1) L1 is Bool(D)-separable from L2.
2) There exists p ≥ 1 such that (L1, L2)p is D-separable.

Let us fix D as an arbitrary lattice for the proof. We already
proved the direction 2) ⇒ 1) in the main paper. Hence, we
concentrate on the other one: 1) ⇒ 2). Let us start with a
preliminary lemma that we will need.

Lemma 45. Let n ≥ 1 and (L1, . . . , Ln) be an n-tuple.
Moreover, let H1, H2 ∈ D such that (L1, . . . , Ln) ∩H1 and



(L1, . . . , Ln) ∩ H2 are both D-separable. Then, the n-tuple
(L1, . . . , Ln) ∩ (H1 ∪H2) is D-separable as well.

Proof. We proceed by induction on n. When n = 1, then we
have L1 ∩ H1 = ∅ and L1 ∩ H2 = ∅ by hypothesis. Hence,
L1 ∩ (H1 ∪H2) = ∅ and (L1) ∩ (H1 ∪H2) is D-separable.

Assume now that n ≥ 2. By hypothesis, we have separators
K1,K2 ∈ D for (L1, . . . , Ln) ∩ H1 and (L1, . . . , Ln) ∩ H2

respectively. We prove that

K = (K1 ∩H1) ∪ (K2 ∩H2) ∈ D

is a separator for (L1, . . . , Ln) ∩ (H1 ∪ H2). There are two
properties to prove. We begin with L1 ∩ (H1 ∪H2) ⊆ K. If
w ∈ L1∩ (H1∪H2), one of the two following properties hold:

1) Either w ∈ L1∩H1 which is included in K1 by definition
of K1. Hence, in that case w ∈ K1 ∩H1 ⊆ K.

2) Or w ∈ L1 ∩H2 which is included in K2 by definition
of K2. Hence, in that case w ∈ K2 ∩H2 ⊆ K.

We conclude that L1 ∩ (H1 ∪ H2) ⊆ K. We now need to
prove that, (L2, . . . , Ln)∩ (H1 ∪H2)∩K is D-separable. By
definition of K, we have (H1 ∪ H2) ∩ K = K. Hence, it
suffices to prove that (L2, . . . , Ln)∩K is D-separable. This is
where we use induction. By definition of K1 and K2, we know
that (L2, . . . , Ln)∩H1 ∩K1 and (L2, . . . , Ln)∩H2 ∩K2 are
both D-separable. Hence, we obtain from induction that,

(L2, . . . , Ln) ∩ ((H1 ∩K1) ∪ (H2 ∩K2)) is D-separable

Since K = (K1∩H1)∪(K2∩H2), this finishes the proof.

We may now start the proof of 2) ⇒ 1) in Theorem 13.
Let L1, L2 be two languages and assume that L1 is Bool(D)-
separable from L2. We have to find p ≥ 1 such that (L1, L2)p

is D-separable. The proof is an induction whose parameter is
based on a normal form for the separator K ∈ Bool(D) of L1

from L2. We state it in the following lemma.

Lemma 46. Let n ∈ N and L1, L2 be two languages. Further-
more, consider 2n languages K1, . . . ,Kn, H1, . . . ,Hn ∈ D

and the following set K ∈ Bool(D):

K =

n⋃
i=1

Ki \Hi.

Assume that L1 ⊆ K and K ∩ L2 = ∅. Then, (L1, L2)n+1 is
D-separable.

Before we show Lemma 46, let use it to finish the proof
of 2)⇒ 1) in Theorem 13. If L1 is Bool(D)-separable from
L2, we have a separator S ∈ Bool(D) such that L1 ⊆ S and
S ∩ L2 = ∅. By definition, S is the Boolean combination of
languages in D. We put it in disjunctive normal form. Each
disjunct is an intersection languages belonging to D, or whose
complement belongs to D. Since D is closed under union and
intersection, both D and 2A

∗ \D are closed under intersection.
Therefore, each disjunct in the disjunctive normal form of S
is actually of the form K \ H , where K,H both belong to
D (for the case where K or H is empty, recall that both ∅

and A∗ belong to D). In summary, there exist n ∈ N and
K1, . . . ,Kn, H1, . . . ,Hn ∈ D such that,

S =

n⋃
i=1

Ki \Hi.

It is now immediate from Lemma 46 that (L1, L2)n+1 is D-
separable, which terminates the proof of Theorem 13.

Proof of Lemma 46. We conclude with the proof of Lemma 46.
The argument is by induction on n. If n = 0, then K is the
empty union: K = ∅ ∈ D. Hence, since it is a separator of L1

from L2, we know that (L1, L2)1 is D-separable.
We now assume that n ≥ 1. Consider the language

K ′ = K1 ∪ · · · ∪ Kn ∈ D. We prove that it is a separator
of (L1, L2)n+1. Clearly, K ⊆ K ′, hence L1 ⊆ K ⊆ K ′ by
hypothesis. It remains to prove that the following (2n−1)-tuple
is D-separable:

(L2, L1, L2, . . . , L1, L2) ∩K ′.

We prove that H ′ = H1 ∪ · · · ∪Hn is a separator. Let us first
show that L2 ∩K ′ ⊆ H ′. By hypothesis on K, L2 ∩K = ∅.
Hence, we know that for all i, L2 ∩ (Ki \ Hi) = ∅ and
therefore L2 ∩Ki ⊆ Hi. The union of these inclusions yields
L2 ∩K ′ ⊆ H ′ as desired. It now remains to prove that,

(L1, L2)n ∩K ′ ∩H ′ is D-separable (2)

We use induction to show that for all j ≤ n, (L1, L2)n∩K ′∩Hj

is D-separable. Since H ′ = H1 ∪ · · · ∪Hn, it will then suffice
to apply Lemma 45 to obtain (2). Let j ≤ n and consider the
following language Gj ,

Gj =
⋃
i 6=j

Ki \Hi

We prove that Gj separates L1 ∩ K ′ ∩ Hj from L2 ∩ K ′ ∩
Hj . Since it is the union of n − 1 languages, it will then
be immediate by induction that (L1, L2)n ∩ K ′ ∩ Hj is D-
separable.

We first prove that L1 ∩ K ′ ∩ Hj ⊆ Gj . Since L1 ⊆ K,
we have L1 ∩ K ′ ∩ Hj ⊆ K ∩ K ′ ∩ Hj . Moreover, since
(Kj \ Hj) ∩ Hj = ∅, we have K ∩ Hj ⊆ Gj . Hence, we
obtain L1 ∩ K ′ ∩ Hj ⊆ Gj as desired. We now prove that
L2 ∩K ′ ∩Hj ∩Gj = ∅. This is immediate since L2 ∩K = ∅,
L2 ∩K ′ ∩Hj ⊆ L2 and by definition, Gj ⊆ K.

APPENDIX C
TAME SETS AND C-COMPATIBILITY

In this appendix, we prove Lemmas 24 and 25. In other
words we present the reductions to tame and C-compatible
inputs.



A. Proof of Lemma 24

Lemma 24. Let D be a lattice and let H,L be two sets of
languages. Assume that H extends L. Then, for any L1, L2 ∈ L,
the following are equivalent:

1) L1 is D-separable from L2.
2) For all H1, H2 ∈ H such that H1 ⊆ L1 and H2 ⊆ L2,

H1 is D-separable from H2.

The direction 1)⇒ 2) is immediate since a separator K ∈ D

of L1 from L2 is also a separator of H1 ⊆ L1 from H2 ⊆ L2.
Hence, we concentrate on the direction 2)⇒ 1).

Assume that for all H1, H2 ∈ H such that H1 ⊆ L1 and
H2 ⊆ L2, H1 is D-separable from H2, we let KH1,H2 ∈ D

be a separator. We define,

K =
⋃

H1⊆L1

⋂
H2⊆L2

KH1,H2

Let us prove that K ∈ D separates L1 from L2. We begin
with L1 ⊆ K. If w ∈ L1, it must belong to some H1 ∈ H
such that that H1 ⊆ L1 (by definition of extension L1 is the
union of these H1). Hence, w ∈ KH1,H2

for all H2 ⊆ L2 and
therefore w ∈ K. It remains to prove that L2 ∩K = ∅. Let
w ∈ L2, we prove that w 6∈ K. By definition of extension, L2

is the union of all H2 ∈ H such that H2 ⊆ L2. Hence, for a
fixed H1, w does not belong to KH1,H2 for all H2 ⊆ L2. It
follows that w 6∈ K.

B. Proof of Lemma 25

Recall that C denotes an arbitrary finite quotienting Boolean
algebra.

Lemma 25. Given as input a finite set of regular language
names L, one may construct a finite tame and C-compatible
set H extending L.

The extension relation is transitive. Hence, we proceed in
two steps. First, we build a tame G which extends L, then
we build a tame and C-compatible H which extends G. The
construction of a tame extension is taken form [29].

Building tame sets. Let L = {L1, . . . , Ln} and for all i ≤ n,
let Ai = (Qi, δi, Ii, Fi) be a nondeterministic finite automaton
recognizing Li.

We first build for each i ≤ n a tame set Gi extending {Li}
and then construct G extending L from the Gi. We define
Gi = {Lq,r | (q, r) ∈ Q2

i } where Lq,r is a name for the
language of all words for which there exists a run from state
q to state r in Ai.

Remark 47. Working with language names is important here.
It may happen that Lq,r and Lq′,r′ are different names for the
same language.

It is now simple to verify that Gi is tame for the following
multiplication “�i”. Let q, r, s, t ∈ Qi. If r 6= s, then Lq,r �i

Ls,t is undefined. Otherwise, r = s and we define Lq,r �i

Lr,t = Lq,t. Moreover Gi extends {Li}, since Li is the union
of all Lq,r with q ∈ Ii and r ∈ Fi.

We now construct G extending L. Since we are dealing with
language names, we may assume without loss of generality
that the sets Gi are disjoint. We define G as the disjoint
union G = G1 ] · · · ]Gn. It is immediate that G extends
L. Finally, one may verify that G is tame for the following
multiplication “�”. Given G,G′ ∈ G, G � G′ is defined if
and only if G,G′ ∈ Gi for some i and G �i G

′ is defined.
Moreover, in that case, G�G′ = G�i G

′.

Building C-compatible sets. We now build H extending G
which is both tame and C-compatible. Recall that by Lemma 23,
the equivalence ∼C over A has finite index and is a congruence
for concatenation. Hence, the quotient set A∗/∼C is a finite
monoid (the neutral element is [ε]C) and the map w 7→ [w]C
is a monoid morphism from A∗ into A∗/∼C. We denote by
“•” the monoid multiplication of A∗/∼C (note that “•” is not
to be mistaken with language concatenation). In particular, we
have the following lemma for tame and C-compatible sets.

Lemma 48. Let L be a finite C-compatible tame set. Then,
for all H,L ∈ L such that H � L is defined, we have

[H � L]C = [H]C • [L]C.

Proof. By C-compatibility of L, no language of L is empty.
Take u ∈ H and v ∈ L. Then, uv ∈ HL ⊆ H � L, whence
[H � L]C = [uv]C. Similarly, [H]C = [u]C and [L]C = [v]C.
Therefore [H]C • [L]C = [u]C • [v]C = [uv]C = [H � L]C.

We may now construct H. Given any G ∈ G and any class
K in the (finite) quotient set A∗/∼C, we let HG,K as a name
for the language G ∩K. Finally, we let H as the set of all
language names HG,K that are nonempty for H ∈ H and
K ∈ A∗/∼C.

That H is C-compatible and extends G is immediate from
the definition. Let us define a tame multiplication for H. Let
HG1,K1

, HG2,K2
∈ H. The multiplication HG1,K1

�HG2,K2

is defined when G1 �G2 is defined in G and in that case,

HG1,K1
�HG2,K2

= HG1�G2,K1•K2

One may verify that this multiplication is well defined (i.e.,
HG1�G2,K1•K2 is nonempty and therefore belongs to H) and
tame. This terminates the proof.

APPENDIX D
STRATIFICATIONS AND PROOF OF LEMMA 31

In this appendix, we present a notion that we will reuse in
Appendices E and G for proving Theorem 33: stratifications.
This notion is designed to prove properties of D-tied n-tuples
and n-joins. Here we use it to prove Lemma 31.

A. Stratifications

Let us fix an arbitrary quotienting lattice D for the definition.
A stratification of D is an infinite sequence D0, . . . ,Dk, . . .
of finite quotienting lattices such that,

For all k, Dk ⊆ Dk+1 and D =
⋃
k∈N

Dk.



A simple but important result is that any quotienting lattice
admits a stratification (note that our assumption that we are
considering regular languages only is important here).

Lemma 49. Any quotienting lattice of regular languages
admits a stratification.

Proof. Let D be a quotienting lattice of languages languages.
For all k ∈ N, we let Gk as the class of all languages L ∈ D

that are recognized by a nondeterministic finite automaton with
less than k states. Clearly, all Gk are finite (but not quotienting
lattices), Gk ⊆ Gk+1 and all L ∈ D belong to some Gk since
D is a class of regular languages. Finally, for all k ∈ N, we
let Dk as the smallest quotienting lattice containing Gk. Note
that Dk remains finite thanks to Myhill-Nerode Theorem (a
regular language has finitely many quotients) and the fact that
unions and intersections commute with quotients. One may
verify that D0, . . . ,Dk, . . . is a stratification of D.

Remark 50. The stratification given by Lemma 49 is generic.
In Appendices E and G we work with one that is specific to
the classes Pol(C).

For the remainder of this appendix, we assume fixed an
arbitrary stratification D0, . . . ,Dk, . . . of D. We use it to
define preorder relations over A∗. We then use these relations
to give an alternate definition of D-tied objects which is simpler
to manipulate. Given any k ≥ 0, and any u, v ∈ A∗, we write:

u 6k v if and only if for all L ∈ Dk, u ∈ L⇒ v ∈ L

That 6k is reflexive and transitive is immediate from the
definition. Also observe that for all k ∈ N, since Dk ⊆ Dk+1,
the preorder 6k+1 refines 6k. Another useful property is that
since the classes Dk are quotienting, 6k is compatible with
word concatenation.

Lemma 51. For all k ∈ N, if u1 6k v1 and u2 6k v2, then
u1u2 6k v1v2.

Proof. Assume that u1 6k v1 and u2 6 v2. We prove that
u1u2 6k v1v2. Let L ∈ Dk and assume that u1u2 ∈ L. We
prove that v1v2 ∈ L. Since u1u2 ∈ L, we have u2 ∈ u1−1L.
By closure under quotients, we have u1

−1L ∈ Dk, hence,
since u2 6k v2, we obtain that v2 ∈ u1

−1L and therefore
that u1v2 ∈ L. It now follows that u1 ∈ Lv−12 . Using closure
under quotients again, we obtain that Lv−12 ∈ Dk. Therefore,
since u1 6k v1, we conclude that v1 ∈ Lv−12 which means
that v1v2 ∈ L as desired.

The following lemma connects the preorders 6k to definabil-
ity in Dk. For a word w ∈ A∗, we let ↑k w = {u | w 6k u}
be the upper set of {w} for 6k, and for a language L, we
write ↑k L = {u | ∃w ∈ L, w 6k u} =

⋃
w∈L ↑k w.

Lemma 52. Let k ∈ N and let L be any language. Then,
L ∈ Dk if and only if L is an upper set for 6k.

Proof. If L ∈ Dk, it is immediate from the definition of 6k

that L is an upper set for 6k: if u ∈ L and u 6k v, then v ∈ L.
Conversely, assume that L is an upper set. We first claim that

for any word w, the set ↑k w is the (finite) intersection of all
languages in Dk containing w:

↑k w =
⋂

K ∈ Dk

w ∈ K

K. (3)

Indeed, we already know that any language in Dk is an
upper set for 6k. Therefore, if K ∈ Dk contains w, then
K also contains ↑k w, which shows the left-to-right inclusion.
Conversely, if u belongs to the above intersection, then u
belongs to any language K ∈ Dk containing w. By definition
of 6k, this means that w 6k u, i.e., that u ∈ ↑k w.

Since Dk is a finite lattice, (3) shows, in particular, that
↑k w ∈ Dk. It follows that there are finitely many distinct
languages ↑k w. Since L is an upper set, we have L = ↑k L =⋃

w∈L ↑k w, which by the above is actually a finite union of
languages in Dk. Since Dk is a lattice, this entails L ∈ Dk.

B. Connection with D-tied objects

We now use stratifications to present alternate definitions of
D-tied n-tuples and n-joins. This new definitions will often
be simpler to manipulate. In particular, we use them here to
prove Lemma 31. We begin with n-tuples.

Lemma 53. For any n ≥ 1, an n-tuple (L1, . . . , Ln) is D-tied
if and only if for all k ∈ N, there exist w1 ∈ L1, . . . , wn ∈ Ln

such that w1 6k · · · 6k wn.

Proof. Assume first that (L1, . . . , Ln) is D-tied and let k ∈ N.
We exhibit w1 ∈ L1, . . . , wn ∈ Ln such that w1 6k · · · 6k wn.
The proof is by induction on n ∈ N. If n = 1, then L1 6= ∅
by definition and we have w1 ∈ L1 as desired. Otherwise, let
K = ↑k L1 =

⋃
w∈L1

↑k w ∈ Dk. Clearly, L1 ⊆ K. Hence,
since (L1, . . . , Ln) is D-tied, we know that (L2, . . . , Ln)∩K
is D-tied as well. By induction, we get w2 ∈ L2∩K, . . . , wn ∈
Ln ∩K such that w2 6k · · · 6k wn. Finally, by definition of
K, since w2 ∈ K, there exists w1 ∈ L1 such that w1 6k w2

which terminates this direction of the proof.
We now assume that for all k ∈ N, there exist w1 ∈

L1, . . . , wn ∈ Ln such that w1 6k · · · 6k wn. Using
induction on n again, we prove that (L1, . . . , Ln) is D-tied.
If n = 1, then L1 6= ∅ since w1 ∈ L1, which means that
it is D-tied. Otherwise, let K ∈ D such that L1 ⊆ K.
We have to prove that (L2, . . . , Ln) ∩ K is D-tied. Using
induction, this amounts to exhibiting, for each k ∈ N, words
w2 ∈ L2 ∩K, . . . , wn ∈ Ln ∩K such that w2 6k · · · 6k wn.
So fix some integer k ∈ N. Since K ∈ D, there exists
h ∈ N such that K ∈ Dh. We define g = max(k, h). By
hypothesis, one can find w1 ∈ L1, . . . , wn ∈ Ln such that
w1 6g · · · 6g wn. Moreover, since w1 ∈ L1 ⊆ K and
K ∈ Dh ⊆ Dg, it follows from the definition of 6g that
wi ∈ K for all i. Hence, w2 ∈ L2 ∩ K, . . . , wn ∈ Ln ∩ K.
Finally, since g ≥ k, we have w2 6k · · · 6k wn.

Lemma 53 will be very convenient when manipulating D-
tied tuples. Let us complete it with a simple observation that
often makes the writing easier.



Lemma 54. Let L be a finite set of languages and let n ≥ 1.
Then, there exists ` ∈ N such that the following equivalence
holds for each k ≥ `: (L1, . . . , Ln) ∈ Ln is D-tied if and
only if there exists (w1, . . . , wn) ∈ L1 × · · · × Ln such that
w1 6k · · · 6k wn.

Proof. Call a tuple of words (w1, . . . , wn) ∈ L1×· · ·×Ln a k-
witness for (L1, . . . , Ln) if w1 6k · · · 6k wn. Since for all k,
6k+1 refines 6k, one may reformulate Lemma 53 as follows:
(L1, . . . , Ln) ∈ Ln is not D-tied if and only if there exists
k such that (L1, . . . , Ln) has no k′-witness, for all k′ ≥ k.
It suffices to choose ` to be greater that all such integers k
when (L1, . . . , Ln) ranges over D-separable n-tuples in Ln.
The finiteness of Ln ensures that ` is well-defined.

Remark 55. The proof of Lemma 54 is not constructive: we
know that ` exists but so far, we have no way of computing it.
Actually, the knowledge of ` is sufficient to decide generalized
separation for D. Indeed, by choice of `, any n-tuple of
(L1, . . . , Ln) is D-tied iff it is D`-tied, which is decidable
by finiteness of D`.

We now generalize Lemma 53 to n-joins.

Lemma 56. Let n ≥ 1 and consider an n-join (S,S). Then
the two following conditions are equivalent,

1) (S,S) is D-tied.
2) For all k ∈ N, there exists w ∈ S such that for all

(S1, . . . , Sn) ∈ S, there are words w1 ∈ S1, . . . , wn ∈ Sn

such that w 6k w1 6k · · · 6k wn.

Proof. Assume first that (S,S) is D-tied and let k ∈ N. We
exhibit w ∈ S as described in the lemma. For any v ∈ A∗,
we denote again by ↑k v be the upper set {u | v 6k u} ∈ Dk.
Moreover, we let K = {↑k v | v ∈ S} ⊆ Dk. Note that K is
finite since Dk is. We know that (S,S) is D-tied. Hence, K
cannot be a separating cover. Since S ⊆ ↑k S =

⋃
K∈KK by

definition, it follows that there exists K ∈ K such that

(S1, . . . , Sn) ∩K is D-tied

for any n-tuple (S1, . . . , Sn) ∈ S. By definition, K = ↑k w for
some w ∈ S. Let us prove that this word w satisfies Item 2 in
the lemma. Let (S1, . . . , Sn) ∈ S. Since (S1, . . . , Sn) ∩ ↑k w
is D-tied, we know from Lemma 53 that there exists w1 ∈
S1 ∩ ↑k w, . . . , wn ∈ Sn ∩ ↑k w such that w1 6k · · · 6k wn.
Finally, since w1 ∈ ↑k w, it follows from the definition of ↑k w
that w 6k w1 which terminates this direction of the proof.

Assume now that the second item holds. We show that (S,S)
is D-tied. Consider a finite set K ⊆ D such that S ⊆

⋃
K∈KK,

our objective is to find K ∈ K such that (S1, . . . , Sn) ∩K is
D-tied for all (S1, . . . , Sn) ∈ S. Since K is finite, there exists
h ∈ N such that all K ∈ K belongs to Dh. Moreover, we
may use Lemma 54 to obtain ` ∈ N such that for all k ≥ `, if
(S1, . . . , Sn) ∈ S and K ∈ K, then (S1, . . . , Sn)∩K is D-tied
if and only if there exist w1 ∈ L1 ∩ K, . . . , wn ∈ Ln ∩ K
such that w1 6k · · · 6k wn. We let k = max(`, h) and let
w ∈ S be given by Item 2 for this k. Since S ⊆

⋃
K∈KK,

there exists some language in K containing w. We let K ∈ K
be this language.

We now have to prove that for all (S1, . . . , Sn) ∈ S,
(S1, . . . , Sn)∩K is D-tied. By definition of w in Item 2, there
are w1 ∈ S1, . . . , wn ∈ Sn such that w 6k w1 6k · · · 6k wn.
Moreover, since w ∈ K and K ∈ Dh ⊆ Dk, it follows that
wi ∈ K for all i. Altogether, we have w1 ∈ S1 ∩K, . . . , wn ∈
Sn ∩K such that w 6k w1 6k · · · 6k wn. Since k ≥ `, we
get by choice of ` that (S1, . . . , Sn) ∩K is D-tied.

We finish with the proof of Lemma 31, which is now simple
thanks to the results that we have just established.

Lemma 31. Assume that D is a quotienting lattice and let
L be a tame set. Then, for any n ≥ 1, the two following
properties hold:

1) Tn
D[L] is closed under multiplication: if S, T ∈ Tn

D[L],
then S � T ∈ Tn

D[L] when defined.
2) JnD[L] is closed under multiplication: if (S,S), (T,T) ∈

JnD[L], then (S,S)� (T,T) ∈ JnD[L] when defined.

Proof. We have two items to prove. We start with Tn
D[L].

Let (S1, . . . , Sn), (T1, . . . , Tn) ∈ Tn
D[L]. We use Lemma 53

to prove that (S1, . . . , Sn) � (T1, . . . , Tn) ∈ Tn
D[L]. Let k ∈

N. By hypothesis, we obtain words u1 ∈ S1, . . . , un ∈ Sn

and v1 ∈ T1, . . . , vn ∈ Tn satisfying the inequalities u1 6k

· · · 6k un and v1 6k · · · 6k vn. Since 6k is compatible
with concatenation (see Lemma 51), we get that u1v1 6k

· · · 6k unvn. Finally, by definition of tame multiplications,
SiTi ⊆ Si � Ti for all i and therefore uivi ∈ Si � Ti. We
conclude as desired that (S1, . . . , Sn)� (T1, . . . , Tn) ∈ Tn

D[L].
We turn to the second item. Let (S,S), (T,T) ∈ JnD[L]. We

prove that (S�T,S�T) ∈ JnD[L] by showing that it satisfies
Item 2 in Lemma 56. Let k ∈ N. Since (S,S), (T,T) ∈ JnD[L],
we get u ∈ S and v ∈ T such that,
• For all (S1, . . . , Sn) ∈ S, there are u1 ∈ S1, . . . , un ∈ Sn

such that u 6k u1 6k · · · 6k un.
• For all (T1, . . . , Tn) ∈ T, there are v1 ∈ T1, . . . , vn ∈ Tn

such that v 6k v1 6k · · · 6k vn.
Consider w = uv ∈ ST ⊆ S � T . For any (R1, . . . , Rn) ∈

S � T, there exists (S1, . . . , Sn) ∈ S and (T1, . . . , Tn) ∈ T
such that Ri = Si � Ti for all i. By the two items above, we
get u1 ∈ S1, . . . , un ∈ Sn such that u 6k u1 6k · · · 6k un
and v1 ∈ T1, . . . , vn ∈ Tn such that v 6k v1 6k · · · 6k vn. It
is now immediate that for all i, uivi ∈ SiTi ⊆ Si � Ti and by
Lemma 51 that,

w = uv 6k u1v1 6k · · · 6k unvn

We conclude that (S�T,S�T) ∈ JnD[L] again by Lemma 56,
which terminates the proof.

APPENDIX E
SOUNDNESS IN THEOREM 33

In this section, we prove that our algorithm for computing
Pol(C)-tied n-joins is sound. Recall that we assume fixed
an arbitrary finite quotienting Boolean algebra C. Moreover,
for all n ≥ 1, Tn[L] denotes Tn

Pol(C)[L] and Jn[L] denotes



JnPol(C)[L]. Our objective is to prove the right to left inclusion
in Theorem 33. For any n ≥ 1 and any tame and C-compatible
multiset L, we prove,

Satn(L,Tn[L]) ⊆ Jn[L]

By definition of Satn this amounts to proving that Jn[L]
contains Jntriv [L] and is closed under downset, multiplication
and Operation 3. Since Pol(C) is a quotienting lattice (see
Fact 5), we already proved that the three first properties hold
in Lemmas 29, 30 and 31. Therefore, we may concentrate on
proving that Pol(C) is closed under Operation 3.

Our argument is based on a special stratification (as defined
in Appendix D) of Pol(C). We begin with its definition and
then use it to prove the result. In particular, note that we reuse
the stratification in Appendix G.

A. Stratifying Pol(C)

For any natural number k ∈ N, we define a finite quotienting
lattice Polk(C) ⊆ Pol(C). The definition uses induction on k:
• When k = 0, we simply define Pol0(C) = C.
• When k ≥ 1, we define Polk(C) as the smallest lattice

which contains Polk−1(C) and such for any L1, L2 ∈
Polk−1(C) and any a ∈ A,

L1aL2 ∈ Polk(C)

Observe that by definition, it is immediate that Polk(C) is
a finite lattice and that Polk(C) ⊆ Polk+1(C) for any k ∈ N.
Moreover, since Pol(C) is by definition the smallest lattice
containing C and closed under marked concatenation,

Pol(C) =
⋃
k≥0

Polk(C)

Hence, it suffices to prove that all Polk(C) are quotienting to
obtain that this is a stratification of Pol(C).

Lemma 57. For any k ∈ N, Polk(C) is a quotienting lattice.

Proof. We use induction on k to prove closure under left
quotients (the proof for right quotients is symmetric). When
k = 0, this is by hypothesis on C since Pol0(C) = C. Assume
now that k ≥ 1. Let L ∈ Polk(C) and w ∈ A∗, we prove
that w−1L ∈ Polk(C). By definition of Polk(C) and since
quotients commute with unions and intersections, we only have
two cases to consider: L ∈ Polk−1(C) and L = L1aL2 with
L1, L2 ∈ Polk−1(C). When L ∈ Polk−1(C), this by induction.
Assume now that L = L1aL2 with L1, L2 ∈ Polk−1(C) and
let K ⊆ A∗ be the finite set of all words v such w = uav for
some u ∈ L1. One may verify that:

w−1L = (w−1L1)aL2 ∪
⋃
v∈K

v−1L2

Since w−1L1 and all languages v−1L2 belong to Polk−1(C)
by induction, we conclude that w−1L is a union of languages
in Polk(C) and thus belongs to Polk(C) itself.

We work with this stratification for the remainder of the
paper (more precisely, we use it here and in Appendix G). In

particular, we now write 6k to denote the preorder associated
to Polk(C) for some k ∈ N (see Appendix D for details).
Recall that we proved in Lemma 51 that for all k ∈ N, 6k is
compatible with multiplication.

We now prove a property which is specific to this particular
stratification and central for the soundness proof. We start with
a simple fact which defines a constant (depending on C) that
we need in order to state the property.

Fact 58. There exists p ∈ N such that for any u, up ∼C u
2p.

Proof. Recall that ∼C is a congruence of finite index for
concatenation (see Lemma 23). Hence, the quotient set A∗/∼C

is a finite semigroup and it has an idempotent power ω. It
suffices to choose p as this power.

We denote by p the constant defined in Fact 58 for the
remainder of Appendix E. We may state our property.

Lemma 59. For any k ∈ N, any h, h1, h2 ≥ 3k+1−1 and any
u, v ∈ A∗ such that up ∼C v, we have uph 6k u

ph1vuph2 .

Proof. Let k ∈ N, h, h1, h2 ≥ 3k+1−1 and u, v ∈ A∗ such that
up ∼C v. We prove that uph 6k u

ph1vuph2 using induction
on k. When k = 0, we have h, h1, h2 ≥ 2 and up ∼C v. By
definition of p in Fact 58 and since ∼C is compatible with
concatenation, we know that uph ∼C u

ph1upuph2 . Moreover,
since up ∼C v, we have uph ∼C uph1vuph2 . Finally, since
Pol0(C) = C, this implies uph 60 u

ph1vuph2 .
We now assume that k ≥ 1. Our goal is to prove that for

any K ∈ Polk(C), the following implication holds:

uph ∈ K ⇒ uph1vuph2 ∈ K. (4)

We prove that (4) holds for all K ∈ Polk−1(C) and all
languages K = K1aK2 for K1,K2 ∈ Polk−1(C) and a ∈ A.
Since languages in Polk(C) are built from these two kinds
using finitely many unions and intersections, it will then be
simple to verify that (4) actually holds for all K ∈ Polk(C).

That (4) holds when K ∈ Polk−1(C) is immediate by
induction on k. Hence, we may concentrate on the case when
K = K1aK2 for K1,K2 ∈ Polk−1(C) and a ∈ A. Assume
that uph ∈ K = K1aK2. We present a decomposition of uph

witnessing this fact. In particular, we isolate the factor up of
uph which contains the letter a in this decomposition. We have,

uph = upn1w1aw2u
pn2

with h = n1 + 1 + n2, w1aw2 = up, upn1w1 ∈ K1 and
w2u

pn2 ∈ K2.
By hypothesis, h ≥ 3k+1−1. Hence, since h = n1 +1+n2,

either n1 ≥ 3k−1 or n2 ≥ 3k−1 (possibly both). By symmetry,
we assume that n1 ≥ 3k − 1. The argument is based on the
following claim which we use to build a decomposition of
uph1upuph2 witnessing its membership in K1aK2.

Claim. There exist `1, `2 ∈ N such that h2 = `1 + 1 + `2,
upn1 6k−1 u

ph1vup`1 and upn2 6k−1 u
p`2

Before proving the claim, let us finish the argument.
Since 6k−1 is compatible with concatenation, we have



upn1w1 6k−1 u
ph1vup`1w1 and w2u

pn2 6k−1 w2u
p`2 . Hence,

since K1,K2 ∈ Polk−1(C), upn1w1 ∈ K1 and w2u
pn2 ∈ K2,

we get that uph1vup`1w1 ∈ K1 and w2u
p`2 ∈ K2. We may

now conclude that

uph1vuph2 = uph1vup`1upup`2

= uph1vup`1w1aw2u
p`2 ∈ K1aK2 = K.

This proves that (4) holds and terminates the proof of
Lemma 59. It remains to prove the claim. There are two cases
depending on whether n2 ≥ 3k − 1 or not.

Assume first that n2 ≥ 3k − 1. Since h2 ≥ 3k+1 − 1, there
are j, j′, j′′ ≥ 3k − 1 such that h2 = j + j′ + 1 + j′′. We let
`1 = j and `2 = j′ + 1 + j′′. We now obtain from induction
that the following holds:

upn1 6k−1 uph1vup`1

upn2 6k−1 upj
′
upupj

′′
= up`2

This proves the claim for the case n2 ≥ 3k+1 − 1. Finally,
assume that n2 < 3k−1. We let `2 = n2 and `1 = h2−1−`2.
Clearly, `1 ≥ 3k − 1. Hence, we get upn1 6k−1 u

ph1vup`1

from induction. Furthermore, upn2 6k−1 u
p`2 is immediate

since n2 = `2 by definition.

B. Soundness proof

We now prove that Jn[L] is closed under Operation 3. Let
(E,E) ∈ Jn[L] be an idempotent. We have to show that,

(E,E� Tn[L]|[E]C
�E) ∈ Jn[L]

By Lemma 56 this amount to proving that for all k ∈ N,
there exists w ∈ E, such that for any

(S1, . . . , Sn) ∈ E� Tn[L]|[E]C
�E,

one may find words w1, . . . , wn such that wi ∈ Si for all i
and w 6k w1 6k · · · 6k wn. We fix k ∈ N for the remainder
of the proof. The argument is based on Lemma 59.

Let us first choose w ∈ E. Since (E,E) ∈ Jn[L] by
hypothesis, Lemma 56 yields u ∈ E such that for any
(E1, . . . , En) ∈ E, there exist u1 ∈ E1, . . . , un ∈ En such
that u 6k u1 6k · · · 6k un. We let p ∈ N as the constant
defined in Fact 58 and we choose w = up3

k+1

. It remains to
prove this choice satisfies the above property.

First, we verify that w ∈ E. Since E is idempotent, the
tame multiplication Ep3k+1

is equal to E. Hence, since u ∈ E,
we get w = up3

k+1 ∈ E. We now turn to the second property.
Let (S1, . . . , Sn) ∈ E � Tn[L]|[E]C

� E. We have to find
w1,∈ S1, . . . , wn ∈ Sn such that w 6k w1 6k · · · 6k wn.
Since E is idempotent, we have,

E� Tn[L]|[E]C
�E = Ep3k+1

� Tn[L]|[E]C
�Ep3k+1

Therefore, by definition of tame multiplications, (S1, . . . , Sn)
is the multiplication of 2p3k+1 + 1 elements:

(S1, . . . , Sn) = R1 � · · · �Rp3k+1 �H � T1 � · · · � Tp3k+1

Such that Rj , Tj ∈ E for all j and H ∈ Tn[L]|[E]C
. Let us

name the elements in these n-tuples. Let

H = (H1, . . . ,Hn)
Rj = (Rj,1, . . . , Rj,n) for all j ≤ p3k+1

Tj = (Tj,1, . . . , Tj,n) for all j ≤ p3k+1

Since (H1, . . . ,Hn) ∈ Tn[L]|[E]C
, we may use Lemma 53 to

obtain v1 ∈ H1, . . . , vn ∈ Hn such that v1 6k · · · 6k vn.
Moreover, since Hi ⊆ [E]C for all i, we have vi ∈ [E]C.
Hence, since up ∈ E ⊆ [E]C, we have up ∼C v1. Thus, we
obtain from Lemma 59 that,

w = up3
k+1

6k u
p3k+1

v1u
p3k+1

Hence, it now suffices to exhibit w1,∈ S1, . . . , wn ∈ Sn such
that,

up3
k+1

v1u
p3k+1

6k w1 6k · · · 6k wn

By transitivity, this will imply w 6k w1 6k · · · 6k wn

as desired. We know that for all j ≤ p3k+1, Rj , Tj ∈ E.
Therefore, by definition of u, we know that for all j ≤ p3k+1,
• We have xj,1 ∈ Rj,1, . . . , xj,n ∈ Rj,n such that,

u 6k xj,1 6k · · · 6k xj,n

• We have yj,1 ∈ Tj,1, . . . , yj,n ∈ Tj,n such that,

u 6k yj,1 6k · · · 6k yj,n

For all i ≤ n, define wi = x1,i · · ·xp3k+1,iviy1,i · · · yp3k+1,i.
Clearly, we have wi ∈ Si for all i by definition of tame multipli-
cations. Moreover, since 6k is compatible with concatenation,
we obtain,

up3
k+1

v1u
p3k+1

6k w1 6k · · · 6k wn

This finishes the soundness proof.

APPENDIX F
GENERALIZED FACTORIZATION FORESTS

In this appendix, we present a combinatorial result which
will play a crucial part in the proofs of Appendices G and H.
This result is a generalized variant of Simon’s factorization
forest theorem [32] (in fact, this classical theorem is used as
an ingredient in our proof of this variant).

We introduce a generalized notion of “factorization forest”.
Let S be a finite partial semigroup and T be a finite semigroup.
Furthermore, let γ : S → T be an arbitrary map.

A γ-factorization forest is an ordered unranked tree whose
nodes are labeled by pairs (s, t) ∈ S × T . There can only be
three distinct kinds of nodes in the tree:
• Leaves which have no children. The label of this leaf is

any (s, t) ∈ S × T .
• Binary nodes which have exactly two children. Moreover,

if (s1, t1) and (s2, t2) are the labels of these children,
then the binary node has label (s1s2, t1t2) (in particular,
note that s1s2 has to be defined).

• Idempotent nodes which have three or more children.
Moreover, if (s1, t1), . . . , (sk, tk) are their labels, the
following conditions must be satisfied:



1) s1 = · · · = sk and it is an idempotent e of S (ee is
defined and equal to e).

2) t1 = tk and it is an idempotent f of T .
3) The idempotent node has label (e, fγ(e)f).

We associate a nonempty word x ∈ (S × T )+ to each
γ-factorization forest. Let (s1, t1), . . . , (sk, tk) ∈ S × T be
the labels of all leaves in the forest from left to right. The
associated word is x = (s1, t1) · · · (sk, tk).

Given an arbitrary word w = (s1, t1) · · · (sn, tn), one may
verify that there exists a γ-factorization forest associated to
w if and only if the multiplication s1 · · · sn is defined in S
(we say that “the evaluation of w is defined”). Indeed, such a
forest is easily built with binary nodes only.

Remark 60. In the particular case where the internal nodes
of a forest are all binary, the root label is (s1 · · · sn, t1 · · · tn),
where (s1, t1), . . . , (sk, tk) ∈ S × T is the sequence of labels
of all leaves read from left to right. This is not the case in
general: in the root label (s, t) of a γ-factorization forest, s
is determined by the associated word w only, but because of
idempotent nodes, this is not the case for t.

We may now state our generalized factorization forest
theorem. We call height of a γ-factorization forest the largest
number h ∈ N such that the forest contains a branch with h
inner nodes (binary or idempotent).

Theorem 61. Let S be a finite partial semigroup, T be a
finite semigroup and γ : S → T be some map. Then, any w ∈
(S × T )+ whose evaluation is defined admits a γ-factorization
forest whose height is smaller than 3(|S|+ 1)(|T |+ 2).

The remainder of this appendix is devoted to proving
Theorem 61. We begin with a special case and then use the
classical factorization forest theorem of Simon to generalize.
For the proof, we assume that S, T and γ are fixed.

Special case. Let e ∈ S be an idempotent. We call e-word an
element of ({e} × T )+. Our special case is as follows:

Lemma 62. Let e ∈ S be an idempotent. Then any e-word
admits a γ-factorization forest of height |T |+ 2.

We fix an idempotent e ∈ S throughout this proof. Moreover,
we let k be the number of elements in T that are not idempotent.
We use an induction on a parameter of e-words that we define
now. Let w = (e, t1) · · · (e, tn) be an e-word of length n ≥ 1.
Given i ≤ n and an idempotent f ∈ T , we say that f occurs
at position i in w when there exists ` ≤ 2k − 1 such that,

ti · · · ti+` = f.

We call index of w the number of distinct idempotents f ∈ T
which occur at some position i of w. Note that the index of
any word is necessarily bounded by the number of idempotents
in T , i.e., by |T | − k. We prove that any e-word w admits
a γ-factorization forest of height k + d + 2, where d is the
index of w. Since d ≤ |T | − k by the above remark, this will
entail that any e-word admits a forest of height smaller than
k + (|T | − k) + 2 = |T |+ 2, whence Lemma 62 will follow.

The proof that any e-word w admits a γ-factorization forest
of height k+d+2 goes by induction on d. Before we start the
induction, let us present two facts that we use multiple times.
The first one can be used to build γ-factorization forests for
“small” e-words.

Fact 63. Let h ∈ N and let w = (e, t1) · · · (e, tn) be an e-word
of length n ≤ 2h. Then w admits a γ-factorization forest of
height at most h and whose root label is (e, t1 · · · tn).

Proof. It suffices to use only binary nodes in the construction
and to proceed by dichotomy on w.

The second fact is a corollary of a theorem presented in [13].
This theorem states that for any finite semigroup T , if k is
the number of nonidempotent elements in T , then for any
` = 2k elements t1, . . . , t` ∈ T , there exist i < j ≤ ` such that
titi+1 · · · tj is idempotent. This yields the following statement.

Fact 64. Let w be an e-word such that |w| ≥ 2k. There exists
an idempotent f ∈ T occurring at a position i ≤ 2k in w.

We may now proceed with the induction. Let w =
(e, t1) · · · (e, tn) be an e-word and d be its index. Using
induction on d, we build a γ-factorization forest for w whose
height is at most k + d+ 2.

If d = 0, then n < 2k by Fact 64. Hence, we may build a
forest of height at most k < k+2 for w using Fact 63. We now
assume that d ≥ 1. It follows from Fact 64 that an idempotent f
occurs at a position i ≤ 2k in w. Hence, there exists ` ≤ 2k−1
such that ti · · · ti+` = f . We define u = (e, t1) · · · (e, ti−1),
v = (e, ti) · · · (e, ti+`) and w′ = (e, ti+`+1) · · · (e, tn). By
definition, we have w = uvw′.

We distinguish two cases depending on whether f occurs
at some position in w′. If not, then the index of w′ is smaller
than d− 1. Therefore, it admits a forest of height smaller than
k + d+ 1 by induction. Moreover, uv has length smaller than
2k+1 by definition. Hence, it admits a forest of height smaller
than k + 1 by Fact 63. These two forests may be combined
with a binary node into a single one for w = uvw′ whose
height is bounded by k + d+ 2.

Otherwise, f occurs at some position of w′. We let j be
the rightmost such position in w. Hence, we have `′ ≤ 2k − 1
such that tj · · · tj+`′ = f . We let z = (e, ti+`+1) · · · (e, tj−1),
v′ = (e, tj) · · · (e, tj+`′) and w′′ = (e, tj+`′+1) · · · (e, tn). By
definition, w = uvzv′w′′ and the following holds.

1) Since the length of u is smaller than 2k, it admits a forest
of height smaller than k by Fact 63.

2) Since v and v′ are of length smaller than 2k, they admit
forests of height smaller than k by Fact 63. Moreover,
the idempotent (e, f) is the root label of both forests by
definition of v, v′. Hence, we may combine them with
an idempotent node into a forest of height smaller than
k + 1 for vzv′ (the leftmost and rightmost children are
the forests of v and v′, and the others are leaves for the
letters in z). Its root label is (e, fγ(e)f).



3) By choice of j, the index of w′′ is at most d−1. Therefore,
w′′ admits a γ-factorization forest of height smaller than
k + d+ 1 by induction.

One may now combine the forests for u and vzv′ into a
forest for uvzv′ of height at most k + 2 with a binary node.
This forest can then be combined with that of w′′ with another
binary node. This yields a forest for w = uvzv′w′′ whose
height is bounded by k + d+ 2, as desired.

General case. We now turn to the general case, which requires
considering classical factorization forests. Since S is a partial
semigroup, one may turn it into a true semigroup by adding a
zero. We denote by S0 = S ∪ {0} the semigroup obtained by
adding a new element 0 to S and extending the multiplication
of S as follows. For any s ∈ S0, s0 = 0s = 0 and for any
s, s′ ∈ S, if ss′ is undefined in S, we now set ss′ = 0 in S0.
We call S0-factorization forest an ordered unranked tree whose
nodes are labeled by elements of S0. There can only be three
distinct kinds of nodes:
• Leaves, which have no children. The label is any s ∈ S0.
• Binary nodes, which have two children. If s1 and s2 are

their labels, then the binary node has label s1s2.
• Idempotent nodes, which have three or more children. All

children must have the same label e ∈ S0, which must
be idempotent and which is also the label of the node.

We associate a nonempty word x ∈ (S0)+ to each S0-
factorization forest. Let s1, . . . , sk ∈ S0 be the labels of all
leaves in the forest from left to right. The associated word
of length k is x = s1 · · · sk. Finally, the height of an S0-
factorization forest is the largest number h ∈ N such that it
contains a branch with h inner nodes (binary or idempotent).

Observe that for any word w ∈ (S×T )+, we may associate
a word π(w) ∈ S+ ⊆ (S0)+ by discarding the second
component of each letter. We prove the following lemma.

Lemma 65. Let h ∈ N and w ∈ (S × T )+ such that π(w)
admits an S0-factorization forest of height smaller than h and
whose root label belongs to S. Then w admits a γ-factorization
forest of height smaller than h(|T |+ 2).

Theorem 61 is a simple consequence of Lemma 65 and the
factorization forest theorem of Simon [32] (we use a bound
that was proved later in [15], [7]). Indeed, let w ∈ (S × T )+

whose evaluation is defined. It follows from the factorization
forest theorem of Simon that π(w) admits an S0-factorization
forest of height smaller than 3|S0| = 3(|S| + 1). Moreover,
since the evaluation of w is defined, the root of this forest
belongs to S and it follows from Lemma 65 that w admits a
γ-factorization forest of height at most 3(|S|+ 1)(|T |+ 2) as
desired.

It remains to prove Lemma 65. Let h ∈ N and w ∈ (S×T )+

such that π(w) admits an S0-factorization forest of height at
most h and whose root label belongs to S. We denote this
forest by F. We use induction on h. If h = 0, then π(w) has
a single letter. Hence, this is the same for w and it admits a
γ-factorization forest of height 0. We now assume that h ≥ 1.
There are two cases depending on the root of F.

If the root is a binary node, then w can be decomposed as
w = w1w2 such that π(w1) and π(w2) admit S0-factorization
forests of height at most h− 1. Moreover, the root labels of
these forests must belong to S since their product (the root
label of F) does. By induction, it follows that w1 and w2

admit γ-factorization forests of height at most (h−1)(|T |+2).
Combining them with a binary node yields a forest for w
whose height is at most (h− 1)(|T |+ 2) + 1 ≤ h(|T |+ 2).

Finally, assume that the root of F is idempotent and let
e ∈ S be its idempotent label. In that case, w admits a
decomposition w = w1 · · ·wk such that for all i, π(wi) admits
an S0-factorization forest of height at most h− 1 whose root
label is e ∈ S. By induction, it follows that for all i, wi admits
a γ-factorization forest Fi of height at most (h− 1)(|T |+ 2).
Moreover, the root label of Fi is (e, ti) for some ti ∈ T .
Consider the e-word w′ = (e, t1) · · · (e, tk). We know from
Lemma 62 that w′ admits a γ-factorization of height at most
|T |+ 2. We now replace each leaf (e, ti) in this forest by the
forest Fi. By definition, this yields a γ-factorization forest for
w and its height is at most:

|T |+ 2 + (h− 1)(|T |+ 2) = h(|T |+ 2).

This terminates the proof of Lemma 65.

APPENDIX G
COMPLETENESS IN THEOREM 33

In this appendix, we prove the completeness of our algorithm
for computing Pol(C)-tied n-joins. For the whole section, we
assume fixed a finite quotienting Boolean algebra C, a tame
C-compatible multiset L, and a natural number n ≥ 1. For the
sake of improved readability, we write Tn[L] for Tn

Pol(C)[L]
and Jn[L] for JnPol(C)[L]. Our goal is to prove,

Jn[L] ⊆ Satn(L,Tn[L])

To present the construction, we first need to introduce a new
notion: filterings. We begin with this definition.

A. Filterings

Given any language K, we call filtering of L by K the set
〈L|K〉 ∈ 2L

n

of all n-tuples (L1, . . . , Ln) ∈ Ln such that
(L1, . . . , Ln) ∩K is Pol(C)-tied (i.e., not Pol(C)-separable).

Remark 66. While this is not apparent on the notation it is
important to keep in mind that 〈L|K〉 depends on both n and
Pol(C) (which are fixed throughout the whole section).

We may now connect filterings to the result that we want to
prove. We do it with the following property.

Proposition 67. For each L ∈ L, there exists a finite set of
languages KL ⊆ Pol(C) which satisfies the two following
properties:

1) L ⊆
⋃

K∈KL
K.

2) For all K ∈ KL, (L, 〈L|K〉) ∈ Satn(L,Tn[L]).

Before we prove Proposition 67, we use it to finish the
proof of Theorem 33. Let (L,S) ∈ Jn[L], we prove that
(L,S) ∈ Satn(L,Tn[L]). Since (L,S) is Pol(C)-tied, the set



KL ⊆ Pol(C) given in the proposition cannot be a separating
cover. Since L ⊆

⋃
K∈KL

K by the first item, it follows that
there exists K ∈ KL such that T ∩K is Pol(C)-tied for all
T ∈ S. By definition of filterings, this means that S ⊆ 〈L|K〉.
Hence, since (L, 〈L|K〉) ∈ Satn(L,Tn[L]) by the second item
in the lemma, we conclude using closure under downset in the
definition of Satn that (L,S) ∈ Satn(L,Tn[L]) as desired.
This terminates the proof of Theorem 33.

Remark 68. The proof of Proposition 67 is constructive: we
actually build the sets KL ⊆ Pol(C). This is of particular
interest. Indeed, since we now know that Satn(L,Tn[L]) =
Jn[L], it is simple to verify from the statement that for any
(L,S) ∈ L× 2L

n

which is Pol(C)-separable (i.e., not Pol(C)-
tied), the set KL ⊆ Pol(C) is a separating cover.

The remainder of this appendix is now devoted to proving
Proposition 67: we build the finite sets KL ⊆ Pol(C) that
it describes. The construction is based on our generalized
factorization forest theorem. We start by explaining how.

B. Using generalized factorization forests

Since L is tame, we know that it is a partial semigroup and
that 2L

n

is a semigroup. Moreover since L is C-compatible,
we know from Lemma 32 and Lemma 28 that any element
(S1, . . . , Sn) of Tn[L] has homogeneous C-type, that is,
[S1]C = · · · = [Sn]C. Recall that Tn[L]|[L]C

denotes the set of
all Pol(C)-tied n-tuples whose C-type is [L]C, that is:

Tn[L]|[L]C

def
= {(S1, . . . , Sn) ∈ Tn[L] | ∀i, [Si]C = [L]C}.

Note that since any element of Tn[L] has homogeneous C-type,
Tn[L] is the union of all Tn[L]|[L]C

when L ranges over L.
Consider now the following map γ:

γ : L → 2L
n

L 7→ Tn[L]|[L]C

We work with γ-factorization forests. By definition, such forests
are associated to nonempty words in x ∈ (L×2L

n

)+ and their
nodes are labeled by pairs (L,S) ∈ L× 2L

n

.
The first issue we have to deal with is that we are interested

in building languages over A, not L×2L
n

. Hence, we begin by
explaining how we associate γ-factorization forests to words
in A∗. Consider a word w ∈ A∗. There are two cases:

1) If w = ε, a γ-factorization forest for w is a γ-factorization
forest for any single letter word of the form,

(S, 〈L|[ε]C〉) ∈ (L× 2L
n

)+ such that ε ∈ S

2) If w ∈ A+, let w = a1 · · · ak, where the ai’s are letters.
A γ-factorization forest for w is a γ-factorization forest
for any word x = x1 · · ·xk ∈ (L × 2L

n

)k of length k
such that for all i, the letter xi is of the form,

xi = (Si, 〈L|[ε]Cai[ε]C〉) with ai ∈ Si

Note that [ε]Cai[ε]C is a concatenation of three languages
in A∗, which is not to be confused with the multiplication
of ∼C-classes (actually, {ai} may not be a ∼C-class).

Finally, we say that a pair (S,S) ∈ L× 2L
n

is valid when
there exists a γ-factorization forest which is associated to at
least one word w ∈ A∗ and whose root label is (S,S). We
now prove the following propositions.

Proposition 69. Let h ∈ N and (S,S) ∈ L×2L
n

. There exists
a language K ∈ Pol(C) satisfying the following:

1) K contains all w ∈ A∗ associated to a γ-factorization
forest of height at most h and root label (S,S).

2) 〈L|K〉 ⊆ S.

Proposition 70. Let (S,S) ∈ L× 2L
n

be a valid pair. Then
(S,S) ∈ Satn(L,Tn[L]).

We begin by using these two results to build the sets KL

and prove Proposition 67. For the construction, we fix h =
3(|L|+ 1)(|2Ln |+ 2). Let L ∈ L. For all S ∈ 2L

n

, we denote
by KS ∈ Pol(C) the language associated by Proposition 69 to
h and (L,S) ∈ L× 2L

n

. Finally, we define,

KL = {KS | (L,S) is a valid pair}.

By definition KL is finite and included in Pol(C). It remains
to prove that it satisfies the two conditions in Proposition 67.

We start with second one. Let K ∈ KL, we prove that
(L, 〈L|K〉) ∈ Satn(L,Tn[L]). By definition, K = KS

where (L,S) is valid. Hence, by construction of KS in
Proposition 69, we know that 〈L|K〉 ⊆ S. Moreover, we know
from Proposition 70 that (L,S) ∈ Satn(L,Tn[L]). Finally, we
conclude using closure under downset in the definition of Satn

that (L, 〈L|K〉) ∈ Satn(L,Tn[L]).
We now turn to the first item: L ⊆

⋃
K∈KL

K. Given L ∈ L
and w ∈ L, we have to find K ∈ KL such that w ∈ K.
Let us first consider the special case when w = ε. Let S =
〈L|[ε]C〉. Since ε ∈ L, a forest for ε is the leaf associated to
(L,S) ∈ L× 2L

n

of height 0 ≤ h. Hence, (L,S) is valid and
KS ∈ KL. Moreover, by definition of KS in Proposition 69
we have w ∈ KS.

Assume now that w = a1 · · · ak ∈ A+. Since w ∈ L and L
is tame, we know that there exist S1, · · · , Sk ∈ L such that
S1 � · · · � Sk = L and ai ∈ Si for all i. Moreover, for all
i ≤ k, we let xi as the following letter in L× 2L

n

:

xi = (Si, 〈L|[ε]Cai[ε]C〉) ∈ L× 2L
n

Finally, we let x = x1 · · ·xk ∈ (L× 2L
n

)+. Since S1 � · · · �
Sk = L, the evaluation of x is defined and by choice of h, we
then obtain a γ-factorization forest of height at most h for x
from Theorem 61. By definition, this forest is associated to w
and its labels is (L,S) for some S. Hence, (L,S) is valid and
KS ∈ KL. Moreover, by definition of KS in Proposition 69
we have w ∈ KS.

It remains to prove Proposition 69 and Proposition 70. We
devote a subsection to each proof.

C. Proof of Proposition 69

Before we start the proof, we begin with a technical lemma
about filterings which we will use several times.



Lemma 71. Let K1,K2 ∈ Pol(C). Then,

〈L|K1〉 ∪ 〈L|K2〉 = 〈L|K1 ∪K2〉
〈L|K1〉 � 〈L|K2〉 = 〈L|K1K2〉

Proof. Let K1,K2 ∈ Pol(C). The two properties are based
on similar arguments which rely on the stratification of
Pol(C) introduced in the previous appendix and the associated
preorders 6k. We focus on 〈L|K1〉 � 〈L|K2〉 = 〈L|K1K2〉,
the other is left to the reader.

There exists h ∈ N such that K1,K2 and K1K2 all belong to
Polh(C). Furthermore, we may use Lemma 54 to obtain ` ≥ 1
such that for all k ≥ `, if L = (L1, . . . , Ln) ∈ Ln, then for
K = K1,K2 or K1K2, L ∈ 〈L|K〉 if and only if there exists
w1 ∈ L1 ∩K, . . . , wn ∈ Ln ∩K such that w1 6k · · · 6k wn.
For the whole proof, we let k = max(h, `) + 1.

Assume first that (L1, . . . , Ln) ∈ 〈L|K1〉� 〈L|K2〉. We get
(S1, . . . , Sn) ∈ 〈L|K1〉 and (T1, . . . , Tn) ∈ 〈L|K2〉 such that
Li = Si�Ti for all i. Hence, for all i, we have ui ∈ Si∩K1 and
vi ∈ Ti∩K2 such that, u1 6k · · · 6k un and v1 6k · · · 6k vn.
For all i, since Li = Si � Ti, we have,

uivi ∈ (Si ∩K1)(Ti ∩K2) ⊆ SiTi ∩K1K2 ⊆ Li ∩K1K2

Moreover, since 6k is compatible with concatenation, we get
u1v1 6k · · · 6k unvn. Hence, we conclude by choice of k
that (L1, . . . , Ln) ∈ 〈L|K1K2〉.

Assume now that (L1, . . . , Ln) ∈ 〈L|K1K2〉. For all i, we
get wi ∈ Li ∩ K1K2 such that w1 6k · · · 6k wn. Since
w1 ∈ K1K2, it admits a decomposition w1 = u1v1 with u1 ∈
K1 and v1 ∈ K2. Let G = ↑k−1 u1 and H = ↑k−1 v1. Both
are upper sets for 6k−1 and therefore belong to Polk−1(C).
Moreover, we have GH ∈ Polk(C). Indeed,

GH =

{
G ∪

⋃
a∈AGa(a−1H) if ε ∈ H,⋃
a∈AGa(a−1H) if ε /∈ H.

Hence, since w1 = u1v1 ∈ GH and w1 6k w2, we have
w2 = u2v2 with u2 ∈ G (i.e., u1 6k−1 u2) and v2 ∈ H (i.e.,
v1 6k−1 v2). One may repeat the argument for all wi, thus we
obtain that for all i ≥ 2, wi = uivi with u1 6k−1 · · · 6k−1 un
and v1 6k−1 · · · 6k−1 vn.

Since uivi = wi ∈ Li, for all i, we may use the definition
of tame multiplications to obtain Si, Ti ∈ L such that ui ∈ Si,
vi ∈ Ti and Si � Ti = Li. We prove that (S1, . . . , Sn) ∈
〈L|K1〉 and (T1, . . . , Tn) ∈ 〈L|K2〉 which terminates the proof.
By symmetry, we concentrate on (S1, . . . , Sn) ∈ 〈L|K1〉. We
know that u1 ∈ K1. Hence, since K1 ∈ Polh(C) and h ≤ k−1,
we know that ui ∈ K1 for all i. Hence, for all i, ui ∈ Li ∩K1

and u1 6k−1 · · · 6k−1 un. Since k− 1 ≥ `, we conclude that
(S1, . . . , Sn) ∈ 〈L|K1〉 by choice of `.

We now prove Proposition 69. Let h ∈ N and (S,S) ∈
L× 2L

n

. Our goal is to build K ∈ Pol(C) satisfying the two
conditions in the proposition. We proceed by induction on h.

Induction base. Let us first assume that h = 0. We let AS ⊆ A
as the set of all letters a ∈ A such that S = 〈L|[ε]Ca[ε]C〉.

There are now two cases depending on whether S = 〈L|[ε]C〉
or not. If this equality holds, we let,

K = [ε]C ∪
⋃

a∈AS

[ε]Ca[ε]C

Otherwise, we define,

K =
⋃

a∈AS

[ε]Ca[ε]C

Clearly K ∈ Pol(C) (it the union of marked concatenations of
[ε]C ∈ C). Let us prove that this choice satisfies the conditions
of the proposition. We start with the first item. Consider w ∈ A∗
associated to a γ-factorization forest of height at most h = 0
(i.e., a leaf) and root label (S,S). We have to prove that w ∈ K.
By definition, one of the two following properties hold:
• w = ε, ε ∈ S and S = 〈L|[ε]C〉. Hence, w ∈ [ε]C ⊆ K

by definition.
• w = a ∈ A, a ∈ S and S = 〈L|[ε]Ca[ε]C〉. Hence,
w ∈ [ε]Ca[ε]C ⊆ K by definition.

We turn to the second item: 〈L|K〉 ⊆ S. By definition K is
the union of languages K ′ ∈ Pol(C) such that 〈L|K ′〉 = S. It
is therefore immediate from Lemma 71 that 〈L|K〉 = S which
terminates the proof for the case h = 0.

Inductive case. Assume now that h ≥ 1. We first build the
language K. Given any (T,T) ∈ L × 2L

n

, we may use
induction to construct a language KT,T ∈ Pol(C) such that,

1) KT,T contains all w ∈ A∗ associated to a γ-factorization
forest of height at most h− 1 and root label (T,T).

2) 〈L|KT,T〉 ⊆ T.
We are now ready to define our language K ∈ Pol(C). It is

the union of three distinct kinds of languages:
1) The single language KS,S.
2) For all (T1,T1), (T2,T2) ∈ L×2L

n

satisfying (T1,T1)�
(T2,T2) = (S,S), the following language is in the union,

KT1,T1KT2,T2

3) For any idempotent (E,E) ∈ L × 2L
n

which satisfies
(E,E�Tn[L]|[E]C

�E) = (S,S), the following language
is in the union,

KE,E[E]CKE,E

By definition, K is a union of concatenations of languages
belonging to Pol(C). Since Pol(C) is closed under concate-
nation (see Fact 5), it follows that K ∈ Pol(C). It remains to
prove that K satisfies the conditions of the proposition.

We start with the first item. Let w ∈ A∗ which is associated
to some γ-factorization forest of height at most h and of root
label (S,S). We have to prove that w ∈ K. If this forest has
height smaller than h − 1, then w ∈ KS,S ⊆ K. Otherwise,
it has height h and we distinguish two cases depending on
whether its root is binary or idempotent. When it is binary, it
follows by definition that w = w1w2 where w1 and w2 are
associated to γ-factorization forests of height h−1 whose labels
(T1,T1) and (T2,T2) satisfy (T1,T1)� (T2,T2) = (S,S). It
follows that w = w1w2 ∈ KT1,T1KT2,T2 ⊆ K.



Finally, if the root is idempotent, w admits a decomposition
w = w1 · · ·wk such that for all i, wi is associated to a γ-
factorization forests of height h− 1 whose label is (E,Ti) for
some idempotent E ∈ L. Moreover T1 = Tk is an idempotent
E of 2L

n

and (S,S) = (E,E�Tn[L]|[E]C
�E) (by definition

of γ). Hence, KE,E[E]CKE,E ⊆ K. By definition, we have
wi ∈ KE,E for all i. Moreover, since the wi are associated
to γ-factorization forests whose root is (E,Ti), it follows
from the definition that wi ∈ E for all i. Hence, since E is
idempotent, w2 · · ·wk−1 ∈ E ⊆ [E]C. We conclude that,

w = w1w2 · · ·wk−1wk ∈ KE,E[E]CKE,E ⊆ K

This terminates the proof of the first item in the proposition.

We finish with the proof of the second item: 〈L|K〉 ⊆ S.
Since K is defined as the union of several languages, by the first
equality in Lemma 71, it suffices that for any language K ′ in
the union, we have 〈L|K ′〉 ⊆ S. Let us consider all three cases.
If K ′ = KS,S, this is by definition. If K ′ = KT1,T1

KT2,T2

for (T1,T1)� (T2,T2) = (S,S), it follows from the second
equality in Lemma 71 that,

〈L|K ′〉 = 〈L|KT1,T1〉 � 〈L|KT2,T2〉

Hence, by hypothesis on KT1,T1
and KT2,T2

, 〈L|K ′〉 ⊆ T1�
T2 = S.

Finally, assume that K ′ = KE,E[E]CKE,E with (E,E) and
idempotent such that (E,E�Tn[L]|[E]C

�E) = (S,S). Using
Lemma 71 again, we obtain,

〈L|K ′〉 = 〈L|KE,E〉 � 〈L|[E]C〉 � 〈L|KE,E〉

Hence, by hypothesis on KE,E, we obtain 〈L|K ′〉 ⊆ E �
〈L|[E]C〉�E. Since S = E�Tn[L]|[E]C

�E, that 〈L|K ′〉 ⊆ S
is now immediate from the following fact.

Fact 72. For any H ∈ L, Tn[L]|[H]C
= 〈L|[H]C〉.

Proof. By C-compatibility of L: for any L ∈ L either L ⊆
[H]C or L ∩ [H]C = ∅. Hence, 〈L|[H]C〉 is the set of all n-
tuples (S1, . . . , Sn) ∈ Tn[L] such that Si ⊆ [H]C for all i.
This is exactly the definition of Tn[L]|[H]C

.

D. Proof of Proposition 70

Let (S,S) ∈ L× 2L be a valid pair. We have to prove that
(S,S) ∈ Satn(L,Tn[L]). By definition there exists w ∈ A∗
associated to a γ-factorization forest F whose root label is
(S,S). We proceed by induction on the height of F.

Leaves. Assume first that F is a leaf. In that case, we know
by definition that there are two possibilities. Either w = ε,
therefore ε ∈ S and S = 〈L|[ε]C〉. Or w = a ∈ A, therefore
a ∈ S and S = 〈L|[ε]Ca[ε]C〉. Hence, this case amounts to
proving the following lemma.

Lemma 73. Let T ∈ L and a ∈ A the following hold:
1) If ε ∈ T , then (T, 〈L|[ε]C〉) ∈ Satn(L,Tn[L]).
2) If a ∈ T , then (T, 〈L|[ε]Ca[ε]C〉) ∈ Satn(L,Tn[L]).

The proof of Lemma 73 is rather technical and we postpone
it to the end of the section. Let us first finish our induction.

Binary nodes. We now assume that F is not a leaf and that
its root is a binary node. Hence, it has two children. We let
F1,F2 as the forests which are rooted in these children. By
definition they are associated to w1, w2 ∈ A+ and (S,S) =
(S1,S1)� (S2,S2) where (S1,S1) and (S2,S2) are the root
labels of F1 and F2. Since F1 and F2 have smaller height
than F, it is immediate by induction that (S1,S1), (S2,S2) ∈
Satn(L,Tn[L]). Hence, by closure under multiplication in the
definition of Satn, we obtain (S,S) ∈ Satn(L,Tn[L]).

Idempotent nodes. Finally, we assume that F is not a leaf and
that its root is an idempotent node. It has an arbitrary number
of children F1, . . . ,Fk which have labels (E,S1), . . . , (E,Sk)
where E ∈ L is idempotent and S1 = Sk is an idempotent
E. Moreover, (S,S) = (E,E� Tn[L]|[E]C

�E) by definition
of γ. Finally, it follows from the definition that w may be
decomposed as w = w1 · · ·wk where wi is associated to Fi

for all i. Hence, since F1 has smaller height than F, it follows
by induction that (E,E) ∈ Satn(L,Tn[L]). Therefore, we
obtain from Operation 3 in the definition of Satn that,

(S,S) = (E,E� Tn[L]|[E]C
�E) ∈ Satn(L,Tn[L])

Proof of Lemma 73. It remains to prove Lemma 73. We will
need the following simple fact.

Fact 74. Let T ∈ L and w ∈ T , then (T, 〈L|w〉) ∈ Jntriv [L]
and therefore (T, 〈L|w〉) ∈ Satn(L,Tn[L]).

Proof. Since w ∈ T , by definition of Jntriv [L], it suffices to
prove that for all (T1, . . . , Tn) ∈ 〈L|w〉, w ∈ T1 ∩ · · · ∩ Tn.
By hypothesis, (T1, . . . , Tn) ∩ {w} is Pol(C)-tied. It follows
that for all i, Ti ∩ {w} is non-empty, i.e., w ∈ Ti.

We may now start the proof. Let T ∈ T. We begin
with the case when ε ∈ T . We prove that (T, 〈L|[ε]C〉) ∈
Satn(L,Tn[L]). We first use the fact that ε ∈ T to prove that
there exists T1, T2, E ∈ L such that E is idempotent, ε ∈ T1,
ε ∈ T2, ε ∈ E and T = T1 � E � T2.

Let k = |L|+1. By hypothesis, we have εk = ε ∈ T . Hence,
using the definition of tame sets, we obtain R1, . . . , Rk ∈ L
such that ε ∈ Ri for all i and T = R1 � · · · �Rk. By choice
of k, it follows from a pigeon-hole principle argument that
there exist i < j such that R1 � · · · �Ri = R1 � · · · �Rj . A
little algebra then yields that,

T = R1�· · ·�Ri� (Ri+1�· · ·�Rj)
ω�Rj+1�· · ·�Rk+1

We may now choose T1 = R1� · · · �Ri, E = (Ri+1� · · · �
Rj)

ω and T2 = Rj+1 � · · · �Rk+1.
We may now prove that (T, 〈L|[ε]C〉) ∈ Satn(L,Tn[L]).

It follows from Fact 74 that (E, 〈L|ε〉) ∈ Satn(L,Tn[L]).
Moreover, one may verify the following fact (whose proof is
left to the reader):

Fact 75. For any K ⊆ A∗,

〈L|K〉 � 〈L|ε〉 = 〈L|ε〉 � 〈L|K〉 = 〈L|K〉



Hence, (E, 〈L|ε〉) is idempotent. Altogether, we obtain from
Operation 3 in the definition of Satn that,

(E, 〈L|ε〉 � Tn[L]|[E]C
� 〈L|ε〉) ∈ Satn(L,Tn[L])

Moreover, it follows from Fact 72 that Tn[L]|[E]C
= 〈L|[E]C〉

which is itself equal to 〈L|[ε]C〉 since ε ∈ E. Using Fact 75,
this yields,

(E, 〈L|[ε]C〉) ∈ Sat
n(L,Tn[L])

Finally, since ε ∈ T1 and ε ∈ T2, we obtain from Fact 74
that (T1, 〈L|ε〉) and (T2, 〈L|ε〉) both belong to Satn(L,Tn[L]).
Hence, by closure under multiplication in the definition of Satn

and Fact 75 again, we obtain,

(T1 � E � T2, 〈L|[ε]C〉) ∈ Sat
n(L,Tn[L])

Since T = T1 � E � T2, this yields (T, 〈L|[ε]C〉) ∈
Satn(L,Tn[L]) as desired.

It now remains to treat the case a ∈ T for some a ∈ A.
We prove that (T, 〈L|[ε]Ca[ε]C〉) ∈ Satn(L,Tn[L]). Observe
that a can be decomposed as a = εaε. Hence, since a ∈ T ,
it follows from the definition of tame multiplications that we
have T1, Ta, T2 ∈ L such that ε ∈ T1, ε ∈ T2, a ∈ Ta and
T1 � Ta � T2 = T . Using the above argument for the case
ε ∈ T , we have,

(T1, 〈L|[ε]C〉) ∈ Satn(L,Tn[L])
(T2, 〈L|[ε]C〉) ∈ Satn(L,Tn[L])

Moreover, since we know that a ∈ Ta, we have (Ta, 〈L|a〉) ∈
Satn(L,Tn[L]) by Fact 74. Using closure under multiplication
in the definition of Satn and the fact that T1 � Ta � T2 = T
this yields the following,

(S, 〈L|[ε]C〉 � 〈L|a〉 � 〈L|[ε]C〉) ∈ Sat
n(L,Tn[L])

Using an argument similar to the proof of Lemma 71 (which is
left to the reader, one may use the fact that [ε]C ∈ C ⊆ Pol(C)
to prove the following,

〈L|[ε]C〉 � 〈L|a〉 � 〈L|[ε]C〉 = 〈L|[ε]Ca[ε]C〉

Therefore, we obtain (T, 〈L|[ε]Ca[ε]C〉) ∈ Satn(L,Tn[L])
which terminates the proof of Lemma 73.

APPENDIX H
OMITTED PROOFS IN SECTION VIII

This appendix contains the two missing proofs in Sec-
tion VIII for Propositions 42 and 43. Recall that a finite
quotienting Boolean algebra C and a tame and C-compatible
multiset L are fixed. Moreover, for the sake of improved
readability, given n ≥ 1, we write A[L] for APol(C)[L], Tn[L]
for Tn

Pol(C)[L] and Jn[L] for JnPol(C)[L].

A. Proof of Proposition 42

Proposition 42. For all n ≥ 1 and all computation trees T
of level n, there exists a computation tree T′ with the same
label and whose operational height is smaller than |C|.

For the proof, we fix n ≥ 1 and assume that all our
computation trees have level n. We call operational size of a
computation tree T the total number of operation nodes in T.
Proposition 42 is a consequence of the following lemma.

Lemma 76. Consider a computation tree T and assume that
it contains a branch with two distinct operation nodes x and x′

whose labels (T,T) and (T ′,T′) satisfy [T ]C = [T ′]C. Then
there exists a second tree T′ with strictly smaller operational
size than T and such that lab(T) = lab(T′).

Starting from any computation tree T, one may use
Lemma 76 recursively to build T′ which has the same label
as T and such that for any two operation nodes x and x′ on
the same branch of T′, their labels (T,T) and (T ′,T′) satisfy
[T ]C 6= [T ′]C. Since [T ]C ∈ C, for any T ∈ L, it follows
that any branch of T′ contains at most |C| operation nodes.
Thus, the operational height of T′ is bounded by |C| which
terminates the proof of Proposition 42.

We now concentrate on proving Lemma 76. We let T and
x 6= x′ be as defined in the lemma. Since x, x′ are on the
same branch, one is an ancestor of the other. By symmetry, we
assume that x is an ancestor of x′. We let S be the subtree of T
which is rooted at x. By definition, lab(S) = lab(x) = (T,T).
We build a new tree S′ with the same label as S and strictly
smaller operational size. It will then be simple to build the
desired T′ by replacing the subtree S with S′ in T.

Given two nodes z, z′ of S, we write z < z′ to denote the
fact that z is a (strict) ancestor of z′. By hypothesis, we have
x < x′, hence we may consider the sequence of operation
nodes which are between the two. We let x1, . . . , xk be the
sequence of all nodes which satisfy the following properties:
• For all i, xi is an operation node.
• x = xk < · · · < x1 = x′.

Note that since xk = x and x1 = x′, we have k ≥ 2. For
all i ≥ 1, we let (Fi,Ti) as label of xi. By definition of
operation nodes, Fi must be an idempotent of L. Moreover,
(Fk,Tk) = (T,T) is the label of S and we know by hypothesis
that [F1]C = [Fk]C. Finally, consider the unique child of x1
and let (E,E) be the label of this child (which is idempotent
since x1 is an operation node). Note that E = F1 and T1 =
E� Tn[L]|[E]C

�E by definition.
We now classify the nodes within S in several categories.

We call backbone of S the path made of all (strict) ancestors
of x1. Since xk is the root, there are k − 1 ≥ 1 operation
nodes on the backbone (the nodes x2, . . . , xk). Furthermore,
we call lower nodes all nodes within the subtree rooted in x1
(including x1). We denote by m the number operation nodes
which are lower nodes. Finally, all nodes which are neither
backbone nor lower nodes are called side nodes. Observe that
any side node z has a closest ancestor y on the backbone
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Fig. 3. Classification of the nodes in S. In this example, there are no right
side nodes of rank 2.

which has to be a binary node. We say that z is a left (resp.
right) side node when it belongs to the subtree whose root is
the left (resp. right) child of y. Finally, we associate a rank
to each side node z: the rank of z is the smallest i ≤ k such
that xi is an ancestor of z (i must exist since xk is the root).
For all i ≤ k, we write `i (resp. ri) the number of operation
nodes which are left (resp. right) side nodes of rank i (note
that `1 = r1 = 0). We illustrate these definitions in Figure 3.

Since backbone, lower and side nodes account for all nodes
in the tree, we have the following fact.

Fact 77. The total number of operation nodes in S is:

k − 1 +m+ `1 + · · · `k + r1 + · · ·+ rk.

Essentially, the desired tree S′ is built by removing all
backbone nodes from S and replacing them with only downset
and binary nodes. Thus, we obtain a new tree S′ whose
operational size is m + `1 + · · · `k + r1 + · · · + rk which
is strictly smaller than that of S since k − 1 ≥ 1. Before we
present this construction, we introduce a last notation whose
purpose is to simplify the presentation. We add artificial neutral
elements to the partial semigroup L and to the semigroup 2L

n

which we denote by 1L and 12Ln . Having them will allow us
to factorize some arguments. We may now start building S′.

Lemma 78. For all i ≤ k, there exist Ui, Vi, U
′
i , V

′
i ∈ L∪{1L}

and Ui,Vi ∈ 2L
n ∪{12Ln } such that the following conditions

hold:
1) For X ∈ {Ui, U

′
i} and Y ∈ {Vi, V ′i }, Fi = X � E � Y .

2) Ti ⊆ Ui �E� Tn[L]|[E�V ′i�Fi�U ′i�E]
C
�E�Vi.

3) If (Ui,Ui) 6= (1L, 12Ln ), it is the label of a computation
tree whose operational size is bounded by `1 + · · ·+ `i.

4) If (Vi,Vi) 6= (1L, 12Ln ), it is the label of a computation
tree whose operational size is bounded by r1 + · · ·+ ri.

Let us first use Lemma 78, to finish the proof of Lemma 76.
We construct a new tree S′ whose operational size is bounded
by m+ `1 + · · · `k +r1 + · · ·+rk and whose label is lab(S) =
(T,T) = (Fk,Tk).

We apply Lemma 78 in the special case when i = k. This
yields Uk, Vk, U

′
k, V

′
k ∈ L∪{1L} and Uk,Vk ∈ 2L

n ∪{12Ln }
as in the lemma. Recall that by hypothesis, we have [Fk]C =
[F1]C and F1 = E. Thus, we have [Fk]C = [E]C which yields
the following fact.

Fact 79. [E]C = [E � V ′k � Fk � U ′k � E]
C

.

Proof. By Lemma 48, the quotient set A∗/∼C is a finite
monoid whose multiplication is denoted by “•” and we have

[E � V ′k � Fk � U ′k � E]C = [E]C •[V
′
k]C •[Fk]C •[U

′
k]C •[E]C.

Therefore, since [Fk]C = [E]C, it suffices to prove that, [E]C =
[E]C • [V ′k]

C
• [E]C • [U ′k]

C
• [E]C.

By the first item in the Lemma 78, we have E = Fk =
U ′k � E � V ′k . Hence, [E]C = [U ′k]

C
• [E]C • [V ′k]

C
. Moreover,

since E is idempotent in L, [E]C = [E � E]C = [E]C • [E]C
is an idempotent of A∗/∼C. We therefore obtain:

[E]C = [E]C • [U ′k]
C
• [E]C • [V ′k]

C
• [E]C

= ([E]C • [U ′k]
C

)ω • [E]C • ([V ′k]
C
• [E]C)ω

= [E]C • ([V ′k]
C
• [E]C)ω

= [E]C • [V ′k]
C
• [E]C • ([V ′k]

C
• [E]C)ω−1

We may now replace the second copy of [E]C in the above
with [E]C • [U ′k]

C
• [E]C • [V ′k]

C
• [E]C which yields,

[E]C = [E]C • [V ′k]C • [E]C • [U ′k]C • [E]C • ([V ′k]C • [E]C)ω

Finally, since [E]C = [E]C •([V
′
k]

C
• [E]C)ω , this yields [E]C =

[E]C • [V ′k]
C
• [E]C • [U ′k]

C
• [E]C as desired.

We now combine Fact 79 with the second item in Lemma 78
which yields, Tk ⊆ Uk�E�Tn[L]|[E]C

�E�Vk. Moreover,
since we have Fk = Uk�E�Vk, by the first item, we obtain,

(Fk,Tk) ⊆ (Uk � E � Vk,Uk �E� Tn[L]|[E]C
�E�Vk)

We may now construct S′. By hypothesis, we already have
a computation tree whose label is (E,E � Tn[L]|[E]C

� E):
the subtree of S rooted at x1 (whose operational size is m).
Moreover, we know by Items 3 and 4 in Lemma 78 that
(Uk,Uk) and (Vk,Vk) are the labels of computation trees
whose operational sizes are bounded by `1 + · · · + `k and
r1 + · · ·+ rk respectively. Because of the above inclusion, one
may use two binary nodes and a downset node to combine



these three computation trees into a single one whose label is
(Fk,Tk) = lab(S). This is our new tree S′. By definition S′

has operational size bounded by m+`1+· · ·+`k+r1+· · ·+rk.
As desired, this is strictly smaller than S (its operational size
is k − 1 + m + `1 + · · · `k + r1 + · · · + rk by Fact 77 and
k − 1 ≥ 1). This terminates the proof of Lemma 76.

It now remains to prove Lemma 78. We proceed by induction
on i. When i = 1, since x1 is an operation node whose unique
child has label is (E,E), we have:

(F1,T1) = (E,E� Tn[L]|[E]C
�E).

Hence, it suffices to choose U1 = V1 = U ′1 = V ′1 = 1L and
U1 = V1 = 12Ln . We now assume that i ≥ 2. By definition,
xi has a unique child and its label is an idempotent (Fi,Fi)
such that

(Fi,Ti) = (Fi,Fi � Tn[L]|[Fi]C
� Fi).

We use the following fact to choose Ui, Vi, U
′
i , V

′
i ∈ L∪ {1L}

and Ui,Vi ∈ 2L
n ∪ {12Ln }.

Fact 80. There exist (S,S), (R,R) ∈ L× 2L
n ∪{(1L, 12Ln )}

such that,

• (Fi,Fi) ⊆ (S � Fi−1 �R,S�Ti−1 �R).
• If (S,S) 6= (1L, 12Ln ), it is the label of a computation

tree whose operational size is bounded by `i.
• If (R,R) 6= (1L, 12Ln ), it is the label of a computation

tree whose operational size is bounded by ri.

Proof. Consider all binary nodes between xi and xi−1. For
each such node, one child is an ancestor of xi−1 (or xi−1
itself) and the other is a side node. We define,

• xi < zh1
< · · · < z1 < xi−1 as all binary nodes whose

left children are side nodes (in particular these children
an all their descendants are left side nodes of rank i).

• xi < z′h2
< · · · < z′1 < xi−1 as all binary nodes whose

right children are side nodes (in particular these children
an all their descendants are right side nodes of rank i).

Note that these two sequences may be empty. We may now
define (S,S) and (R,R). If the sequence zh1 < · · · < z1 is
empty, we let (S,S) = (1L, 12Ln ). Otherwise, we let,

(S,S) = (Sh1 ,Sh1)� · · · � (S1,S1)

where (Sj ,Sj) is the label of the left child of zj for all j ≤ h1.
Similarly, if the sequence z′h2

< · · · < z′1 is empty, we let
(R,R) = (1L, 12Ln ). Otherwise, we let,

(R,R) = (R1,R1)� · · · � (Rh2
,Rh2

)

where (Rj ,Rj) is the label of the right child of z′j for all
j ≤ h2. One may now verify that this choice satisfies the
conditions of the fact.

We now define appropriate Ui, Vi, U
′
i , V

′
i ∈ L ∪ {1L} and

Ui,Vi ∈ 2L
n ∪ {12Ln }. Using our induction hypothesis, we

obtain Ui−1, Vi−1, U
′
i−1, V

′
i−1 and Ui−1,Vi−1 satisfying the

four items in Lemma 78 for i− 1. We define,

(Ui,Ui) = (S,S)� (Ui−1,Ui−1)
U ′i = S � Fi−1 � U ′i−1

(Vi,Vi) = (Vi−1,Vi−1)� (R,R)
V ′i = V ′i−1 � Fi−1 �R

It now remains to verify that the four items in Lemma 78
hold. We begin with the third and fourth which are the simplest.

Items 3 and 4. Since both items are symmetrical, we
concentrate on Item 3. Assume that (Ui,Ui) 6= (1L, 12Ln ),
we want to build a computation tree with label (Ui,Ui) and
operational size bounded by `1 + · · ·+ `i. Let us assume that
(S,S) 6= (1L, 12Ln ) or (Ui−1,Ui−1) 6= (1L, 12Ln ) (the cases
when one of the two is equal to (1L, 12Ln ) are similar). By
construction, we already have computation trees whose labels
are (S,S) and (Ui−1,Ui−1). Moreover, their operational sizes
are bounded by `i and `1 + · · · + `i−1 respectively. Hence,
since (Ui,Ui) = (S,S)�(Ui−1,Ui−1) by definition, one may
use a binary node to combine these two trees into a single one
of label (Ui,Ui). By definition, this tree has operational size
bounded by `1 + · · ·+ `i.

Item 1. We have four equalities to verify. Since the argument
is similar for all four, we concentrate on Fi = Ui�E�Vi and
Fi = U ′i �E�V ′i . By Fact 80, Fi = S�Fi−1�R. Moreover,
since Fi−1 = Ui−1 � E � Vi−1 by the inductive definition of
Ui−1 and Vi−1, we get,

Fi = S � Ui−1 � E � Vi−1 �R = Ui � E � Vi.

Furthermore, Fi−1 is idempotent. Thus, Fi = S� (Fi−1)3�R
and since by construction of U ′i−1 and V ′i−1, we have Fi−1 =
U ′i−1 � E � V ′i−1, we obtain,

Fi = S�Fi−1�U ′i−1�E�V ′i−1�Fi−1�R = U ′i�E�V ′i .

Item 2. We finish with the second item which is the most
involved. Our objective is to show that,

Ti ⊆ Ui �E� Tn[L]|[E�V ′i�Fi�U ′i�E]
C
�E�Vi

We start with two simple facts which we will need.

Fact 81. For any X,Y ∈ L such that X � Y is defined,
Tn[L]|[X]C

� Tn[L]|[Y ]C
⊆ Tn[L]|[X�Y ]C

.

Fact 82. For (X,X) which is the label of a computation tree,
we have X ⊆ Tn[L]|[X]C

.

We now start the proof. By definition, (Fi,Ti) is the label
of the operation node xi whose child has label (Fi,Fi). Hence,
Ti = Fi � Tn[L]|[Fi]C

� Fi and it follows from Fact 80 that,

Ti ⊆ S�Ti−1 �R� Tn[L]|[Fi]C
� S�Ti−1 �R (5)

The result is a consequence of the two following inclusions:

S�Ti−1 �R ⊆ Ui �E� Tn[L]|[E�V ′i ]C
S�Ti−1 �R ⊆ Tn[L]|[U ′i�E]

C
�E�Vi



Indeed, one may combine these two inclusions with (5) using
Fact 81 which yields the desired result:

Ti ⊆ Ui �E� Tn[L]|[E�V ′i�Fi�U ′i�E]
C
�E�Vi.

It remains to prove the two inclusions. Since they are based
on symmetrical arguments, we concentrate on the first one and
leave the other to the reader. Since we built Ui−1 and Vi−1
with induction, we have,

Ti−1 ⊆ Ui−1�E�Tn[L]|[E�V ′i−1�Fi−1�U ′i−1�E]
C
�E�Vi−1.

By Fact 82, E ⊆ Tn[L]|[E]C
and Vi−1 ⊆ Tn[L]|[Vi−1]C

. Hence,
using Fact 81, we may simplify the above inclusion as follows:

Ti−1 ⊆ Ui−1 �E� Tn[L]|[E�V ′i−1�Fi−1�U ′i−1�E�Vi−1]
C
.

Since U ′i−1 and Vi−1 were built by induction, we know that
U ′i−1�E�Vi−1 = Fi−1. Hence, since Fi−1 is an idempotent,

Ti−1 ⊆ Ui−1 �E� Tn[L]|[E�V ′i−1�Fi−1]
C
.

Using Fact 82 again, we have R ⊆ Tn[L]|[R]C
. Thus, using

Fact 81 together with the fact that V ′i = V ′i−1 � Fi−1 �R by
definition, this yields the following,

Ti−1 �R ⊆ Ui−1 �E� Tn[L]|[E�V ′i−1�Fi−1�R]
C

⊆ Ui−1 �E� Tn[L]|[E�V ′i ]C .

Finally, since Ui = S�Ui−1 by definition, we have

S�Ti−1 �R ⊆ S�Ui−1 �E� Tn[L]|[E�V ′i ]C
⊆ Ui �E� Tn[L]|[E�V ′i ]C .

This conclude the proof of Lemma 78.

B. Proof of Proposition 43

Proposition 43. For all g ∈ N, there exists pg ≥ 1 such that
for any n ≥ 1 and any computation tree T of level n and
operational height at most g, if (S,S) = lab(T), then,

(S, expg
(S)) ∈ Sat2(L,A[L]).

We begin with a preliminary result about p-extractions which
is central in the proof. We call it the extraction lemma.

Lemma 83 (Extraction lemma). Let q, k ≥ 1, p ≥ q|L|4(k−1)
and S1, . . . ,Sk ⊆ Ln for some n. Then,

exp(S1 � · · · � Sk) ⊆ exq(S1)� · · · � exq(Sk)

Proof. We use induction on k. When k = 1, it is immediate
from the definition that exp(S1) ⊆ exq(S1) since p ≥ q.

Assume now that k ≥ 2 and let r = q|L|4(k−2). It is
immediate from our induction hypothesis in the cases k − 1
and 1 that:

exr(S1 � · · · � Sk−1) ⊆ exq(S1)� · · · � exq(Sk−1).
exr(Sk) ⊆ exq(Sk).

Hence, it now suffices to prove that,

exp(S1 � · · · � Sk) ⊆ exr(S1 � · · · � Sk−1)� exr(Sk).

Let (P1, P2) ∈ exp(S1�· · ·�Sk), we prove that (P1, P2) ∈
exr(S1 � · · · � Sk−1)� exr(Sk). By definition, (P1, P2)p is

a subsequence of some n-tuple in S1 � · · · �Sk. Hence, there
exist (H1, . . . ,H2p) and (L1, . . . , L2p) which are respectively
subsequences of an n-tuple in S1� · · · �Sk−1 and an n-tuple
in Sk, and such that:

(P1, P2)p = (H1, . . . ,H2p)� (L1, . . . , L2p).

By choice of r and since p ≥ q|L|4(k−1) by hypothesis, we
have p ≥ r|L|4. By the pigeon-hole principle, there exist
at least r identical 4-tuples (H2k−1, H2k, L2k−1, L2k) ∈ L4,
which yields an index i ≤ p and at least r indices j ≤ p
satisfying

(H2i−1, H2i) = (H2j−1, H2j),
and (L2i−1, L2i) = (L2j−1, L2j).

Hence, we have (H2i−1, H2i) ∈ exr(S1 � · · · � Sk−1)
and (L2i−1, L2i) ∈ exr(Sk). Moreover, since (P1, P2) =
(H2i−1, H2i) � (L2i−1, L2i), we conclude that (P1, P2) ∈
exr(S1�· · ·�Sk−1)�exr(Sk). This terminates the proof.

We now start the proof of Proposition 43. We prove a slightly
stronger statement. For any g ∈ N, we exhibit pg ≥ 1 such
that for any p ≥ pg and any computation tree of operational
height at most g, if (S,S) is its label, then

(S, exp(S)) ∈ Sat2(L,A[L]).

The proof is an induction on g. We first treat the case g = 0. In
this case, we prove that choosing p0 = 1 suffices. Consider p ≥
p0 and let T be a computation tree whose operational height is
0. We let n be its level. By definition, it follows that T contains
only leaves, downset nodes and multiplication nodes. Therefore,
its label (S,S) is the multiplication of elements belonging to
Jntriv [L]. One may verify from its definition that Jntriv [L] is
closed under downset and multiplication. Hence, it follows
that (S,S) itself belongs to Jntriv [L]. By definition, it then
follows that (S, exp(S)) ∈ J2triv[L]. Finally, since J2triv[L] ⊆
Sat2(L,A[L]) by definition, we conclude that (S, exp(S)) ∈
Sat2(L,A[L]).

This takes care of the base case, assume now that g ≥ 1.
We first choose the appropriate pg ≥ 1. This choice is based
on two constants. The first one is pg−1 ≥ 1 which we obtain
by induction: for any p ≥ pg−1 and any computation tree of
operational height at most g− 1, if (P,P) is its label, then we
know that:

(P, exp(P)) ∈ Sat2(L,A[L]).

The second constant is given by the following lemma.

Lemma 84. There exists s ≥ 1 such that for any integers q ≥ s
and n ≥ 1 and any pair (L1, L2) ∈ L, if (L1, L2)q ∈ T2q[L],
then (L1, L2) ∈ A[L].

Proof. By Lemma 12, (L1, L2) ∈ A[L] if and only there exists
arbitrarily large q ∈ N such that (L1, L2)q ∈ T2q[L]. Since L2

is finite, the existence of s follows.



For the remainder of the proof, we let pg−1 and s be defined
as above. Moreover, we let m = max(s, pg−1). We now define
pg in two steps. Let

q = m× |L|4×2×|2L
2
|, and

pg = q × |L|4×2×3(|L|+1)(|2L
2
|+2).

It remains to prove that this choice of pg satisfies the desired
properties. Let p ≥ pg and consider a computation tree T of
operational height at most g and let n be its level. Finally, let
(S,S) = lab(T). We have to prove that

(S, exp(S)) ∈ Sat2(L,A[L]).

Consider a node x of T. We say that x is a frontier node
when the two following properties hold:

1) The subtree Tx which is rooted in x has one of the two
following properties:
• Tx has operational height at most g − 1, or,
• Tx has operational height g and x is an operation node.

2) There exists no ancestor of x satisfying Item 1.
By definition, each branch of T contains a node satisfying

Item 1, namely its leaf, whose operational height is 0 ≤ g − 1.
Hence, each branch contains a unique frontier node by Item 2.
We let x1, . . . , xk as the list (from the left to right) of all
frontier nodes in T. Furthermore, for each i ≤ k, we let
(Si,Si) = lab(xi). By definition, and since T has operational
height at most g, we have the following fact.

Fact 85. (S,S) ⊆ (S1,S1)� · · · � (Sk,Sk).

Proof. Since T has operational height smaller than g, all
ancestors of a frontier node must be downset or binary nodes
(an operation node would satisfy Item 1 above and this is not
possible by Item 2). The fact is then immediate by definition of
downset and binary nodes since (S,S) is the label of T.

Hence, by closure under downset in the definition of
Sat2(L,A[L]), our new objective is to prove the following:

(S1 � · · · � Sk, exp(S1 � · · · � Sk)) ∈ Sat2(L,A[L]).

The argument is based on a sub-induction using our generalized
factorization forest theorem. However, presenting it requires
formalizing the property of (S1,S1), . . . , (Sk,Sk) which we
use. Let us first introduce a name for it.

Consider a sequence (R1,R1), . . . , (R`,R`) ∈ L × 2L
n

.
We say that this sequence is good when it satisfies the two
following properties:

1) For all i < j ≤ `,

exq(Ri+1 � · · · �Rj) ⊆ A[L]|[Ri+1�···�Rj ]C

2) For all i ≤ `, (Ri, exq(Ri)) ∈ Sat2(L,A[L]).

Do note that we use the constant q = m|L|4×2×|2L
2
| in the

definition. In particular, q is strictly smaller than p ≥ pg. Let
us prove that (S1,S1), . . . , (Sk,Sk) is indeed good.

Lemma 86. The sequence (S1,S1), . . . , (Sk,Sk) is good.

Proof. We have two properties to prove. We start with the first
one. Let i < j ≤ k, we prove that exq(Si+1 � · · · � Sj) ⊆
A[L]|[Si+1�···�Sj ]C

. By Proposition 41, (Si,Si) ∈ Jn[L] for
all i ≤ k (it is the label of a computation tree of level n). Hence,
since Jn[L] is closed under multiplication by Lemma 31, for
all i < j ≤ k,

(Si+1 � · · · � Sj ,Si+1 � · · · � Sj) ∈ Jn[L]

It now follows from Lemmas 28 and 32 that,

Si+1 � · · · � Sj ⊆ Tn[L]|[Si+1�···�Sj ]C

Moreover, we have q ≥ s by definition, and by choice of s in
Lemma 84, we have exq(Tn[L]) ⊆ A[L]. It then follows that,

exq(Si+1 � · · · � Sj) ⊆ A[L]|[Si+1�···�Sj ]C

This terminates the proof of the first item. We turn to the
second one. Let i ≤ k, we have to prove that (Si, exq(Si)) ∈
Sat2(L,A[L]).

By definition (Si,Si) = lab(xi). Since xi is a frontier node,
we consider two cases depending on which property holds in
Item 1 of the definition.

Let us first assume that the subtree rooted in xi has
operational height smaller than g−1. Observe that by definition,
q ≥ m ≥ pg−1. It is now immediate from our choice of pg−1
that (Si, exq(Si)) ∈ Sat2(L,A[L]).

We now assume that the subtree rooted in xi has operational
height g and xi is an operation node. The argument is more
involved. By definition xi has a single child y whose operational
height is g − 1 and whose label (E,E) ∈ L × 2L

n

is an
idempotent. Furthermore, we have,

(Si,Si) = (E,E� Tn[L]|[E]C
�E)

In particular, we have S = E. Recall that m = max(s, pg−1).
This gives us the two following properties:

1) Since m ≥ pg−1 and (E,E) is the label of a tree whose
operational height g − 1, (E, exm(E)) ∈ Sat2(L,A[L])
by definition of pg−1.

2) Since m ≥ s, we get by choice of s in Lemma 84 that,
exm(Tn[L]|[E]C

) ⊆ A[L]|[E]C
.

To simplify notations, we write P = exm(Tn[L]|[E]C
) in

the following.
Note that while exm(E) is the m-extraction of an idempotent,

it needs not be idempotent itself. However, since it is an
element of 2L

2

, it follows from a standard semigroup theory
argument that there exists ` ≤ |2L2 | such that (exm(E))` is
an idempotent. We write F = (exm(E))` ∈ 2L

2

. Observe that
by closure under multiplication in the definition of Sat2 and
since E is idempotent, we have (E,F) ∈ Sat2(L,A[L]).

We may now use the fact that P ⊆ A[L]|[E]C
together with

closure under downset and Operation 3 in the definition of
Sat2 to obtain,

(E,F�P� F) ∈ Sat2(L,A[L]).



It remains to show that (Si, exq(Si)) ⊆ (E,F�P� F). By
closure under downset, it will then follow that (Si, exq(Si)) ∈
Sat2(L,A[L]) as desired.

We already know that Si = E. Hence, it suffices to prove
that exq(Si) ⊆ F�P� F. Since E is idempotent, we have

Si = E` � Tn[L]|[E]C
�E`.

Moreover, since ` ≤ |2L2 |, this makes Si the multiplication of
at most 2× |2L2 |+ 1 elements. Recall that we chose

q = m× |L|4×2×|2
L2
|

Hence, it is immediate from Lemma 83 that,

exq(Si) ⊆ (exm(E))` � exm(Tn[L])|[E]C
� (exm(E))`

This exactly says that exq(Si) ⊆ F�P� F.

We may now present the inductive argument. Consider the
partial semigroup L and the semigroup 2L

2

. We work with
γ-factorization forests for the following map γ.

γ : L → 2L
2

H 7→ A[L]|[H]C

That (S1 � · · · � Sk, exp(S1 � · · · � Sk)) ∈ Sat2(L,A[L]) is
now a consequence of the following lemma.

Lemma 87. Let (R1,R1), . . . , (R`,R`) ∈ L×2L
n

be a good
sequence and let w ∈ (L× 2L

2

)+ be as follows:

w = (R1, exq(R1)) · · · (R`, exq(R`)).

Let h ∈ N and assume that w admits a γ-factorization forest
of height h and let (P,P) be its root label. Then, for any
r ≥ q × |L|4×2×h, we have,

exr(R1 � · · · �R`) ⊆ P.

Before proving Lemma 87, we first finish the proof of Propo-
sition 43. We know from Lemma 86 that (S1,S1), . . . , (Sk,Sk)
is good. Consider the word,

w = (S1, exq(S1)) · · · (S`, exq(Sk)) ∈ (L× 2L
2

)+

Clearly, the evaluation of w is defined: S1�· · ·�S` = S. Hence,
it follows from Theorem 61 that w admits a γ-factorization
forest of height h ≤ 3(|L|+ 1)(|2L2 |+ 2). Let (P,P) be its
root label. Since (S1,S1), . . . , (Sk,Sk) is good, we know that
(Si, exq(Si)) ∈ Sat2(L,A[L]) for all i. Therefore, by choice
of γ it is simple to verify from the definition of Sat2(L,A[L])
that (P,P) ∈ Sat2(L,A[L]). Finally, by choice of pg , we have
p ≥ pg ≥ q × |L|4×2×h. Hence, we get from Lemma 87 that,

(S1 � · · · � Sk, exp(S1 � · · ·Sk)) ⊆ (P,P)

By closure under downset, we conclude that,

(S1 � · · · � Sk, exp(S1 � · · ·Sk)) ∈ Sat2(L,A[L])

This terminates the proof of Proposition 43. It remains to prove
Lemma 87. We finish the appendix with this proof.

Proof of Lemma 87. We use induction on the height h of the
γ-factorization forest for w. When h = 0, the root node is a leaf
which means that ` = 1. Therefore, (P,P) = (R1, exq(R1))
by definition. Since r ≥ q by definition, we obtain from the
case k = 1 in Lemma 83 that (R1, exr(R)) ⊆ (P,P).

We now assume that h ≥ 1 and we let t = q×|L|4×2×(h−1).
We consider two cases depending on the nature of the root.

Assume first that the root is a binary node. Hence, it has two
children of height at most h−1 which are associated to w1 and
w2 such that w = w1w2. Let (P1,P1) and (P2,P2) be the
labels of these children, we have (P,P) = (P1,P1)�(P2,P2)
by definition. Since w = w1w2, there exists j < ` such that,

w1 = (R1, exq(R1)) · · · (Rj , exq(Rj))
w2 = (Rj+1, exq(Rj+1)) · · · (R`, exq(R`))

We now use induction. Let T1 = ext(R1 � · · · � Rj) and
T2 = ext(Rj+1 � · · · �R`). By choice of t, we may apply
our induction hypothesis to w1 and w2 which yields,

T1 ⊆ P1 and T2 ⊆ P2

Moreover, by definition, we have r ≥ t×|L|4. Hence, we may
apply Lemma 83 (in the case k = 2) to obtain that,

exr(R1 � · · · �R`) ⊆ T1 �T2 ⊆ P1 �P2 = P

This terminates the binary case.

Let us now assume that the root is an idempotent node.
Hence, it has an arbitrary number c ≥ 3 of children of height
at most h − 1 which are associated to w1, . . . , wc such that
w = w1 · · ·wc. Let (E,P1), . . . , (E,Pc) be their labels from
left to right. By definition, we know that

1) E is an idempotent of L.
2) P1 = Pc and it is an idempotent E of 2L

2

.
3) (P,P) = (E,E� γ(E)�E).

There exist i < j < ` such that,

w1 = (R1, exq(Ri)) · · · (Rj , exq(Ri))
wc = (Rj+1, exq(Rj+1)) · · · (R`, exq(R`))

Let us first apply induction. Let T1 = ext(R1 � · · · �Ri),
and Tc = ext(Rj+1 � · · · � R`). By choice of t, we may
apply induction on w1 and wc to obtain that,

T1 ⊆ P1 = E and Tc ⊆ Pc = E

Furthermore, since r ≥ t×|L|4×2 by definition, we may apply
Lemma 83 (in the case k = 3) to obtain that,

exr(R1 � · · · �R`) ⊆ T1 � ext(Ri+1 � · · · �Rj)�Tc

We may now combine this with T1,T2 ⊆ E to obtain that,

exr(R1 � · · · �R`) ⊆ E� ext(Ri+1 � · · · �Rj)�E

Therefore, since P = E� γ(E)�E, it remains to prove that
ext(Ri+1�· · ·�Rj) ⊆ γ(E) = A[L]|[E]C

. By hypothesis on
our γ-factorization forest, we have Ri+1 � · · · �Rj = E. We
use our hypothesis that (R1,R1), . . . , (R`,R`) is good:

ext(Ri+1 � · · · �Rj) ⊆ A[L]|[E]C
= γ(E)

This concludes the proof of Lemma 87.
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