
Quantifier Alternation for Infinite Words

Théo Pierron, Thomas Place and Marc Zeitoun

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. We investigate the expressive power of the quantifier alter-
nation hierarchy of first-order logic over words. This hierarchy includes
the classes Σi (sentences having at most i blocks of quantifiers starting
with an ∃) and BΣi (Boolean combinations of Σi sentences). So far, this
expressive power has been effectively characterized for the lower levels
only. Recently, a breakthrough was made over finite words, and decidable
characterizations were obtained for BΣ2 and Σ3, by relying on a decision
problem called separation, and solving it for Σ2.
The contribution of this paper is a generalization of these results to the
setting of infinite words: we solve separation for Σ2 and Σ3, and obtain
decidable characterizations of BΣ2 and Σ3 as consequences.

Regular word languages form a robust class, as they can be defined either by
operational, algebraic, or logical means: they are exactly those that can be defined
equivalently by finite state machines (operational view), morphisms into finite
algebras (algebraic view) and monadic second order (“MSO”) sentences [4,27,8,5]
(logical view). To understand the structure of this class in depth, it is natural
to classify its languages according to their descriptive complexity. The problem
is to determine how complicated a sentence has to be to describe a given input
language. This is a decision problem parametrized by a fragment of MSO: given
an input language, can it be expressed in the fragment? This problem is called
membership (is the language a member of the class defined by the fragment?).

The seminal result in this field is the membership algorithm for first-order
logic (FO) over finite words, which is arguably the most prominent fragment
of MSO. This algorithm was obtained in two steps. McNaughton and Papert [10]
observed that the languages definable in FO are exactly the star-free languages:
those that may be expressed by a regular expression in which complement is
allowed while the Kleene star is disallowed. Furthermore, an earlier result of
Schützenberger [23] shows that star-free languages are exactly the ones whose
syntactic monoid is aperiodic. The syntactic monoid is a finite algebra that can be
computed from any input regular language, and aperiodicity can be formulated
as an equation that has to be satisfied by all elements of this algebra. Therefore,
Schützenberger’s result makes it possible to decide whether a regular language is
star-free (and therefore definable in FO by McNaughton-Papert’s result).

Following this first result, the attention turned to a deeper question: given
an FO-definable language, find the “simplest” FO-sentences that define it. The
standard complexity measure for FO sentences is their quantifier alternation,
which counts the number of switches between blocks of ∃ and ∀ quantifiers. This

measure is justified not only because it is intuitively difficult to understand a
sentence with many alternations, but also because the nonelementary complexity
of standard problems for FO [25] (e.g, satisfiability) is tied to quantifier alternation.
In summary, we classify FO definable languages by counting the number of
quantifier alternations needed to define them and we want to be able to decide
the level of a given language (which amounts to solving membership for each level).

This leads to define the following fragments of FO: an FO sentence is Σi if
its prenex normal form has at most i blocks of ∃ or ∀ quantifiers and starts with
a block of existential ones. Note that Σi is not closed under complement (the
negation of a Σi sentence is called a Πi sentence). A sentence is BΣi if it is a
Boolean combination of Σi sentences (cf. figure). Clearly, we have Σi ⊆ BΣi ⊆
Σi+1, and these inclusions are known to be strict [3,26]: Σi (BΣi (Σi+1.

Σ1

Π1

BΣ1

Σ2

Π2

BΣ2

Σ3

Π3

BΣ3

Σ4

Π4

(

(

(

(

(

(

(

(

(

(

(

(

Solving membership for levels of this hierarchy is a longstanding open problem.
Following Schützenberger’s approach, it was first investigated for languages of
finite words. However, the question also makes sense for more complex structures,
in particular for the most natural extension: infinite words. Schützenberger’s
result was first generalized to infinite words by Perrin [11], and a suitable algebraic
framework for languages of infinite words was set up by Wilke [28]. Since a regular
language of infinite words is determined by regular languages of finite words,
finding a membership algorithm for languages of infinite words does not usually
require to start over. Instead these algorithms are obtained by building on top of
the algorithms for finite words, adding new arguments, specific to infinite words.

Regarding the hierarchy, membership is easily seen to be decidable for Σ1.
For BΣ1, the classical result of Simon [24] was generalized from finite to infinite
words by Perrin and Pin [12]. For finite words, membership to Σ2 is known to be
decidable [1,15], a result lifted to infinite words in [2,7]. Following these results,
the understanding of the hierarchy remained stuck for years until the framework
was extended to new and more general problems than membership.

Rather than asking whether a language is definable in a fragment F , these
problems ask what is the best F -definable “approximation” of this language (with
respect to specific criteria). The simplest example is F-separation, which takes
two regular languages as input and asks whether there exists a third language
definable in F that contains the first language and is disjoint from the second.
Separation is more general than membership: asking whether a regular language
is definable in F is the same as asking whether it can be F-separated from its
(also regular) complement. A consequence is that deciding these more general
problems is usually more challenging than deciding membership. However, their
investigation in the setting of finite words has also been very rewarding. A good
illustration is the transfer result of [18], which states that for all i, decidability of
separation for Σi entails decidability of membership for Σi+1. Combined with an
algorithm for Σ2-separation [18], this proved that Σ3 has decidable membership.
This result was strengthened in [16], which shows that Σ3-separation is decidable

as well, thus obtaining decidability of membership for Σ4. Finally, in [18], it
was shown that BΣ2 has decidable membership by using a generalization of
separation for Σ2 and analyzing an algorithm solving this generalization.

It remained open to know whether it was possible to generalize with the
same success this new approach to the setting of infinite words. This is the
investigation that we carry out in the paper. More precisely, we rely on the crucial
notion of Σi-chains, designed in [18] for presenting and proving membership and
separation algorithms for finite words. We generalize this concept to infinite
words and successfully use it to prove that the following problems are decidable:
Σ2-separation, Σ3-separation, and BΣ2 membership. This demonstrates that
Σi-chains remain a suitable framework for presenting arguments in the setting of
infinite words. On the other hand, new issues specific to infinite words arise, for
example, we were not able to generalize the transfer result from Σi-separation to
Σi+1-membership (as a consequence, membership for Σ4 remains open). Note
also that, for each problem, we pre-compute some information by using the
corresponding algorithm designed in [18,16] for finite words. This means that the
involved algorithms from [18,16] are used as subroutines of our algorithms.

It is worth noting that the decidability of the membership problem for BΣ2
over infinite words has been obtained independently in [9]. While the algorithm
is essentially the same as our own, its proof is completely different.

We now present the problems in depth in Section 1, and we solve them in the
rest of the paper. A detailed outline is provided at the end of Section 1. Due to
lack of space, some proofs are postponed to the full version of this paper, see [13].

1 Presentation of the Problem

In this section, we first define the quantifier alternation hierarchy of first-order
logic. Then, we present the membership problem and the separation problem.

1.1 The Quantifier Alternation Hierarchy of First-Order Logic

We fix a finite alphabet A. We denote by A+ the set of all finite nonempty words,
and by A∞ the set of all infinite words over A. We use the term “word” for
“finite word”. We call language (resp. language of infinite words) a subset of A+

(resp. of A∞). If u is a word and v is a word (resp. an infinite word), we denote
by uv the word (resp. the infinite word) obtained by concatenating u to the left
of v. If u is a word, we denote by u∞ the infinite word uuuu · · · obtained as
the infinite concatenation of u with itself. If u is a word or an infinite word, we
denote by alph(u) the alphabet of u, i.e., the set of letters of u.
First-Order Logic. Any word or infinite word can be viewed as a logical
structure made of a linearly ordered sequence of positions (finite for words and
infinite for infinite words) labeled over alphabet A. In first-order logic “FO”, one
can quantify over these positions and use the following predicates.
– for each a ∈ A, a unary predicate Pa selecting all positions labeled with an a.
– a binary predicate ’<’ interpreted as the (strict) linear order over the positions.

Since any FO sentence may be interpreted both on words and infinite words,
each sentence ϕ defines two objects: a language L+ = {w ∈ A+ | w |= ϕ} and a
language of infinite words L∞ = {w ∈ A∞ | w |= ϕ}. For example, the sentence
∃x∃y (x < y ∧ Pa(y)) defines the language A+a ∪ A+aA+ and the language of
infinite words A+aA∞. Thus, we may associate two classes of objects with FO:
a class of languages (we speak of FO over words) and a class of languages of
infinite words (we speak of FO over infinite words).
Quantifier Alternation. It is usual to classify FO sentences by counting the
quantifier alternations inside their prenex normal form. Let i ∈ N, a sentence is
said to be Σi (resp. Πi) if its prenex normal form has either:
– exactly i− 1 quantifier alternations (i.e., exactly i quantifier blocks) starting
with an ∃ (resp. ∀), or

– strictly less than i− 1 quantifier alternations (i.e., strictly less than i blocks).
For example, the sentence ∃x1∀x2∀x3∃x4 ϕ, with ϕ quantifier-free, is Σ3. Note
that in general, the negation of a Σi sentence is not a Σi sentence – it is called
a Πi sentence. Hence, it is also usual to define BΣi sentences as those that are
Boolean combinations of Σi and Πi sentences.

As for full first-order logic, each level Σi, Πi or BΣi defines two classes of
objects: a class of languages and a class of languages of infinite words. Therefore,
we obtain two hierarchies: a hierarchy of classes of languages and a hierarchy of
classes of languages of infinite words, both of which are known to be strict [3,26].

1.2 Decision Problems

Our objective is to investigate the quantifier alternation hierarchy of first-order
logic over infinite words. We rely on two decision problems in order to carry out
this investigation: the membership problem and the separation problem.

The input of these problems are regular languages of finite and infinite words.
They are those languages that can be equivalently defined by monadic second-
order logic, finite Büchi automata or finite Wilke algebras. We will use Wilke
algebras, whose definition is recalled in Section 2. Both problems are parametrized
by a level in the hierarchy and come therefore in two versions: a ‘language’ one
and a ‘language of infinite words’ one. Let F be a level in the hierarchy.
Membership. The membership problem for level F is as follows:

IN
OUT

A regular language L
Is L F-definable ?

For Finite Words
IN
OUT

A regular language of infinite words L
Is L F-definable ?

For Infinite words

Separation. The separation problem is more general. Given three languages or
three languages of infinite words K,L1, L2, we say that K separates L1 from L2
if L1 ⊆ K and L2 ∩K = ∅. For F a level in the hierarchy, L1 is said F-separable
from L2 if there exists an F -definable language or language of infinite words that
separates L1 from L2. Note that when F is not closed under complement (e.g.,

for F = Σi), the definition is not symmetrical: L1 may be F-separable from L2
while L2 is not F -separable from L1. The separation problem for F is as follows:

IN
OUT

Two regular languages L1, L2

Is L1 F-separable from L2 ?

For Finite Words
IN

OUT

Two regular languages
of infinite words L1, L2
Is L1 F-separable from L2 ?

For Infinite words

An important remark is that membership reduces to separation. A regular
language of words or infinite words is definable in F iff it is F -separable from its
(also regular) complement: separation is a more general problem than membership.

Both problems have been extensively studied in the literature. Indeed, it has
been observed that obtaining an algorithm for the membership or separation
problem associated to a particular level F usually yields a deep insight on F .
This is well illustrated by the most famous result of this kind, Schützenberger’s
Theorem [23,10], which yields a membership algorithm for FO over words. The
result was later generalized to FO over infinite words by Perrin [11]. These results
and the techniques used to obtain them provide not only a way to decide whether
a regular language of finite or infinite words is FO-definable, but also a generic
method for constructing a defining FO sentence, when possible. Since these first
results, many efforts have been devoted for obtaining membership and separation
algorithms for each level in the hierarchy. An overview of the results is presented
in the following table (omitted levels are open in all cases).

Membership Problem
Words Infinite words

FO Solved [23,10] Solved [11]
Σ1 Solved [1] Solved [14,12]
BΣ1 Solved [24] Solved [12]
Σ2 Solved [1,15] Solved [7,2]
BΣ2 Solved [18] This paper
Σ3 Solved [18] This paper
Σ4 Solved [16] Open

Separation Problem
Words Infinite words

FO Solved [19] Solved [19]
Σ1 Solved (Folklore) Solved (Folklore)
BΣ1 Solved [6,17] Solved [20]
Σ2 Solved [18] This paper
BΣ2 Open Open
Σ3 Solved [16] This paper
Σ4 Open Open

Our objective is to bridge the gap between the knownledge for languages and
that for languages of infinite words. More precisely, we want to extend the results
of [18,16] to the setting of infinite words, i.e., to obtain membership algorithms
for BΣ2, Σ3 and Σ4 as well as separation algorithms for Σ2 and Σ3. We were
able to obtain these algorithms for Σ2, Σ3 and BΣ2 as stated in the next theorem.
Note that the Σ3-membership algorithm follows from its separation algorithm.
We leave open the case of Σ4-membership for languages of infinite words.
Theorem 1. The following properties hold:
a) the separation problem is decidable for Σ2 over infinite words.
b) the membership problem is decidable for BΣ2 over infinite words.
c) the separation problem is decidable for Σ3 over infinite words.

Our proof of Theorem 1 consists in three algorithms, one for each item in the
theorem. An important remark is that each of these three algorithms depends upon
an algorithm of [18] or [16] solving the corresponding problem for finite words:

– We present all algorithms in a specific framework which is adapted from the one
used in [18]. In particular, we reuse the key notion of “Σi-chain” (generalized
to infinite words in a straightforward way).

– We actually reuse the algorithms for finite words of [18] and [16] as subproce-
dures in our algorithms for languages of infinite words.
The remainder of the paper is devoted to proving Theorem 1. In Section 2,

we recall classical notions required for our definitions and proofs: the algebraic
definition of regular languages of infinite words and logical preorders. In Section 3,
we present the general framework that we use. In particular, we introduce a notion
that will be at the core of all our algorithms: “Σi-chains” (which are adapted
and reused from [18]). We then devote a section to each algorithm: Section 4 to
Σ2-separation, Section 5 to BΣ2-membership and Section 6 to Σ3-separation.

2 Preliminaries

We recall some classical notions that we will need. First, we present the definition
of regular languages of infinite words in terms of Wilke algebras. Then, we define
the logical preorders that one may associate to each level Σi in the hierarchy.

2.1 Semigroups and Wilke algebras

We briefly recall the definition of regular languages and languages of infinite
words in terms of semigroups and Wilke algebras. For details, see [12].
Semigroups. A semigroup is a set S equipped with an associative operation s · t
(often written st). In particular, A+ equipped with concatenation is a semigroup.
Given a finite semigroup S, it is easy to see that there is an integer ω(S) (denoted
by ω when S is understood) such that for all s of S, sω is idempotent: sω = sωsω.

Given a language L and a morphism α : A+ → S, we say that L is recognized
by α if there exists F ⊆ S such that L = α−1(F). It is well-known that a language
is regular if and only if it may be recognized by a finite semigroup.
Wilke algebras. AWilke algebra is a pair (S+, S∞), where S+ is a semigroup and
S∞ is a set. Moreover, (S+, S∞) is equipped with two additional products: a mixed
product S+ × S∞ → S∞ mapping s, t ∈ S+, S∞ to an element st of S∞, and an
infinite product (S+)∞ → S∞ mapping an infinite sequence s1, s2, · · · ∈ (S+)∞ to
an element s1s2 · · · of S∞. We require these products to satisfy all possible forms
of associativity. For s ∈ S+, we let s∞ be the infinite product sss · · · ∈ S∞. Note
that (A+, A∞) is a Wilke algebra. See [12] for further details (we use a distinct
notation from [12], where what we write sω, s∞ is noted sπ, sω, respectively).

We say that (S+, S∞) is finite if both S+ and S∞ are. Note that even if a
Wilke algebra is finite, it is not clear how to represent the infinite product, since
the set of infinite sequences of S+ is uncountable. However, it has been shown by
Wilke [28] that the infinite product is fully determined by the mapping s 7→ s∞.
This makes it possible to finitely represent any finite Wilke algebra.

Morphisms of Wilke algebras are defined in the natural way. In particular,
observe that any morphism of Wilke algebra α : (A+, A∞)→ (S+, S∞) defines

two maps: a semigroup morphism α+ : A+ → S+ and a map α∞ : A∞ → S∞
(when there is no ambiguity, we shall write α(w) to mean α+(w) if w ∈ A+

or α∞(w) if w ∈ A∞). Therefore, a morphism recognizes both languages (the
languages α−1

+ (F+) for F+ ⊆ S+) and languages of infinite words (the languages
of infinite words α−1

∞ (F∞) for F∞ ⊆ S∞). A language of infinite words is regular
iff it may be recognized by a morphism into a finite Wilke algebra.
Syntactic Morphisms. It is known that given any regular language (resp.
language of infinite words) L, there exists a canonical morphism αL : A+ → S
(resp. αL : (A+, A∞) → (S+, S∞)) recognizing L. This object is called the
syntactic morphism of L. We refer the reader to [12] for the detailed definition of
this object. In the paper we only use two properties of the syntactic morphism.
The first is that given any regular language of infinite words L, one can compute its
syntactic morphism from any representation of L. We state the second one below.

Fact 2 Let i > 1 and let L be a regular language of infinite words. Then L is
definable in BΣi iff so are all languages of words and infinite words recognized by
its syntactic morphism.

The proof of Fact 2 may be found in [12] (in fact, this holds for any class
of languages of infinite words which forms a “variety” of languages of infinite
words, not just for BΣi). In view of this, the syntactic morphism is central for
membership questions: deciding if a language is definable in BΣi amounts to
deciding a property of its syntactic morphism. This is the approach used in our
membership algorithm for BΣ2 (see Section 5).
Morphisms and Separation. When working on separation, we are given two
input languages or languages of infinite words. It is convenient to consider a
single recognizing object for both inputs rather than two separate objects. This
is not restrictive: given two languages (resp. two languages of infinite words)
and two associated recognizing morphisms, one can define and compute a single
morphism that recognizes them both. For example, if L0 ⊆ A∞ is recognized by
α0 : (A+, A∞) → (S+, S∞) and L1 ⊆ A∞ by α1 : (A+, A∞) → (T+, T∞), then
L0 and L1 are both recognized by α : (A+, A∞) → (S+ × T+, S∞ × T∞) with
α(w) = (α0(w), α1(w)).
Alphabet Compatible Morphisms. It will be convenient to work with mor-
phisms that satisfy an additional property. A morphism α : (A+, A∞)→ (S+, S∞)
is said to be alphabet compatible if for all u, v ∈ A+ ∪A∞, α(u) = α(v) implies
alph(u) = alph(v). Note that when α is alphabet compatible, for all s ∈ S+ ∪S∞,
alph(s) is well defined as the unique B ⊆ A such that for all u ∈ α−1(s), we have
alph(u) = B (if s has no preimage then we simply set alph(s) = ∅).

To any morphism α : (A+, A∞) → (S+, S∞), we associate a morphism β,
called the alphabet completion of α. The morphism β recognizes all languages of
infinite words recognized by α and is alphabet compatible. If α is already alphabet
compatible, then β = α. Otherwise, observe that 2A is a semigroup with union as
the multiplication and (2A, 2A) is therefore a Wilke algebra. Hence, we let β be
the morphism: β : (A+, A∞)→ (S+× 2A, S∞× 2A) with β(w) = (α(w), alph(w)).

2.2 Logical Preorders
To each level Σi in the hierarchy, one may associate preorders on the sets of
words and infinite words. The definition is based on the notion of quantifier rank.
The quantifier rank of a first-order formula is the length of the longest sequence
of nested quantifiers inside the formula. For example, the following sentence,

∃x Pb(x) ∧ ¬(∃y (y < x ∧ Pc(y)) ∧ (∀y∃z x < y < z ∧ Pb(y)))
has quantifier rank 3. It is well-known (and easy to show) that for a fixed k, there
is a finite number of non-equivalent first-order sentences of rank less than k.

We now define the preorders. Note that while we define two preorders for each
level Σi (one on A+, one on A∞), we actually use the same notation for both.
Let i > 1 be a level in the hierarchy and k > 1 as a quantifier rank. Given two
words w,w′ ∈ A+ (resp two infinite words w,w′ ∈ A∞), we write w .ki w

′ if and
only if any Σi sentence of rank at most k satisfied by w is satisfied by w′ as well.
By contrapositive, since the negation of a Σi sentence is in Πi, we have w .ki w

′

iff any Πi sentence of rank at most k satisfied by w′ is also satisfied by w.
One may verify that .ki is preorder. Moreover, it is immediate that the

preorders get refined when k or i increase: w .k+1
i w′ or w .ki+1 w′ imply

w .ki w
′. Since a Πi+1 sentence is in Σi, w .ki+1 w

′ also implies w′ .ki w.
Denote by ∼=k

i the equivalence generated by .ki : w ∼=k
i w
′ when w .ki w

′ and
w′ .ki w. That is, w ∼=k

i w
′ if and only if w,w′ satisfy the same Σi sentences (or

equivalently the same BΣi sentences, which are nothing but Boolean combinations
of Σi sentences). The following fact sums up what we just observed.
Fact 3 Let k, i > 1 and let u, v be two words or two infinite words, then
(1) u .k+1

i v ⇒ u .ki v, (2) u ∼=k+1
i v ⇒ u ∼=k

i v (3) u .ki+1 v ⇒ u ∼=k
i v.

We finish the section with a few properties about the preorders .ki . The proofs
are easy and omitted (they are obtained with standard Ehrenfeucht-Fraïssé
arguments). We start with decomposition and composition lemmas.
Lemma 4 (Decomposition Lemma). Let i, k > 1 and let u, v be two words
or two infinite words such that u .ki v. Then for any decomposition u = u1u2
of u, there exist v1, v2 such that v = v1v2, u1 .k−1

i v1 and u2 .k−1
i v2 .

Lemma 5 (Composition Lemma). Let i, k > 1, let u1, v1 be two words such
that u1 .ki v1, and u2, v2 be either two words or two infinite words such that
u2 .ki v2. Then u1u2 .ki v1v2 and u∞1 .ki v

∞
1 .

The last composition that we state is specific to infinite words.
Lemma 6. Let i, k > 1, u ∈ A+ be a word and v ∈ A∞ be an infinite word such
that v .ki u

∞. Then for any ` > 2k, we have u∞ .ki+1 u
`v.

In particular we will use the special case of Lemma 6 in which i = 1. In this
case, one can verify that given u ∈ A+ and v ∈ A∞, when alph(u) = alph(v), we
have v .k1 u

∞ for any k > 1. Hence we have the following corollary of Lemma 6.
Corollary 7. Let k > 1, u ∈ A+ be a word and let v ∈ A∞ be an infinite word
such that alph(u) = alph(v). Then for any ` > 2k, we have u∞ .k2 u

`v.

3 Σi-Chains for Languages of infinite words

All algorithms for infinite words of this paper are strongly related to the finite
words algorithms of [18] and [16]. In particular, we adapt and reuse the key
notion of “Σi-chain” which was introduced in [18]. The section is devoted to the
presentation of this notion. First, we define Σi-chains. We then detail the link
between Σi-chains and our decision problems, first for Σi, then for BΣi.

Σi-Chains were initially introduced in [18] as a tool designed to investigate
the separation problem over finite words for the logics Σi and BΣi. A set of Σi-
chains can be associated to any morphism α : A+ → S into a finite semigroup S.
Intuitively, this set captures information about what Σi and BΣi can express
about the languages recognized by α (including which ones are separable with
Σi and BΣi). The definition is based on the following classical lemma.

Lemma 8. Let i, k > 1 and L1, L2 be two languages or two languages of infinite
words. Then L1 is not Σi-separable (resp. not BΣi-separable) from L2 iff for all
k > 1, there exist w1 ∈ L1 and w2 ∈ L2 such that w1 .ki w2 (resp. w1 ∼=k

i w2).

Lemma 8 states simple criteria equivalent to Σi- and BΣi-separability. How-
ever, both criteria involve a quantification over all natural numbers. Therefore, it
is not immediate that they can be decided. Indeed, since both A+ and A∞ are
infinite sets, .ki and ∼=k

i are endlessly refined as k gets larger.
Σi-Chains are designed to deal with this issue. The separation problem takes

two regular languages or languages of infinite words as input. Therefore, we have
a single morphism that recognizes them both. For example, in the case of infinite
words, we have α : (A+, A∞)→ (S+, S∞), with (S+, S∞) a finite Wilke algebra,
that recognizes both inputs. Intuitively, S+ and S∞ are finite abstractions of A+

and A∞. Consequently, we may abstract the preorders .ki on these two finite sets:
this is what Σi-chains are. For example, we say that (s, t) ∈ (S∞)2 is a Σi-chain
(of length 2) for α if for all k, there exist u, v ∈ A∞ such that α(u) = s, α(v) = t
and u .ki v. For languages of infinite words recognized by α, it is then easy to
adapt the two criteria of Lemma 8 to work directly with the Σi-chains associated
to α. In other words, we reduce separation to the (still difficult) problem of
computing the set of Σi-chains associated to a given input morphism.
Chains. Let us now define chains. Given a finite set S, a chain over S is simply a
finite word over S (i.e., an element of S+). We shall only consider chains over S+
and over S∞, where S+ and S∞ are the two components of some Wilke algebra
(S+, S∞). A remark about notation is in order: a word is usually denoted as the
concatenation of its letters. However, since S+ is a semigroup, this would be
ambiguous: when st ∈ (S+)+, st could either mean a word with 2 letters s and t,
or the product of s and t in S+. To avoid confusion, we will write (s1, . . . , sn) for
a chain of length n. We denote chains by s, t, . . . and sets of chains by S, T ,. . .

If (S+, S∞) is a Wilke algebra, then for all n ∈ N, (S+)n is a semigroup
when equipped with the componentwise multiplication (s1, . . . , sn)(t1, . . . , tn) =
(s1t1, . . . , sntn). Moreover, the pair ((S+)n, (S∞)n) is a Wilke algebra (in which
the mixed and infinite products are defined componentwise as well).

Σi-Chains. Fix i > 1 and x ∈ {+,∞}. We associate a set of Σi-chains to any
map β : Ax → S where S is a finite set. The set Ci[β] ⊆ S+ of Σi-chains for β
is defined as follows. Let s = (s1, . . . , sn) ∈ S+ be a chain. We have s ∈ Ci[β] if
and only if for all k ∈ N, there exist w1, . . . , wn ∈ Ax such that:

w1 .ki w2 .ki · · · .ki wn and for all j, β(wj) = sj .

We let Ci,n[β] be the restriction of this set to chains of length n: Ci,n[β] = Ci[β]∩Sn.
Σi-Chains associated to a morphism. It follows from the definition of Σi-
chains that one may associate a set Ci[α] to any semigroup morphism α : A+ → S.
This set is exactly the set of Σi-chains associated to α as defined in [18].

Moreover, given a morphism α : (A+, A∞) → (S+, S∞) into a finite Wilke
algebra (S+, S∞), one may associate two sets of Σi-chains to α: one to the
morphism α+ : A+ → S+ (Ci[α+] ⊆ (S+)+) and one to the map α∞ : A∞ → S∞
(Ci[α∞] ⊆ (S∞)+). We may now link Σi-chains to the separation problem.

3.1 Σi-Chains and Separation for Σi
We now connect Σi-chains to the separation problem. We begin with the simplest
connection, which is between Σi-chains of length 2 and separation for Σi.

Theorem 9. Let i > 1, x ∈ {+,∞} and β : Ax → S a map into a finite set S.
Given F1, F2 ⊆ S, L1 = β−1(F1) and L2 = β−1(F2), the following are equivalent
1. L1 is not Σi-separable from L2.
2. there exist s1 ∈ F1 and s2 ∈ F2 such that (s1, s2) ∈ Ci,2[β].

Theorem 9 is a straightforward consequence of the statement for Σi in Lemma 8.
In view of the theorem, our approach for the Σi-separation problem is as follows:
– for languages, we look for an algorithm computing Ci,2[α] from an input
morphism α : A+ → S into a finite semigroup S.

– for languages of infinite words, we look for an algorithm computing Ci,2[α∞]
from an input morphism α : (A+, A∞)→ (S+, S∞) into a finite Wilke algebra
(S+, S∞). Typically, this algorithm involves computing Ci,2[α+] first, which can
be achieved by reusing the first item, i.e., the algorithm for word languages.

This approach is exactly the one used in [18,16] to solve separation for Σ2 and
Σ3 over finite words: the following theorems are proven in these papers.

Theorem 10 (see [18]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set C2,2[α] of Σ2-chains of length 2 for α.

Theorem 11 (see [16]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set C3,2[α] of Σ3-chains of length 2 for α.

We generalize these two theorems in Section 4 (for Σ2) and Section 6 (for Σ3)
for infinite words by presenting two new algorithms. These algorithms both take
a morphism α : (A+, A∞)→ (S+, S∞) as input and compute the sets C2,2[α∞]
and C3,2[α∞] respectively. The algorithms of Theorem 10 and Theorem 11 are
reused as sub-procedures in these new algorithms for languages of infinite words:
computing C2,2[α∞] and C3,2[α∞] requires to first compute C2,2[α+] and C3,2[α+].

Remark 12. The algorithms of Theorems 10 and 11 both work with objects that
are actually more general than Σi-chains: the Σ2 algorithm works with “Σ2-
junctures” and the Σ3 algorithm with an even more general notion: “Σ2,3-trees”.
We do not present these more general notions because we do not need them
outside of the algorithms of Theorems 10 and 11, which we use as black boxes.

3.2 Σi-Chains and Separation for BΣi

We finish by presenting the connection between the separation problem for BΣi
and Σi-chains. This time, the connection depends on the whole set of Σi-chains.
More precisely, it depends on yet another notion called alternation.

Let x ∈ {+,∞} and β : Ax → S be a map into a finite set S. We say that
a pair (s, t) ∈ S2 is Σi-alternating for β iff for all n > 1, we have (s, t)n ∈ Ci[β]
(where by (s, t)n, we mean the chain (s, t, s, t, . . . , s, t) of length 2n).

Theorem 13. Let i > 1, x ∈ {+,∞} and β : Ax → S a map into a finite set S.
Given F1, F2 ⊆ S, L1 = β−1(F1) and L2 = β−1(F2), the following are equivalent:
1. L1 is not BΣi-separable from L2.
2. there exist s1 ∈ F1 and s2 ∈ F2 such that (s1, s2) is Σi-alternating.

The proof of Theorem 13 is based on the second part of Lemma 8. In view of
the theorem, the separation problem for BΣi reduces to the computation of the
Σi-alternating pairs, which is unfortunately open for i > 2, even on finite words.

Regarding membership however, Theorem 13 yields an immediate corollary.
For x ∈ {+,∞} and β : Ax → S a map into a finite set S, we say that β has
bounded Σi-alternation iff every Σi-alternating pair (s, t) ∈ S2 for β satisfies s = t.

Corollary 14. Let i > 1, x ∈ {+,∞} and β : Ax → S be a map into a finite
set S. Then all sets β−1(F) for F ⊆ S are BΣi-definable if and only if β has
bounded Σi-alternation.

Combining Corollary 14 with Fact 2 yields a criterion for BΣi-membership: a
regular language of finite or infinite words is definable in BΣi iff its syntactic
morphism has bounded Σi-alternation. This is used in [18] to obtain a (language)
membership algorithm for BΣ2. More precisely, the following result is proved.

Theorem 15 (see [18]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can decide whether α has bounded Σ2-alternation or not.

In Section 5 we obtain our algorithm for BΣ2-membership over infinite words
by proving that given a morphism α : (A+, A∞)→ (S+, S∞) as input, one can
decide whether α∞ has bounded Σ2-alternation or not. More precisely, we prove
that α∞ having bounded Σ2-alternation is equivalent to two decidable properties
of α. The first is that α+ has bounded Σ2-alternation (which we can decide by
Theorem 15). The second is a simple equation that (S+, S∞) needs to satisfy.

4 A Separation Algorithm for Σ2

In this section, we present an algorithm for the separation problem associated to
Σ2 over infinite words. As expected, this algorithm is based on the computation
of Σ2-chains of length 2 (see Theorem 9): we prove that given a morphism α into
a finite Wilke algebra, one can compute C2,2[α∞].

For an alphabet compatible morphism α : (A+, A∞)→ (S+, S∞) into a finite
Wilke algebra, we denote by CalcΣ2(α) the set of all pairs:

(r1(s1)∞, r2(s2)ωt2) ∈ S∞ × S∞

with (r1, r2) ∈ C2,2[α+], (s1, s2) ∈ C2,2[α+], t2 ∈ α(A∞) and alph(s1) = alph(t2).
Note that this last condition is well defined since α is alphabet compatible. Recall
that s∞1 is the infinite product s1s1 . . ., and sω2 the idempotent power of s2 in S+.

Proposition 16. Let α : (A+, A∞)→ (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C2,2[α∞] = CalcΣ2(α).

A consequence of Proposition 16 is that the separation problem is decidable for
Σ2 over infinite words. Indeed, recall that for any two regular languages of infinite
words, one may compute a single alphabet compatible Wilke algebra morphism
that recognizes them both. Therefore, it follows from Theorem 9 that deciding
Σ2-separation amounts to having an algorithm that computes C2,2[α∞] from α.

We obtain this algorithm from Proposition 16 since CalcΣ2(α) may be com-
puted, given α as input. Indeed, by Theorem 10, we already know that the set
C2,2[α+] can be computed from α. Hence, we obtain the desired corollary.

Corollary 17. Over infinite words, the separation problem is decidable for Σ2.

An important remark is that we use Theorem 10 as a black box: we do not
reprove that C2,2[α+] may be computed from α+. This is not an immediate result.
In fact, the proof of [18] requires to use a framework that is more general than
Σ2-chains (that of “Σ2-junctures”) as well as arguments that are independent
from those that we are going to use to prove Proposition 16.

It remains to prove Proposition 16. We illustrate the algorithm by proving the
easier inclusion: C2,2[α∞] ⊇ CalcΣ2(α) (this proves correctness: all computed
chains are indeed Σ2-chains). The converse inclusion (corresponding to complete-
ness: all Σ2-chains are computed) is available in the long version of the paper.
Correctness Proof: C2,2[α∞] ⊇ CalcΣ2(α). Let (r1, r2) ∈ C2,2[α+], (s1, s2) ∈
C2,2[α+] and t2 ∈ α(A∞) such that alph(s1) = alph(t2). Our objective is to prove
that (r1(s1)∞, r2(s2)ωt2) ∈ C2,2[α∞]. Let k > 1. By definition, we need to find
two infinite words w1 .k2 w2 such that α(w1) = r1(s1)∞ and α(w2) = r2(s2)ωt2.

By hypothesis, we have four words x1, x2, y1, y2 ∈ A+ such that x1 .k2 x2,
y1 .k2 y2, α(x1) = r1, α(x2) = r2, α(y1) = s1 and α(y2) = s2. Moreover, we have
an infinite word z ∈ A∞ such α(z) = t2 and alph(y1) = alph(z). Let w1 = x1(y1)∞

and w2 = x2(y2)2kωz. Observe that by definition, we have α(w1) = r1(s1)∞ and
α(w2) = r2(s2)ωt2. Therefore, it remains to prove that w1 .k2 w2.

By Corollary 7, we obtain that (y1)∞ .k2 (y1)2kωz. Moreover, using y1 .k2 y2

and z .k2 z together with Lemma 5, we obtain (y1)2kωz .k2 (y2)2kωz. Therefore,
by transitivity (y1)∞ .k2 (y2)2kωz. Finally, we use the fact that x1 .k2 x2 and
Lemma 5 to conclude that x1(y1)∞ .k2 x2(y2)2kωz, i.e., that w1 .k2 w2. ut

5 A Membership Algorithm for BΣ2

We now present our membership algorithm for BΣ2 over infinite words. The
algorithm is stated as a decidable characterization of BΣ2 over infinite words.

Theorem 18. Let L ⊆ A∞ be regular and let α : (A+, A∞)→ (S+, S∞) be the
alphabet completion of its syntactic morphism. The following are equivalent:
1. L is definable in BΣ2.
2. α∞ has bounded Σ2-alternation.
3. α+ has bounded Σ2-alternation and α satisfies the following equation:

(stω)∞ = (stω)ωst∞ for all s, t ∈ α(A+) such that alph(s) = alph(t) (1)

We know that Item 3 in Theorem 18 is decidable. Indeed, Theorem 15 states that
whether α+ has bounded Σ2-alternation is decidable (note however that this is
a difficult result of [18] whose proof is independent from that of Theorem 18).
Moreover, verifying that (1) is satisfied may be achieved by checking all possible
combinations. Therefore, we obtain the following corollary of Theorem 18.

Corollary 19. The membership problem over infinite words is decidable for BΣ2.

It now remains to prove Theorem 18. That 2) ⇒ 1) is immediate from
Corollary 14. The most difficult (and interesting) direction is 3)⇒ 2). Due to lack
of space, it is proved in the long version of this paper. As we did in the previous
section, we illustrate the theorem by proving the easier 1)⇒ 3) direction.
Proof of 1)⇒ 3). Let L be BΣ2-definable. In particular, this means that every
language of finite or infinite words recognized by α is definable in BΣ2 (we know
from Fact 2 that it is true for the syntactic morphism of L, so this is true as well
for its alphabet completion α, as one can test the alphabet of a word in BΣ2).

Since every language recognized by α is definable in BΣ2, Corollary 14 entails
that α+ has bounded Σ2-alternation. It remains to establish Equation (1). For
s, t ∈ α(A+) such that alph(s) = alph(t), let us show that (stω)∞ = (stω)ωst∞.

Let k such that for any r ∈ S∞, α−1(r) may be defined by a BΣ2 sentence of
quantifier rank less than k (k exists since all these languages of infinite words
are definable in BΣ2). By choice of k, for any two infinite words u, v ∈ A∞, we
have u ∼=k

2 v ⇒ α(u) = α(v). Therefore, in order to conclude, it suffices to find
two infinite words u, v of images (stω)∞ and (stω)ωst∞ and such that u ∼=k

2 v.
By definition of s, t, we have words x, y ∈ A+ such that α(x) = s, α(y) = t

and alph(x) = alph(y). Let u = (xy2kω)∞ and v = (xy2kω)2kωxy∞. It is imediate
that u and v have images (stω)∞ and (stω)ωst∞. It remains to prove that u ∼=k

2 v.

We prove that u .k2 v and v .k2 u. Observe that alph(xy2kω) = alph(xy∞).
Hence, we get u .k2 v from Corollary 7. Conversely, we know that alph((xy2kω)∞) =
alph(y). Therefore, we may use Corollary 7 again to obtain y∞ .k2 y

2kω(xy2kω)∞.
That v .k2 u is then immediate from this inequality by Lemma 5.

6 A Separation Algorithm for Σ3

We present our algorithm for the separation problem associated to Σ3 over infinite
words. As for Σ2, this algorithm is based on Theorem 9: we give a procedure
computing C3,2[α∞] from an input morphism α : (A+, A∞)→ (S+, S∞).

However, in this case, this computation requires a new ingredient. This new
ingredient is a generalization of Σi-chains that we call mixed chains.
Mixed Chains. Let x ∈ {+,∞} and β : Ax → S as a map into some finite
set S. We define a setM[β] ⊆ S3. Let s = (s1, s2, s3) ∈ S3 be a chain over S. We
have s ∈M[β] if and only if for all k ∈ N, there exist w1, w2, w3 ∈ Ax such that,

β(w1) = s1, β(w2) = s2, β(w3) = s3 and w1 .k2 w2 .k3 w3

Note the definition involves both the preorder “.k2” associated to Σ2 and the
preorder “.k3” associated to Σ3 (hence the name “mixed chains”). An important
remark is that we will not present any algorithm for computing mixed chains.
On the other hand, our algorithm for computing C3,2[α∞] from a morphism α is
parametrized by the set of mixed chainsM[α+]. ThatM[α+] may be computed
from α+ is a very difficult result of [16], stated below.

Theorem 20 (see [16]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the setM[α] of mixed chains for α.

Remark 21. The presentation of Theorem 20 is different in [16]. It is proved that
one can compute the set of “Σ2,3-trees” associated to α. Essentially Σ2,3-trees
are trees of depth 3 whose nodes are labeled by elements of a finite set S and
mixed chains are the special case when there is only a single branch in the tree.

We may now present our separation algorithm for Σ3 over infinite words. Let
α : (A+, A∞) → (S+, S∞) be an alphabet compatible morphism into a finite
Wilke algebra (S+, S∞). We define CalcΣ3(α) ⊆ (S∞)2 as the set of all pairs(

r2(s2(t2)ω)∞, r3(s3(t3)ω)ωs1(t1)∞
)

with (r2, r3) ∈ C3,2[α+], (s1, s2, s3) ∈M[α+], (t1, t2, t3) ∈M[α+] and alph(s1) =
alph(t1). Since we know from Theorem 20 that one may computeM[α+] from α,
it is immediate from the definition that one may compute CalcΣ3(α) from α.

Proposition 22. Let α : (A+, A∞)→ (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C3,2[α∞] = CalcΣ3(α).

As for Σ2, Proposition 22 immediately yields an algorithm for Σ3-separation over
infinite words. Indeed, it provides an algorithm computing C3,2[α∞] from any
alphabet compatible morphism α, which suffices to decide Σ3-separation.

Corollary 23. The separation problem over infinite words is decidable for Σ3.

It remains to prove Proposition 22. We proceed as for Σ2. Again, we only
prove the easier inclusion and postpone the other to the long version of this paper.
Proof of C3,2[α∞] ⊇ CalcΣ3(α). Let (r2, r3) ∈ C3,2[α+], (s1, s2, s3) ∈M[α+]
and (t1, t2, t3) ∈ M[α+] be chains such that alph(s1) = alph(t1). We have to
prove that (r2(s2(t2)ω)∞, r3(s3(t3)ω)ωs1(t1)∞) ∈ C3,2[α∞]. Let k > 1, we need to
find two infinite words w2 .k3 w3 such that α(w2) = r2(s2(t2)ω)∞ and α(w3) =
r3(s3(t3)ω)ωs1(t1)∞. The definition gives words x2, x3, y1, y2, y3, z1, z2, z3 with:
– α(xj) = rj , α(yj) = sj , α(zj) = tj
– x2 .k3 x3, y1 .k2 y2 .k3 y3 and z1 .k2 z2 .k3 z3.
Moreover, as alph(s1) = alph(t1), we have alph(y1) = alph(z1). We define
w2 = x2(y2(z2)2kω)∞ and w3 = x3(y3(z3)2kω)2kωy1z

∞
1 . It is immediate from

this definition that α(w2) = r2(s2(t2)ω)∞ and that α(w3) = r3(s3(t3)ω)ωs1(t1)∞.
It remains to prove that w2 .k3 w3.

We first prove y1z
∞
1 .k2 (y2(z2)2kω)∞. Since alph(y1) = alph(z1), we may use

Corollary 7 to obtain z∞1 .k2 (z1)2kω(y1(z1)2kω)∞. By Lemma 5 and transitivity,

y1z
∞
1 .k2 (y1(z1)2kω)∞ .k2 (y2(z2)2kω)∞ (2)

We may now use (2) together with Lemma 6 to obtain that (y2(z2)2kω)∞ .k3
(y2(z2)2kω)2kωy1z

∞
1 . Using Lemma 5 and transitivity again, we obtain that

x2(y2(z2)2kω)∞ .k3 x3(y3(z3)2kω)2kωy1z
∞
1

This exactly says that w2 .k3 w3 which concludes the proof. ut

7 Conclusion

We proved that for languages of infinite words, the separation problem is decidable
for Σ2 and Σ3 and that the membership problem is decidable for BΣ2. Note that
using a theorem of [21], these results may be lifted to the variants of these logics
whose signature has been enriched with a predicate “+1”, that is interpreted as
the successor relation. This means that over infinite words, separation is decidable
for Σ2(<,+1) and Σ3(<,+1) and membership is decidable for BΣ2(<,+1).

A gap remains between languages and languages of infinite words: we leave
open the case of Σ4-membership for languages of infinite words while it is known
to be decidable for languages [16]. The language algorithm was based on two
ingredients: 1) the decidability of Σ3-separation [16] and 2) an effective reduction
of Σi+1-membership to Σi-separation [18] (which is generic for all i > 1). In the
setting of languages of infinite words, we are missing the second result and it is
not clear whether a similar reduction exists.

References

1. M. Arfi. Polynomial operations on rational languages. In Proceedings of the 4th
Annual Symposium on Theoretical Aspects of Computer Science, STACS’87, Lect.
Notes Comp. Sci., pages 198–206, Berlin, Heidelberg, 1987. Springer-Verlag.

2. M. Bojańczyk. The common fragment of ACTL and LTL. In R. Amadio, edi-
tor, Foundations of Software Science and Computational Structures, FoSSaCS’08,
volume 4962 of Lect. Notes Comp. Sci., pages 172–185. Springer-Verlag, 2008.

3. J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is
infinite. Journal of Computer and System Sciences, 16(1):37–55, 1978.

4. J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly, 6(1-6):66–92, 1960.

5. J. R. Büchi. On a decision method in restricted second order arithmetic. In Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pages 1–11.
Stanford Univ. Press, Stanford, Calif., 1962.

6. W. Czerwiński, W. Martens, and T. Masopust. Efficient separability of regular
languages by subsequences and suffixes. In Proceedings of the 40th International
Colloquium on Automata, Languages, and Programming, ICALP’13, Lect. Notes
Comp. Sci., pages 150–161, Berlin, Heidelberg, 2013. Springer-Verlag.

7. V. Diekert and M. Kufleitner. Fragments of first-order logic over infinite words.
Theory of Computing Systems, 48(3):486–516, 2011.

8. C. C. Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society, 98(1):21–51, 1961.

9. M. Kufleitner and T. Walter. Level two of the quantifier alternation hierarchy over
infinite words. CoRR, abs/1509.06207, 2015.

10. R. McNaughton and S. A. Papert. Counter-Free Automata. MIT Press, 1971.
11. D. Perrin. Recent results on automata and infinite words. In Proceedings of the

9th International Symposium on Mathematical Foundations of Computer Science,
MFCS’84, Lect. Notes Comp. Sci., pages 134–148, Berlin, Heidelberg, 1984. Springer-
Verlag.

12. D. Perrin and J.-É. Pin. Infinite Words. Elsevier, 2004.
13. T. Pierron, T. Place, and M. Zeitoun. Quantifier alternation for infinite words.

CoRR, abs/1511.09011, 2015.
14. J.-E. Pin. Positive varieties and infinite words. In C. Lucchesi and A. Moura, editors,

LATIN’98: Theoretical Informatics, volume 1380 of Lecture Notes in Computer
Science, pages 76–87. Springer-Verlag, 1998.

15. J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of
Computing Systems, 30(4):383–422, 1997.

16. T. Place. Separating regular languages with two quantifier alternations. In Pro-
ceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS’15), pages 202–213. IEEE, 2015.

17. T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise
testable and unambiguous languages. In Proceedings of the 38th International
Symposium on Mathematical Foundations of Computer Science, MFCS’13, Lect.
Notes Comp. Sci., pages 729–740, Berlin, Heidelberg, 2013. Springer-Verlag.

18. T. Place and M. Zeitoun. Going higher in the first-order quantifier alternation hier-
archy on words. In Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming, ICALP’14, Lect. Notes Comp. Sci., pages 342–353,
Berlin, Heidelberg, 2014. Springer-Verlag.

19. T. Place and M. Zeitoun. Separating regular languages with first-order logic.
In Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on
Computer Science Logic (CSL’14) and the 29th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’14), pages 75:1–75:10, New York, NY, USA,
2014. ACM.

20. T. Place and M. Zeitoun. Separating ω-languages without quantifier alternation.
Unpublished, 2015.

21. T. Place and M. Zeitoun. Separation and the successor relation. In preparation,
long version of [22], 2015.

22. T. Place and M. Zeitoun. Separation and the successor relation. In E. W. Mayr
and N. Ollinger, editors, 32nd International Symposium on Theoretical Aspects of
Computer Science (STACS 2015), volume 30 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 662–675, Dagstuhl, Germany, 2015. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

23. M. P. Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8(2):190–194, 1965.

24. I. Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on
Automata Theory and Formal Languages, pages 214–222, Berlin, Heidelberg, 1975.
Springer-Verlag.

25. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time
(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, STOC ’73, pages 1–9, New York, NY, USA, 1973. ACM.

26. W. Thomas. A concatenation game and the dot-depth hierarchy. In Computation
Theory and Logic, pages 415–426. Springer-Verlag, Berlin, Heidelberg, 1987.

27. B. A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR, 149:326–329, 1961. In Russian.

28. T. Wilke. An Eilenberg theorem for ∞-languages. In Proceedings of the 18th
International Colloquium on Automata, Languages and Programming, ICALP’91,
volume 510 of Lect. Notes Comp. Sci., pages 588–599, Berlin, Heidelberg, 1991.
Springer-Verlag.

A Appendix to Section 3: Σi-Chains

In this section, we present the missing proofs from Section 3. More precisely,
we prove Lemma 8 and Theorem 13. We begin with Lemma 8 which lays the
foundation for the definition of Σi-chains.

A.1 Proof of Lemma 8

Lemma 8. Let i, k > 1 and let L1, L2 be two languages or two languages of
infinite words. Then the two following properties hold:
1. L1 is not Σi-separable from L2 iff for all k > 1, there exist w1 ∈ L1 and

w2 ∈ L2 such that w1 .ki w2.
2. L1 is not BΣi-separable from L2 iff for all k > 1, there exist w1 ∈ L1 and

w2 ∈ L2 such that w1 ∼=k
i w2.

Proof. We prove the first item, the second one is obtained similarly. Assume first
that L1 is not Σi-separable from L2. Set k > 1 and consider the language or
language of infinite words K = {w | ∃v ∈ L1 s.t. v .ki w}. By definition, L1 ⊆ K
and K may be defined by a Σi sentence of rank k (this is because there are finitely
many nonequivalent sentences of rank k). Therefore, there exists w2 ∈ L2 ∩K
(otherwise K would separate L1 from L2, which is impossible by hypothesis). By
definition of K, we get some w1 ∈ L1 such that w1 .ki w2 which terminates the
proof of this direction.

For the other direction, assume that for all k > 1, there exist w1 ∈ L1 and
w2 ∈ L2 such that w1 .ki w2 and let K ⊇ L1 be a language or language of infinite
words that is defined by a Σi sentence ϕ. We prove that K ∩L2 6= ∅, i.e., that K
cannot be a separator. Let k be the rank of ϕ, we obtain w1 ∈ L1 and w2 ∈ L2
such that w1 .ki w2 from our hypothesis. Since L1 ⊆ K, we have w1 ∈ K, and
by definition of K, w1 |= ϕ. Since ϕ is of rank k, by definition of .ki we must
have w2 |= ϕ, i.e., w2 ∈ L2 ∩K which terminates the proof. ut

A.2 Proof of Theorem 13

In this section, we prove Theorem 13, which states our separation criterion
for BΣi.

Theorem 13. Let i > 1, let x ∈ {+,∞}, L1, L2 ⊆ Ax and β : Ax → S a map
into a finite set S that recognizes both L1 and L2. The two following properties
are equivalent,
1. L1 is not BΣi-separable from L2.
2. There exist s1 ∈ β(L1) and s2 ∈ β(L2) such that (s1, s2) is Σi-alternating.

Proof. There are two directions to prove. Assume first that L1 is not BΣi-
separable from L2. By Lemma 8, we know that for all k > 1 we have w1 ∈ L1

and w2 ∈ L2 such that w1 ∼=k
i w2. Hence, it follows that for all k > 1, we have

w1 ∈ L1 and w2 ∈ L2 such that,

w1 .ki w2 .ki w1 .ki w2 .ki · · ·

Note that w1, w2 depend on k, but since S is finite, one can assume their images
to be constant for infinitely many values of k. Since w1 .k+1

i w2 ⇒ w1 .ki w2
(see Fact 3), we may assume that they are constant for all k, i.e., that there exist
s1 ∈ β(L1) and s2 ∈ β(L2) such that for all k > 1 the corresponding w1 and w2
are mapped to s1 and s2 respectively. This exactly means thats for all n > 1, the
chain (s1, s2)n is a Σi-chain for β. Therefore, (s1, s2) is Σi-alternating, which
terminates the proof of this direction.

It remains to prove the other direction. Assume that there exist s1 ∈ β(L1)
and s2 ∈ β(L2) such that (s1, s2) is Σi-alternating. We have to prove that L1 is
not BΣi-separable from L2. We know from Lemma 8 that it suffices to prove
that for all k > 1, there exist w1 ∈ L1 and w2 ∈ L2 such that w1 ∼=k

i w2.
Set k > 1. Since there are only finitely many nonequivalent BΣi formulas

of rank k, the relation ∼=k
i has finite index. Let ` be the number of equivalence

classes of ∼=k
i . Since (s1, s2) is Σi-alternating, we know that the chain (s1, s2)`

of length 2` is a Σi-chain for β. Hence, we have 2` words u1, . . . , u2` such that
for all j > 1, u2j−1 ∈ L1 and u2j ∈ L2, and u1 .ki u2 .ki · · · .ki u2`. By
choice of `, the pigeonhole principle gives j < h such that uj ∼=k

i uh. Since
uj .ki uj+1 .ki uh .ki uj , it follows that uj ∼=k

i uj+1 which terminates the proof
since either uj ∈ L1 and uj+1 ∈ L2, or uj ∈ L2 and uj+1 ∈ L1. ut

B Appendix to Section 4: Σ2 separation

In this section, we terminate the proof of our algorithm for Σ2-separation of
languages of infinite words. More precisely we prove the second inclusion in
Proposition 16, which we recall below.

Proposition 16. Let α : (A+, A∞)→ (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C2,2[α∞] = CalcΣ2(α).

We already proved that C2,2[α∞] ⊇ CalcΣ2(α) in the main paper. In this
appendix, we prove that C2,2[α∞] ⊆ CalcΣ2(α). Before we start the proof, we
require two additional results that we will use.

B.1 Preliminary Results

The first result that we need is a standard decomposition lemma, which may be
applied to infinite words. We state it in the lemma below.

Lemma 24. Let γ : A+ → S be a morphism into a finite semigroup S. Then for
every infinite word w ∈ A∞, there exists an idempotent e ∈ S and a decomposition
w = u0u1u2u3 · · · of w into infinitely many factors u0, u1, u2, · · · ∈ A+ satisfying
γ(uj) = e for all j > 1 (there is no constraint on u0).

The proof of Lemma 24 is standard and is a consequence of Ramsey Theorem
over infinite graphs (see [28] for example).

In order to state the second result that we will need, we require some additional
terminology about Σi-chains. Given i, k, n > 1, x ∈ {+,∞} and β : Ax → S a
map into a finite set S, we denote by Cki,n[β] the set of all chains (s1, . . . , sn) ∈ Sn
for which there exist w1, . . . , wn ∈ Ax satisfying
– for all j, β(wj) = sj .
– w1 .ki w2 .ki · · · .ki wn.
Note that by definition, Ci,n[β] =

⋂
k>1 Cki,n[β]. We will use the following fact,

which may be verified from Fact 3 and finiteness of S.

Fact 25 Let i, n > 1, x ∈ {+,∞} and let β : Ax → S be a map into a finite
set S. Then, for all k > 1,

Ci,n[β] ⊆ Ck+1
i,n [β] ⊆ Cki,n[β]

In particular, there exists ` (depending on i, n and β) such Ci,n[β] = C`i,n[β].

Finally, let us mention the following closure properties of Ci[β], which will be
used in the proof of the membership problem for BΣ2 (see Appendix C): the set
Ci[β] is closed under subwords and duplication of letters. This is immediate that
the definition and the fact that for all k, .ki is transitive and reflexive.

Fact 26 Set x ∈ {+,∞}, β : Ax → S a map into a finite set S and let
(s1, . . . , sn) ∈ Ci[β]. Then for all j 6 n,

(s1, . . . , sj−1, sj+1, . . . , sn) ∈ Ci[β] and (s1, . . . , sj−1, sj , sj , sj+1, . . . , sn) ∈ Ci[β]

Remark 27. A simple consequence of Fact 26 is that, by Higman’s lemma, Ci[β]
is a regular language over the alphabet S (and is therefore finitely representable).
However, this fact is useless in the paper: whether an automata for this regular
language can be computed is open in the cases that we consider.

B.2 Proof of Proposition 16

We may now prove the inclusion C2,2[α∞] ⊆ CalcΣ2(α) in Proposition 16. We let
α : (A+, A∞)→ (S+, S∞) be an alphabet compatible morphism into a finite Wilke
algebra (S+, S∞). We exhibit a number ` > 1 such that C`2,2[α∞] ⊆ CalcΣ2(α).
By the inclusions in Fact 25, this will prove that C2,2[α∞] ⊆ CalcΣ2(α).

We begin with the choice of the number ` > 1. We know from Fact 25 that
there exists a number `+ such that C2,2[α+] = C`+

2,2[α+]. We assume without loss
of generality that `+ > 2 (by the inclusions in Fact 25 we may choose `+ as large
as we want). Furthermore, we choose p = |S+|+ 1 and we define ` = `+ + p.

It now remains to prove that C`2,2[α∞] ⊆ CalcΣ2(α). Let (q, q′) ∈ C`2,2[α∞],
we have to prove that (q, q′) ∈ CalcΣ2(α). By definition of CalcΣ2(α), this means

that we have to find r1, r2, s1, s2 ∈ S+ and t2 ∈ S∞ such that

(r1, r2) ∈ C2,2[α+]
(s1, s2) ∈ C2,2[α+]
t2 ∈ α(A∞) with alph(s1) = alph(t2)

and q = r1(s1)∞
q′ = r2(s2)ωt2

(3)

We proceed as follows. First, we use the definition of C`2,2[α∞] to obtain two
infinite words w and w′ of images q and q′ such that w .`2 w

′. We then use the
hypothesis w .`2 w

′ together with our decomposition lemma, Lemma 4, to split
w and w′ into factors. Finally, we use this decomposition to find the appropriate
r1, r2, s1, s2 and t such that (3) holds.

Decomposition of w and w′. Using Lemma 24 (with α+ as the morphism γ)
we may decompose w as an infinite product w = u0u1u2 · · · (u0, u1, u2, . . . ∈ A+)
such that α(u1) = α(u2) = α(u3) = · · · is an idempotent e of S+. Furthermore,
note that since α is alphabet compatible, u1, u2, . . . all share the same alphabet.
Let B be this alphabet.

We now apply Lemma 4 p times to the infinite words w .`2 w
′. This yields a

decomposition w′ = u′0u
′
1 · · ·u′p−1v (u′0, u′1, . . . , u′p−1 ∈ A+ and v ∈ A∞) which

satisfies the following fact (recall that ` = `+ + p),

Fact 28 For all j 6 p− 1, uj .`+
2 u′j and upup+1 · · · .`+

2 v.

Construction of r1, r2, s1, s2 and t2. We may now use the decomposition of w
and w′ to construct the appropriate r1, r2, s1, s2 and t2 such that (3) holds.

Since p = |S+| + 1, by the pigeonhole principle, we obtain i < j 6 p − 1
such that α+(u′0 · · ·u′i) = α+(u′0 · · ·u′j) = α+(u′0 · · ·u′i)α+(u′i+1 · · ·u′j). Hence,
α+(u′0 · · ·u′i) is stable by right multiplication by α+(u′i+1 · · ·u′j). Iterating this
equality, we get

α+(u′0 · · ·u′i) = α+(u′0 · · ·u′i)(α+(u′i+1 · · ·u′j))ω.

Let x1 = u0 · · ·ui ∈ A+, x2 = u′0 · · ·u′i ∈ A+, y1 = ui+1 · · ·uj ∈ A+ and
y2 = u′i+1 · · ·u′j ∈ A+. Moreover, we let r1 = α+(x1), r2 = α+(x2), s1 = α+(y1)
and s2 = α+(y2). Note that by the equality above, we have

r2 = r2(s2)ω.

Finally, we let z = u′i+1 · · ·u′pv and t2 = α∞(z).
It remains to prove that (3) holds. By definition, s1 = α+(ui+1 · · ·uj) is the

idempotent e, therefore
q = α∞(w) = r1(s1)∞.

Moreover, we have w′ = x2z, therefore,

q′ = r2t2 = r2(s2)ωt2.

To conclude that (3) holds, it remains to prove that (r1, r2), (s1, s2) ∈ C2,2[α+]
and alph(s1) = alph(t2). This is what we do now.

We know from Lemma 5 and Fact 28 that x1 .`+
2 x2 and y1 .`+

2 y2. This
exactly says that (r1, r2), (s1, s2) ∈ C`+

2,2[α+]. Therefore, by choice of `+, we have
(r1, r2), (s1, s2) ∈ C2,2[α+]. Finally, it is simple to find a Σ2 sentence of rank 2
that tests the alphabet of an infinite word. Since `+ > 2 and ui+1ui+2 · · · .`+

2 z
(see Lemma 5 and Fact 28), we therefore have

alph(t2) = alph(z) = alph(ui+1ui+2 · · ·) = B = alph(y1) = alph(s1)

This terminates the proof of Proposition 16. ut

C Appendix to Section 5: BΣ2 membership

In this appendix, we prove the implication 3)⇒ 2) in Theorem 18. Let us first
recall the theorem.

Theorem 18. Let L ⊆ A∞ be a regular language of infinite words and let
α : (A+, A∞)→ (S+, S∞) be the alphabet completion of its syntactic morphism.
The three following properties are equivalent:
1. L is definable in BΣ2.
2. α∞ has bounded Σ2-alternation.
3. α+ has bounded Σ2-alternation and α satisfies the following equation:

(stω)∞ = (stω)ωst∞ for all s, t ∈ α(A+) such that alph(s) = alph(t) (1)

Before we prove that 3)⇒ 2), we need to introduce a preliminary result that
we will use in the proof. This result is a generalized version of Proposition 16,
which gives an effective description of the set of Σ2-chains of length n for all
n > 2 (whereas Proposition 16 is the specific case n = 2).

C.1 Generalization of Proposition 16

Essentially, Proposition 16 gives a description of the set C2,2[α∞] of Σ2-chains of
length 2 for α∞ as a function of the sets C2,2[α+] and α(A∞). Here, we generalize
this to the set C2,n[α∞] for an arbitrary fixed length n of Σ2-chains. In order
to understand this generalization, an important observation is that α(A∞) is
exactly the set C2,1[α∞] of Σ2-chains of length 1. In other words, Proposition 16
describes the Σ2-chains of length 2 for α∞ as a function of the Σ2-chains of
length 2 for α+ and of the Σ2-chains of length 1 for α∞. Our generalization
states that for all n > 2, the result still holds when replacing length 2 by length
n and length 1 by length n− 1.

Given any alphabet compatible morphism α : (A+, A∞) → (S+, S∞) into a
finite Wilke algebra and any n > 2, we denote by CalcΣ2,n(α) the set of all pairs

(r1(s1)∞, r2(s2)ωt2, . . . , rn(sn)ωtn) ∈ (S∞)n

with (r1, . . . , rn) ∈ C2,n[α+], (s1, . . . , sn) ∈ C2,n[α+], (t2, . . . , tn) ∈ C2,n−1[α∞]
and alph(s1) = alph(t2).

Proposition 29. Let α : (A+, A∞) → (S+, S∞) be an alphabet compatible
morphism into a finite Wilke algebra (S+, S∞) and n > 2. Then, C2,n[α∞] =
CalcΣ2,n(α).

The proof of Proposition 29 is a straightforward generalization of that of
Proposition 16 and is left to the reader.

C.2 Proof of 3)⇒ 2) in Theorem 18

We now have all the material we need to prove the implication 3) ⇒ 2) in
Theorem 18. The proof is based on a new object that may be associated to any
alphabet compatible Wilke algebra morphism. We first present this object and
then explain why it may be used to prove that 3)⇒ 2).

Graph associated to a morphism into a finite Wilke algebra. Let α :
(A+, A∞)→ (S+, S∞) be an alphabet compatible morphism into a finite Wilke
algebra (S+, S∞). We explain how to associate a graph G[α] to α.

We denote by S1
+ the monoid constructed from S+ as follows. If S+ is already

a monoid (i.e., if it has a neutral element 1S+) then S1
+ = S+. Otherwise

S1
+ = S+ ∪ {1S+} where 1S+ is defined as an artificial neutral element. We

associate to α a graph G[α] whose set of nodes is S1
+ × S∞ and whose edges

are labeled by subsets of the alphabet (i.e., elements of 2A). Given two nodes
(s+, s∞) and (t+, t∞) and B ∈ 2A, there is an edge,

(s+, s∞) B−→ (t+, t∞)

if and only if there exist (p1, p2), (q1, q2) ∈ C2[α+] and q ∈ α(A+) such that
alph(p1) = alph(q1) = alph(q) = B and,

s+p1(q1)∞ = s∞ and s+p2(q2)ωq = t+

Observe that the definition of the edge relation does not depend on t∞ in the
destination node. Given any alphabet B ⊆ A, we call B-cycle of G[α] a cycle of
G[α] in which all edges are labeled by B. Finally, we say that G[α] is recursive if
and only if there exist B ⊆ A and a B-cycle such that this cycle contains two
nodes (s+, s∞) and (t+, t∞) with s∞ 6= t∞.

Proof of the Theorem. Now that we have defined the graph G[α], the impli-
cation 3)⇒ 2) in Theorem 18 is an immediate consequence of the two following
lemmas.

Lemma 30. Let α : (A+, A∞)→ (S+, S∞) as an alphabet compatible morphism
into a finite Wilke algebra (S+, S∞) and assume that,
1. α+ has bounded Σ2-alternation.
2. α satisfies Equation (1).
Then G[α] is not recursive.

Lemma 31. Let α : (A+, A∞)→ (S+, S∞) as an alphabet compatible morphism
into a finite Wilke algebra (S+, S∞) and assume that,
1. α+ has bounded Σ2-alternation.
2. α∞ has unbounded Σ2-alternation.
Then G[α] is recursive.

Before we prove these two lemmas, we use them to conclude the proof
of Theorem 18. Let L ⊆ A∞ be a regular language of infinite words and let
α : (A+, A∞) → (S+, S∞) be the alphabet completion of its syntactic mor-
phism. Assume that condition 3) holds in Theorem 18, i.e., α+ has bounded
Σ2-alternation and α satisfies (1). We have to prove that α∞ has bounded
Σ2-alternation. We proceed by contradiction. Assume that α∞ has unbounded
Σ2-alternation. We now have three hypotheses:

(a) α satisfies (1).
(b) α+ has bounded Σ2-alternation.
(c) α∞ has unbounded Σ2-alternation.

Therefore, it follows from Lemma 30 that G[α] is not recursive and from Lemma 31
that G[α] is recursive, which is a contradiction. We conclude that α∞ has bounded
Σ2-alternation which terminates the proof of Theorem 18.

It now remains to prove Lemma 30 and Lemma 31. We devote a subsection
to each proof.

C.3 Proof of Lemma 30

Let α : (A+, A∞) → (S+, S∞) be an alphabet compatible morphism into a
finite Wilke algebra (S+, S∞) that satisfies (1) and such that α+ has bounded
Σ2-alternation. We have to prove that G[α] is not recursive. We begin with a
preliminary result which states a property of α that we will use.

Lemma 32. The morphism α satisfies the following equation:

(s2(t2)ω)∞ = (s2(t2)ω)ωs1t
∞
1

for all (s1, s2), (t1, t2) ∈ C2,2[α+] such that alph(s1) = alph(t1) (4)

Proof. We reuse an equation that was used in [18] to characterize a larger class
than BΣ2: the ∆3 languages. Since α+ has bounded Σ2-alternation, we know
from Corollary 14 that all languages recognized by α+ are definable in BΣ2.
In particular, this means that they are all definable in both Σ3 and Π3. Such
languages are called ∆3 languages. It follows from a theorem of [18] that α+
satisfies the following equation,

(r2)ω = (r2)ωr1(r2)ω for all (r1, r2) ∈ C2,2[α+] (5)

We now use (5) together with (1) to prove that (4) holds. Let (s1, s2), (t1, t2) ∈
C2,2[α+] such that alph(s1) = alph(t1). Set r1 = s1(t1)ω and r2 = s2(t2)ω, by

definition of (s1, s2) and (t1, t2), we have (r1, r2) ∈ C2,2[α+]. Therefore, using (5),
we obtain,

(s2(t2)ω)∞ = (r2)∞ = ((r2)ω)∞ = ((r2)ωr1(r2)ω)∞ = ((r2)ωr1)∞

Since r1 = s1(t1)ω, we may apply (1) to obtain,

(s2(t2)ω)∞ = ((r2)ωs1(t1)ω)∞
= ((r2)ωs1(t1)ω)ω(r2)ωs1(t1)∞
= ((r2)ωr1(r2)ω)ωs1(t1)∞

Finally, we may use (5) again to obtain the desired equality,

(s2(t2)ω)∞ = ((r2)ω)ωs1(t1)∞
= (r2)ωs1(t1)∞
= (s2(t2)ω)ωs1(t1)∞

ut

We may now prove that G[α] is not recursive. Consider a B-cycle in G[α] and
let (s+, s∞) and (t+, t∞) be two nodes in this B-cycle. We have to prove that
s∞ = t∞. We first prove that we may actually assume that (s+, s∞) and (t+, t∞)
are the only nodes in the cycle. This follows from the next fact.

Fact 33 For all B ⊆ A, B−→ is transitive.

Proof. Let (r+, r∞), (s+, s∞) and (t+, t∞) be three nodes such that,

(r+, r∞) B−→ (s+, s∞) B−→ (t+, t∞)

By definition of the left edge, we have (p1, p2), (q1, q2) ∈ C2[α+] and q ∈ α(A+)
such that alph(p1) = alph(q1) = alph(q) = B, r+p1(q1)∞ = r∞ and r+p2(q2)ωq =
s+.

Moreover, it follows from the definition of the right edge that we have q′
such that alph(q′) = B and s+q

′ = t+. Set q′′ = qq′, we now have alph(p1) =
alph(q1) = alph(q′′) = B, r+p1(q1)∞ = r∞ and r+p2(q2)ωq′′ = t+. We conclude
that (r+, r∞) B−→ (t+, t∞). ut

It is immediate from Fact 33 that,

(s+, s∞) B−→ (t+, t∞) and (t+, t∞) B−→ (s+, s∞)

By definition ofB-labeled edges we have (p1, p2), (q1, q2), (p′1, p′2), (q′1, q′2) ∈ C2[α+]
and q, q′ ∈ S+ such that,
a) alph(p1) = alph(q1) = alph(q) = alph(p′1) = alph(q′1) = alph(q′) = B.
b) s+p1(q1)∞ = s∞.
c) s+p2(q2)ωq = t+.
d) t+p

′
1(q′1)∞ = t∞.

e) t+p
′
2(q′2)ωq′ = s+.

We now use these equalities to prove that s∞ and t∞ are equal. Using c) and
e), we obtain s+ = t+p

′
2(q′2)ωq′ = s+p2(q2)ωqp′2(q′2)ωq′. Therefore, s+ is stable

by right multiplication by p2(q2)ωqp′2(q′2)ωq′, hence

s+ = s+(p2(q2)ωqp′2(q′2)ωq′)
= s+(p2(q2)ωqp′2(q′2)ωq′)ω+1 (6)

whence by a)

s∞ = s+(p2(q2)ωqp′2(q′2)ωq′)ω+1p1(q1)∞
= s+p2(q2)ω · (qp′2(q′2)ωq′p2(q2)ω)ω · qp′2(q′2)ωq′p1(q1)∞

Now, by closure of C2[α+] under product and since (p1, p2) ∈ C2[α+], we
obtain that (qp′2(q′2)ωq′p1, qp

′
2(q′2)ωq′p2) ∈ C2[α+]. One can also verify that

alph(qp′2(q′2)ωq′p1) = B = alph(q1). Therefore, we may apply (4) to obtain

s∞ = s+p2(q2)ω(qp′2(q′2)ωq′p2(q2)ω)∞
= s+(p2(q2)ωqp′2(q′2)ωq′)∞

We now prove that t∞ = s+(p2(q2)ωqp′2(q′2)ωq′)∞ as well. By (6) and Items d)
and c), we get

t∞ = s+(p2(q2)ωqp′2(q′2)ωq′)ω+1p2(q2)ωqp′1(q′1)∞
= s+p2(q2)ωqp′2(q′2)ω · (q′p2(q2)ωqp′2(q′2)ω)ω · q′p2(q2)ωqp′1(q′1)∞

Since by hypothesis, we have p′1, q
′
1 ∈ C2[α+], we get by closure under

product that (q′p2(q2)ωqp′1, q′p2(q2)ωqp′2) ∈ C2[α+]. One can also verify that
alph(q′p2(q2)ωqp′1) = B = alph(q′1). Therefore, we may apply (4) to obtain,

t∞ = s+p2(q2)ωqp′2(q′2)ω(q′p2(q2)ωqp′2(q′2)ω)∞
= s+(p2(q2)ωqp′2(q′2)ωq′)∞

We conclude that s∞ = t∞ which terminates the proof. ut

C.4 Proof of Lemma 31

Let α : (A+, A∞)→ (S+, S∞) be an alphabet compatible morphism into a finite
Wilke algebra (S+, S∞) such that,

1. α+ has bounded alternation.
2. α∞ has unbounded alternation.

We have to prove that G[α] is recursive. Let B ⊆ A. We say that a node (s+, s∞)
of G[α] is a B-generator if there exists a Σ2-alternating pair (s1, s2) ∈ (S∞)2 for
α∞ such that s∞ = s+s1 6= s+s2 and alph(s1) = B.

Lemma 34. G[α] contains at least one B-generator for some B ⊆ A.

Proof. This is because α∞ has unbounded Σ2-alternation. By definition this
means that there exists at least one Σi-alternating pair (s1, s2) ∈ S∞ for α∞ such
that s1 6= s2. It is then immediate that (1S+ , s1) is an alph(s1)-generator. ut

Set B as a minimal alphabet (with respect to inclusion) such that there exists
a B-generator. That G[α] is recursive is a consequence of the next lemma.

Lemma 35. Let (s+, s∞) be any B-generator of G[α]. Then, there exists a node
(t+, t∞) such that

1. s∞ 6= t∞.
2. (t+, t∞) is a B-generator.
3. there is a B-labeled edge from (s+, s∞) to (t+, t∞).

Since G[α] is a finite graph it is immediate from Lemma 35 and our choice
of B that it must contain a B-cycle in which there are two nodes (s+, s∞) and
(t+, t∞) such that s∞ 6= t∞. We conclude that G[α] is recursive. It now remains
to prove Lemma 35. In particular, this is where we use Proposition 29. We devote
the remainder of this appendix to this proof.

Let (s+, s∞) be a B-generator of G[α] and let (s1, s2) ∈ (S∞)2 be the Σ2-
alternating pair such that s∞ = s+s1 6= s+s2. We have to construct (t+, t∞)
satisfying the conditions of Lemma 35. We proceed as follows. First we choose
an integer ` > 1 and use the fact that (s1, s2) is Σ2-alternating to conclude that
(s1, s2)` ∈ C2,2`[α∞]. We then use this result together with Proposition 29 to
construct the desired node (t+, t∞).

Let us begin with the choice of `. This choice is based on the two following
facts.

Fact 36 There exists n+ > 1 such that for any t1, t2 ∈ S+ and any n > n+, if
(t1, t2)n ∈ C2[α+], then (t1, t2) is Σ2-alternating.

Fact 37 There exists n∞ > 1 such that for any t1, t2 ∈ S∞ and any n > n∞, if
(t1, t2)n ∈ C2[α∞], then (t1, t2) is Σ2-alternating.

The two facts share identical proofs. We show the first one (it suffices to
replace α+ by α∞ and C2[α+] by C2[α∞] to obtain the second one). If for all
t1, t2 ∈ S+ and n > 1, we have (t1, t2)n ∈ C2[α+], then choose n+ = 1. Otherwise,
since C2[α+] is closed under subwords (Fact 26), if (t1, t2)k /∈ C2[α+], then for
all j > k, we have (t1, t2)j /∈ C2[α+] as well. Therefore, one can define n+ as the
largest integer k such that there exist t1, t2 ∈ S+ with (t1, t2)k−1 ∈ C2[α+] but
(t1, t2)k 6∈ C2[α+] (with the convention that (t1, t2)0 ∈ C2[α+]).

We now set h = max(n+, n∞) and we choose ` = |S+|4 × |S∞|2 × h. Since
(s1, s2) is Σ2-alternating, we have in particular (s1, s2)` ∈ C2,2`[α∞]. We now use
this fact together with Proposition 29 to construct (t+, t∞).

Since (s1, s2)` ∈ C2,2`[α∞], we may use Proposition 29 to obtain (p1, . . . , p2`) ∈
C2,2`[α+], (q1, . . . , q2`) ∈ C2,2`[α+] and (t2, . . . , t2`) ∈ C2,2`−1[α∞] such that:
– alph(t2) = alph(q1)

– p1(q1)∞ = s1.
– for all i > 1, p2i(q2i)ωt2i = s2.
– for all i > 1, p2i+1(q2i+1)ωt2i+1 = s1.

We set C = alph(p1) and D = alph(q1) = alph(t2). Observe that since
p1(q1)∞ = s1, we have C ∪D = alph(s1) = B.

Using the pigeonhole principle and our choice of `, we obtain a set of h indices
I = {i1, . . . , ih} such that for all i, j ∈ I,

p2i = p2j
p2i+1 = p2j+1

q2i = q2j
q2i+1 = q2j+1

t2i = t2j
t2i+1 = t2j+1

We define, p′2 = p2i, p′3 = p2i+1, q′2 = q2i, q′3 = q2i+1, t′2 = t2i and t′3 = t2i+1 (for
i ∈ I). Since Σ2-chains are closed under subwords (see Fact 26) and I is of size
h, we know that

(p1, p
′
2, p
′
3, . . . , p

′
2, p
′
3) ∈ C2,2h+1[α+]

(q1, q
′
2, q
′
3, . . . , q

′
2, q
′
3) ∈ C2,2h+1[α+]

(t′2, t′3, . . . , t′2, t′3) ∈ C2,2h[α∞]

In particular, this means that (p′2, p′3)h ∈ C2,2h[α+], (q′2, q′3)h ∈ C2,2h[α+] and
(t′2, t′3)h ∈ C2,2h[α∞]. By choice of h, it follows that (p′2, p′3), (q′2, q′3) and (t′2, t′3)
are Σ2-alternating for α+ and α∞. Furthermore, since α+ has bounded Σ2-
alternation, it follows that p′2 = p′3 and q′2 = q′3. Let us summarize what we
have so far. We have (p1, p

′
2), (q1, q

′
2) ∈ C2[α+] and (t′2, t′3) ∈ C2[α∞] which is

Σ2-alternating for α∞ such that
1. s1 = p1(q1)∞.
2. s2 = p′2(q′2)ωt′2.
3. s1 = p′2(q′2)ωt′3.
We may now define the node (t+, t∞). Set t+ = s+p

′
2(q′2)ω and t∞ =

s+p
′
2(q′2)ωt′2. We prove that this node satisfies the conditions of Lemma 35.

We have t∞ = s+s2, which is different from s+s1 = s∞ by definition of (s1, s2).
Hence, we have s∞ 6= t∞. Moreover, we have (t′2, t′3) ∈ C2[α∞] which is Σ2-
alternating and,

t+t
′
2 = s+p

′
2(q′2)ωt′2 = s+s2 = t∞

t+t
′
3 = s+p

′
2(q′2)ωt′3 = s+s1 = s∞

and we already know that s∞ 6= t∞. Therefore, (t+, t∞) is an alph(t′2)-generator.
Furthermore, is it simple to verify that as an element of the Σ2-chain, (t2, . . . , t`),
t′2 has the same alphabet as t2, i.e., alph(t′2) = D ⊆ B. It follows that (t+, t∞) is
a D-generator and by minimality of B that D = B.

Finally we prove that there is a B-labeled edge from (s+, s∞) to (t+, t∞).
Observe that
– s+(p1(q1)ω)(q1)∞ = s∞.
– s+(p′2(q′2)ω)(q′2)ω(q′2)ω = t+.
Therefore, since we already know that (p1(q1)ω, p′2(q′2)ω), (q1, q

′
2) ∈ C2[α+], it

suffices to prove that alph(p1(q1)ω) = alph(q1) = alph((q′2)ω) = B to conclude
that there is a B-labeled edge from (s+, s∞) to (t+, t∞). By definition, we

have alph(p1(q1)ω) = C ∪ D = B. Similarly, we have alph(q1) = D and we
have already established that D = B. Finally, since (q1, q

′
2) ∈ C2[α+], we have

alph(q′2) = alph(q1) = B and alph((q′2)ω) = B, which terminates the proof. ut

D Appendix to Section 6: Σ3 separation

In this section, we finish the proof of our algorithm for Σ3-separation of languages
of infinite words. More precisely, we prove the second inclusion in Proposition 22
which we restate below. Recall first that we defined CalcΣ3(α) ⊆ (S∞)2 as the
set of all pairs (

r2(s2(t2)ω)∞, r3(s3(t3)ω)ωs1(t1)∞
)

with (r2, r3) ∈ C3,2[α+], (s1, s2, s3) ∈M[α+], (t1, t2, t3) ∈M[α+] and alph(s1) =
alph(t1).

Proposition 22. Let α : (A+, A∞)→ (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C3,2[α∞] = CalcΣ3(α).

We already proved that C3,2[α∞] ⊇ CalcΣ3(α) in the main paper. In this
appendix, we prove that C3,2[α∞] ⊆ CalcΣ3(α). Note that the proof relies on
Lemma 24 and Fact 25 that we presented in Appendix B for the proof of the
Σ2 algorithm. We will also need an additional result about mixed chains (it is
essentially the ‘mixed chains’ version of Fact 25).

D.1 Preliminary Result

Given x ∈ {+,∞} and β : Ax → S a map into a finite set S, for all k > 1,
we denote byMk[β] the set of all chains (s1, s2, s3) ∈ S3 such that there exist
w1, w2, w3 ∈ Ax satisfying,
– for all j, β(wj) = sj .
– w1 .k2 w2 .k3 w3.
Note that by definition,M[β] =

⋂
k>1Mk[β]. Moreover, the following fact may

be verified from the definition (this uses Fact 3 and the fact that S is finite).

Fact 38 Let x ∈ {+,∞} and let β : Ax → S be a map into a finite set S. Then,
for all k > 1,

M[β] ⊆Mk+1[β] ⊆Mk[β].

Moreover, there exists ` (depending on β) such thatM[β] =M`[β].

D.2 Proof of Proposition 22

We now prove that C3,2[α∞] ⊆ CalcΣ3(α) in Proposition 22. We follow a
proof template which is similar to the one we used to prove Proposition 16
in Appendix B. Let α : (A+, A∞) → (S+, S∞) be an alphabet compatible
morphism into a finite Wilke algebra (S+, S∞). We exhibit a number ` > 1

such that C`3,2[α∞] ⊆ CalcΣ3(α) (by Fact 25 in Appendix B, this suffices since
C3,2[α∞] ⊆ C`3,2[α∞] for any `).

We begin by choosing the number `. We know from Fact 25 and Fact 38 that
there exists `+ such thatM[α+] =M`+ [α+] and C3,2[α+] = C`+

3,2[α+]. Moreover,
we may assume without loss of generality that `+ > 2 (we may choose `+ as
large as we want). Set p = |S+|+ 1. We define `′ = `+ + p2 and ` = `′ + p.

We have to prove that C`3,2[α∞] ⊆ CalcΣ3(α). Set (q, q′) ∈ C`3,2[α∞], we
prove that (q, q′) ∈ CalcΣ3(α). By definition, of CalcΣ3(α), we have to find
r2, r3, s1, s2, s3, t1, t2 and t3 in S+ such that,

(r2, r3) ∈ C3,2[α+]
(s1, s2, s3) ∈M[α+]
(t1, t2, t3) ∈M[α+]
alph(s1) = alph(t1)

and q = r2(s2(t2)ω)∞
q′ = r3(s3(t3)ω)ωs1(t1)∞ (7)

The existence of r2, r3, s1, s2, s3, t1, t2 and t3 in S+ is a consequence of the
following lemma.

Lemma 39. There exist words u2, u3, x2, x3, y1, y2, y3, z1, z2 and z3 in A+ such
that

1. x2 .`+
3 x3, y1 .`+

2 y2 .`+
3 y3, z1 .`+

2 z2 .`+
3 z3 and u2 .`+

3 u3.
2. alph(u3y1) = alph(z1).
3. q = α(x2(y2(z2)ωu2)∞) and q′ = α(x3(y3(z3)ωu3)ωy1(z1)∞).

Before proving Lemma 39, let us explain how we use it to conclude the proof
of Proposition 22. We set

r2 = α(x2(y2(z2)ωu2)ω−1y2(z2)ω)
r3 = α(x3(y3(z3)ωu3)ω−1y3(z3)ω)

s1 = α(u3y1)
s2 = α(u2y2)
s3 = α(u3y3)

t1 = α(z1)
t2 = α(z2)
t3 = α(z3)

We have to prove that these choices satisfy the conditions in (7). That (r2, r3) ∈
C3,2[α+], (s1, s2, s3) ∈ M[α+] and (t1, t2, t3) ∈ M[α+] is a simple consequence
of the first item in Lemma 39 and our choice of `+. Let us detail the case of
(s1, s2, s3) (other cases are handled similarly). By the first item in Lemma 39, we
know that y1 .`+

2 y2 .`+
3 y3 and u2 .`+

3 u3. Also notice the second inequality
means that u3 .`+

2 u2 .`+
3 u3 (this is comes from the last item in Fact 3). We

may now apply Lemma 5 to obtain that u3y1 .`+
2 u2y2 .`+

3 u3y3. By definition
of s1, s2, s3, this exactly says that (s1, s2, s3) ∈ C`+

3,2[α+] and we chose `+ so that
C`+

3,2[α+] = C3,2[α+]. We conclude that (s1, s2, s3) ∈M[α+].
Moreover, that alph(s1) = alph(t1) is immediate from the definitions of s1

and t1 since we have alph(u3y1) = alph(z1) in Lemma 39.
Finally, we prove that q = r2(s2(t2)ω)∞ and q′ = r3(s3(t3)ω)ωs1(t1)∞. We have:

r2(s2(t2)ω)∞ = α(x2(y2(z2)ωu2)ω−1y2(z2)ω(u2y2(z2)ω)∞)
= α(x2(y2(z2)ωu2)ω−1(y2(z2)ωu2)∞)
= α(x2(y2(z2)ωu2)∞)
= q by the third item in Lemma 39

and

r3(s3(t3)ω)ωs1(t1)∞ = α(x3(y3(z3)ωu3)ω−1y3(z3)ω(u3y3(z3)ω)ωu3y1(z1)∞)
= α(x3(y3(z3)ωu3)ω−1(y3(z3)ωu3)ω+1y1(z1)∞)
= α(x3(y3(z3)ωu3)2ωy1(z1)∞)
= α(x3(y3(z3)ωu3)ωy1(z1)∞)
= q′ by the third item in Lemma 39

Therefore, our choices of r2, r3, s1, s2, s3, t1, t2 and t3 satisfy the conditions
of (7), which exactly means that (q, q′) ∈ CalcΣ3(α) and we are finished with the
proof of Proposition 22.

It now remains to prove Lemma 39. We proceed in two steps. We first prove
the existence of a set of words and infinite words that satisfy weaker properties
than the desired words u2, u3, x2, x3, y1, y2, y3, z1, z2 and z3 in Lemma 39. We
then use this first set of words and infinite words to construct the desired words
u2, u3, x2, x3, y1, y2, y3, z1, z2 and z3. We devote a subsection to each step.

D.3 First Step in the Proof of Lemma 39

As explained, this first step consists in the construction of a set of words and
infinite words that we will then use in the second step to construct the words
u2, u3, x2, x3, y1, y2, y3, z1, z2 and z3 of Lemma 39. We state the construction in
the lemma below. Recall that we have chosen p = |S+| + 1, `′ = p2 + `+ and
` = p+ `, and that (q, q′) ∈ C`3,2[α∞].

Lemma 40. There exist words w0, w1, w
′
0, w

′
1 ∈ A+ and an infinite word w′∞ ∈

A∞ such that:
1. w0 .`

′

3 w′0 and w1 .`
′

3 w′1.
2. w′∞ .`

′

2 (w1)∞
3. q = α(w0(w1)∞) and q′ = α(w′0(w′1)ωw′∞).

We devote the subsection to the proof of Lemma 40. By definition, (q, q′) ∈
C`3,2[α∞], which means that there exist two infinite words w,w′ ∈ A∞ of images
q, q′ under α such that w .`3 w

′. We construct w0, w1, w
′
0, w

′
1 ∈ A+ and w′∞ ∈ A∞

by decomposing w and w′. Our first move is to decompose w as an infinite product
using Lemma 24. However, if we use α+ only as the morphism for making the
decomposition, we will not have a strong enough link between the factors to
prove the desired result. For this reason, we apply the lemma for a morphism
carrying more information than α+ does. Let us define this morphism.

We know since Lemma 5 that over A+, the equivalence ∼=`′

3 is a congruence
for concatenation, hence the quotient A+/ ∼=`′

3 is a semigroup. Moreover, since
there are only finitely many non equivalent BΣ3 sentences of quantifier rank `′,
this semigroup is finite. We write

γ : A+ → S+ × (A+/ ∼=`′

3)
u 7→ (α(u), [u]∼=`′

3
)

where [u]∼=`′
3

denotes the ∼=`′

3 -equivalence class of u. We now apply Lemma 24 to
w ∈ A∞ with γ as the morphism. We obtain a decomposition w = u0u1u2 · · ·
(u0, u1, u2, · · · ∈ A+) such that γ(u1) = γ(u2) = γ(u3) = · · · is an idempotent of
S+ × (A+/ ∼=`′

3). In other words, the decompositions satisfies the two following
properties:
– there exists an idempotent e ∈ S+ such that all factors of the form uiui+1 · · ·uj
with 1 6 i 6 j have image e under α.

– all factors of the form uiui+1 · · ·uj with 1 6 i 6 j are ∼=`′

3 -equivalent.
We now use this decomposition of w and the hypothesis w .`3 w

′ to decompose
w′ as well. Since w .`3 w

′, we may apply Lemma 4 p times to the w and w′

to obtain a decomposition w′ = u′0 · · ·u′p−1u
′
∞ of w′ (u′0, u′1, . . . , u′p−1 ∈ A+ and

u′∞ ∈ A∞) which satisfies the following fact (recall that ` = `′ + p).

Fact 41 For all j 6 p− 1, uj .`
′

3 u′j and upup+1 · · · .`
′

3 u′∞.

Since we chose p = |S+| + 1, we may now use the pigeonhole principle to
obtain i < j 6 p − 1 such that α(u′0 · · ·u′i) = α(u′0 · · ·u′i · u′i+1 · · ·u′j), that is,
α(u′0 · · ·u′i) is stable by right multiplication by α(u′i+1 · · ·u′j). This gives us the
following fact.

Fact 42 We have α(u′1 · · ·u′i) = α(u′1 · · ·u′i(u′i+1 · · ·u′j)ω).

We may now define the words w0, w1, w
′
0, w

′
1 ∈ A+ and the infinite word

w′∞ ∈ A∞ in the lemma. We let

w0 = u0 · · ·ui
w′0 = u′0 · · ·u′i

w1 = ui+1 · · ·uj
w′1 = u′i+1 · · ·u′j

w′∞ = u′i+1 · · ·u′p−1u
′
∞

It now remains to verify that these choices satisfies the conditions of the lemma.
That w0 .`

′

3 w′0 and w1 .`
′

3 w′1 is immediate from Fact 41 and Lemma 5.
We now prove that w′∞ .`

′

2 (w1)∞. We know from Fact 41 and Lemma 5
that ui+1ui+2`

′

3 w′∞. Moreover, we know by construction and the choice
of the morphism γ that w1 = ui+1 · · ·uj ∼=`′

3 uh for all h > 1. In particular,
this means that w1 .`

′

3 uh for all h > 1. Using Lemma 5 again, we obtain
that (w1)∞ .`

′

3 ui+1ui+2 · · · and by transitivity that (w1)∞ .`
′

3 w′∞. Finally, we
obtain that w′∞ .`

′

2 (w1)∞ using the last item in Fact 3.
It remains to prove that q = α(w0(w1)∞) and q′ = α(w′0(w′1)ωw′∞). By

definition, α(w0(w1)∞) = α(w0)e∞ = α(u0u1u2 · · ·) = α(w) = q. Moreover,
w′0w

′
∞ = w′ by definition. Therefore, α(w′0w′∞) = α(w′) = q′. Finally, since

α(w′0) = α(w′0(w′1)ω) (this is Fact 42), we obtain that α(w′0(w′1)ωw′∞) = q′ which
terminates the proof of Lemma 40.

This finishes the first step in the proof of Lemma 39. We present the second
and last step in the next subsection.

D.4 Second Step in the Proof of Lemma 39

We finish the proof of Lemma 39 by using the words and infinite words obtained
from Lemma 40 to construct the desired words u2, u3, x2, x3, y1, y2, y3, z1, z2 and
z3.

Let w0, w1, w
′
0, w

′
1 ∈ A+ and w′∞ ∈ A∞ that satisfy the conditions of

Lemma 40. We begin by using the hypothesis w′∞ .`
′

2 (w1)∞ to decompose
w′∞ and (w1)∞. We apply Lemma 24 to w′∞ (with α+ as the morphism) to
construct a decomposition w′∞ = v′0v

′
1v
′
2 · · · such that α(v′1) = α(v′2) = · · · is an

idempotent f of S+.

Fact 43 For any h > 0, α(v′0 · · · v′h)f∞ = α(w′∞).

An other property that we will use is that since α is alphabet compatible, for
all h > 1 the v′h have the same alphabet. We call B this alphabet.

We now use this decomposition of w′∞ together with the fact that w′∞ .`
′

2
(w1)∞ to decompose (w1)∞ as well. We apply Lemma 4 p2 times to the infinite
words w′∞ and (w1)∞. This yields a decomposition (w1)∞ = v0 · · · vp2−1v∞ of
(w1)∞ (v0, v1, . . . , vp2−1 ∈ A+ and v∞ ∈ A∞) which satisfies the following fact
(recall that `′ = `+ + p2).

Fact 44 For all h 6 p2 − 1, v′h .`+
2 vh and v′p2v′p2+1 · · · .

`+
2 v∞.

Observe that since v0 · · · vp2−1 is a finite prefix of (w1)∞, there exists a number
n > 1 such that it is a prefix of (w1)n. Therefore, there exists vp2 ∈ A+ such
that v0 · · · vp2−1vp2 = (w1)n. Furthermore, we know from the second item in
Lemma 40 and Lemma 5 that,

v0 · · · vp2−1vp2 = (w1)n .`
′

3 (w′1)n

Therefore, we may apply Lemma 4 p2 times to obtain a decomposition (w′1)n =
v′′0 · · · v′′p2−1v

′′
p2 of (w′1)n that satisfies the following fact (recall that `′ = `+ + p2).

Fact 45 For all h 6 p2, vh .`+
3 v′′h.

Finally, since p = |S+| + 1, we have p2 > |S+|2 + 1. Therefore, we may
apply the pigeonhole principle to obtain i, j such that 0 6 i < j 6 p2 − 1,
α(v0 · · · vi) = α(v0 · · · vj) and α(v′′0 · · · v′′i) = α(v′′0 · · · v′′j). In particular, we obtain
the following fact.

Fact 46 We have

α(v0 · · · vi) = α(v0 · · · vi(vi+1 · · · vj)ω)
α(v′′0 · · · v′′i) = α(v′′0 · · · v′′i (v′′i+1 · · · v′′j)ω)

We are now ready to construct the words u1, u2, x2, x3, y1, y2, y3, z1, z2 and z3 in
A+ from Lemma 39. We let

x2 = w0
x3 = w′0

y1 = v′0 · · · v′i
y2 = v0 · · · vi
y3 = v′′0 · · · v′′i

z1 = v′i+1 · · · v′j
z2 = vi+1 · · · vj
z3 = v′′i+1 · · · v′′j

u2 = vi+1 · · · vp2

u3 = v′′i+1 · · · v′′p2

It remains to verify that these words satisfy the conditions of the lemma. We
begin with the inequalities. That x2 .`+

3 x3 is immediate by choice of w0, w
′
0 in

Lemma 40. The inequalities y1 .`+
2 y2 .`+

3 y3, z1 .`+
2 z2 .`+

3 z3 and u2 .`+
3 u3

are immediate from Fact 44, Fact 45 and Lemma 5.
Let us now prove that alph(u3y1) = alph(z1) = B (recall that B is the

shared alphabet of all v′h for h > 1). Since y1 is a product of v′h for h > 1,
it is immediate that alph(y1) = B. Furthermore, using the same argument,
it is also immediate that alph(z1) = B. Therefore, it suffices to prove that
alph(u3) ⊆ B to conclude that alph(u3y1) = B = alph(z1). We know that
u2 .`+

3 u3, therefore alph(u3) = alph(u2) (`+ > 2 and the alphabet may be tested
with a Σ3 sentence of rank 2). Moreover, by definition, u2 is a suffix of (w1)p.
Therefore, alph(u2) ⊆ alph((w1)p) = alph(w1). Finally, we know from Fact 44
that vp2vp2+1 · · · .

`+
2 v∞. Since v∞ is a suffix of (w1)∞, we have alph(v∞) =

alph(w1) = B and alph(u3) = alph(u2) ⊆ B.
We finish with the proof of the last item in Lemma 39: q = α(x2(y2(z2)ωu2)∞)

and q′ = α(x3(y3(z3)ωu2)ωy1(z1)∞). First, by definition, we have x2 = w0 and
x3 = w′0. Furthermore, we know from Fact 46 that

α(y2(z2)ωu2) = α(y2u2) = α((w1)n) and α(y3(z3)ωu3) = α(y3u3) = α((w′1)n)

Finally, we obtain from Fact 43 that α(y1(z1)∞) = α(w′∞). By combining all of
this, we obtain,

α(x2(y2(z2)ωu2)∞) = α(w0((w1)n)∞) = α(w0(w1)∞)
α(x3(y3(z3)ωu2)ωy1(z1)∞) = α(w′0((w′1)n)ωw′∞) = α(w′0(w′1)ωw′∞)

We conclude that q = α(x2(y2(z2)ωu2)∞) and q′ = α(x3(y3(z3)ωu2)ωy1(z1)∞)
from the third item in Lemma 40. This terminates the proof of Lemma 39. ut

	Quantifier Alternation for Infinite Words

