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Abstract In the theory of formal languages, the understanding of concatenation hi-
erarchies of regular languages is one of the most fundamental and challenging topics.
In this paper, we survey progress made on this problem since 1971. We also establish
new generic statements regarding this problem.

1 Introduction

This paper has a dual vocation. The first is to outline progress seen during the last 50
years about concatenation hierarchies of regular languages. The second is to provide
generic statements and elementary proofs of some of the core results on this topic,
which were obtained previously in restricted cases. In this introduction, we present the
historical background, first highlighting the motivations and the key ideas that emerged
since the mid 60s. In a second part, we describe the contributions of the paper, which
are either new proofs of existing results or generalizations thereof.

Historical background: a short survey of 50 years of research. Concatenation
hierarchies were introduced in order to understand the interplay between two basic
constructs used to build regular languages: Boolean operations and concatenation. The
story started in 1956 with Kleene’s theorem [18], one of the core results in automata
theory. It states that languages of finite words recognized by finite automata are exactly
the ones that can be described by regular expressions, i.e., are built from the singleton
languages and the empty set using a finite number of times the basic operations of
union, concatenation, and iteration (a.k.a. Kleene star).

As Kleene’s theorem provides another syntax for regular languages, it makes it
possible to classify them according to the hardness of their description by such an
expression. The notion of star-height was designed for this purpose. The star-height of
a regular expression is its maximum number of nested Kleene stars. The star-height
of a regular language is the minimum star-height of a regular expression defining the
language. As there are languages of arbitrary star-height [12, 11], this notion is an
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appropriate complexity measure. Eggan [12] raised in 1963 the natural question of
computing the star-height of a regular language (see also Brzozowski [7]): “Given a
regular language and a natural number n, is there an expression of star-height n defining
the language?”.

This question, called the star-height problem, is an instance of the membership
problem. Given a class C of regular languages, the membership problem for C asks
whether C is a decidable class, that is:

Input: A regular language L.
Output: Does L belong to C?

Thus, the star-height problem asks whether membership is decidable for the class
Hn of languages of star-height n, for each n. It was first solved in 1988 by Hashiguchi [16],
but it took 17 more years to obtain simpler proofs, see [17, 42, 5].

Kleene’s theorem also implies that adding complement to our set of basic operations
does not make it possible to define more languages. Thus, instead of just considering
regular expressions, one may consider generalized regular expressions, where comple-
ment is allowed (in addition to union, concatenation and Kleene star). This yields
the notion of generalized star-height, which is defined as the star-height, but replacing
“regular expression” by “generalized regular expression”. One may then ask the same
question: is there an algorithm to compute the generalized star-height of a regular lan-
guage? Despite its simple statement, this question, raised in 1980 by Brzozowski [7, 6],
is still open. Even more, one does not know whether there exists a regular language
of generalized star-height greater than 1. In other terms, membership is open for the
class of languages of generalized star-height 1 (see [27] for a historical presentation).

This makes it relevant to already focus on languages of generalized star height 0,
i.e., that can be described using only union, concatenation and Boolean operations
(including complement), without the Kleene star. Such languages are called star-free.
It turns out that even for this restricted class, the membership problem is difficult. It
was solved in 1965 by Schützenberger in a seminal paper.

Theorem 1 (Schützenberger [43]) Membership is decidable for the class of star-
free languages.

Star-free languages rose to prominence due to their robustness: they enjoy several
equivalent characterizations. The most important, of logical flavor, was discovered in
1971 by McNaughton and Papert. The key idea is that one may describe languages
with logical sentences: any word may be viewed as a logical structure made of a linearly
ordered sequence of positions, each carrying a label. In first-order logic over words
(denoted by FO(<)), one may quantify these positions, compare them with a predicate
“<” interpreted as the (strict) linear order, and check their labels (for any letter a, a
unary “label” predicate selecting positions with label a is available). Therefore, each
FO(<) sentence states a property over words and defines the language of all words
that satisfy it.

Theorem 2 (McNaughton & Papert [21]) For any regular language L, the fol-
lowing properties are equivalent:

– L is star-free.
– L can be defined by an FO(<) sentence.
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Let us point out that this connection between star-free and first-order definable
languages is rather intuitive. Indeed, there is a clear correspondence between union,
intersection and complement for star-free languages with the Boolean connectives in
FO(<) sentences. Moreover, concatenation corresponds to existential quantification.

Just as the star-height measures how complex a regular language is, a natural
complexity for star-free languages is the required number of alternations between con-
catenation and complement operations for building a given star-free language from
basic ones. This led Brzozowski and Cohen [8] to introduce in 1971 a hierarchy of
classes of regular languages, called the dot-depth hierarchy. It classifies all star-free lan-
guages into full levels, indexed by natural numbers: 0, 1, 2,. . . , and half levels, indexed
by half natural numbers: 1

2 ,
3
2 ,

5
2 , etc. Roughly speaking, levels count the number of

alternations between concatenation and Boolean operations (including complement)
that are necessary to express a given star-free language.

More formally, the hierarchy is built by using, alternately, two closure operations
starting from level 0: Boolean and polynomial closures. Given a class of languages C, its
Boolean closure, denoted Bool(C), is the least Boolean algebra containing C. Polynomial
closure is slightly more complicated as it involves marked concatenation. Given two
languages K and L, a marked concatenation of K with L is a language of the form
KaL for some a ∈ A. The polynomial closure of C, denoted Pol(C), is the least class of
languages containing C and closed under union, intersection and marked concatenation
(i.e., K ∪ L, K ∩ L and KaL belong to C for any K,L ∈ C and a ∈ A).
The dot-depth hierarchy is now defined as follows (n denotes a positive integer):

– Level 0 is the class {∅, {ε}, A+, A∗} (where A is the working alphabet).
– The half level n+ 1

2 is the polynomial closure of the full level n.
– The full level n+ 1 is the Boolean closure of the half level n+ 1

2 .

A side remark is that this is not the original definition. First, the historical defini-
tion of the dot-depth started from another class at level 0. However, both definitions
coincide at level 1 and above. Second, the polynomial closure of a class C was defined as
the least class containing C and closed under union and concatenation. This definition
is seemingly weaker, as it does not explicitly insist for Pol(C) to be closed under inter-
section. However, Arfi [2, 3] (assuming that C satisfies some mild closure properties)
and Pin [25] (assuming slightly more general properties on C) showed that the two
definitions are equivalent.

The union of all levels in the dot-depth hierarchy is the class of all star-free lan-
guages. Moreover, Brzozowski and Knast proved in 1978 that the dot-depth hierarchy
is strict: every level contains strictly more languages than the previous one.

Theorem 3 (Brzozowski & Knast [9]) The dot-depth hierarchy is strict when the
alphabet contains at least two letters.

This shows in particular that classes built using Boolean and polynomial closure
do not satisfy the same closure properties, in general. Typically, when C is a class of
languages, Pol(C) is closed under marked concatenation but not under complement,
while Bool(C) is closed under complement but not under marked concatenation. The
fact that the hierarchy is strict motivates the investigation of the membership problem
for each level.

Problem 4 (Membership for the dot-depth hierarchy) Given a level in the
dot-depth hierarchy, is membership decidable for this level?
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Using the framework developed by Schützenberger in his proof for deciding whether
a language is star-free, Knast proved in 1983 that level 1 enjoys decidable membership,
via a combinatorially intricate proof.

Theorem 5 (Knast [19]) Level 1 in the dot-depth has decidable membership.

The case of half levels required to adapt Schützenberger’s approach, which was
designed to deal with Boolean algebras only (recall that half levels are not Boolean
algebras since the hierarchy is infinite). In 1995, Pin [24] modified the framework to
handle half levels. Membership was then solved for level 1

2 by Pin and Weil in 2002, as
well as for level 3

2 by Glaßer and Schmitz in 2007.

Theorem 6 (Pin & Weil [29, 30, 31], Glaßer & Schmitz [14]) Levels 1
2 and 3

2

in the dot-depth hierarchy have decidable membership.

One may now wonder why level 0 in the dot-depth hierarchy is {∅, {ε}, A+, A∗}. It
would be natural to start from {∅, A∗}, and to apply the very same construction scheme
for higher levels. This is exactly the definition of the Straubing-Thérien hierarchy,
introduced independently in 1981 by Straubing [48] and Thérien [50]. Its definition
follows the same pattern as that of the dot-depth, except that level 0 is {∅, A∗}.

Like the dot-depth, the Straubing-Thérien hierarchy is strict and spans the whole
class of star-free languages. One can show this by proving that level n in the dot-depth
hierarchy sits between levels n and n + 1 in the Straubing-Thérien hierarchy. This
makes membership a relevant problem for each level in this hierarchy as well.

Problem 7 (Membership for the Straubing-Thérien hierarchy) Given a level
in the Straubing-Thérien hierarchy, is membership decidable for this level?

Just as for the dot-depth hierarchy, level 1 in the Straubing-Thérien hierarchy was
shown to be decidable by Simon in 1972 (actually before the formal definition of the
hierarchy itself). The first half levels were solved in 1987 by Arfi who relied, for level 3

2 ,
on a difficult result of Hashiguchi [15]. In 1995, Pin and Weil presented a self-contained
proof using the adaptation [24] of the framework of Schützenberger to classes that are
not closed under complement.

Theorem 8 (Simon [44, 45]) Level 1 in the Straubing-Thérien hierarchy has decid-
able membership.

Theorem 9 (Arfi [2, 3], Pin & Weil [29, 30]) Levels 1
2 and 3

2 in the Straubing-
Thérien hierarchy have decidable membership.

In fact, the dot-depth and the Straubing-Thérien hierarchies are closely related.
First, as already stated, they are interleaved. More importantly, Straubing proved in
1985 an effective reduction between the membership problems associated to their full
levels, which Pin and Weil adapted to half levels in 2002.

Theorem 10 (Straubing [49], Pin & Weil [31]) Membership for a level in the
dot-depth reduces to membership for the same level in the Straubing-Thérien hierarchy.

This theorem is crucial. Indeed, from a combinatorial point of view, the Straubing-
Thérien hierarchy is much simpler to deal with than the dot-depth. This is evidenced
by all recent publications on the topic: most results for the dot-depth are obtained
indirectly as corollaries of results for the Straubing-Thérien hierarchy via Theorem 10.
This is the case for the last result about membership that we state, which dates back
to 2014, and concludes the state of the art about membership for both hierarchies.
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Theorem 11 (Place & Zeitoun [34, 40], Place [32, 33]) Membership is decidable
for levels 2, 5

2 and 7
2 in both the dot-depth and the Straubing-Thérien hierarchies.

Note that there is a gap between levels 5
2 and 7

2 : it is unknown whether level 3
has decidable membership. This is because full levels are actually harder to cope with
than half levels. Indeed, the framework that was developed recently to solve instances of
membership relies on more general problems, called separation and covering [36], which
we shall discuss in Section 5. The crucial point is that closure under concatenation
product—which holds for half but not for full levels—is an essential ingredient in the
methodology elaborated for solving separation and covering.

Now that we have surveyed the most prominent results regarding membership
for two concatenation hierarchies, let us explain an extra but important motivation
for investigating this problem. Recall that the initial incentive was to understand the
interplay between Boolean operations and concatenation, two operations at the heart of
language theory. Additionally, Thomas discovered in 1982 a tight connection between
the dot-depth hierarchy and first-order logic, which suffices by itself to motivate an
in-depth investigation of this hierarchy. The core idea is the following: since star-free
languages are exactly those that one can define in first-order logic, it is desirable to
refine this correspondence level by level, in each of the hierarchies considered so far.
The beautiful result of Thomas establishes such a correspondence.

To present it, we first slightly extend the standard signature used in first-order
logic over words. In addition to the linear order and the label predicates, we add:

– The binary successor “+1”, which holds for pairs of the form (i, i+ 1).
– The unary minimum “min”, that selects the leftmost position of the word.
– The unary maximum “max”, that selects the rightmost position of the word.
– The nullary empty “ε” predicate, which holds for the empty word only.

We denote by FO(<,+1,min,max, ε) the resulting logic. Since these predicates are
all definable in FO(<), adding them in the signature does not increase the overall
expressive power of first-order logic. In other words, FO(<) and FO(<,+1,min,max, ε)
are equally expressive. However, this enriched signature makes it possible to define
fragments of first-order logic that correspond to levels of the dot-depth hierarchy.

To this end, we classify FO(<,+1,min,max, ε) sentences by counting their number
of quantifier alternations. Given an integer n ≥ 0, a sentence is “Σn(<,+1,min,max, ε)”
(resp. “Πn(<,+1,min,max, ε)”) when it is a formula from FO(<,+1,min,max, ε) whose
prenex normal form has either:

– exactly n blocks of quantifiers, the leftmost being an “∃” (resp. a “∀”) block,
– or strictly less than n blocks of quantifiers.

For example, a formula of FO(<,+1,min,max, ε) whose prenex normal form is:

∃x1∃x2 ∀x3 ∃x4 ϕ(x1, x2, x3, x4) (with ϕ quantifier-free),

is Σ3. Observe that while FO(<) and FO(<,+1,min,max, ε) have the same expressive-
ness, the enriched signature increases the expressive power of individual levels.

The negation of a Σn(<,+1,min,max, ε) sentence is not Σn(<,+1,min,max, ε) in
general (it is Πn(<,+1,min,max, ε)). Thus, the corresponding classes of languages are
not closed under complement and it makes sense to define BΣn(<,+1,min,max, ε) sen-
tences as finite Boolean combinations of Σn(<,+1,min,max, ε) sentences. This yields a
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Fig. 1 The quantifier alternation hierarchy of first-order logic

strict hierarchy of classes of languages depicted in Fig. 1 (abusing notation, we denote
a class of languages by the set of sentences defining it).

The correspondence discovered by Thomas relates levels of the dot-depth hierarchy
with levels in the quantifier alternation hierarchy of enriched first-order logic.

Theorem 12 (Thomas [52]) For any alphabet A, any integer n ∈ N and any lan-
guage L ⊆ A∗, the two following properties hold:

1. L has dot-depth n if and only if L belongs to BΣn(<,+1,min,max, ε).
2. L has dot-depth n+ 1

2 if and only if L belongs to Σn+1(<,+1,min,max, ε).

Some years later in 1986, a similar correspondence was established between levels
in the Straubing-Thérien hierarchy and in the quantifier alternation hierarchy over the
signature consisting of the linear order and the label predicates. Such levels, denoted
by BΣn(<) and Σn(<), are defined analogously as for the enriched signature.

Theorem 13 (Perrin & Pin [23]) For any alphabet A, any integer n ∈ N and any
language L ⊆ A∗, the two following properties hold:

1. L has level n in the Straubing-Thérien hierarchy if and only if L belongs to BΣn(<).
2. L has level n + 1

2 in the Straubing-Thérien hierarchy if and only if L belongs
to Σn+1(<).

Content of the paper. The line of research that we surveyed spans over 45 years.
This is why results are disseminated in the literature, and often tailored to one or the
other of the two hierarchies. Moreover, their proofs often rely on involved algebraic or
topological tools, and sometimes use other hard results as black boxes. In this paper, we
present a unified framework that captures all of them. In the following, we call finitely
based a concatenation hierarchy whose level 0 is a finite Boolean algebra closed under
quotient (see Section 2). We present six theorems that suffice to recover all known
results that we presented so far, providing new proofs for four of them:

1. We give a new proof that the polynomial closure of a lattice of regular languages
closed under quotient is also closed under intersection.

2. We prove a generalization of Theorem 3: any finitely based hierarchy is strict.
3. We state that levels 1

2 , 1 and 3
2 of any finitely based hierarchy have decidable

separation, hence also decidable membership.
4. We prove the following transfer result (even for non-finitely based hierarchies): if

level n− 1
2 has decidable separation, then level n+ 1

2 has decidable membership.
5. We generalize Theorem 10 to separation, with a language-theoretic formulation.
6. We generalize Theorems 12 and 13 to any hierarchy, by showing that one can

describe any concatenation hierarchy by an associated logical fragment.

We provide new proofs for Items 1, 2, 4 and 6 (Theorems 29, 42, 50 and 73). For
Items 3 and 5 (Theorems 52 and 65), see [36, 35, 40] or the full papers [41, 37, 39].
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Related work. This paper is a survey of results that are scattered in the literature
and that mostly rely on different techniques as ours. Actually, several results in the
theory of regular languages have been obtained indirectly, through the lens of finite
semigroup theory, which was developed around algebraic and topological machinery.
Our objective is to obtain direct, accessible, self-contained proofs of more generic state-
ments. On the way, we drop unnecessary hypotheses and we underline the key ones.
As an example, consider Theorem 65, which states a reduction from separation for
the dot-depth hierarchy to separation for the Straubing-Thérien hierarchy. A full and
self-contained proof requires only a few pages [37, 35]. Part of this statement can be
recovered by combining already known results, but this is far from being direct as
this relies on several papers: Almeida [1] related separation with an algebraic problem.
Steinberg [47] then obtained a “delay theorem” for this problem, which, combined with
results of Straubing [49] and with the correspondences between the hierarchies of lan-
guages and their algebraic counterparts, finally gives the result (for integer levels only).
Along the years, results were obtained in the algebraic setup. However, relying on it
requires much expertise in order to get an overall intuition. Finally, it often misses
constructiveness of a separator in separation algorithms, contrary to our framework.

Organization. In Section 2, we set up the notation and present basic notions. We
define Boolean and polynomial closures in Section 3, where we also prove that closure
under intersection for polynomial closure is implied by closure under union and marked
concatenation, if the class we start from satisfies mild closure properties. In Section 4,
we define generic concatenation hierarchies and we state their basic properties. We
also prove that concatenation hierarchies with a finite basis are strict. In Section 5, we
state the main results about separation and membership for concatenation hierarchies,
and we prove a characteristic property of Pol(C), which yields a reduction from C-
separation to Pol(C)-membership. Section 6 investigates the two historical hierarchies:
the dot-depth and the Straubing-Thérien hierarchies. Finally, Section 7 presents the
generic logical definition of concatenation hierarchies, thus generalizing the result of
Thomas [52]. This paper is the full version of [38].

2 Preliminary definitions and tools

In this section, we set up the main definitions about classes of languages. We then
present the problems we are interested in: “membership” and “separation”.

2.1 Finite words and classes of languages

Throughout the paper, we fix a finite alphabet A. We let ε be the empty word. The
set of all finite words over A is denoted by A∗, and the set A∗ \ {ε} of all nonempty
words over A is denoted by A+. If w is a word and w = a1 · · · an with ai ∈ A, the
set of positions of w is {1, . . . , n}. Moreover, the length of w, denoted by |w| is its
number of positions. For two positions i, j we define w]i, j[ as the word ai+1 · · · aj−1

if i+ 1 ≤ j − 1, and as ε if i+ 1 > j − 1. We define similarly w[i, j[ as ai . . . aj−1 if
i ≤ j − 1 and as ε otherwise. We define w]i, j] symmetrically. Given w ∈ A∗, we let
alph(w) be the set of letters appearing in w, that is, the smallest set B ⊆ A such that
w ∈ B∗. We say that alph(w) is the alphabet of w. A language (over A) is a subset
of A∗. Finally, a class of languages is a set of languages over A.
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Remark 14 Our definition of a class of languages is simpler than the usual one. When
dealing with several alphabets, a class of languages is often defined as a correspondence
mapping any finite alphabet A to a set of languages C(A) over A. Our simpler definition
is justified by the fact that we mainly use one fixed alphabet in the paper.

We shall consider several fundamental operations on languages:

– Boolean operations (union, intersection and complement),
– Left and right quotients. If w is a word and L is a language, then the left (resp.

right) quotient w−1L (resp. Lw−1) of L by w is the following language:

w−1L
def
= {v ∈ A∗ | wv ∈ L}, Lw−1 def

= {v ∈ A∗ | vw ∈ L}.

Note that for any language L, any a ∈ A and any w ∈ A∗, we have (wa)−1L =
a−1(w−1L) and L(aw)−1 = (Lw−1)a−1. Therefore, a class is closed under taking
quotients if and only if it is closed under taking quotients by any letter. We shall
freely use this fact throughout the paper. Another basic fact that we shall use
without further reference is that quotients commute with Boolean operations. For
instance, w−1(K ∪ L) = w−1K ∪ w−1L and w−1(A∗ \ L) = A∗ \ (w−1L).

– The concatenation of two languages K,L ⊆ A∗ is defined as:

KL
def
= {uv | u ∈ K and v ∈ L}.

– Finally, given a letter a ∈ A, the marked concatenation of K and L by a is the
language K{a}L, also written KaL.

All classes considered in this paper satisfy robust properties, which we present now.

– A class of languages is a lattice if it contains ∅ and A∗ and it is closed under union
and intersection.

– A Boolean algebra is a lattice closed under complement.
– A class of languages is quotienting when it is closed under taking (left and right)

quotients by words of A∗.

Example 15 Let AT be the class of languages over A consisting of all finite Boolean
combinations of languages A∗aA∗, for a ∈ A. The name “AT” stands for “alphabet
testable”: a language belongs to AT when membership of a word in this language
depends only on the set of letters occurring in the word. It is straightforward to verify
that AT is a finite quotienting Boolean algebra.

We denote by REG the class of all regular languages over A. All classes that we con-
sider consist of regular languages only, i.e., are sub-classes of REG. Recall that regular
languages can be equivalently defined by nondeterministic finite automata (NFA), regu-
lar expressions, finite monoids or monadic second-order logic. In this paper, we assume
a basic knowledge in automata theory, but we shall rather work with the definition
based on monoids, which we recall in Section 5. Moreover, we rely on the following
characterization of regular languages, due to Myhill and Nerode.

Theorem 16 (Myhill and Nerode [22]) Let L ⊆ A∗ be a language. The following
properties are equivalent:

1. L is regular,
2. L has finitely many left quotients,
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3. L has finitely many right quotients.

Membership and separation. For a class C of languages, the most basic question is
whether one can test membership of an input regular language in the class C. In other
words, we want to design an algorithm deciding whether an input language belongs to
C, or to prove that no such algorithm exists. The corresponding decision problem is
called C-membership (or membership for C).

Membership problem for C:
Input: A regular language L.
Question: Does L belong to C?
Recent solutions to the membership problem for specific classes actually consider a

more general problem, the C-separation problem (or separation problem for C), which
is stated as follows:

Separation problem for C:
Input: Two regular languages L1, L2.
Question: Is there a language K from C such that L1 ⊆ K and K ∩ L2 = ∅?
We say that a language K such that L1 ⊆ K and K ∩ L2 = ∅ is a separator of

(L1, L2). Observe that since regular languages are closed under complement, there is a
straightforward reduction from membership to separation. Indeed, an input language
L belongs to C exactly when it can be C-separated from its complement.

2.2 Finite quotienting lattices and canonical preorders

Here, we present simple mathematical tools associated to finite quotienting lattices. Of
course, most finite quotienting lattices are not very interesting. The only example which
is featured prominently in this paper is the class AT of alphabet testable languages (see
Example 15). However, when manipulating arbitrary quotienting lattices in proofs, we
shall often reduce ourselves to finite ones using the following lemma.

Lemma 17 Let C be a quotienting lattice of regular languages and let C′ be a finite
subclass of C. Then, there exists a finite quotienting lattice D such that C′ ⊆ D ⊆ C.

Proof We define D as the least quotienting lattice containing C′. Since C is a quotienting
lattice itself, it is immediate D is a quotienting lattice such that C′ ⊆ D ⊆ C. We
prove that D is finite. By definition, any language in D is built from languages in C′
using unions, intersections and quotients. Hence, since quotients commute with Boolean
operations, it follows that any language in D is build from quotients of languages in
C′ using unions and intersections. By hypothesis C′ is a finite set of regular languages.
Hence, by Theorem 16, there are finitely many quotients of languages in C′ and we
obtain that D is finite. ut

Canonical preorders. Given an arbitrary class C, we associate a canonical preorder
relation over A∗ as follows. Given w,w′ ∈ A∗, we write w ≤C w′ if and only if:

For all L ∈ C, w ∈ L ⇒ w′ ∈ L.

It is immediate from the definition that ≤C is indeed transitive and reflexive. In
the context of formal language theory, such preorders have been introduced in [13]. In
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our context, while the above definition makes sense for arbitrary classes, it is meant to
be used for finite lattices: all results that we present require this hypothesis.

We say that a language L ⊆ A∗ is an upper set for ≤C when for any two words
u, v ∈ A∗, if u ≤C v and u ∈ L, then also v ∈ L. In other words, L is an upper set when
it coincides with its upwards closure ↑C L with respect to the preorder ≤C , where ↑C L
is defined as the set of words that sit above some word of L:

↑C L = {u ∈ A∗ | ∃w ∈ L, w ≤C u}.

Lemma 18 Let C be a lattice. Then, for any word w ∈ A∗, we have:

↑C w =
⋂

L∈C and w∈L
L.

In particular, if C is finite, the canonical preorder ≤C has finitely many upper sets.

Proof The equality follows directly from the definition of ≤C . Let us prove the second
assertion. By definition, an upper set is a union of languages of the form ↑C w. Hence, it
suffices to prove that there are finitely many languages ↑C w, which follows immediately
from the equality of the lemma and the finiteness of C. ut

We now prove the second important property of the preorder ≤C : we use the fact
that C is a finite lattice to characterize the languages belonging to C. They are exactly
the upper sets for ≤C .

Lemma 19 Let C be a finite lattice. Then, C is exactly the set of upper sets of ≤C .

Proof Assume first that L ∈ C. Then for all w ∈ L and all w′ such that w ≤C w′, we
have w′ ∈ L by definition of ≤C . Hence, L is an upper set.

Assume now that L is an upper set. Observe that since C is finite and closed under
intersection, for any word w, the upper set ↑C w belongs to C by Lemma 18: it is
the intersection of all languages in C containing w. Furthermore, L =

⋃
w∈L ↑C w. By

Lemma 18, there are only finitely many sets of the form ↑C w. Since C is closed under
finite union, L belongs to C. ut

While Lemma 19 states an equivalence, we mainly use the left to right implication
(or rather its contrapositive). It is useful for proving that a given language L does
not belong to C, or that two languages K,L are not C-separable. We describe this
application in the following corollary.

Corollary 20 Let C be a finite lattice and let K,L ⊆ A∗ be two languages. Then, the
two following properties hold:

1. L does not belong to C if and only if there exist w ∈ L and w′ 6∈ L such that
w ≤C w′.

2. L is not C-separable from K if and only if there exist w ∈ L and w′ ∈ K such that
w ≤C w′.

Proof The first assertion is immediate from Lemma 19. We prove the second. Assume
that there exist w ∈ L and w′ ∈ K such that w ≤C w′. Hence, for any language H
separating L from K, we have w ∈ H and w′ 6∈ H. Since w ≤C w′, this means that
H 6∈ C by definition of ≤C . Therefore, L is not C-separable from K.
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Conversely, assume that L is not C-separable from K. For any w ∈ A∗, note that
↑C w belongs to C by Lemma 19, since ↑C w is an upper set for ≤C . We define:

H =
⋃
w∈L
↑C w.

This union is finite since ≤C has finitely many upper sets. Hence, H ∈ C. Moreover,
L ⊆ H by definition. Hence, since L is not C-separable from K, we have H ∩K 6= ∅.
Let w′ ∈ H ∩K. By definition w′ ∈ ↑C w for some w ∈ L which means that w ≤C w′.
Therefore, we have found w ∈ L and w′ ∈ K such that w ≤C w′. ut

Example 21 Let L = a∗b∗. Then L 6∈ AT. Indeed, we have ab ∈ L and ba 6∈ L while
alph(ab) = alph(ba) which means that ab ≤AT ba. For the same reason, a+b+ is not
AT-separable from b+a+. ut

Canonical preorders for quotienting lattices. We now present additional prop-
erties of the canonical ≤C preorder that hold when the finite lattice C is closed under
quotients. The key property is given in the following lemma: closure under quotients
for C corresponds to compatibility with word concatenation for ≤C .

Lemma 22 A finite lattice C is closed under quotient if and only if its associated
canonical preorder ≤C is a precongruence for word concatenation. That is, for any
words u, v, u′, v′,

u ≤C u′ and v ≤C v′ ⇒ uv ≤C u′v′.

Proof We do the proof for lattices. First assume that C is closed under quotients and
let u, u′, v, v′ be four words such that u ≤C u′ and v ≤C v′. We have to prove that
uv ≤C u′v′. Let L ∈ C and assume that uv ∈ L. This means that v ∈ u−1 · L. By
closure under left quotient, we have u−1L ∈ C, hence, since v ≤C v′, we obtain that
v′ ∈ u−1 · L and therefore that uv′ ∈ L. It now follows that u ∈ L(v′)−1. Using
closure under right quotient, we obtain that L(v′)−1 ∈ C. Therefore, since u ≤C u′, we
conclude that u′ ∈ L(v′)−1 which means that u′v′ ∈ L, as desired.

Conversely, assume that ≤C is a precongruence. Let L ∈ C and w ∈ A∗, we prove
that w−1L ∈ C (the proof for right quotients is symmetrical). By Lemma 19, we have
to prove that w−1L is an upper set. Let u ∈ w−1L and u′ ∈ A∗ such that u ≤C u′.
Since ≤C is a precongruence, we have wu ≤C wu′. Hence, since L is an upper set (it
belongs to C) and wu ∈ L, we have wu′ ∈ L. We conclude that u′ ∈ w−1L, which
completes the proof. ut

3 Boolean and polynomial closures

Classes of languages are often built from simpler classes by using closure operators. We
are interested in two such operators: Boolean and polynomial closure. In this section,
we define these operators and describe some of their important properties.



12 Thomas Place and Marc Zeitoun

3.1 Definition

Boolean closure. Given a class of languages C, the Boolean closure of C, denoted by
Bool(C), is the least Boolean algebra containing C, i.e., the least class of languages con-
taining C closed under union, intersection and complement. Observe that by definition,
the Boolean closure of a class is a Boolean algebra. In particular, it follows that Boolean
closure is an idempotent operation: for any class C, we have Bool(Bool(C)) = Bool(C).
Furthermore, Boolean closure preserves many properties of the input class C. In par-
ticular, it preserves closure under quotient.

Proposition 23 For any quotienting class of languages C, the Boolean closure of C is
a quotienting Boolean algebra.

Proof Immediate since quotients commute with Boolean operations. ut

Remark 24 Not all closure properties are preserved under Boolean closure. The most
significant example is closure under concatenation. In fact, all classes that we build
with Boolean closure will not be closed under concatenation. This is a problem, since
our techniques for solving membership and separation rely on concatenation.

Polynomial closure. We turn to the second operation: polynomial closure. Let C be a
class of languages. We say that a language L ⊆ A∗ is a C-monomial when there exists
a natural number n ∈ N, L0, · · · , Ln ∈ C and a1, . . . , an ∈ A such that,

L = L0a1L1a2L2 · · · anLn.

The least integer n for which this property holds is called the degree of L. Finally, a
C-polynomial is a finite union of C-monomials. The degree of a C-polynomial L is the
least integer n such that L is a union of C-monomials having degree at most n.

We may now define polynomial closure. For any class of languages C, we call poly-
nomial closure of C the class of all C-polynomials. We denote it by Pol(C). Note that
C ⊆ Pol(C), since the languages in C are the C-monomials of degree 0.

Example 25 Consider C = {∅, A∗}. Then Pol(C) consists of all finite unions of lan-
guages of the form A∗a1A

∗ · · · anA∗ for n ≥ 0 and a1, . . . , an ∈ A. ut

Example 26 Consider the class AT of alphabet testable languages from Example 15.
One may check that Pol(AT) consists of all finite unions of languages of the form

B∗0a1B
∗
1a2B

∗
2 · · · anB∗n with a1, . . . , an ∈ A and B0, . . . , Bn ⊆ A. ut

It is not immediate from the definition that classes built with polynomial closure
have much structure. First, Pol(C) is closed under union, by definition. Moreover, we
have the following result, which holds when C is quotienting.

Lemma 27 For any quotienting class C, its polynomial closure Pol(C) is quotienting
and closed under union, marked concatenation and classical concatenation.

Proof We first show that Pol(C) is closed under quotients. Given any w ∈ A∗ and
any C-polynomial L over A, we have to prove that w−1L and Lw−1 are C-polynomials
as well. We present a proof for w−1L (the argument for Lw−1 is symmetrical). We
may assume without loss of generality that w = a ∈ A, since (ua)−1L = a−1(u−1L).
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Moreover, since quotients commute with union, it suffices to consider the case when L
is a C-monomial. Hence, there exist L0, . . . , Ln ∈ C and a1, . . . , an ∈ A such that,

L = L0a1L1a2L2 · · · anLn.

There are two cases depending on whether ε ∈ L0 and a1 = a, or not. We have:

a−1L =

{
(a−1L0)a1L1a2L2 · · · anLn ∪ L1a2L2 · · · anLn if ε ∈ L0 and a1 = a,
(a−1L0)a1L1a2L2 · · · anLn otherwise.

Since C is closed under quotient by hypothesis, w−1L is a union of C-monomials and
is itself a C-polynomial. This terminates the proof for closure under quotient.

That Pol(C) is closed under union and marked concatenation is immediate by
definition. Let us show closure under classical concatenation. Let K and L be two
languages in Pol(C). One may verify that:

KL =

{⋃
a∈AKa(a

−1L) ∪K if ε ∈ L,⋃
a∈AKa(a

−1L) if ε 6∈ L.

In either case, we obtain a language from Pol(C) by closure under quotients and marked
concatenation. This concludes the proof. ut

When C contains the singleton language {ε}, one may prove a stronger variant of
Lemma 27. While simple, this observation is important as we will rely on it later.

Lemma 28 Let C be a class of languages. Then, {ε} ∈ C if and only if {ε} ∈ Pol(C).
Moreover, in that case, for any w ∈ A+ and K,L ∈ Pol(C), we have:

KwL ∈ Pol(C) wL ∈ Pol(C) Kw ∈ Pol(C) {w} ∈ Pol(C).

Proof Clearly, if {ε} ∈ C, then {ε} ∈ Pol(C) since C ⊆ Pol(C). Conversely, it suffices
to observe that a C-polynomial of degree n ≥ 1 cannot be equal to {ε}. Hence, if
{ε} ∈ Pol(C), then {ε} is a C-polynomial of degree 0, i.e., an element of C.

We now assume that {ε} ∈ Pol(C). Consider w ∈ A+ and K,L ∈ Pol(C). We have
to prove that KwL,wL,Kw, {w} ∈ Pol(C). We present a proof for KwL (the other
cases follow by choosing K or L to be {ε}). Let w = a1 · · · a` with a1, . . . , a` ∈ A. It
is immediate that KwL = Ka1{ε}a2{ε} · · · {ε}a`L. Hence, KwL ∈ Pol(C) by closure
under marked concatenation. ut

Without more hypothesis on the input class C, these are the only properties of
Pol(C) that we are able to prove. However, it was proved by Arfi that when C is a
quotienting lattice consisting only of regular languages, Pol(C) is a quotienting lattice
as well. In other words, in that case, polynomial closure preserves closure under inter-
section. The proof is not immediate and depends on all hypotheses: the fact that C is
closed under quotient and contains only regular languages is crucial.

Theorem 29 (Arfi [2, 3], Pin [25]) Let C be a quotienting lattice of regular lan-
guages. Then Pol(C) is also a quotienting lattice of regular languages. In particular,
Pol(C) is the least lattice containing C and closed under marked concatenation.
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Proof Let us fix a quotienting lattice C of regular languages. We prove that Pol(C)
is a quotienting lattice of regular languages. It is closed under union and quotients
by Lemma 27. Hence, we may concentrate on closure under intersection. Let K,L be
two C-polynomials and let m,n ∈ N be their degrees. We have to prove that K ∩ L
is a C-polynomial as well. Note that since intersection distributes over union, we may
assume without loss of generality that K and L are both C-monomials. We begin by
treating the special case when either K or L has degree 0 using induction on the degree
of the other one. We then use this special case to prove the general one.

Special Case: Either K or L has degree 0. By symmetry, we may assume that K
has degree 0, which means that K ∈ C. We use induction on the degree n of the C-
monomial L. If n = 0, thenK and L both belong to C, which is closed under intersection
by hypothesis. Hence we conclude that K ∩ L ∈ C ⊆ Pol(C). Otherwise, L has degree
n ≥ 1 and by definition, it can be decomposed as follows: L = L1bL2 where L1 ∈ C
and L2 is a C-monomial of degree at most n− 1.

Observe that a word w belongs to K ∩L when it belongs to K and can be decom-
posed as w = w1bw2 with w1 ∈ L1 and w2 ∈ L2. Given any word u ∈ A∗, we let Qu
be the set of all words x ∈ A∗ such that u ∈ K(bx)−1. We claim that the following
equality holds:

K ∩ L =
⋃
u∈A∗

L1 ∩
⋂
x∈Qu

K(bx)−1

 · b · (L2 ∩ (ub)−1K). (1)

Before proving this claim, let us explain why it helps conclude the proof that K ∩L ∈
Pol(C). First observe that since C ⊆ REG, we know from the Myhill-Nerode theorem
(Theorem 16) that there are finitely many quotients of K. Hence, there are finitely
many languages of the form

⋂
x∈Qu

K(bx)−1 and (ub)−1K, which means that the
union over all u ∈ A∗ in (1) actually ranges over finitely many distinct languages.
Therefore, since Pol(C) is closed under finite union, it suffices to prove that for any
u ∈ A∗, L1 ∩

⋂
x∈Qu

K(bx)−1

 · b · (L2 ∩ (ub)−1K) belongs to Pol(C).

Since Pol(C) is closed under marked concatenation (see Lemma 27), it suffices to prove
that the two following properties hold:

L1 ∩
⋂
x∈Qu

K(bx)−1 ∈ Pol(C) and L2 ∩ (ub)−1K ∈ Pol(C).

For the first property, we know by hypothesis that L1 ∈ C. Moreover, for any x ∈ Qu,
K(bx)−1 ∈ C since it is a quotient of K ∈ C. Furthermore, since K is regular (as
K ∈ C ⊆ REG), it has finitely many quotients, which means that L1∩

⋂
x∈Qu

K(bx)−1

is a finite intersection of languages in C and belongs to C as well. Since C ⊆ Pol(C),
it belongs also to Pol(C). For the second property, note that (ub)−1K ∈ C since C is
closed under quotient. Therefore, since L2 is a C-polynomial of degree at most n − 1
by hypothesis, we may use induction to conclude that L2 ∩ (ub)−1K ∈ Pol(C).

It remains to prove that (1) holds. Assume first that w ∈ K ∩ L. Then w ∈ K

and it can be decomposed as w = w1bw2 with w1 ∈ L1 and w2 ∈ L2. It follows that
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w2 ∈ L2 ∩ (w1b)
−1K and by definition of Qw1 , we have w1 ∈ L1 ∩

⋂
x∈Qw1

K(bx)−1.
This concludes the proof of the left to right inclusion.

Conversely, assume that w belongs to the right hand side of (1). We have to prove
that w ∈ K ∩L. It is immediate from the definition that w ∈ L1bL2 = L. It remains to
prove that w ∈ K. By definition, there exists u ∈ A∗ such that w can be decomposed
as w = w1bw2 with w1 ∈

⋂
x∈Qu

K(bx)−1 and w2 ∈ (ub)−1K. Since w2 ∈ (ub)−1K,
we have u ∈ K(bw2)

−1 and therefore w2 ∈ Qu by definition. We conclude that w1 ∈
K(bw2)

−1, which exactly means that w = w1bw2 ∈ K.

General case. We now assume that K and L both have arbitrary degrees m and n.
To prove that K ∩ L ∈ Pol(C), we proceed by induction on the sum m + n of the
degrees. The argument is similar to the one above. If m = 0 or n = 0, this is exactly
the special case. Hence, we assume that m,n ≥ 1: K and L may be decomposed as:

K = K1aK2 and L = L1bL2,

where K1,K2 ∈ C and L1, L2 are C-monomials of degree at most m − 1 and n − 1.
Observe that a word w belongs to K ∩ L if and only if it admits two decompositions
witnessing its membership in K1aK2 and L1bL2, respectively. We use this observation
to break down K ∩ L as the union of two languages (or three depending on whether
a = b or not). Consider the three following languages:

H` = {w1aw2bw3 | w1 ∈ K1, w2bw3 ∈ K2, w1aw2 ∈ L1 and w3 ∈ L2},
Hr = {w1bw2aw3 | w1 ∈ L1, w2aw3 ∈ L2, w1bw2 ∈ K1 and w3 ∈ K2},
Hc = {w1aw2 | w1 ∈ L1 ∩K1 and w2 ∈ L2 ∩K2}.

It is simple to verify that K ∩ L = H` ∪Hr when a 6= b and K ∩ L = H` ∪Hr ∪Hc
when a = b. Hence, it suffices to prove that H`, Hr and Hc are C-polynomials. Since
the proof is similar for all three cases, we concentrate on H`.

Given any word u ∈ A∗, we write Pu for the set of all words x ∈ A∗ such that
u ∈ L1(ax)

−1, i.e., Pu = (ua)−1L1. We claim that the following equality holds:

H` =
⋃
u∈A∗

K1 ∩
⋂
x∈Pu

L1(ax)
−1

 · a · (K2 ∩ ((ua)−1L1)bL2). (2)

Before establishing (2), let us use it to prove that H` ∈ Pol(C). Since C ⊆ REG,
we know from the Myhill-Nerode Theorem (Theorem 16) that there are finitely many
quotients of L1. Hence, there are finitely many languages of the form

⋂
x∈Pu

L1(ax)
−1

and ((ua)−1L1)bL2 for u ∈ A∗. Since Pol(C) is closed under finite union, we obtain
from (2) that in order to show H` ∈ Pol(C), it suffices to prove that for all u ∈ A∗,K1 ∩

⋂
x∈Pu

L1(ax)
−1

 · a · (K2 ∩ ((ua)−1L1)bL2) belongs toPol(C).

Let u ∈ A∗. Since Pol(C) is closed under marked concatenation (see Lemma 27) it
suffices to prove that the two following properties hold:

K1 ∩
⋂
x∈Pu

L1(ax)
−1 ∈ Pol(C) and K2 ∩ ((ua)−1L1)bL2 ∈ Pol(C).
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The argument for the first property is identical to the special case that we treated above.
Indeed, we know that K1 ∈ C by hypothesis. Moreover, for any x ∈ Pu, L1(ax)

−1 ∈ C
(it is a quotient of L1 ∈ C). Finally, L1 ∈ C ⊆ REG has finitely many quotients and
K1 ∩

⋂
x∈Pu

L1(ax)
−1 is a finite intersection of languages in C and belongs to C as

well, whence to Pol(C). For the other property, we have (ua)−1L1 ∈ C since C is closed
under quotient. Moreover, since L2 is a C-monomial of degree at most n−1, this entails
that ((ua)−1L1)bL2 is a C-monomial of degree at most n. Finally, K2 is a C-monomial
of degree at most m − 1. Therefore, we may use induction on the sum of the degrees
to conclude that K2 ∩ ((ua)−1L1)bL2 ∈ Pol(C).

It remains to prove that (2) holds. Assume first that w ∈ H`. Then w = w1aw2bw3

with w1 ∈ K1, w2bw3 ∈ K2, w1aw2 ∈ L1 and w3 ∈ L2. It follows that w2 ∈ (w1a)
−1L1

and therefore, w2bw3 ∈ K2 ∩ ((w1a)
−1L1)bL2. Finally, by definition of Pw1 , we have

w1 ∈ K1 ∩
⋂
x∈Pw1

L1(ax)
−1. Therefore, we conclude that,

w ∈ (K1 ∩
⋂

x∈Pw1

L1(ax)
−1) · a · (K2 ∩ ((w1a)

−1L1)bL2).

This concludes the proof of the left to right inclusion. Conversely, assume that w
belongs to the right hand side of (2). We have to prove that w ∈ H`. By definition,
there exists u ∈ A∗ such that w = w1ay with,

w1 ∈ K1 ∩
⋂
x∈Pu

L1(ax)
−1 and y ∈ K2 ∩ ((ua)−1L1)bL2.

Therefore, y can be decomposed as y = w2bw3 with w2 ∈ (ua)−1L1 and w3 ∈ L2.
Hence, we have w = w1aw2bw3 with w1 ∈ K1, w2bw3 ∈ K2 and w3 ∈ L2. To prove
that w ∈ H`, it remains to prove that w1aw2 ∈ L1. Since w2 ∈ (ua)−1L1, we have u ∈
L1(aw2)

−1 and therefore w2 ∈ Pu by definition. We conclude that w1 ∈ L1(aw2)
−1,

which exactly means that w = w1aw2 ∈ L1, as desired. ut

Additional operations. We end this section by looking at two additional operations
that are built from Boolean and polynomial closures. The first one is simply the com-
position of the two: given any class C, we write BPol(C) for the class Bool(Pol(C)).
Combining the results of the previous subsections, we obtain the following result.

Proposition 30 If C is a quotienting class, then the class BPol(C) is a quotienting
Boolean algebra.

The second operation is motivated by a simple observation about polynomial clo-
sure. We proved in Theorem 29 that Pol(C) is a lattice provided that C is a quotienting
lattice of regular languages. However, it is simple to verify that in general, Pol(C) is
not closed under complement, even when C is.

Example 31 Consider the class C = {∅, A∗}. It turns out that Pol(C) is not closed
under complement. Indeed, it is clear that A+ =

⋃
a∈AA

∗aA∗ ∈ Pol(C). However, it
follows from Lemma 28 that its complement {ε} does not belong to Pol(C). ut

When dealing with a lattice D which is not closed under complement, it makes
sense to consider the complement class which we denote by co-D. More precisely, co-D
contains all complements of languages in D: for any language L ⊆ A∗, we have L ∈ co-D
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if and only if A∗ \ L ∈ D. Note that since D is a lattice, so is co-D by De Morgan’s
laws. We shall often consider the complement of classes which are polynomial closures:
given a class C, we consider co-Pol(C).

It is simple to transfer most of the closure properties of some class D to its com-
plement class co-D. This yields the following proposition.

Proposition 32 If D is a quotienting lattice, then so is co-D.

Proof The property of being a quotienting lattice is transferred from D to co-D using
De Morgan’s laws and the fact that quotients commute with Boolean operations. ut

However, not all properties from D are inherited by co-D. A notable example is
closure under concatenation and marked concatenation. While Pol(C) is closed under
marked concatenation (and usual concatenation when C is quotienting), this is not the
case for co-Pol(C) in general, even when C is a quotienting Boolean algebra. This is
easy to check for C = {A∗, ∅}, since A∗ belongs to co-Pol(C) while A∗aA∗ does not.

By definition, co-D and D are dual and the associated membership and separation
problems are inter-reducible. Indeed, L ∈ co-D if and only if A∗ \L ∈ D and L1 is co-D-
separable from L2 if and only if L2 is D-separable from L1. Hence, when considering
these problems, one may simply work with D instead of co-D.

In view of these observations, one might wonder about our motivation for consid-
ering the complement of polynomial closure. Indeed, we just explained that co-Pol(C)
is less robust than Pol(C), while the associated decision problems are symmetrical to
the ones associated to Pol(C). Our motivation is explained by the next lemma, which
can be used to bypass Boolean closure in some cases.

Lemma 33 Let C be a quotienting Boolean algebra of regular languages. Then,

Pol(BPol(C)) = Pol(co-Pol(C)).

Proof It is clear that co-Pol(C) ⊆ BPol(C), whence Pol(co-Pol(C)) ⊆ Pol(BPol(C)).
We show that BPol(C) ⊆ Pol(co-Pol(C)). It will follow that,

Pol(BPol(C)) ⊆ Pol(Pol(co-Pol(C))) = Pol(co-Pol(C)).

Let L ∈ BPol(C). By definition, L is a Boolean combination of C-polynomials. De
Morgan’s laws show that L is built by applying unions and intersections to lan-
guages that are either C-polynomials (i.e., elements of Pol(C)) or complements of
C-polynomials (i.e., elements of co-Pol(C)). It follows that L ∈ Pol(co-Pol(C)), since
Pol(C) ⊆ Pol(co-Pol(C)), co-Pol(C) ⊆ Pol(co-Pol(C)) and Pol(co-Pol(C)) is closed
under union and intersection by Theorem 29. ut

Let us finish the section with a recap of the closure properties that we proved for
the four operations on classes that we defined. We present it in Fig. 2.

3.2 A characteristic property of Pol(C)

We complete the definitions by presenting a characteristic property applying to the
polynomial closure of every finite quotienting lattice. Its main application will be to
show that specific languages do not belong to Pol(C). Recall that when C is a finite
quotienting lattice, we associate a canonical preorder ≤C over A∗: w ≤C w′ if and only
if every L ∈ C containing w contains w′ as well. Moreover, since C is closed under
quotients, ≤C is compatible with word concatenation by Lemma 22.
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Intersection
and Union

Complement Quotient Concat. Marked
concat.

BPol(C) Y Y Y N N

Bool(C) Y Y Y N N

Pol(C) Y N Y Y Y

co-Pol(C) Y N Y N N

Fig. 2 Closure properties satisfied by any quotienting lattice of regular languages C

Proposition 34 Let C be a finite quotienting lattice and L ∈ Pol(C). There exist
numbers h, p ≥ 1 such that for every ` ≥ h and u, v, x, y ∈ A∗ satisfying u ≤C v,

xup`+1y ∈ L ⇒ xup`vup`y ∈ L.

Before we prove Proposition 34, let us state an important corollary which we shall
use to prove that particular languages are not Pol(C)-separable.

Corollary 35 Let C be a finite quotienting lattice and two languages H,L ⊆ A∗.
Assume that there exist u, v, x, y ∈ A∗ such that u ≤C v and for every n ≥ 1, xuny ∈ H
and xunvuny ∈ L. Then H is not Pol(C)-separable from L.

Proof By contradiction assume that we have K ∈ Pol(C) which separates H from L.
By hypothesis on u, v, x, y ∈ A∗, Proposition 34 yields h, p ≥ 1 such that:

xuph+1y ∈ K ⇒ xuphvuphy ∈ K.

Moreover, xuph+1y ∈ H and xuphvuphy ∈ L by hypothesis and since K separates H
from L, this implies xuph+1y ∈ K and xuphvuphy 6∈ K. This contradicts the above
implication, finishing off the proof. ut

The remainder of the section is devoted to proving Proposition 34. We fix the finite
quotienting lattice C and L ∈ Pol(C) for the proof. We first need to choose h, p ≥ 1.
We start with p whose choice is based on the following fact.

Fact 36 There exists p ≥ 1 such that for any m,m′ ≥ 1 and w ∈ A∗, wpm ≤C wpm
′
.

Proof Let ∼ be the equivalence on A∗ generated by ≤C . Since ≤C is a preorder
with finitely many upper sets which is compatible with concatenation (see Lemma 19
and 22), ∼ must be a congruence of finite index. Therefore, the set A∗/∼ of ∼-classes
is a finite monoid. It is standard that for any finite monoid M , there exists a natural
number ω(M) such that for any s ∈ M sω(M) is idempotent (sω(M) = sω(M)sω(M)).
It suffices to choose p = ω(A∗/∼). ut

We now define h ≥ 1. Since L belongs to Pol(C), it is C-polynomial. We let n as its
degree and define h = n+1. It remains to show that h satisfies the property described
in Proposition 34. Let ` ≥ h and u, v, x, y ∈ A∗ satisfying u ≤C v. We show that:

xup`+1y ∈ L ⇒ xup`vup`y ∈ L.
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Consequently, assume that xup`+1y ∈ L. Since L is a C-polynomial of degree n, there
exists a C-monomial L0a1L1 · · · amLm of degree m ≤ n with w ∈ L0a1L1 · · · amLm ⊆
L. It follows that xup`+1y admits a unique decomposition:

xup`+1y = w0a1w1 · · · amwm.

such that wi ∈ Li for all i ≤ m. Recall that by definition ` ≥ h = n + 1 ≥ m + 1.
Therefore, it follows from the pigeonhole principle that some infix up of xup`+1y must
be contained within one of the infixes wi. Let us formalize this result.

Lemma 37 There exist i ≤ m, j1, j2 < ` such that j1 + 1 + j2 = ` and x1, x2 ∈ A∗
satisfying,

– wi = x1u
px2.

– w0a1w1 · · · aix1 = xupj1 .
– x2ai+1 · · · amwm = upj2+1y.

We now use Lemma 37 to finish the proof. By Fact 36, we have the following
inequality:

up ≤C up(`+1) = up(j1+1+j2+1) = up(j2+1)uup(j1+1)−1.

Moreover, since u ≤C v and ≤C is compatible with concatenation this yields that,

up ≤C up(j2+1)uup(j1+1)−1 ≤C up(j2+1)vup(j1+1)−1.

Using again compatibility with concatenation we obtain,

wi = x1u
px2 ≤C x1up(j2+1)vup(j1+1)−1x2.

Therefore, since wi ∈ Li which is a language of C, it follows from the definition of ≤C
that x1up(j2+1)vup(j1+1)−1x2 ∈ Li. Therefore, since wj ∈ Lj for all j,

w0a1w1 · · · aix1up(j2+1)vup(j1+1)−1x2ai+1 · · · amwm ∈ L0a1L1 · · · amLm.

By the last two assertions in Lemma 37, we get xup`vup`y ∈ L0a1L1 · · · amLm. Since
we have L0a1L1 · · · amLm ⊆ L by definition, this implies that xup`vup`y ∈ L, finishing
the proof.

4 Concatenation hierarchies: definition and generic results

We may now move to the main topic of this paper: concatenation hierarchies. As
explained in the introduction, a natural complexity measure for star-free languages is
the number of alternations between concatenation and complement that are required
to build a given language from basic star-free languages. Generalizing this idea leads to
the notion of concatenation hierarchy, which is meant to classify languages according to
such a complexity measure. We first define concatenation hierarchies. Then, we prove
that finitely based hierarchies are strict.
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4.1 Definition

A particular hierarchy is built from a starting class of languages C, which is called its
basis. In order to get nice properties, we restrict C to be a quotienting Boolean algebra
of regular languages. This is the only parameter of the construction, meaning that
once the basis has been chosen, the construction is entirely generic: each new level is
built from the previous one by applying a closure operation: either Boolean closure, or
polynomial closure. We speak of the “(concatenation) hierarchy of basis C”.

In the concatenation hierarchy of basis C, languages are classified into levels of
two distinct kinds: full levels (denoted by 0, 1, 2, 3, . . . ) and half levels (denoted by
1
2 ,

3
2 ,

5
2 , . . . ). The definition is as follows:

– Level 0 is the basis (i.e., our parameter class C). We denote it by C[0].
– Half levels are the polynomial closure of the previous full level: for any n ∈ N, level
n+ 1

2 is the polynomial closure of level n. We denote it by C[n+ 1
2 ].

– Integer levels are the Boolean closure of the previous half level: for any n ∈ N, level
n+ 1 is the Boolean closure of level n+ 1

2 . We denote it by C[n+ 1].

We give a graphical representation of the construction process of a concatenation hi-
erarchy in Fig. 3 below.

0 1
2 1 3

2 2 5
2 3 7

2

Pol

Bool

Pol

Bool

Pol

Bool

Pol

Fig. 3 A concatenation hierarchy

Observe that by definition, for any n ∈ N, we have C[n] ⊆ C[n + 1
2 ] ⊆ C[n + 1].

However, these inclusions need not be strict. For instance, if the basis is closed under
Boolean operations and marked concatenation (such as the class of star-free languages,
or the whole class REG), the associated hierarchy collapses at level 0. Of course, the
interesting hierarchies are the ones that are strict.

What we gain by imposing that the basis must be a quotienting Boolean algebra
of regular languages are the following properties, obtained as an immediate corollary
of Theorem 29 and Proposition 23.

Proposition 38 Let C be a quotienting Boolean algebra of regular languages and con-
sider the concatenation hierarchy of basis C. Then, every half level is a quotienting
lattice of regular languages and every full level is a quotienting Boolean algebra of reg-
ular languages.

In view of Lemma 27, the half levels are even more robust.

Proposition 39 Let C be a quotienting Boolean algebra of regular languages. Then,
all half levels in the concatenation hierarchy of basis C are closed under concatenation
and marked concatenation.

It is important to note that for a hierarchy to be strict, half levels must not be closed
under complement and full levels must not be closed under marked concatenation.
Indeed, a half level that is closed under complement would be equal to its Boolean
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closure and the hierarchy would collapse at this level. Similarly, a full level that is
closed under marked concatenation would be equal to its polynomial closure and the
hierarchy would collapse as well.

Proposition 40 Let C be a quotienting Boolean algebra of regular languages. The
following properties are equivalent:

1. The concatenation hierarchy of basis C is strict.
2. No half level in the hierarchy of basis C is closed under complement.
3. No full level in the hierarchy of basis C is closed under marked concatenation.

In practice, techniques for solving membership or separation problems rely heavily
on the concatenation operation. Hence, we prefer to consider classes that are closed
under concatenation, which excludes full levels: they cannot be closed under concate-
nation in a strict hierarchy. This is apparent in the proofs applying to concatenation
hierarchies: most results—even those that apply to full levels—are based on the in-
vestigation of a half level. This is possible because of the following observation. When
only considering the half levels, one may bypass the full levels in the definition by
applying polynomial closure to the complements of half levels. This trick is based on
Lemma 33. Let C be a quotienting Boolean algebra of regular languages. Observe that
by definition, for any n ≥ 1, level C[n+ 1

2 ] is defined as:

C[n+ 1
2 ] = Pol(C[n]) = Pol(BPol(C[n− 1])).

Applying Lemma 33, we obtain the following alternate definition of level C[n+ 1
2 ]:

C[n+ 1
2 ] = Pol(BPol(C[n− 1])) = Pol(co-Pol(C[n− 1])) = Pol(co-C[n− 1

2 ]).

The important point here is that the class co-C[n − 1
2 ] is much simpler to manipu-

late than C[n]. Indeed, the associated membership and separation problems are dual
with the ones for the class C[n− 1

2 ], which is closed under concatenation and marked
concatenation. Altogether, we obtain the following proposition.

Proposition 41 Let C be a quotienting Boolean algebra of regular languages and con-
sider the associated concatenation hierarchy. Then, for any natural number n ≥ 1,

C[n+ 1
2 ] = Pol(co-C[n− 1

2 ]).

In view of Proposition 41, we update the construction process of a concatenation
hierarchy in Fig. 4 (the new arrows are horizontal).

4.2 Strictness of finitely based hierarchies

As explained in the introduction, concatenation hierarchies first appeared in the lit-
erature with two specific hierarchies: the dot-depth was introduced in 1971 [8] and
the Straubing-Thérien hierarchy ten years later [48, 50]. Although both of them were
investigated intensively, their understanding is still far from being satisfactory. For in-
stance, membership algorithms are known only for the lower levels in both hierarchies.
A common feature to these two hierarchies is that their bases are finite.

Here, we look at finitely based hierarchies. We prove that any such hierarchy is
strict for alphabets of size 2 or more, meaning that any half or full level contains
strictly more languages than the preceding ones.
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Fig. 4 A concatenation hierarchy with complement levels

As we just explained, we will first prove that any finitely based hierarchy is strict.
To prove strictness, one must show that no two consecutive levels are identical. The
condition that the basis is finite may seem to be restrictive, but it is already challenging
and it covers the two classical cases (namely, the dot-depth and the Straubing-Thérien
hierarchies).

Theorem 42 Let C be a finite quotienting Boolean algebra of languages. Then, the
concatenation hierarchy of basis C is strict for any alphabet of size at least two.

The remainder of the section is devoted to proving Theorem 42. We assume that
the working alphabet A contains at least two distinct letters a and b. Our objective is
to prove that for any finite quotienting Boolean algebra of (regular) languages C, the
associated concatenation hierarchy is strict, that is, for any n ∈ N:

C[n] ( C[n+ 1
2 ] ( C[n+ 1].

We prove this as a corollary of a more general result. Let us first introduce some
terminology. We call unambiguous family an infinite language U ⊆ A+ satisfying the
two following conditions:

1. For any u ∈ U+, the decomposition u = u1 · · ·un with u1, . . . , un ∈ U witnessing
membership in U+ is unique. In the literature, such a set U is usually called a
variable-length code.

2. Moreover, if v ∈ U is an infix of u, then v = ui for some i ≤ n. In the terminology
of [4], U is a comma-free code.

Example 43 A typical example of unambiguous family is U = ab+a. In fact, this is
exactly the family that we use below to prove Theorem 42. ut

Consider an arbitrary (possibly infinite) quotienting Boolean algebra of regular
languages C and an unambiguous family U . We say that C is non-separating for U
when there exist a language L and V ⊆ U satisfying the four following conditions:

U \ V is infinite.

A∗LA∗ = L.

L ∈ Pol(C).

(A∗ \ L) ∩ V + is not Pol(C)-separable from L ∩ V +.

(3)

We may now state our general result. Any concatenation hierarchy (even with an
infinite basis) which is non-separating for some unambiguous family U , is strict.
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Proposition 44 Let C be a quotienting Boolean algebra of regular languages. Assume
that there exists an unambiguous family U ⊆ A∗ such that C is non-separating for U .
Then, the concatenation hierarchy of basis C over A is strict.

We divide the proof in two parts: first, we explain how Proposition 44 can be used
to prove Theorem 42. Then, we present the proof of Proposition 44 itself.

Proof (of Theorem 42, assuming Proposition 44) Our objective is to show that the
concatenation hierarchy of basis C is strict for A. We first reduce the problem to the
case where {ε} ∈ C.

Lemma 45 Let C be a finite quotienting Boolean algebra. Then, there exists a finite
quotienting Boolean algebra D such that {ε} ∈ D and the concatenation hierarchy of
basis C is strict if and only if that of basis D is strict.

Proof We define D as the least Boolean algebra containing C and such that {ε} ∈ D.
By definition, D is also finite and it is a Boolean algebra. Moreover, since quotients
commute with Boolean operations, since C is closed under quotient and since the only
quotients of {ε} are {ε} and ∅, D is closed under quotient as well.

We prove that for any n ∈ N, C[n] ⊆ D[n] ⊆ C[n + 1]. This implies immediately
that the concatenation hierarchy of basis C is strict if and only if that based on D
is. By definition of concatenation hierarchies, it suffices to verify that these inclusions
hold for n = 0, i.e., C ⊆ D ⊆ C[1]. Clearly, we have C ⊆ D. For the other inclusion,
we have C ⊆ C[1] and C[1] is a Boolean algebra. Hence, by definition of D, it suffices
to prove that {ε} ∈ C[1] to conclude that D ⊆ C[1]. This is immediate, since A+ =⋃
a∈AA

∗aA∗ ∈ C[12 ]. Therefore, {ε} = A∗ \A+ ∈ C[1], finishing the proof. ut

In view of Lemma 45, we now assume that {ε} ∈ C. Let U = ab+a. Clearly, U is
unambiguous. If we prove that C is non-separating for U , it will follow from Proposi-
tion 44 that the concatenation hierarchy of basis C is strict. Our objective is therefore
to exhibit L ⊆ {a, b}∗ and V ⊆ U satisfying (3).

Since C is a finite Boolean algebra, there exist two natural numbers 1 ≤ k ≤ ` such
that bk ≤C b`. We let u = abka and v = ab`a. Clearly, u, v ∈ U . Moreover, since C is
a finite quotienting Boolean algebra, we get from Lemma 22 that u ≤C v. We define L
as follows:

L = A∗vA∗ = A∗ab`aA∗.

Note that since A∗ ∈ C (as C is a Boolean algebra) and {ε} ∈ C by hypothesis, it
is immediate from Lemma 28 that L ∈ Pol(C). Moreover, A∗LA∗ = L by definition.
Finally, we define V = {u, v} ⊆ U . Since U is infinite, so is U \ V . We show that
(A∗ \ L) ∩ V + is not Pol(C)-separable from L ∩ V +.

We use Corollary 35. Recall that u ≤C v. Moreover, since L = A∗ab`aA∗, u = abka

and v = ab`a with k 6= `, it is immediate that for every n ≥ 1, we have un ∈
(A∗ \L)∩ V + and unvun ∈ L∩ V +. Thus, Corollary 35 (in the case when x = y = ε)
yields that (A∗ \ L) ∩ V + is not Pol(C)-separable from L ∩ V +. ut

We now prove Proposition 44, as a consequence of two lemmas that we present now.

Lemma 46 Let C be a quotienting Boolean algebra of regular languages. Assume that
there exists an unambiguous family U ⊆ A∗ such that C is non-separating for U . Then,
Pol(C) is not closed under complement.
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Lemma 47 Let C be a quotienting Boolean algebra of regular languages. Assume that
there exists an unambiguous family U ⊆ A∗ such that C is non-separating for U . Then,
BPol(C) is non-separating for U .

Proof (of Proposition 44 assuming Lemmas 46 and 47) Combining Lemmas 46 and 47
yields that for any quotienting Boolean algebra of regular languages C which is non-
separating for some unambiguous family, every half-level in the associated concatena-
tion hierarchy is not closed under complement. Proposition 40 entails that the concate-
nation hierarchy of basis C is strict over A. Thus, Proposition 44 is proved. ut

To conclude the proof of Theorem 42, it remains to prove Lemmas 46 and 47.

Proof (of Lemma 46) It follows from our hypothesis that there exist L ∈ Pol(C) and
V ⊆ U such that (A∗ \ L) ∩ V + is not Pol(C)-separable from L ∩ V +. Observe that
A∗ \ L clearly separates from (A∗ \ L) ∩ V + from L ∩ V +. Hence, A∗ \ L 6∈ Pol(C)
by hypothesis. Since L ∈ Pol(C) by (3), we conclude that Pol(C) is not closed under
complement, which terminates the proof of Lemma 46. ut

We turn to Lemma 47 whose proof is more involved.

Proof (of Lemma 47) By hypothesis, C is non-separating for U , i.e., we have L and
V ⊆ U satisfying (3). We need to prove that BPol(C) is non-separating for U as well.
By definition, this amounts to finding K ∈ Pol(BPol(C)) and W ⊆ U satisfying the
appropriate properties. We first build K and W . Let w be a word in the (infinite) set
U \ V and let, {

K = A∗w(A+ \ L)wA∗,
W = V ∪ {w}.

It is immediate that U \ W is infinite and that A∗KA∗ = K. Let us verify that
K ∈ Pol(BPol(C)). First, A+ =

⋃
a∈AA

∗aA∗ ∈ Pol(C), and since L ∈ Pol(C) as well,
we have A+ \L ∈ BPol(C). Moreover, observe that {ε} = A∗ \A+ ∈ BPol(C). Hence,
Lemma 28 shows that K belongs to Pol(BPol(C)).

What remains to show is that (A∗ \K)∩W+ is not Pol(BPol(C))-separable from
K ∩ W+ (see (3)). We proceed by contradiction. Assume that (A∗ \ K) ∩ W+ is
Pol(BPol(C))-separable from K ∩W+. We have the following fact.

Fact 48 There exists some finite quotienting lattice D such that D ⊆ Pol(C) and
(A∗ \K) ∩W+ is Pol(co-D)-separable from K ∩W+.

Proof By hypothesis, we have H ∈ Pol(BPol(C)) separating (A∗ \ K) ∩ W+ from
K ∩W+. By Lemma 33, Pol(BPol(C)) = Pol(co-Pol(C)). Hence, H ∈ Pol(co-Pol(C))
and there exists some finite class C′ ⊆ Pol(C) such that H ∈ Pol(co-C′). We may then
use Lemma 17 to get a finite quotienting lattice D such that C′ ⊆ D ⊆ Pol(C). Clearly,
H ∈ Pol(co-D) which concludes the proof. ut

Since D is a finite quotienting lattice, it is immediate that co-D is one as well. Recall
that by hypothesis, (A∗ \ L) ∩ V + is not Pol(C)-separable from L ∩ V +. Hence, since
D ⊆ Pol(C), (A∗ \L)∩V + is not D-separable from L∩V +. Moreover, by definition of
co-D, this also implies that L∩V + is not co-D-separable from (A∗\L)∩V +. Therefore,
Corollary 20 yields u ∈ L ∩ V + and v ∈ (A∗ \ L) ∩ V + such that u ≤co-D v. We have
the following fact.
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Fact 49 Let n ≥ 1. Then, (wuw)n ∈ (A∗ \ K) ∩ W+ and (wuw)nwvw(wuw)n ∈
K ∩W+.

Let us first use Fact 49 to finish the main argument. Since co-D is a finite quotienting
lattice, Lemma 22 states that ≤co-D is compatible with word concatenation. Together
with u ≤co-D v, this implies that wuw ≤co-D wvw. Consequently, Corollary 35 (in the
case x = y = ε) and Fact 49 yield that (A∗ \K)∩W+ is not Pol(co-D)-separable from
K ∩W+. This contradicts Fact 48, which completes the main proof of Lemma 47.

It remains to prove Fact 49. Let us start with (wuw)n ∈ (A∗ \ K) ∩ W+. By
definition, w ∈ W and u ∈ L ∩ V +. Since V + ⊆ W+ by definition, it follows that
(wuw)n ∈ W+. It remains to show that (wuw)n ∈ A∗ \K, i.e., (wuw)n 6∈ K. Since
K = A∗w(A+ \L)wA∗, this amounts to proving that for any infix of the form wzw in
(wuw)n with z 6= ε, we have z ∈ L. Consider such an infix. By definition, w ∈ U and
u ∈ L ∩ V + ⊆ U+. Therefore, since U is unambiguous, z must contain u ∈ L as an
infix. Since L = A∗LA∗ by hypothesis, it follows that z ∈ L. We get (wuw)n 6∈ K.

It remains to show that (wuw)nwvw(wuw)n ∈ K ∩W+. Since w ∈ W and u, v ∈
V + ⊆ W+, it is immediate that (wuw)nwvw(wuw)n ∈ W+. Furthermore, we have
v ∈ (A∗ \L)∩V + ⊆ A+ \L by definition. This yields that (wuw)nwvw(wuw)n ∈ K =
A∗w(A+ \ L)wA∗. We conclude that (wuw)nwvw(wuw)n ∈ K ∩W+, as desired. ut

5 Membership and separation

Now that we know that finitely based concatenation hierarchies are strict, we focus on
membership and separation for each individual level in such a hierarchy. We present an
exhaustive and generic state of the art regarding these problems. However, presenting
the algorithms themselves would require introducing too much material. For this rea-
son, we only detail one of these results. For the others, we simply state the problems
which are known to be decidable, without describing the algorithms.

5.1 State of the art

For levels in finitely based concatenation hierarchies, membership and separation are
both unexpectedly hard, despite their straightforward formulations. The overall state
of the art can be formulated with only three theorems. We state two of them in this
section and the last one in Section 6.

The first result (which we shall detail and prove) connects Pol(C)-membership to
C-separation: the former reduces to the latter.

Theorem 50 (Place & Zeitoun [34]) For every quotienting lattice of regular lan-
guages C, the membership problem for Pol(C) reduces to the separation problem for C.

Remark 51 This statement is slightly more general than the original one of [34] which
was specific to classes C within the Straubing-Thérien hierarchy. However, it turns out
that the proof arguments of [34] suffice to obtain Theorem 50.

Among the known membership and separation results for concatenation hierarchies,
Theorem 50 is the simplest one. However, it is central as it motivates the investigation of
separation for the levels of concatenation hierarchies, even when one is only interested in
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membership. Of course, Theorem 50 only states a reduction. Getting actual algorithms
requires the following theorem, which summarizes the known separation results for
finitely based hierarchies: the problem is decidable up to level 3

2 .

Theorem 52 (Place & Zeitoun [40, 32, 33]) If C is a finite quotienting Boolean
algebra, separation is decidable for the following classes:

1. Pol(C),
2. BPol(C),
3. Pol(BPol(C)).
Hence, in any finitely based hierarchy, levels 1

2 , 1 and 3
2 have decidable separation.

Let us point out that Theorem 50 summarizes several distinct results which are
all difficult. When combined with Theorem 50, it yields the following corollary for the
membership problem.

Corollary 53 Let C be a finite quotienting Boolean algebra. Then, the levels 1
2 , 1,

3
2

and 5
2 in the concatenation hierarchy of basis C have decidable membership.

Proof The result for levels 1
2 , 1 and 3

2 is immediate from Theorem 52 since membership
reduces to separation. For level 5

2 , we know from Lemma 33 that C[52 ] = Pol(co-C[32 ]).
By Proposition 23 and Theorem 29, co-C[32 ] is a quotienting lattice which has decid-
able separation by Theorem 52 (the problem is symmetric to C[32 ]-separation). Hence,
Theorem 50 yields that C[52 ] has decidable membership. ut

Theorem 52 and Corollary 53 apply in particular to the Straubing-Thérien and dot-
depth hierarchies, since their bases are finite. Therefore, several classical results that
we presented in Section 1, namely Theorems 5, 6, 8, 9 and 10, are immediate corollaries
of Theorem 52. Note however that we do not recover Theorem 11 yet. Nevertheless, we
will see in the next section that this result is also a corollary of Theorem 52.

5.2 A generic characterization of Pol(C)

We now focus on proving Theorem 50. It is based on a generic algebraic characterization
of Pol(C). To present it, we need the algebraic definition of regular languages with finite
monoids. We briefly recall this standard notion (see [26] for more details).

Recognition by monoids. A monoid is a set M endowed with an associative mul-
tiplication (s, t) 7→ s · t (we often write st for s · t) having a neutral element 1M , i.e.,
such that 1M · s = s · 1M = s for every s ∈ M . An idempotent of a monoid M is an
element e ∈ M such that ee = e. It is folklore that for every finite monoid M , there
exists a natural number ω(M) (denoted by ω when M is understood) such that for
any s ∈M , the element sω is an idempotent.

Observe that A∗ is a monoid whose multiplication is concatenation (the neutral
element is ε). Thus, given an arbitrary finite monoid M , we may consider monoid
morphisms α : A∗ → M . Given such a morphism and some language L ⊆ A∗, we
say that L is recognized by α when there exists an accepting set F ⊆ M such that
L = α−1(F ). It is well-known that a language is regular if and only if it can be
recognized by a morphism into a finite monoid. Furthermore, given any language L,
one may define a canonical monoid morphism αL : A∗ → ML (computable when L is
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regular) recognizing L. We briefly recall its definition. One may associate an equivalence
≡L over A∗ to the language L: the syntactic congruence of L. Given u, v ∈ A∗, u ≡L v
if and only if xuy ∈ L ⇔ xvy ∈ L for all x, y ∈ A∗. It is known and simple to verify
that “≡L” is a congruence on A∗. Thus, the set of equivalence classes ML = A∗/≡L is
a monoid (called the syntactic monoid of L) and the map αL : A∗ →ML, which maps
any word to its equivalence class is a morphism (called syntactic morphism of L). It
is well-known that L is regular if and only if ML is finite (i.e., ≡L has finite index).
In that case, one may compute the syntactic morphism αL : A∗ → ML from any
representation of L (such as a finite automaton).

Finally, since Pol(C) is not closed under complement in general, characterizing the
languages in Pol(C) requires slightly more information than just their syntactic mor-
phism. We need a canonical partial order defined on their syntactic monoid. Consider
a language L. Let αL : A∗ → ML its syntactic morphism and F ⊆ ML the corre-
sponding accepting set (L = α−1

L (F )). Given s, t ∈ ML, we write s ≤L t if and only
if qsr ∈ F ⇒ qtr ∈ F for all q, r ∈ ML. It is standard and simple to verify that ≤L
satisfies the two following properties:

– ≤L is a partial order on ML compatible with multiplication: if s1, s2, t1, t2 ∈ML,
s1 ≤L t1 and s2 ≤L t2, then s1s2 ≤L t1t2.

– The accepting set F is an upper set for ≤L: for every s ∈ F and t ∈ML, if s ≤L t,
then t ∈ F .

Characterization. We may now present the generic characterization of Pol(C). The
statement is parametrized by a relation depending on C. Consider a class C, a finite
monoid M and a morphism α : A∗ →M . For any pair (s, t) ∈M2, we say that,

(s, t) is a C-pair for α when α−1(s) is not C-separable from α−1(t). (4)

For the sake of improved readability, we shall often abuse terminology and simply
say that (s, t) is a C-pair, omitting the morphism α. By definition, the set of C-pairs
for α is finite: it is a subset of M ×M . Moreover, having a C-separation algorithm in
hand is clearly enough to compute all C-pairs for any input morphism α.

We now characterize of Pol(C) when C is an arbitrary quotienting lattice by a
property of the syntactic morphism of the languages in Pol(C) and the canonical order
defined on the syntactic monoid.

Theorem 54 Let C be a quotienting lattice of regular languages and let L be a regular
language. The two following properties are equivalent:

1. L ∈ Pol(C).
2. The syntactic morphism αL : A∗ →ML of L satisfies the following property:

sω+1 ≤L sωtsω for all C-pairs (s, t) ∈M2
L. (5)

Clearly, Theorem 54 states a reduction from Pol(C)-membership to C-separation.
Indeed, the syntactic morphism of a regular language can be computed and Equa-
tion (5) can be decided as soon as one is able to compute all C-pairs (this is possible
with an algorithm for C-separation). Hence, Theorem 50 is an immediate corollary.

This terminates the presentation of the algebraic characterization of Pol(C). We
now turn to its proof. Let C be a quotienting lattice of regular languages, and let L
be some regular language L. We start with 1) ⇒ 2): when L ∈ Pol(C), αL satisfies
Equation (5).
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Direction 1)⇒ 2)

Assume that L ∈ Pol(C). We have to show that the syntactic morphism αL satisfies
Equation (5): for every C-pair (s, t) ∈M2

L, s
ω+1 ≤L sωtsω.

Fact 55 There exists a finite quotienting lattice D ⊆ C such that L ∈ Pol(D).

Proof Since L ∈ Pol(C), we have L ∈ Pol(C′) for some finite class C′ ⊆ C. It then follows
from Lemma 17 that there exists a finite quotienting lattice D such that C′ ⊆ D ⊆ C.
Clearly, L ∈ Pol(D). ut

Since (s, t) is a C-pair, we know that α−1(s) is not C-separable from α−1(t). There-
fore, since D ⊆ C, it follows that α−1(s) is not D-separable from α−1(t). By Corol-
lary 20 this yields u ∈ α−1(s) and v ∈ α−1(t) such that u ≤D v. Since L ∈ Pol(D),
we may apply Proposition 34 which yields h, p ≥ 1 such that for every x, y ∈ A∗,

xuphω+1y ∈ L ⇒ xuphωvuphωy ∈ L

By definition of the syntactic order ≤L on ML, it then follows that,

sω+1 = α(uphω+1) ≤L α(uphωvuphω) = sωtsω

This concludes the proof for this direction.

Direction 2)⇒ 1)

It now remains to prove the harder “2)⇒ 1)” direction of Theorem 54. Assuming that
the syntactic morphism of L satisfies (5), we show that L ∈ Pol(C).

The proof is based on the factorization forest theorem of Simon which we briefly
recall now. We refer the reader to [20, 10] for more details and a proof. Consider a
finite monoid M and a morphism α : A∗ →M . An α-factorization forest is an ordered
unranked tree whose nodes are labeled by words in A∗. For any inner node x with label
w ∈ A∗, if w1, . . . , wn ∈ A∗ are the labels of its children listed from left to right, then
w = w1 · · ·wn. Moreover, all nodes x in the forest must be of the three following kinds:

– Leaves, which are labeled by either a single letter or the empty word.
– Binary inner nodes, which have exactly two children.
– Idempotent inner nodes, which may have an arbitrary number of children. However,

the labels w1, . . . , wn of these children must satisfy α(w1) = · · · = α(wn) = e where
e is an idempotent element of M .

Given a word w ∈ A∗, an α-factorization forest for w is an α-factorization forest whose
root is labeled by w. The height of a factorization forest is the largest h ∈ N such that
it contains a branch with h inner nodes (a single leaf has height 0). We turn to the
factorization forest theorem of Simon: there exists a bound depending only on M such
that every word admits an α-factorization forest of height at most this bound.

Theorem 56 ([46, 20]) Consider a morphism α : A∗ → M . For all words w ∈ A∗,
there exists an α-factorization forest for w of height at most 3|M | − 1.

We may now start the proof of the direction “2) ⇒ 1)” in Theorem 54. We as-
sume that the syntactic morphism αL : A∗ → ML satisfies (5). We use the following
proposition to show that L ∈ Pol(C).
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Proposition 57 For all h ∈ N and all s ∈ ML, there exists Hs,h ∈ Pol(C) such that
for all w ∈ A∗:
– If w ∈ Hs,h then s ≤L αL(w).
– If αL(w) = s and w admits an αL-factorization forest of height at most h, then
w ∈ Hs,h.

Assume for now that Proposition 57 holds. Given h = 3|ML| − 1, for all s ∈ ML,
consider the language Hs,h ∈ Pol(C) associated to s and h by Proposition 57. We know
from Theorem 56 that all words in A∗ admit an αL-factorization forest of height at
most 3|ML| − 1. Therefore, for all w ∈ A∗ we have,

1. If w ∈ Hs,h then s ≤L αL(w).
2. If αL(w) = s, then w ∈ Hs,h.
Recall that L = α−1

L (F ) for an accepting set F ⊆ML which is an upper set for ≤L. We
show that L =

⋃
s∈F Hs,h which concludes the proof: L ∈ Pol(C) since it is a union of

languages Hs,h ∈ Pol(C). By Item 2 above, we have L ⊆
⋃
s∈F Hs,h. Moreover, since

F is an upper set, we know that for if s ∈ F and s ≤L t, then t ∈ F . Hence, Item 1
above implies that

⋃
s∈F Hs,h ⊆ L. This concludes the proof of Theorem 54.

It now remains to prove Proposition 57. We begin with a lemma which defines the
basic languages in C that we will use in the construction of our languages in Pol(C).
Note that this is also where we use the hypothesis that (5) holds.

Lemma 58 For every idempotent e ∈ ML, there exists a language Ke belonging to C
(and therefore to Pol(C)) which satisfies the two following properties,

1. For all u ∈ Ke, we have e ≤L e · αL(u) · e.
2. α−1(e) ⊆ Ke.

Proof Let T ⊆ ML be the set of all elements t ∈ ML such that (e, t) is not a C-pair
(i.e., α−1(e) is C-separable from α−1(t)). By definition, for all t ∈ T , there exists a
language Gt ∈ C which separates α−1(e) from α−1(t). We let Ke =

⋂
t∈T Gt. Clearly,

Ke ∈ C since C is a lattice. Moreover, α−1(e) ⊆ Ke since the inclusion holds for all
languages Gt. Finally, given u ∈ Ke, it is immediate from the definition that αL(u)
does not belong to T which means that (e, αL(u)) is a C-pair. The first item is now
immediate from (5) since e is idempotent. ut

We may now start the proof of Proposition 57. Let h ∈ N and s ∈ML. We construct
Hs,h ∈ Pol(C) by induction on h. Assume first that h = 0. Note that the nonempty
words having an α-factorization forest of height at most 0 are all single letters. We
let B = {b ∈ A | αL(b) = s}. Moreover, we use the language K1ML

as defined in
Lemma 58 for the neutral element 1ML

(which is an idempotent). There are two cases
depending on whether s = 1ML

or not. If s 6= 1ML
, we let,

Hs,0 =
⋃
b∈B

K1ML
bK1ML

.

Otherwise, when s = 1ML
, we let,

Hs,0 = K1ML
∪
⋃
b∈B

K1ML
bK1ML

.
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Note that Hs,0 ∈ Pol(C) by Lemma 27 as we only applied marked concatenation and
unions to K1ML

∈ C ⊆ Pol(C). We now prove that this definition satisfies the two
conditions in Proposition 57. We do the proof for the case when s 6= 1ML

(the other
case is similar).

Assume first that w ∈ Hs,0, we have to prove that s ≤L αL(w). By definition
w = ubu′ with u, u′ ∈ K1ML

and b ∈ B. Hence, αL(w) = αL(u)sαL(u
′). Since

u, u′ ∈ K1ML
, we obtain from the first assertion in Lemma 58 that 1ML

≤L αL(u) and
1ML

≤L αL(u′). It follows that s ≤L αL(u)sαL(u′) = αL(w).
We turn to the second item. Let w ∈ A∗ such that αL(w) = s and w admits an

αL-factorization forest of height at most 0. Since we assumed that s 6= 1ML
, w cannot

be empty. We have to prove that w ∈ Hs,0. By hypothesis, w is a one letter word
b ∈ B. Hence, w ∈ K1ML

bK1ML
since ε ∈ K1ML

by the second assertion in Lemma 58.

Assume now that h > 0. There are two cases depending on whether s is idempotent
or not. We treat the idempotent case (the other case is left to the reader: this is essen-
tially a simpler version of the same proof). Hence, we assume that s is an idempotent,
which we denote by e. We begin by constructing He,h and then prove that it satisfies
the conditions in the proposition. For all t ∈ ML, one may use induction to construct
Ht,h−1 ∈ Pol(C) such that for all w ∈ A∗:
– If w ∈ Ht,h−1 then t ≤L αL(w).
– If αL(w) = t and w admits an αL-factorization forest of height at most h−1, then
w ∈ Ht,h−1.

We define He,h as the union of three languages. Intuitively, the first one contains
the words which have an αL-factorization forest of height at most h − 1, the second
one, words having an αL-factorization forest of height h and whose root is a binary
node, and the third one, words with an αL-factorization forest of height h and whose
root is an idempotent node. Let Ke be as defined in Lemma 58.

He,h = He,h−1 ∪
⋃

t1t2=e

(Ht1,h−1Ht2,h−1) ∪ He,h−1KeHe,h−1

By definition, He,h is a union of concatenations of languages in Pol(C) and therefore
belongs to Pol(C) itself by Lemma 27. We need to prove that it satisfies the conditions
of the proposition. Choose some w ∈ A∗ and assume first that w ∈ He,h. We need to
prove that e ≤L αL(w).
– If w ∈ He,h−1, then this is by definition of He,h−1.
– If w ∈ Ht1,h−1Ht2,h−1 for t1, t2 ∈ ML such that t1t2 = e, then by definition,
w = w1w2 with t1 ≤L αL(w1) and t2 ≤L αL(w2). It follows that e = t1t2 ≤L
αL(w1w2) = αL(w).

– Finally, if w ∈ He,h−1KeHe,h−1, we obtain that w = w1uw2 with e ≤L αL(w1),
u ∈ Ke and e ≤L αL(w2). The first assertion in Lemma 58 yields e ≤L eαL(u)e.
Hence, since eαL(u)e ≤L αL(w1)αL(u)αL(w2) = αL(w), we get e ≤L αL(w).
For the second condition, assume that αL(w) = e and w admits an αL-factorization

forest of height at most h. We prove that w ∈ He,h. There are again three cases.

– First, if w admits an αL-factorization forest of height at most h−1, then w ∈ He,h−1

by definition.
– Second, if w admits an αL-factorization forest of height h whose root is a binary

node, then w = w1w2 with w1, w2 admitting forests of height at most h − 1. Let
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t1 = αL(w1) and t2 = αL(w2). Observe that t1t2 = αL(w) = e. By definition,
we have w1 ∈ Ht1,h−1 and w2 ∈ Ht2,h−1. Hence, w ∈ Ht1,h−1Ht2,h−1 ⊆ He,h, as
desired.

– Finally, if w admits an αL-factorization forest of height h whose root is an idem-
potent node, then w = w1uw2 with αL(w1) = αL(u) = αL(w2) = e and w1, w2

admit forests of height at most h − 1. It follows that w1, w2 ∈ He,h−1 and since
αL(u) = e, it is immediate that u ∈ Ke by second item in Lemma 58. We conclude
that w ∈ He,h−1KeHe,h−1 ⊆ He,h.
This concludes the proof of Proposition 57.

6 Two fundamental concatenation hierarchies

This section is devoted to the dot-depth and Straubing-Thérien hierarchies. The dot-
depth is the concatenation hierarchy whose basis is:

DD[0] = {∅, {ε}, A+, A∗},

while the Straubing-Thérien hierarchy is the concatenation hierarchy whose basis is:

ST[0] = {∅, A∗}.

For q ∈ N or q ∈ 1
2 + N, we denote by DD[q] level q in the dot-depth hierarchy, and

by ST[q] level q in the Straubing-Thérien hierarchy. It is easy to see both hierarchies
classify the star-free languages:

SF =
⋃
n≥0

DD[n] =
⋃
n≥0

ST[n].

This was the original motivation of Brzozowski and Cohen for considering the dot-
depth hierarchy: for each language, one counts the number of alternations between
complement and concatenation that are required to define it.

The Straubing-Thérien hierarchy quickly gained attention in the mid 80s after it
was observed to be “more fundamental” than the dot-depth. This informal claim is
motivated by the two following properties:

1. Straubing [49] showed that any full level in the dot-depth hierarchy is obtained by
applying a uniform operation to the corresponding level in the Straubing-Thérien
hierarchy. This result makes it possible to reduce membership for a level in the dot-
depth to the same problem for corresponding level the Straubing-Thérien hierarchy.
This result was pushed later to half-levels [31] and to separation [35, 37].

2. An important result that we already stated in Section 5 is that separation is decid-
able up to level 3

2 in any hierarchy with a finite basis. In the particular case of the
Straubing-Thérien hierarchy, it follows from a theorem of Pin and Straubing [28]
that for every q, level q+1 is also level q in another finitely based hierarchy. While
simple, this result is crucial, as it allows us to lift the decidability results from
Section 5 up to level 5

2 in the Straubing-Thérien hierarchy (and therefore in the
dot-depth as well by the first item above).
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Thanks to the generic analysis carried out in previous sections, we know that levels
of both hierarchies satisfy robust properties: since their bases are quotienting Boolean
algebras, it follows from Proposition 38 that all half-levels are quotienting lattices and
all full levels are quotienting Boolean algebras. Moreover, it follows from Proposition 39
that all half-levels are closed under concatenation and marked concatenation.

Additionally, Theorem 42 shows that over an alphabet of size at least 2, both
hierarchies are strict (as their bases ST[0] and DD[0] are finite). In particular, this
means that Theorem 3 is a simple corollary of Theorem 42.

Remark 59 We proved Theorem 3 for the dot-depth as the corollary of a more general
theorem. However, there exist many specific proofs. This includes the original proof by
Brzozowski and Knast [9] who exhibit languages Ln for all n ≥ 1 such that Ln has
dot-depth n but not dot-depth n − 1. The definition is as follows: L1 = (ab)∗, and
for n ≥ 2, Ln = (aLn−1b)

∗. As expected, the difficulty is to prove that Ln does not
have dot-depth n − 1. This proof has often been revisited. Let us mention the game
theoretic proofs of Thomas [53, 54] or that by Thérien [51].

Let us also mention the proof of Straubing [48], which relies on a different approach
based on algebra. Instead of working with the classes DD[n], this argument proves strict
inclusions between associated algebraic classes (namely, semigroup varieties). ut

Examples. Let us present some typical examples of languages that do or do not belong
to the first levels of the dot-depth hierarchy.

Example 60 (Languages of dot-depth 1/2) Let A = {a, b} and consider DD[12 ] =
Pol(C). We show that the language L = a∗b∗ does not belong to DD[12 ]. Indeed, by
contradiction, assume that L ∈ DD[12 ]. Since DD[0] = {∅, {ε}, A+, A∗}, it is immediate
that a ≤DD[0] b. Moreover, for all n ≥ 1, we have anb ∈ L and anbanb 6∈ L. Hence,
Corollary 34 (for u = a, v = b, x = ε and y = b) yields that L is not DD[12 ]-separable
from A∗ \ L (i.e., L 6∈ DD[12 ]). ut

Example 61 (Languages of dot-depth one) Consider the alphabet A = {a, b}. The typ-
ical example of language having dot-depth one is (ab)∗. Indeed, we have (ab)∗ =
A∗ \ (bA∗ ∪A∗a∪A∗aaA∗ ∪A∗bbA∗). Moreover, a similar argument as that of Exam-
ple 60 shows that (ab)∗ 6∈ DD[12 ]. Hence, (ab)

∗ has dot-depth one. ut

Example 62 (Languages of dot-depth 3/2) We prove that the language K = (a(ab)∗b)∗

does not belong to DD[32 ]. Let us start with a preliminary result. We show that K is
not co-DD[12 ]-separable from L = a(ab)∗a(ab)∗b.

Since DD[0] = {∅, {ε}, A+, A∗}, it is immediate that ab ≤DD[0] b. Moreover, for any
n ≥ 1, a(ab)naabb ∈ L and a(ab)nb(ab)naabb ∈ K. Hence, Corollary 35 (for u = ab,
v = b, x = a and y = aabb) yields that L is not DD[12 ]-separable from K. By definition
of co-DD[12 ], this yields that K is not co-DD[12 ]-separable from L.

We may now show that K = (a(ab)∗b)∗ does not belong to DD[32 ]. By con-
tradiction, assume that K ∈ DD[32 ]. By Proposition 41, we know that DD[32 ] =
Pol(co-DD[12 ]). It is then simple to verify using Lemma 17 that there exists some finite
quotienting lattice D ⊆ co-DD[12 ] such that K ∈ Pol(D). Since D ⊆ co-DD[12 ], we know
thatK is notD-separable from L. Hence, Corollary 20 yields u ∈ K and v ∈ L such that
u ≤D v. Furthermore, it is clear that for any n ≥ 1, un ∈ K (as u ∈ K = (a(ab)∗b)∗)
and unvun 6∈ K (as unvun ∈ KLK and it is clear that KLK ∩K = ∅). Hence, Corol-
lary 35 (for x = y = ε) yields that K is not Pol(D)-separable from its complement
which is a contradiction since K ∈ Pol(D) by hypothesis. ut
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Example 63 Let A = {a, b}. One can verify that (ab)∗ does not belong to ST[1].
However, it belongs to ST[2]. Indeed, observe that the singleton language {ε} belongs
to ST[1] ({ε} = A∗ \

(⋃
a∈AA

∗aA∗
)
). Thus, bA∗, A∗a,A∗aaA∗ and A∗bbA∗ belong to

ST[32 ] and we may use the usual approach: (ab)∗ is the complement of bA∗ ∪ A∗a ∪
A∗aaA∗ ∪A∗bbA∗ and therefore belongs to ST[2]. ut

Example 64 (Languages of dot-depth two) Consider the alphabet A = {a, b}. The lan-
guage (a(ab)∗b)∗ has dot-depth two. Indeed, one may verify that it is the complement
of the following language:

(ab)∗bA∗ +A∗aa(ba)∗aA∗ +A∗b(ba)∗bbA∗ +A∗a(ab)∗.

Clearly, the above language has dot-depth 3
2 since (ab)∗ and (ba)∗ have dot-depth one

by the previous example. Hence, (a(ab)∗b)∗ has dot-depth two. ut

Membership and Separation. By Theorem 10, if membership is decidable for some
level in the Straubing-Thérien hierarchy, then it is also decidable for the corresponding
level in the dot-depth hierarchy. Actually, the state of the art with respect to mem-
bership is the same for both hierarchies. In [35, 37], we generalized Theorem 10 to
cope with separation, by defining a generic operation on classes of languages, which
maps each level of the Straubing-Thérien hierarchy to the corresponding level in the
dot-depth hierarchy, and which preserves decidability of separation (and of the more
general “covering problem” [36, 41]). We outline the state of the art in Fig. 5.

Theorem 65 (Place & Zeitoun [35, 37]) For any level q ∈ N or q ∈ 1
2 +N, DD[q]

has decidable separation if and only if so does ST[q].

The alphabet trick. We now connect the Straubing-Thérien hierarchy with the con-
catenation hierarchy whose basis is the class AT of alphabet testable languages. While
simple, this theorem has important consequences.

Let us briefly recall the definition of the alphabet testable languages. We shall
connect two classes to the Straubing-Thérien hierarchy: AT itself and a weaker one,
which we denote by WAT. For any alphabet A, recall that AT consists of all Boolean
combinations of languages of the form A∗aA∗, for a ∈ A. Moreover, WAT contains all
unions of languages B∗ for B ⊆ A. Since B∗ = A∗ \

⋃
b/∈B A

∗bA∗, we have WAT ⊆ AT.
We already know that AT is a quotienting Boolean algebra of regular languages and
one may verify that WAT is a quotienting lattice (closure under intersection follows
from the fact that B∗ ∩ C∗ = (B ∩ C)∗).

It was proved by Pin and Straubing [28] that level 3
2 in the Straubing-Thérien

hierarchy1 is also the class Pol(WAT).

Remark 66 Another formulation (which is essentially the original one by Pin and
Straubing) is to say that ST[32 ] contains exactly the unions of languages of the form,

B∗0a1B
∗
1a2B

∗
2 · · · anB∗n with B0, . . . , Bn ⊆ A.

We reformulate this result in the following crucial theorem.

1 In fact, the original formulation of Pin and Straubing considers level 2 in the Straubing-
Thérien hierarchy and not level 3

2
.
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Fig. 5 Overview of classes. For the sake of avoiding clutter, inclusions between levels in the
Straubing-Thérien and dot-depth hierarchies are omitted.

Theorem 67 (Pin and Straubing [28]) Level 3
2 in the Straubing-Thérien hierarchy

satisfies the following property:

ST[32 ] = Pol(WAT) = Pol(AT).

In particular, any level q ≥ 3
2 (half or full) in the Straubing-Thérien hierarchy corre-

sponds exactly to level q − 1 in the concatenation hierarchy of basis AT.
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The important point here is that while AT is more involved than ST[0] as a basis,
it remains finite. Therefore, Theorem 67 states that any level q ≥ 3

2 in the Straubing-
Thérien hierarchy is also the level q− 1 in another hierarchy whose basis is finite. This
saves us one level for the decidability results, therefore yielding Theorem 11.

Indeed, we know that separation is decidable up to level 3
2 in any concatenation

hierarchy whose basis is finite. This of course applies to the Straubing-Thérien hierarchy
since ST[0] is clearly finite. However, Theorem 67 allows us to go one step further and
to lift these results to levels 2 and 5

2 in the particular case of the Straubing-Thérien
hierarchy. Indeed, they are also levels 1 and 3

2 in the hierarchy of finite basis AT.

We now prove Theorem 67. Since WAT ⊆ AT, the inclusion Pol(WAT) ⊆ Pol(AT)
is trivial. We show that Pol(AT) ⊆ ST[32 ] ⊆ Pol(WAT).

For the inclusion Pol(AT) ⊆ ST[32 ], observe that AT ⊆ ST[1]. Indeed, Consider
L ∈ AT. By definition, L is the Boolean combination of languages A∗aA∗ for some
a ∈ A. Clearly, A∗aA∗ ∈ ST[12 ] for any a ∈ A. Hence, L ∈ ST[1] = Bool(ST[12 ]).
Consequently, Pol(AT) ⊆ ST[32 ] by definition.

The inclusion ST[32 ] ⊆ Pol(WAT) is more involved. We first reduce the proof to
that of a simpler inclusion. Recall that we showed in Proposition 41 that,

ST[32 ] = Pol(co-ST[12 ]).

Therefore, in order to prove that ST[32 ] ⊆ Pol(WAT), it suffices to show the following
inclusion:

co-ST[12 ] ⊆ Pol(WAT) (6)

Indeed, it will follow that Pol(co-ST[12 ]) ⊆ Pol(Pol(WAT)) = Pol(WAT). We now
concentrate on proving (6). This is a consequence of the following lemma.

Lemma 68 For any a1, . . . , an ∈ A, we have A∗ \A∗a1A∗ · · · anA∗ ∈ Pol(WAT).

Before proving Lemma 68, let us use it to show that the inclusion 6 holds. By
definition, any language L ∈ co-ST[12 ] is the complement of another language in the
class ST[12 ] = Pol(ST[0]). Hence, by definition of polynomial closure, there exist ST[0]-
monomials K1, . . . ,Km such that,

L = A∗ \

⋃
i≤m

Ki

 =
⋂
i≤m

A∗ \Ki

As ST[0] = {∅, A∗} all ST[0]-monomials K1, . . . ,Km have the form A∗a1A
∗ · · · anA∗.

It follows from Lemma 68 that A∗ \ Ki ∈ Pol(WAT) for all i ≤ m. Finally, since
Pol(WAT) is closed under intersection, we conclude that L ∈ Pol(WAT), as desired.

Remark 69 While the above argument may seem simple, let us point out that we
implicitly used Theorem 29 which is an involved result. On one hand, we used the
original definition of polynomial closures for Pol(ST[0]) (i.e., it contains the unions
of ST[0]-monomials). On the other hand, we used the fact that Pol(WAT) is closed
under intersection which is not immediate from the definition: this is where we need
Theorem 29.
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It remains to prove Lemma 68. Consider n letters a1, . . . , an ∈ A. By a piece of a
word, we mean a scattered subword. Our goal is to show that A∗ \A∗a1A∗ · · · anA∗ ∈
Pol(WAT). For all k ≤ n, we let Lk = A∗\A∗a1A∗ · · · akA∗. Observe that by definition,
for any k ≤ n, the language Lk consists of all words w such that a1 · · · ak is not a
piece of w. We prove by induction on k that Lk ∈ Pol(WAT) for all k ≤ n.

When k = 1, this is immediate since L1 = (A \ {a1})∗, which belongs to WAT
(and therefore to Pol(WAT)) by definition. We now assume that k ≥ 2. Consider the
following language Hk:

Hk = (A \ {ak})∗ ∪ Lk−1ak(A \ {ak})∗

By induction hypothesis, we have Lk−1 ∈ Pol(WAT). Moreover, it is immediate from
the definition of WAT that (A\{ak})∗ ∈WAT ⊆ Pol(WAT). Hence, we conclude that
Hk ∈ Pol(WAT) using closure under marked concatenation and union. We now show
that Lk = Hk, which terminates the proof.

We begin with Lk ⊆ Hk. Let w ∈ Lk. We consider two cases depending on
whether w contains the letter ak or not. If ak 6∈ alph(w), then w ∈ (A \ {ak})∗
which is a subset of Hk by definition. Hence, w ∈ Hk. Otherwise, ak ∈ alph(w).
We decompose w by looking at the rightmost copy of the letter ak: w = uakv with
u ∈ A∗ and v ∈ (A \ {ak})∗. It is now immediate that u ∈ Lk−1. Indeed, oth-
erwise the word a1 · · · ak−1 would be a piece of u and therefore a1 · · · ak would be
a piece of w which is not possible since w ∈ Lk by hypothesis. We conclude that
w = uakv ∈ Lk−1ak(A \ {ak})∗ which a subset of Hk by definition. Thus, w ∈ Hk.

We turn to the second inclusion: Hk ⊆ Lk. Let w ∈ Hk. If w ∈ (A \ {ak})∗, then
it is clear that a1 · · · ak is not a piece of w which means that w ∈ Lk. Otherwise,
w ∈ Lk−1ak(A \ {ak})∗. Thus, w = uakv with u ∈ Lk−1 and ak 6∈ alph(v). By
contradiction, assume that a1 · · · ak is a piece of w. Since ak 6∈ alph(v), it follows that
a1 · · · ak−1 must be a piece of u, which is impossible since u ∈ Lk−1. We conclude that
a1 · · · ak is not a piece of w, and therefore that w ∈ Lk. This terminates the proof of
Lemma 68. ut

7 The link with logic

In this section, we present quantifier alternations hierarchies, whose levels are defined
by fragments of first-order logic. Such hierarchies classify languages according to the
type of sentences needed to define them: the classifying parameter is the number of
alternations between ∃ and ∀ quantifiers that are necessary to define a language.

The main theorem is a generic correspondence between concatenation and quan-
tifier alternation hierarchies. For every basis C, the concatenation hierarchy of basis C
corresponds exactly to the quantifier alternation hierarchy within a well-chosen variant
of first-order logic. This generic connection was originally observed by Thomas [52],
who obtained it in a specific case: he showed that the dot-depth hierarchy corresponds
exactly to the quantifier alternation hierarchy within the variant FO(<,+1,min,max, ε)
of first-order logic.

We organize the section as follows: we first present first-order logic and quantifier
alternation hierarchies. Then, we state and prove the main theorem of the section: the
correspondence between concatenation and quantifier alternation hierarchies. Finally,
we instantiate this result on the dot-depth and Straubing-Thérien hierarchies.
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7.1 Quantifier alternation hierarchies

For defining languages with first-order logic, we view words as relational structures:
a word of length n is a sequence of positions {1, . . . , n} labeled over alphabet A. A
signature is a set of predicate symbols, each of them having an arity. Given a word of
length n, a predicate of arity k is interpreted as a k-ary relation on the set {1, . . . , n}
of positions of the word. Important examples of predicates are the following:

– ε, the nullary “empty” predicate, which holds when the word is empty. That is,
given a word w, the predicate ε holds when w = ε.

– For each a ∈ A, a unary “label” predicate, also denoted by a. Given a word w and
a position i in w, a(i) holds when position i in w carries letter a.

– min(x), the unary “minimum” predicate, which selects the first position of a word.
– max(x), the unary “maximum” predicate, which selects the last position.
– <, the binary “order” predicate, interpreted as the linear order on positions.
– +1, the binary “successor” predicate, interpreted as the successor relation.

Each signature S defines a variant of first-order logic, which we denote by FO(S).
For concrete signatures, we will not write the label predicates, i.e., they will be al-
ways understood. For instance, FO(<) denotes the variant of first-order logic for the
signature consisting of the order predicate and all label predicates.

For a given signature S, we define the semantics of FO(S) of first-order logic as
follows: one may quantify over positions of a word, use Boolean connectives as well as
the > (true) and ⊥ (false) formulas, and test properties of the quantified positions using
the predicate symbols from S. Each first-order sentence of FO(S) therefore defines a
language over A∗.

More formally, let w = b1 · · · bn ∈ A∗ be a word and let X be some finite set
of first-order variables. An assignment of X in w is a map µ from X to the set of
positions of w (i.e., µ : X → {1, . . . , n}). In particular, if µ is an assignment of X
in w, x a variable (not necessarily in X ) and i a position in w, we will denote by
µ[x 7→ i] : (X ∪ {x})→ {1, . . . , n}, the assignment of X ∪ {x} in w that is identical to
µ except that it maps x to i. We can now define the semantic of a first-order formula.

Let ϕ be a first-order formula and assume that X contains all free variables of ϕ.
Then, for every word w = b1 · · · bn ∈ A∗ and every assignment µ of X in w, we say
that w satisfies ϕ under µ, written w, µ |= ϕ, when one the following properties hold:

– ϕ := “>”.
– ϕ := “P (x1, . . . , xk)” for some predicate P ∈ S and P (µ(x1), . . . , µ(xk)) holds.
– ϕ := “∃x Ψ ” and there exists a position i ∈ {1, . . . , n} such that w, µ[x 7→ i] |= Ψ .
– ϕ := “∀x Ψ ” and for every position i ∈ {1, . . . , n}, we have w, µ[x 7→ i] |= Ψ .
– ϕ := “Ψ ∨ Γ ” and w, µ |= Ψ or w, µ |= Γ .
– ϕ := “Ψ ∧ Γ ” and w, µ |= Ψ and w, µ |= Γ .
– ϕ := “¬Ψ ” and w, µ 6|= Ψ (w does not satisfy Ψ under µ).

When ϕ is a sentence, whether w, µ |= ϕ does not depend on µ. In that case, we simply
write w |= ϕ. Every sentence ϕ defines the language {w ∈ A∗ | w |= ϕ}.

We now define a hierarchy of fragments within FO(S) by classifying all FO(S)
sentences according to the number of quantifier alternations within their parse trees.
For i ∈ N, a formula is Σi(S) (resp. Πi(S)) when it is a FO(S) formula whose prenex
normal form has either:
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– exactly n blocks of quantifiers, the leftmost being an “∃” (resp. a “∀”) block,
– or strictly less than n blocks of quantifiers.

For example, a formula whose prenex normal form is

∀x1∀x2 ∃x3 ∀x4 ϕ(x1, x2, x3, x4) (with ϕ quantifier-free)

is Π3(S). Observe that a Πi(S) formula is the negation of a Σi(S) formula. Finally, a
BΣi(S) formula is a Boolean combination of Σi(S) formulas. Note that by definition,
we have BΣi−1(S) ⊆ Σi(S) ⊆ BΣi(S) and BΣi−1(S) ⊆ Πi(S) ⊆ BΣi(S) for every
i ≥ 1. It is also clear that every FO(S) formula belongs to some of these classes.

We lift this syntactic definition to the semantic level: for X = FO(S), Σi(S),
Πi(S) or BΣi(S), we say that a language L is X-definable if it can be defined by an
X-formula. Abusing notation, we also denote by X the class of X-definable languages.
This gives us a hierarchy of languages depicted in Fig. 6.

Σ0 = Π0 = BΣ0

Σ1

Π1

BΣ1

Σ2

Π2

BΣ2

Σ3

Π3

BΣ3 FO

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

Fig. 6 Quantifier alternation hierarchy of first-order logic

Whether a particular hierarchy is strict depends on its signature S. The two most
prominent hierarchies in the literature are known to be strict. These are:

– The one associated to the logic FO(<).
– The one associated to the logic FO(<,+1,min,max, ε).

Remark 70 It is a classical result that FO(<) and FO(<,+1,min,max, ε) have the same
expressive power: all predicates available in FO(<,+1,min,max, ε) can be defined from
the linear order. However, this is not the case for levels in their respective quantifier
alternation hierarchies. Intuitively, the reason is that defining the predicates “+1”,
“min” and “max” from “<” costs quantifier alternations.

Finally, a last useful lemma is that we can bypass BΣn(S) formulas in the definition
of quantifier alternation hierarchies.

Lemma 71 For any n ≥ 0, any Σn+1(S) formula is equivalent to a formula of the
form ψ ∨ ∀x⊥ or ψ ∧ ∃x>, where ψ belongs to the closure of Πn(S) under existential
quantification.

Proof On nonempty words, any formula from Σn+1(S) is equivalent to its prenex
normal form, which by definition either belongs itself to Πn(S), or is of the form
∃x1 . . .∃xkψ where ψ is a Πn(S) formula. The disjunction with ∀x⊥ and the conjunc-
tion with ∃x> are used to add or remove the empty word from the language of the
formula. This concludes the proof. ut
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7.2 Main theorem

We are ready to present and prove the generic correspondence existing between quan-
tifier alternation and concatenation hierarchies. More precisely, we show that for any
basis C, one may define an appropriate signature (also denoted by C) such that the con-
catenation hierarchy of basis C and the quantifier alternation hierarchy within FO(C)
are identical.

Consider an arbitrary basis C. We associate a signature to C and consider the variant
of first-order logic equipped with this signature. As usual, the signature associated to C
contains all label predicates: for every a ∈ A, we have a unary predicate (also denoted
by “a”) which is interpreted as the unary relation selecting all positions whose label
is a. Moreover, for every language L ∈ C, we add four predicates:

– A binary predicate IL interpreted as follows: given a word w and two positions i, j
in w, IL(i, j) holds when i < j and the infix w]i, j[ belongs to L.

– A unary predicate PL interpreted as follows: given a word w and a position i in w,
PL(i) holds when the prefix w[1, i[ belongs to L.

– A unary predicate SL interpreted as follows: given a word w and a position i in w,
SL(i) holds when the suffix w]i, |w|] belongs to L.

– A nullary predicate NL interpreted as follows: given a word w, NL holds when w
belongs to L.

Abusing notation, we denote by FO(C) the associated variant of first-order logic.

Remark 72 Observe that these signatures always contain the label predicates and the
linear order “<”. Indeed, by definition, “<” is the binary predicate IA∗ , and A∗ belongs
to C since it is a quotienting Boolean algebra. Thus, all variants of first-order logic that
we consider here are at least as expressive as FO(<). In fact, FO(<) = FO(C) when
C = {∅, A∗}. We shall detail this point in the next section.

We now state the theorem establishing an exact correspondence between the con-
catenation hierarchy of basis C and the quantifier alternation hierarchy within FO(C).

Theorem 73 Let C be a quotienting Boolean algebra. For every n ∈ N and every
language L ⊆ A∗, the two following properties hold:

1. L ∈ C[n] if and only if L can be defined by a BΣn(C) sentence.
2. L ∈ C[n+ 1

2 ] if and only if L can be defined by a Σn+1(C) sentence.

The remainder of the section is devoted to proving Theorem 73. A first observation
is that we may concentrate on the second item as the first one is a simple corollary.
Indeed, for n = 0, a BΣ0(C) sentence is by definition a Boolean combination of atomic
formulas which do not involve variables. This includes ⊥,> and the nullary predicates
NL for L ∈ C. By definition of the predicates NL and since C is a Boolean algebra,
it follows that BΣ0(C) = C = C[0]. A second observation is that for n ≥ 1, we have
BΣn(C) = Bool(Σn(C)). Hence, the equality Σn(C) = C[n − 1

2 ] immediately yields
BΣn(C) = C[n].

We now concentrate on proving the second item in Theorem 73. The proof is divided
in two steps, one for each inclusion. We first show the easier one, namely,

C[n+ 1
2 ] ⊆ Σn+1(C).

The proof is by induction on n. The key ingredient is the following lemma which states
that for every n ∈ N, Σn(C) is closed under marked concatenation.
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Lemma 74 Let n ∈ N and L1, L2 ⊆ A∗ be two languages in Σn(C). Then, for every
a ∈ A, the marked concatenation L1aL2 also belong to Σn(C).

Proof Let L1 and L2 be languages defined by two Σn(C) sentences ϕ1 and ϕ2. We
have to construct a third sentence ψ that defines L1aL2. Let x be a fresh variable with
respect to both ϕ1 and ϕ2. We build two formulas ϕ′1(x) and ϕ

′
2(x) (each with x as a

single free variable) with the following semantics. Given w ∈ A∗ and µ an assignment
for w with domain {x}:
– w, µ |= ϕ′1(x) if and only if the prefix w[1, µ(x)[ belongs to L1 (that is, if and only

if w[1, µ(x)[ |= ϕ1). Observe that this prefix may be empty when µ(x) = 1.
– w, µ |= ϕ′2(x) if and only if the suffix w]µ(x), |w|] belongs to L2 (that is, if and only

if w]µ(x), |w|] |= ϕ2). Observe that this suffix may be empty when µ(x) = |w|.
The constructions of ϕ′1(x) and ϕ

′
2(x) are symmetrical. Let us describe that of ϕ′1(x).

We build it from ϕ1 as follows:

1. We relativize quantifications to positions that are to the left of x. That is, we
replace every sub-formula of the form ∃y ξ (resp. ∀y ξ) by ∃y y < x ∧ ξ (resp.
∀y ¬(y < x) ∨ ξ).

2. We replace atomic formulas of the form NL for some L ∈ C by PL(x).
3. We replace atomic formulas of the form SL(y) for some L ∈ C by IL(y, x).

Clearly, ϕ′1(x) is also a Σn(C) formula and one may verify that it satisfies the above
property. We can now define ψ for L1aL2 as follows:

ψ = ∃x a(x) ∧ ϕ′1(x) ∧ ϕ′2(x).

It is obvious that ψ is a Σn(C) sentence defining the language L1aL2.

We may now prove that C[n + 1
2 ] ⊆ Σn+1(C) for every n ∈ N. We proceed by

induction on n. When n = 0, we first note that C ⊆ Σ1(C). Indeed, every language L
of C is defined by the atomic sentence NL. Therefore, C[12 ] = Pol(C) ⊆ Σ1(C), since
Σ1(C) is closed under union and marked concatenation.

When n ≥ 1, we know that C[n + 1
2 ] = Pol(co-C[n − 1

2 ]) by Proposition 41. By
induction hypothesis, we have C[n− 1

2 ] ⊆ Σn(C) and therefore,

co-C[n− 1
2 ] ⊆ BΣn(C) ⊆ Σn+1(C).

Hence, since Σn+1(C) is closed under union and marked concatenation, we obtain as
desired that C[n+ 1

2 ] ⊆ Σn+1(C), finishing the proof for this direction.

It remains to establish the converse inclusion, i.e., that for every n ∈ N:

Σn+1(C) ⊆ C[n+ 1
2 ]. (7)

Since the proof works inductively on the formulas, we have to explain how we handle
free variables. We do this using Büchi’s classical idea, i.e., by encoding a word and a
assignment of first-order variables as a single word over an extended alphabet.

Let X = {x1, x2, x3, . . . } be an infinite linearly ordered set of first-order variables.
One may assume that all FO(C) formulas that we consider only use variables from X .
Given ` ∈ N, we use the alphabet A` = {0, 1}` × A to represent pairs (w, µ) with
w ∈ A∗ and µ an assignment of {x1, . . . , x`} in the positions of w.
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For every h ≤ `, we denote by πh : A` → {0, 1} the projection on component h.
Similarly, we denote by πA : A` → A the projection on the rightmost component
(component ` + 1). Note that there are actually several mappings πA, one for each
value of `, and similarly for πh. Which mapping we use will be clear from the context.

We can now present the encoding. Let w = a1 · · · an ∈ A∗ and let µ be an assign-
ment of {x1, . . . , x`} in w. We encode the pair (w, µ) by the word [w]µ = b1 · · · bn of
(A`)

∗ where for all i ≤ n, the letter bi ∈ A` is defined as follows:

– πA(bi) = ai.
– For all h ≤ `,

– If i = µ(xh), then πh(bi) = 1.
– If i 6= µ(xh), then πh(bi) = 0.

Note that when ` = 0, we have A0 = A and [w]µ = w (µ is the empty assignment).
Clearly, the map (w, µ) 7→ [w]µ is injective (however, it is not surjective since for every
h ≤ `, there is exactly one position i such that πh(bi) = 1). For ` ≥ 1, we define the
following class of languages over the alphabet A`:

C`
def
= {π−1

A (L) ⊆ A∗` | L ∈ C}.

It straightforward to verify that C` is a quotienting Boolean algebra of regular lan-
guages. Moreover, for any ` ∈ N, we define a morphism α` : A∗` → A∗`+1 as follows:
given (i1, . . . , i`, a) ∈ A`, we let α`(i1, . . . , i`, a) = (i1, . . . , i`, 0, a) ∈ A`+1. We now
state a connection between the concatenation hierarchies of bases C` and C`+1.

Fact 75 For any `, n ∈ N and any K ∈ C`+1[n+ 1
2 ], we have α−1

` (K) ∈ C`[n+ 1
2 ].

Proof This is immediate by induction on n and the definition of concatenation hierar-
chies using the following properties. For any K1,K2 ⊆ A∗`+1, we have:

1. By definition, when K1 ∈ C`+1, we have α−1
` (K1) ∈ C`.

2. α−1
` (K1 ∪K2) = α−1

` (K1) ∪ α−1
` (K2).

3. α−1
` (A∗`+1 \K1) = A∗` \ α

−1
` (K1).

4. For every b ∈ A`+1, we have α−1
` (K1bK2) = α−1

` (K1)α
−1
` (b)α−1

` (K2).

This concludes the proof of Fact 75. ut

The proof of the remaining inclusion (7) relies on the following proposition.

Proposition 76 Let `, n ∈ N and let ϕ be a Σn+1(C) formula whose free variables
belong to {x1, . . . , x`}. Then, there exists a language L`,ϕ ∈ C`[n + 1

2 ] such that for
every w ∈ A∗ and every assignment µ of {x1, . . . , x`} in w, we have,

[w]µ ∈ L`,ϕ if and only if w, µ |= ϕ. (8)

Note that the special case ` = 0 of Proposition 76 yields the following corollary.

Corollary 77 Let n ∈ N and let ϕ be a Σn+1(C) sentence. Then, there exists a lan-
guage L ∈ C[n+ 1

2 ] such that for every w ∈ A∗, we have,

w ∈ L if and only if w |= ϕ.
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Corollary 77 implies that for all n ∈ N, we have Σn+1(C) ⊆ C[n+ 1
2 ], which is the

inclusion (7) that remained to be proved, concluding the proof of Theorem 73.

It remains to prove Proposition 76. Let `, n ∈ N and let ϕ be a Σn+1(C) formula
whose free variables belong to {x1, . . . , x`}. We construct by induction on n a language
L`,ϕ ∈ C`[n+ 1

2 ] satisfying Condition (8) of Proposition 76.
Recall that we showed in Lemma 71 that we may assume without loss of generality

that ϕ is built from negations of Σn(C) formulas using existential quantifications. We
use a sub-induction on this construction. We start with the base case, which we treat
differently for n = 0 and n ≥ 1 (essentially, the former amounts to treating atomic
formulas, while the later is immediate by induction on n).

Base case. ϕ is the negation ϕ = ¬ψ of some Σn(C) formula ψ.
We first treat the case n ≥ 1, which is where we use induction on n. Indeed,

induction yields L`,ψ ∈ C`[n− 1
2 ] such that for every w ∈ A∗ and every assignment µ

of {x1, . . . , x`} in w, we have,

[w]µ ∈ L`,ψ if and only if w, µ |= ψ.

It suffices to choose L`,ϕ = A∗` \ L`,ψ ∈ C`[n] ⊆ C`[n + 1
2 ], which clearly meets the

conditions in Proposition 76.
It remains to treat the case n = 0. By definition, the Σ0(C) formulas are the

quantifier-free formulas. Thus, ϕ = ¬ψ is itself a Σ0(C) formula. In other words ϕ is a
Boolean combination of atomic formulas. Moreover, if we allow the equality predicate
in the signature, we may eliminate all negations in ϕ. Indeed, using De Morgan’s laws,
one may first push all negations to atomic formulas. Furthermore, given any atomic
formula, its negation is equivalent to a Σ0(C) formula without negation (this is where
we need equality). Indeed, given a ∈ A, ¬a(x) is equivalent to

∨
c 6=a c(x). Finally, for

any K ∈ C, we have the following (recall that since C is a quotienting Boolean algebra,
A∗ \H belongs to C as well):

– ¬IK(x, y) is equivalent to IA∗(y, x) ∨ x = y ∨ IA∗\K(x, y).
– ¬PK(x) is equivalent to PA∗\K(x).
– ¬SK(x) is equivalent to SA∗\K(x).
– ¬NK is equivalent to NA∗\K .

Hence, we may assume without loss of generality that there is no negation in ϕ,
which is therefore in Σ0(C). Hence, ϕ is built from atomic formulas using conjunctions
and disjunctions. We may handle disjunctions and conjunctions in the obvious way.
Hence, it suffices to treat the cases when ϕ is atomic.

There are two kinds of atomic formulas: those involving the label predicates and
those which are specific to C. Moreover, we also need to treat equality since we used it
above to eliminate negations. Let us first assume that ϕ = a(xh) for some h ≤ ` and
some a ∈ A. Consider the set B of all letters in A` whose component h is equal to 1
and whose component `+ 1 is equal to a:

B = {b ∈ A` | πh(b) = 1 and πA(b) = a}.

It now suffices to define L`,ϕ = A∗`BA
∗
` ∈ Pol(C`) = C`[12 ]. It is again immediate from

the definitions that L`,ϕ satisfies the conditions in Proposition 76.
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We now assume that ϕ = “xg = xh” for some g, h ≤ `. We now let B as the set of
all letters in A` whose components g and h are both equal to 1.

B = {b ∈ A` | πg(b) = 1 and πh(b) = 1}.

It now suffices to define L`,ϕ = A∗`BA
∗
` ∈ Pol(C`) = C`[12 ]. It is then immediate from

the definitions that L`,ϕ satisfies the conditions in Proposition 76.

It remains to treat the predicates given by C. Since the argument is the same for all
four kinds, we only treat the case when ϕ = IK(xi, xj), for some K ∈ C and i, j ≤ `.
We may assume that i 6= j, since IK(xi, xi) is equivalent to ⊥. By symmetry, we may
then assume that i < j. Let Bi and Bj be the following sub-alphabets of A`:{

Bi = {b ∈ A` | πi(b) = 1},
Bj = {b ∈ A` | πj(b) = 1}.

We define L`,ϕ = A∗`Biπ
−1
A (K)BjA

∗
` . Recall that the language π−1

A (K) ⊆ A∗` belongs
to C` (by definition of C`). Hence, we have L`,ϕ ∈ Pol(C) = C[12 ]. One may then verify
that L`,ϕ satisfies the conditions in Proposition 76.

This concludes the base case of our structural induction on the formula ϕ. We now
consider the inductive case which is handled uniformly for n = 0 and n ≥ 1.

Inductive case: First-order quantification. Assume that ϕ is of the form ∃x ψ.
Since variables can be renamed, we may assume without loss of generality that x =
x`+1, i.e., ϕ = ∃x`+1 ψ. Thus, all free variables of ψ belong to {x1, . . . , x`+1}. Applying
induction to ψ yields a language L`+1,ψ ∈ C`+1[n+

1
2 ] such that for every w ∈ A∗ and

every assignment γ of {x1, . . . , x`+1} in w, we have,

[w]γ ∈ L`+1,ψ if and only if w, γ |= ψ.

We first define L`,ϕ ∈ C`[n + 1
2 ] and then prove that it satisfies (8). Given any word

u ∈ A∗`+1, we say that u is good when there exists exactly one position in u whose label
b satisfies π`+1(b) = 1 (which implies that the labels c of all other positions satisfy
π`+1(c) = 0). Let π1,...,`,A : A∗`+1 → A∗` be the projection which discards component
`+ 1 in words belonging to A∗`+1. More precisely,

π1,...,`,A(i1, . . . , i`+1, a) = (i1, . . . , i`, a).

We now define L`,ϕ ⊆ A∗` as the following language:

L`,ϕ = {π1,...,`,A(u) | u ∈ L`+1,ψ and u is good}. (9)

It remains to prove that L`,ϕ ∈ C`[n + 1
2 ] and that it satisfies Property (8) from

Proposition 76. We first deal with Property (8).

Lemma 78 Let w ∈ A∗ and let µ be an assignment of {x1, . . . , x`} in the positions
of w. Then, we have,

[w]µ ∈ L`,ϕ if and only if w, µ |= ϕ.
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Proof Assume first that [w]µ ∈ L`,ϕ. By definition, there exists u ∈ L`+1,ψ which
is good and such that π1,...,`,A(u) = [w]µ. Since u is good, there exists exactly one
position in u whose label b satisfies π`+1(b) = 1. Let i be this position and let γ be
the assignment µ[x`+1 7→ i] of {x1, . . . , x`+1} in w. It follows immediately from the
definitions that u = [w]γ . Since u ∈ L`+1,ψ, it follows that w, γ |= ψ, which exactly
says that w, µ |= ϕ since ϕ = ∃x`+1 ψ and γ = µ[x`+1 7→ i].

Conversely, assume that w, µ |= ϕ. It follows that there exists a position i in w

such that w, µ[x`+1 7→ i] |= ψ. Let γ = µ[x`+1 7→ i]. By definition of L`+1,ψ, we have
[w]γ ∈ L`+1,ψ. Clearly, [w]γ is good and therefore, we have [w]µ = π1,...,`,A([w]γ) ∈
L`,ϕ. This concludes the proof. ut

It remains to prove that L`,ϕ ∈ C`[n+ 1
2 ]. The argument is based on the next lemma.

Lemma 79 (Splitting lemma) Let C be a quotienting lattice of regular languages
over A and let B ⊆ A. Consider a language L ∈ C. Then, L∩A∗BA∗ is a finite union
of languages of the form PbS where b ∈ B and P, S ∈ C.

Proof First observe that we may assume without loss of generality that B is a singleton.
Indeed, we have L∩A∗BA∗ =

⋃
b∈B L∩A

∗bA∗. Hence, it suffices to apply the lemma
in the singleton case for each language L ∩ A∗bA∗. Therefore, we now assume that B
is a singleton {b}.

For any u ∈ A∗, let Qu = (ub)−1L = {v ∈ A∗ | ubv ∈ L}. Consider the following
language L′:

L′ =
⋃
u∈A∗

 ⋂
v∈Qu

L(bv)−1

 · b · (ub)−1L (10)

We claim that L ∩ A∗bA∗ = L′. Before we prove this equality, let us explain why it
allows us to conclude the proof. Since L ∈ C, we know by hypothesis on C that L is
regular. Hence, it follows from the Myhill-Nerode Theorem (Theorem 16) that there
are finitely many quotients of L. In particular, this means that in (10), the union over
all u ∈ A∗ and the intersections over all v ∈ Qu are actually finite. Moreover, since C
is a quotienting lattice, we obtain that for every u ∈ A∗,⋂

v∈Qu

L(bv)−1 ∈ C and (ub)−1L ∈ C.

Hence, this conclude the proof of Lemma 79: L ∩A∗bA∗ is a finite union of languages
of the form PbS where P, S ∈ C. It remains to prove that L ∩A∗bA∗ = L′.

To prove that L ∩ A∗bA∗ = L′, assume first that w ∈ L ∩ A∗bA∗. It follows that
w = ubv′ ∈ L for some u, v′ ∈ A∗. Hence, v′ ∈ (ub)−1L. Moreover, u ∈ L(bv)−1 for
any v ∈ Qu by definition. Hence, u ∈

⋂
v∈Qu

L(bv)−1. We now conclude that,

w ∈

 ⋂
v∈Qu

L(bv)−1

 · b · (ub)−1L.

Therefore, w ∈ L′. We have proved that L ∩A∗bA∗ ⊆ L′.
Conversely, assume that w ∈ L′. We obtain u ∈ A∗ such that w admits a decom-

position w = u′bv′ with u′ ∈
⋂
v∈Qu

L(bv)−1 and v′ ∈ (ub)−1L. In particular, since
v′ ∈ (ub)−1L, we have ubv′ ∈ L which means that v′ ∈ Qu by definition. Combined
with the fact that u′ ∈

⋂
v∈Qu

L(bv)−1, this yields u′ ∈ L(bv′)−1, which exactly says
that w = u′bv′ ∈ L ∩A∗bA∗. ut
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Recall that in order to finish off the proof of Proposition 76, it remains to show
that the language L`,ϕ, defined in Equation (9), belongs to C`[n+ 1

2 ]. Let B ⊆ A`+1

be the set of all letters in A`+1 whose component `+ 1 is 1:

B = {b ∈ A`+1 | π`+1(b) = 1}.

Note that by definition, every good word u ∈ A∗`+1 belongs to A∗`+1BA
∗
`+1. Since by

Proposition 38, C[n + 1
2 ] is a quotienting lattice of regular languages, we may apply

Lemma 79 to L`+1,ψ ∈ C`+1[n+ 1
2 ]:

L`+1,ψ ∩A∗`+1BA
∗
`+1 =

⋃
j≤m

PjbjSj (11)

where for all j ≤ m, bj ∈ B and Pj , Sj ∈ C`+1[n + 1
2 ]. For all j ≤ m, let cj =

π1,...,`,A(bj) ∈ A`. Recall that α` : A∗` → A∗`+1 is defined as the following morphism.
For every letter (i1, . . . , i`, a) ∈ A`, we have α(i1, . . . , i`, a) = (i1, . . . , i`, 0, a) ∈ A`+1.
We have the following fact.

Fact 80 L`,ϕ =
⋃
j≤m α−1

` (Pj)cjα
−1
` (Sj).

Proof We first consider v ∈ L`,ϕ. We exhibit j ≤ m such that v ∈ α−1(Pj)cjα
−1(Sj).

By definition of L`,ϕ, we get u ∈ L`+1,ψ which is good and such that v = π1,...,`,A(u).
Since u is good, we have,

u ∈ L`+1,ψ ∩A∗`+1BA
∗
`+1.

It then follows from (11) that we have u ∈ PjbjSj for some j ≤ m. Hence, we may
decompose u as u = u1bju2 with u1 ∈ Pj and u2 ∈ Sj . Therefore, we have,

v = π1,...,`,A(u) = π1,...,`,A(u1bju2) = π1,...,`,A(u1)cjπ1,...,`,A(u2).

Finally, since u = u1bju2 is good and bj ∈ B, we know that bj is the only letter in u
whose component `+1 is equal to 1. Hence, the component `+1 of any letter in u1 or u2
is 0. By definition of α, it follows that α(π1,...,`,A(u1)) = u1 and α(π1,...,`,A(u2)) = u2.
Thus, since u1 ∈ Pj and u2 ∈ Sj , we get π1,...,`,A(u1) ∈ α−1(Pj) and π1,...,`,A(u2) ∈
α−1(Sj). Finally, this yields v ∈ α−1(Pj)cjα

−1(Sj) which concludes this direction of
the proof.

Conversely, assume that v ∈ α−1(Pj)cjα
−1(Sj) for some j ≤ m. We have to

prove that v ∈ L`,ϕ. By hypothesis, we have v = v1cjv2 with v1 ∈ α−1(Pj) and
v2 ∈ α−1(Sj). Consider the following word u ∈ A∗`+1:

u = α(v1)bjα(v2) ∈ PjbjSj .

Observe that by definition, u is good and v = π1,...,`,A(u). Moreover, it follows
from (11) that u ∈ L`+1,ψ. Thus, v ∈ L`,ϕ by definition of L`,ϕ. ut

Fact 80 concludes the proof since it is immediate from Fact 75 that for all j ≤ m,
α−1
` (Pj) and α−1

` (Sj) both belong to C`[n + 1
2 ]. Thus, we obtain Fact 80 that the

language L`,ϕ is a finite union of marked concatenations of languages in C`[n+ 1
2 ] and

therefore belongs to C`[n+ 1
2 ] itself. ut
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7.3 Back to the dot-depth and Straubing-Thérien hierarchies

We now apply Theorem 73 to the two classical examples: the dot-depth and Straubing-
Thérien hierarchies. Note that the logical characterization of the dot-depth hierarchy is
historically the first result of this kind which was discovered by Thomas [52]. Therefore,
Theorem 73 is a generalization of this original result.

Recall that the basis of the dot-depth hierarchy is DD[0] = {∅, {ε}, A+, A∗}.
It turns out that the associated variant of first-order logic, FO(DD[0]), is exactly
FO(<,+1,min,max, ε). Indeed, according to Theorem 73 the predicates available in
FO(DD[0]) are as follows:

1. The label predicates.
2. The predicate IA∗ , which by definition is equivalent to the order predicate <.
3. The predicates PA∗ , SA∗ , NA∗ which always hold, hence they are equivalent to >.
4. The predicates I∅, P∅, S∅, N∅ which never hold, hence they are equivalent to ⊥.
5. The predicate Iε, which by definition is equivalent to the successor predicate +1.
6. The predicate IA+ , and by definition IA+ is equivalent to ¬Iε.
Thus, the only useful predicates in FO(DD[0]) are exactly those that are available in
FO(<,+1,min,max, ε): the label predicates, the linear order predicate, and the succes-
sor predicate. Therefore, we re-obtain Theorem 12 as a corollary of Theorem 73.

On the other hand, the basis of the Straubing-Thérien hierarchy is ST[0] = {∅, A∗},
so that we miss the predicates Iε and IA+ . Therefore, Theorem 13 is also a corollary
of Theorem 73.

8 Conclusion

In this paper, we surveyed 50 years of progress in the understanding of concatenation
hierarchies. We presented a new proof that closure under intersection is implied by
polynomial closure if the class we start from is a quotienting lattice. We then established
that if level 0 is a finite quotienting Boolean algebra, then the corresponding hierarchy is
strict and we stated that its levels 1

2 , 1,
3
2 have decidable separation. We proved a result

transferring decidability of separation for some level to decidability of membership for
the next half level, entailing that level 5

2 has decidable membership for finitely based
hierarchies. We also observed that in the Straubing-Thérien hierarchy, level q ≥ 1
(q ∈ N or q ∈ 1

2 + N) coincides with level q − 1 in a concatenation hierarchy whose
basis is finite, hence we got decidability of separation for levels 1

2 , 1, 3
2 , 2 and 5

2

in the Straubing-Thérien hierarchy, and decidability of membership for level 7
2 . We

then transferred all these results to the dot-depth hierarchy via a generic construction.
Finally, we proved a generic logical definition of concatenation hierarchies encompassing
the ones established for the dot-depth and the Straubing-Thérien hierarchies.

Some of the research directions following this work are obvious: it is desirable to
generalize this approach to capture all levels of such a concatenation hierarchy. This
seems however to be difficult. We would also want to test such techniques for other
structures than words, for instance, trees. Another short-term interesting topic is to
reprove and generalize results that were obtained in the particular case of the Straubing-
Thérien hierarchy regarding unambiguous polynomial closure. We leave this question
for future work.
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