
Characterizing level one in group-based
concatenation hierarchies?

Thomas Place1,2 and Marc Zeitoun1

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400 Talence, France
2 Institut Universitaire de France

firstname.name@labri.fr

Abstract. We investigate two operators on classes of regular languages:
polynomial closure (Pol) and Boolean closure (Bool). We apply these
operators to classes of group languages G and to their well-suited exten-
sions G+, which is the least Boolean algebra containing G and {ε}. This
yields the classes Bool(Pol(G)) and Bool(Pol(G+)). These classes form
the first level in important classifications of classes of regular languages,
called concatenation hierarchies, which admit natural logical characteri-
zations. We present generic algebraic characterizations of these classes.
They imply that one may decide whether a regular language belongs
to such a class, provided that a more general problem called separation
is decidable for the input class G. The proofs are constructive and rely
exclusively on notions from language and automata theory.

Keywords: Regular languages · Group languages · Concatenation hier-
archies · Membership.

1 Introduction

An active line of research in automata theory is to investigate natural subclasses
of regular languages. We are particularly interested in classes associated to frag-
ments of standard pieces of syntax used to define the regular languages (e.g., reg-
ular expressions or monadic second-order logic). Given a fragment, we consider
the class of all languages that can be defined by an expression of this fragment.
For each such class C, a standard approach for its investigation is to look for a
C-membership algorithm: given a regular language L as input, decide whether
L ∈ C. Getting such an algorithm requires a solid understanding of C. We are
not only interested in a yes/no answer on the decidability of C-membership but
also in the techniques and proof arguments involved for obtaining this answer.

We look at classifications called concatenation hierarchies. A concatenation
hierarchy is built from an input class of languages, called its basis, using two op-
erators. The polynomial closure of a class C, written Pol(C), consists in all finite
unions of languages L0a1L1 · · · anLn where a1, . . . , an are letters and L0, . . . , Ln

are languages in C. The Boolean closure of C, denoted by Bool(C), is the least

? Funded by the DeLTA project (ANR-16-CE40-0007).

class containing C and closed under Boolean operations. We investigate level one
of concatenation hierarchies: the classes Bool(Pol(C)) (abbreviated BPol(C)).
Moreover, we consider special bases C. The group languages are those recognized
by a finite group, or equivalently by a permutation automaton (i.e., a complete,
deterministic and co-deterministic automaton). We only consider bases that are
either a class G containing only group languages, or its well-suited extension G+
(roughly, G+ is the least Boolean algebra containing G and the singleton {ε}).
The motivation for using such bases stems from the logical characterizations of
concatenation hierarchies [22,12]. A word can be viewed as a logical structure
consisting of a sequence of labeled positions. Therefore, we may use first-order
sentences to define languages. It turns out that BPol(G) and BPol(G+) corre-
spond to the logical classes BΣ1(<,PG) and BΣ1(<,+1,PG) where BΣ1 is the
fragment of first-order logic containing only the Boolean combinations of purely
existential formulas. Here, the predicates “<” and “+1” are interpreted as the
linear order and the successor relation. Moreover, PG is a set of predicates built
from G: for each language L ∈ G, it contains a unary predicate that checks
whether the prefix preceding a given position belongs to L.

In the paper, we present generic algebraic characterizations of BPol(G) and
BPol(G+). They apply to all classes of group languages G satisfying mild hy-
potheses (namely, G must be closed under Boolean operations and quotients).
Moreover, they imply that membership is decidable for BPol(G) and BPol(G+)
provided that a more general problem, separation, is decidable for G. Separation
takes two input regular languages L0, L1 and asks whether there exists K ∈ G
such that L0 ⊆ K and L1 ∩ K = ∅. From the decidability point of view, the
results are not entirely new. In particular, for BPol(G), it is even known [14]
that separation is decidable for BPol(G) when it is already decidable for G (on
the other hand, this is open for BPol(G+)). Hence, our main contribution con-
sists in the characterizations themselves and the techniques that we use to prove
them. In particular, the proof arguments are constructive. For example, given
a language L satisfying the characterization of BPol(G), we prove directly that
L belongs to BPol(G) by explicitly building a description of L as a Boolean
combination of products L0a1L1 · · · anLn where L0, . . . , Ln ∈ G.

With these characterizations, we generalize a number of known results for
particular classes of group languages G. Let us first consider the case when G
is the trivial Boolean algebra, which we denote by ST: we have ST = {∅, A∗}
and ST+ = {∅, {ε}, A+, A∗} (where A is the alphabet). In this case, we ob-
tain two well-known classes: BPol(ST) = BΣ1(<) defines the piecewise testable
languages and BPol(ST+) = BΣ1(<,+1) the languages of dot-depth one. The
famous algebraic characterizations of these classes by Simon [17] and Knast [6]
are simple corollaries of our generic results. Another key example is the class
MOD of modulo languages: membership of a word in such a language depends
only on its length modulo some fixed integer. In this case, the logical coun-
terparts of BPol(MOD) and BPol(MOD+) are the classes BΣ1(<,MOD) and
BΣ1(<,+1,MOD) where “MOD” denotes the set of modular predicates. It is
again possible to use our results to reprove the known characterizations of these

classes by Chaubard, Pin and Straubing [4] and Maciel, Péladeau and Thérien [7].
Our result also applies to the important case when G is the class GR of all
group languages [8]. In particular, there exists a specialized characterization of
BPol(GR) by Henckell, Margolis, Pin and Rhodes [5], independent from GR-
separation. While it is also possible to reprove this result as a corollary of our
characterization, this requires a bit of technical work as well as knowledge of the
GR-separation algorithm [2] which is a difficult result. Finally, another generic
characterization of the classes BPol(G) follows from an algebraic theorem of
Steinberg [18] (though it only applies under more restrictive hypotheses on G).

Our techniques differ from those used in the aforementioned specialized pa-
pers. Historically, classes of the form BPol(G) or BPol(G+) are often approached
via alternate definitions based on an algebraic construction called “wreath prod-
uct”. Indeed, it turns out that all classes of this kind can be built from the piece-
wise testable languages (i.e., the class BPol(ST)) using this product [20,9]. The
arguments developed in [4,7,8,5,18] build exclusively on this construction. The
paper is completely independent from these techniques: we work directly with
the language theoretic definition of our classes based on the operator BPol. This
matches our original motivation: investigating classes of regular languages.

We introduce the needed terminology in Section 2, look at classes of the form
BPol(G) in Section 3, and devote Section 4 to classes of the form BPol(G+).
Due to space limitations, several proofs are postponed to the full version of the
paper [16].

2 Preliminaries

We present the objects that we investigate and the terminology that we require
to manipulate them. The proofs are available in the full version of the paper.

2.1 Words, regular languages and classes

We fix a finite alphabet A for the whole paper. As usual, A∗ denotes the set of
all finite words over A, including the empty word ε. We let A+ = A∗ \ {ε}. For
u, v ∈ A∗, we let uv be the word obtained by concatenating u and v. Additionally,
given w ∈ A∗, we write |w| ∈ N for the length of w. A language is a subset of A∗.
We denote the singleton language {u} by u. We lift concatenation to languages:
for K,L ⊆ A∗, we let KL = {uv | u ∈ K and v ∈ L}. We shall consider marked
products: given languages L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln is a
product of the form L0a1L1 · · · anLn where a1, . . . , an ∈ A (note that “L0” is a
marked product: this is the case n = 0).

Regular languages. All languages considered in the paper are regular. These
are the languages that can be equivalently defined by a regular expression, an
automaton or a morphism into a finite monoid. We work with the latter defi-
nition. A monoid is a set M equipped with a binary operation s, t 7→ st (called
multiplication) which is associative and has a neutral element denoted by “1M”.
Recall that an idempotent of a monoid M is an element e ∈M such that ee = e.

For all S ⊆M , we write E(S) for the set of all idempotents in S. It is standard
that when M is finite, there exists ω(M) ∈ N (written ω when M is understood)
such that sω is idempotent for every s ∈M .

An ordered monoid is a pair (M,≤) where M is a monoid and ≤ is a partial
order on M which is compatible with multiplication: for every s, t, s′, t′ ∈ M , if
s ≤ t and s′ ≤ t′, then ss′ ≤ tt′. An upper set of M (for ≤) is a set S ⊆M which
is upward closed for ≤: for every s, t ∈M such that s ≤ t, we have s ∈ S ⇒ t ∈ S.
For every s ∈ M , we write ↑s for the least upper set of M containing s (i.e.,
↑s consists of all t ∈ M such that s ≤ t). We may view arbitrary monoids as
being ordered, as follows: we view any monoid M with no ordering specified as
the ordered monoid (M,=): we use equality as the ordering. In this special case,
all subsets of M are upper sets.

Clearly, A∗ is a monoid for concatenation as the multiplication (ε is neutral).
Given an ordered monoid (M,≤), we may consider morphisms α : A∗ → (M,≤).
We say that a language L ⊆ A∗ is recognized by such a morphism α when there
exists an upper set F ⊆ M such that L = α−1(F) (the definition depends on
the ordering ≤, since F must be an upper set). Note that this also defines the
languages recognized by a morphism η : A∗ → N into an unordered monoid N
since we view N as the ordered monoid (N,=). It is well-known that a language
is regular if and only if it can be recognized by a morphism into a finite monoid.

Remark 1. The only infinite monoid that we consider is A∗. From now, we im-
plicitly assume that every other monoid M,N, . . . that we consider is finite.

Classes of languages. A class of languages C is a set of languages. A lattice is
a class closed under both union and intersection, and containing the languages
∅ and A∗. Moreover, a Boolean algebra is a lattice closed under complement.
Finally, a class C is quotient-closed when for all L ∈ C and u, v ∈ A∗, the
language {w ∈ A∗ | uwv ∈ L} belongs to C as well. We say that a class C is
a positive prevariety (resp. prevariety) to indicate that it is a quotient-closed
lattice (resp. Boolean algebra) containing only regular languages.

We rely on a decision problem called membership as a means to investigate
classes of languages. Given a class C, the C-membership problem takes as input
a regular language L and asks whether L ∈ C. Intuitively, obtaining a procedure
for C-membership requires a solid understanding of C. We also look at more
involved problem called separation. Given a class C, and two languages L0 and
L1, we say that L0 is C-separable from L1 if and only if there exists K ∈ C
such that L0 ⊆ K and L1 ∩K = ∅. The C-separation problem takes two regular
languages L0 and L1 as input and asks whether L0 is C-separable from L1. Let
us point out that we do not present separation algorithms in this paper. We
shall need this problem as an intermediary in our investigation of membership.

Group languages. A group is a monoid G such that every element g ∈ G has
an inverse g−1 ∈ G, i.e., such that gg−1 = g−1g = 1G. We call “group language”
a language recognized by a morphism into a finite group. We consider classes G
that are group prevarieties (i.e., containing group languages only).

We let GR be the class of all group languages. Another important example
is the class AMT of alphabet modulo testable languages. For every w ∈ A∗ and

every a ∈ A, we write #a(w) ∈ N for the number of occurrences of “a” in w. The
class AMT consists of all finite Boolean combinations of languages {w ∈ A∗ |
#a(w) ≡ k mod m} where a ∈ A and k,m ∈ N such that k < m. One may verify
that these are exactly the languages recognized by commutative groups. We also
consider the class MOD, which consists of all finite Boolean combinations of
languages {w ∈ A∗ | |w| ≡ k mod m} with k,m ∈ N such that k < m. Finally,
we write ST for the trivial class ST = {∅, A∗}. One may verify that GR, AMT,
MOD and ST are all group prevarieties.

It follows from the definition that {ε} and A+ are not group languages.
This motivates the next definition: for a class C, the well-suited extension of C,
denoted by C+, consists of all languages of the form L ∩ A+ or L ∪ {ε} where
L ∈ C. The next lemma follows from the definition.

Lemma 2. Let C be a prevariety. Then, C+ is a prevariety containing the lan-
guages {ε} and A+.

2.2 Polynomial and Boolean closure

In the paper, we look at classes built using two standard operators. Consider a
class C. The Boolean closure of C, denoted by Bool(C) is the least Boolean algebra
that contains C. Moreover, the polynomial closure of C, denoted by Pol(C), con-
tains all finite unions of marked products L0a1L1 · · · anLn where L0, . . . , Ln ∈ C.
Finally, we write BPol(C) for Bool(Pol(C)). It is known that when C is a pre-
variety, Pol(C) is a positive prevariety and BPol(C) is a prevariety. This is not
immediate (proving that Pol(C) is closed under intersection is difficult). This
was first shown by Arfi [1], see also [10,12] for more recent proofs.

Theorem 3. Let C be a prevariety. Then Pol(C) is a positive prevariety and
BPol(C) is a prevariety.

In the literature, these operators are used to define classifications called con-
catenation hierarchies. Given a prevariety C, the concatenation hierarchy of basis
C is built from C by iteratively applying Pol and Bool to C. In the paper, we
only look at the classes Pol(C) and BPol(C). These are the levels 1/2 and one in
the concatenation hierarchy of basis C. Moreover, we look at bases that are ei-
ther a group prevariety G or its well-suited extension G+. Most of the prominent
concatenation hierarchies in the literature use bases of this kind.

The hierarchy of basis ST = {∅, A∗} is called the Straubing-Thérien hier-
archy [19,21]. In particular, BPol(ST) is the class of piecewise testable lan-
guages [17]. Another prominent example is the basis ST+ = {∅, {ε}, A+, A∗}
which yields the dot-depth hierarchy [3]. Non-trivial group prevarieties also yield
important hierarchies. For example, the group hierarchy, whose basis is GR was
first investigated in [8]. The hierarchies of bases MOD and MOD+ are also
prominent (see for example [4,7]). These hierarchies are also interesting for their
logical counterparts, which were first discovered by Thomas [22]. Let us briefly
recall them (see [12,14] for more details).

Consider a word w = a1 · · · a|w| ∈ A∗. We view w as a linearly ordered set of
|w|+2 positions {0, 1, . . . , |w|, |w|+1} such that each position 1 ≤ i ≤ |w| carries
the label ai ∈ A (on the other hand, 0 and |w|+1 are artificial unlabeled leftmost
and rightmost positions). We use first-order logic to describe properties of words:
a sentence can quantify over the positions of a word and use a predetermined set
of predicates to test properties of these positions. We also allow two constants
“min” and “max”, which we interpret as the artificial unlabeled positions 0 and
|w|+ 1 in a given word w. Each first-order sentence ϕ defines the language of all
words satisfying the property stated by ϕ. Let us present the predicates that we
use. For each a ∈ A, we associate a unary predicate (also denoted by a), which
selects the positions labeled by “a”. We also consider two binary predicates: the
(strict) linear order “<” and the successor relation “+1”.

Example 4. The sentence “∃x∃y (x < y) ∧ a(x) ∧ b(y)” defines the language
A∗aA∗bA∗. The sentence “∃x∃y a(x) ∧ c(y) ∧ (y + 1 = max)” defines A∗aA∗c.

We associate a (possibly infinite) set of predicates PG to every group preva-
riety G. For every language L ∈ G, PG contains a unary predicate PL which is
interpreted as follows. Let w = a1 · · · a|w| ∈ A∗. The unary predicate PL selects
all positions i ∈ {0, . . . , |w| + 1} such that i 6= 0 and a1 · · · ai−1 ∈ L. It is stan-
dard to write “BΣ1” for the fragment of first-order logic, containing exactly the
Boolean combinations of existential first-order sentences. We let BΣ1(<,PG) be
the class of all languages defined by a sentence of BΣ1 using only the label predi-
cates, the linear order “<” and those in PG . Moreover, we let BΣ1(<,+1,PG) be
the class of all languages defined by a sentence of BΣ1, which additionally allows
the successor predicate “+1”. The following proposition follows from the generic
logical characterization of concatenation hierarchies presented in [12] and the
properties of group languages.

Proposition 5. For every group prevariety G, we have BPol(G) = BΣ1(<,PG)
and BPol(G+) = BΣ1(<,+1,PG).

Remark 6. When G = ST, all predicates in PST are trivial. Hence, we get the
classes BΣ1(<) and BΣ1(<,+1). When G = MOD, one may verify that we obtain
the classes BΣ1(<,MOD) and BΣ1(<,+1,MOD) where “MOD” is the set of
modular predicates (for all r, q ∈ N such that r < q, it contains a unary predicate
Mr,q selecting the positions i such that i ≡ r mod q). When G = AMT, one
may verify that we obtain the classes BΣ1(<,AMOD) and BΣ1(<,+1, AMOD)
where “AMOD” is the set of alphabetic modular predicates (for all a ∈ A and
r, q ∈ N such that r < q, it contains a unary predicate Ma

r,q selecting the positions
i such the that number of positions j < i with label a is congruent to r modulo q).

2.3 C-morphisms

We now introduce a key tool, which we shall use to formulate our results. Let C
be a positive prevariety. A C-morphism is a surjective morphism η : A∗ → (N,≤)
into a finite ordered monoid such that every language recognized by η belongs

to C. Let us make a key remark: when C is a prevariety, it suffices to consider
unordered monoids (we view them as monoids ordered by equality).

Lemma 7. Let C be a prevariety and η : A∗ → (N,≤) a morphism. Then, η is
a C-morphism if and only if η : A∗ → (N,=) is a C-morphism.

While simple, this notion is a key tool in the paper. First, it is involved in
the membership problem. It is well-known that for every regular language L,
there exists a canonical morphism αL : A∗ → (ML,≤L) into a finite ordered
monoid recognizing L and called the syntactic morphism of L (we do not recall
the definition as we shall not use it, see [11] for example). It can be computed
from any representation of L and we have the following standard property.

Proposition 8. Let C be a positive prevariety. A regular language L belongs to C
if and only if its syntactic morphism αL : A∗ → (ML,≤L) is a C-morphism.

In view of Proposition 8, getting an algorithm for C-membership boils down
to finding a procedure to decide whether an input morphism α : A∗ → (M,≤) is
a C-morphism. This is how we approach the question in the paper. We shall also
use C-morphisms as mathematical tools in proof arguments. In this context, we
shall need the following simple corollary of Proposition 8.

Proposition 9. Let C be a positive prevariety and consider finitely many lan-
guages L1, . . . , Lk ∈ C. There exists a C-morphism η : A∗ → (N,≤) such that
L1, . . . , Lk are recognized by η.

Finally, we state the following simple lemma, which considers group languages.

Lemma 10. Let G be a group prevariety and let η : A∗ → G be a G-morphism.
Then, G is a group.

2.4 C-pairs

Given a positive prevariety C and a morphism α : A∗ → M , we associate a
relation on M . The definition is taken from [12], where it is used to characterize
all classes of the form Pol(C) for an arbitrary positive prevariety C (we recall
this characterization below). We say that (s, t) ∈ M2 is a C-pair (for α) if and
only if α−1(s) is not C-separable from α−1(t). The C-pair relation is not robust.
One may verify that it is reflexive when α is surjective and symmetric when C is
closed under complement. However, it is not transitive in general. We shall use
the following lemma, which connects this notion to C-morphisms.

Lemma 11. Let C be a positive prevariety and let α : A∗ → M be a morphism
into a finite monoid. The two following properties hold:

– for every C-morphism η : A∗ → (N,≤) and every C-pair (s, t) ∈ M2 for α,
there exist u, v ∈ A∗ such that η(u) ≤ η(v), α(u) = s and α(v) = t.

– there exists a C-morphism η : A∗ → (N,≤) such that for all u, v ∈ A∗, if
η(u) ≤ η(v), then (α(u), α(v)) is a C-pair for α.

Application to polynomial closure. We now recall the characterization of
Pol(C) from [12].

Theorem 12. Let C be a positive prevariety and α : A∗ → (M,≤) a surjective
morphism. Then, α is a Pol(C)-morphism if and only if the following condi-
tion holds:

sω+1 ≤ sωtsω for every C-pair (s, t) ∈M2. (1)

By definition, one can compute all C-pairs associated to a morphism provided
that C-separation is decidable. Hence, in view of Proposition 8, it follows from
Theorem 12 that when C is a positive prevariety with decidable separation,
membership is decidable for Pol(C).

An interesting point is that Theorem 12 can be simplified in the special case
when C is a group prevariety G or its well-suited extension G+. This will be useful
later when dealing with BPol(G) and BPol(G+). We first present a specialized
characterization of the Pol(G)-morphisms.

Theorem 13. Let G be a group prevariety and α : A∗ → (M,≤) a surjective
morphism. Then, α is a Pol(G)-morphism if and only if the following condition
holds:

1M ≤ s for every s ∈M such that (1M , s) is a G-pair. (2)

Finally, we present a similar statement for classes of the form Pol(G+).

Theorem 14. Let G be a group prevariety, α : A∗ → (M,≤) a surjective mor-
phism and S = α(A+). Then, α is a Pol(G+)-morphism if and only if the fol-
lowing condition holds:

e ≤ ese for every e ∈ E(S) and s ∈M such that (1M , s) is a G-pair. (3)

3 Group languages

In this section, we look at classes of the form BPol(G) when G is a group pre-
variety. We present a generic algebraic characterization of such classes, which
implies that BPol(G)-membership is decidable when this is already the case for
G-separation.

3.1 Preliminaries

We present two key results that we use to build languages of BPol(G) in the
proof. The first one is a concatenation principle for the classes BPol(C) (where C
is an arbitrary prevariety) which is proved in [15, Lemma 3.6]. It is based on the
notion of “cover”. Given a language L, a cover of L is a finite set K of languages
satisfying L ⊆

⋃
K∈KK. If D is a class, we say that K is a D-cover of L, if K is

a cover of L such that K ∈ D for every K ∈ K.

Proposition 15. Let C be a prevariety, and let n ∈ N, L0, . . . , Ln ∈ Pol(C) and
a1, . . . , an ∈ A. For every i ≤ n, let Hi be a BPol(C)-cover of Li. There exists
a BPol(C)-cover K of L0a1L1 · · · anLn such that for every K ∈ K, there exists
Hi ∈ Hi for each i ≤ n satisfying K ⊆ H0a1H1 · · · anHn.

Using Proposition 15 requires building a language L0a1L1 · · · anLn where
L0, . . . , Ln ∈ Pol(C). We do this with an independent result which is tailored
to the special case that we investigate in the section: C is a group prevariety G.
Let L ⊆ A∗ be a language. For every word w ∈ A∗, we associate a language
↑Lw ⊆ A∗. Let a1, . . . , an ∈ A be the letters such that w = a1 · · · an. We define
↑Lw = La1L · · · anL ⊆ A∗ (in particular, ↑Lε = L). The next proposition is
proved in the full version of the paper (the proof is based on Higman’s lemma).

Proposition 16. Let H ⊆ A∗ be an arbitrary language and let L ⊆ A∗ be a
group language such that ε ∈ L. There exists a cover K of H such that every
K ∈ K is of the form K = ↑Lw for some word w ∈ H.

3.2 Characterization of BPol(G)

We are ready to present the characterization. As announced, we actually char-
acterize the BPol(G)-morphisms. Recall that since BPol(G) is a prevariety, it
suffices to consider unordered monoids by Lemma 7.

Theorem 17. Let G be a group prevariety and α : A∗→M a surjective mor-
phism. Then, α is a BPol(G)-morphism if and only if the following property
holds:

(qr)ω(st)ω+1 = (qr)ωqt(st)ω

for every q, r, s, t ∈M such that (q, s) is a G-pair.
(4)

Computing the G-pairs associated to a morphism boils down to G-separation.
Hence, in view of Proposition 8, Theorem 17 implies that if separation is decid-
able for a group prevariety G, then membership is decidable for BPol(G).

Remark 18. The decidability result itself is not new. In fact, it is even known [14]
that separation is decidable for BPol(G) when this is already the case for G. Our
main contribution is the algebraic characterization and its proof, which relies on
self-contained language theoretic arguments.

We may use Theorem 17 to reprove well-known results for specific classes G.
For example, since ST = {∅, A∗}, every pair (s, t) ∈ M2 is an ST-pair. Hence,
using Theorem 17, one may verify that a surjective morphism α : A∗ → M is a
BPol(ST)-morphism if and only if the equation (st)ωs = (st)ω = t(st)ω holds for
all s, t ∈M . This is exactly the characterization of the classBPol(ST) = BΣ1(<)
of piecewise testable languages by Simon [17]. We also get a characterization of
the class BPol(MOD) = BΣ1(<,MOD). Though the statement does not really
simplify in this case, it is easily shown to be equivalent to the one presented
in [4]. Finally, there exists a simple characterization of BPol(GR) presented
in [5]: a surjective morphism α : A∗ →M is a BPol(GR)-morphism if and only

if (ef)ω = (fe)ω for all idempotents e, f ∈ E(M). This is also a corollary of
Theorem 17. Yet, this requires a bit of technical work as well as a knowledge of
the GR-separation algorithm [2] (needed to describe the GR-pairs).

Proof (of Theorem 17). We first assume that α is a BPol(G)-morphism and
prove that it satisfies (4). There exists a finite set H of languages in Pol(G)
such that for every s ∈M , the language α−1(s) is a Boolean combination of lan-
guages in H. Since Pol(G) is a positive prevariety, Proposition 9 yields a Pol(G)-
morphism η : A∗ → (N,≤) recognizing everyH ∈ H. Moreover, Lemma 11 yields
a G-morphism β : A∗ → G such that for every u, v ∈ A∗, if β(u) = β(v), then
(η(u), η(v)) ∈ N2 is a G-pair for η. We know that G is a group by Lemma 10.
We let n = ω(M)× ω(N)× ω(G).

We may now prove that (4) holds. Let q, r, s, t ∈ M such that (q, s) is
a G-pair. We prove that (qr)ω(st)ω+1 = (qr)ωqt(st)ω. Since β : A∗ → G is
a G-morphism and (q, s) is a G-pair, Lemma 11 yields two words u, x ∈ A∗

and g ∈ G such that β(u) = β(x) = g, α(u) = q and α(x) = s. Since α
is surjective, we get v, y ∈ A∗ such that α(v) = r and α(y) = t. Moreover,
since G is a group, we have β((uv)n) = β((xy)n) = 1G by definition of n.
Let v′ = v(uv)n−1 and y′ = y(xy)n−1. Since β(u) = β(x) = g, we also get
β(v′) = β(y′) = g−1, β(uy′) = 1G and β(v′x) = 1G. Hence, by definition of
β, (1N , η(uy′)) and (1N , η(v′x)) are G-pairs. Since η is a Pol(G)-morphism by
definition, it follows from Theorem 13 that 1N ≤ η(uy′) and 1N ≤ η(v′x). We
may now multiply to obtain that η((uv)n(xy)n+1) ≤ η((uv)nuy′(xy)n+1) and
η((uv)nuy(xy)n) ≤ η((uv)nuv′xy(xy)n). By definition of n, y′ and v′, one may
verify that this yields the inequalities η((uv)n(xy)n+1) ≤ η((uv)nuy(xy)n) and
η((uv)nuy(xy)n) ≤ η((uv)n(xy)n+1). Since η recognizes all H ∈ H by definition,
it follows that (uv)n(xy)n+1 ∈ H ⇔ (uv)nuy(xy)n ∈ H for every H ∈ H. Since
all languages recognized by α are Boolean combination of languages in H, we
get α((uv)n(xy)n+1) = α((uv)nuy(xy)n). By definition, this exactly says that
(qr)ω(st)ω+1 = (qr)ωqt(st)ω as desired.

We turn to the converse implication. Assume that α satisfies (4). We prove
that α is a BPol(G)-morphism. Lemma 11 yields a G-morphism β : A∗ → G such
that for every u, v ∈ A∗, if β(u) = β(v), then (α(u), α(v)) is a G-pair. We write
L = β−1(1G) ∈ G. By hypothesis on G, L is a group language. Moreover, we have
ε ∈ L by definition. Given a finite set of languages K, and s, t ∈M , we say that
K is (s, t)-safe if for every K ∈ K and w,w′ ∈ K, we have sα(w)t = sα(w′)t.
The argument is based on the following lemma.

Lemma 19. Let s, t ∈ M . There exists a BPol(G)-cover of L which is (s, t)-
safe.

Before proving Lemma 19 we first use it to prove that every language rec-
ognized by α belongs to BPol(G), thus concluding the argument. We apply
Lemma 19 with s = t = 1M . This yields a BPol(G)-cover KL of L which is
(1M , 1M)-safe. We use it to build a BPol(G)-cover K of A∗ which is (1M , 1M)-
safe. Since L ∈ G and ε ∈ L, Proposition 16 yields a cover P of A∗ such that

every P ∈ P, there exist n ∈ N and a1, . . . , an ∈ A such that P = La1L · · · anL.
We cover each P ∈ P independently. Consider a language P ∈ P. By definition,
P = La1L · · · anL for a1, . . . , an ∈ A. Since L ∈ G and KL is a BPol(G)-cover of
L, Proposition 15 yields a BPol(G)-cover KP of P = La1L · · · anL such that for
every K ∈ KP , there exist K0, . . . ,Kn ∈ KL satisfying K ⊆ K0a1K1 · · · anKn.
Since KL is (1M , 1M)-safe, it is immediate that KP is (1M , 1M)-safe as well.
Finally, since P is a cover of A∗, it is now immediate that K =

⋃
P∈P KP is a

(1M , 1M)-safe BPol(G)-cover of A∗. Since K is (1M , 1M)-safe, we know that for
every K ∈ K, there exists s ∈M such that K ⊆ α−1(s). Hence, since K is a cover
of A∗, it is immediate that for every F ⊆ M , the language α−1(F) is a union
of languages in K. By closure under union, it follows that α−1(F) ∈ BPol(G).
This exactly says that all languages recognized by α belong to BPol(G).

It remains to prove Lemma 19. We define a preorder on M2 that we shall
use as an induction parameter. Consider (s, t), (s′, t′) ∈ M2. We write (s, t) 6L

(s′, t′) if there exist x, y ∈ A∗ such that xy ∈ L, s′ = sα(x) and t′ = α(y)t.
It is immediate that 6L is reflexive since we have ε = εε ∈ L. Let us verify
that 6L is transitive. Let (s, t), (s′, t′), (s′′, t′′) ∈ M2 such that (s, t) 6L (s′, t′)
and (s′, t′) 6L (s′′, t′′). We show that (s, t) 6L (s′′, t′′). By definition, we have
xy, x′y′ ∈ L such that s′ = sα(x), t′ = α(y)t, s′′ = s′α(x′) and t′′ = α(y′)t′.
Hence, s′′ = sα(xx′) and t′′ = α(y′y)t. Moreover, since L = β−1(1G), we have
β(xx′y′y) = β(xy) = 1G, which yields xx′y′y ∈ L. We conclude that (s, t) 6L

(s′′, t′′), as desired.

We may now start the proof. Let s, t ∈M . We construct a BPol(G)-cover K
of L which is (s, t)-safe. We proceed by descending induction on the number of
pairs (s′, t′) ∈ M2 such that (s, t) 6L (s′, t′). We handle the base case and the
inductive step simultaneously. Consider a word w ∈ L. We say w stabilizes (s, t)
if there exist u, v ∈ A∗ such that uv ∈ ↑Lw, sα(u) = s and α(v)t = t. Observe
that by definition, ε stabilizes (s, t) since we have εε = ε ∈ L = ↑Lε. We let
H ⊆ L be the language of all words w ∈ L that do not stabilize (s, t). Note that
by definition ε 6∈ H. We first use induction to build a BPol(G)-cover KH of H
and then complete it to build K. Let us point out that it may happen that H is
empty. This is the base case, it suffices to define KH = ∅.

Let P ⊆ M2 be the set of all pairs (s′, t′) ∈ M2 such that (s, t) 6L (s′, t′)
and (s′, t′) 66L (s, t). We define ` = |P | and write P = {(s′1, t′1), . . . , (s′`, t

′
`)}.

For every i ≤ `, we may apply induction in the proof of Lemma 19 to obtain a
BPol(G)-cover Ki of L which is (s′i, t

′
i)-safe. We define KL as the finite set of

all languages L ∩ K1 ∩ · · · ∩ K` where Ki ∈ Ki for every i ≤ `. Since L ∈ G,
it is immediate that KL is a BPol(G)-cover of L which is (s′, t′)-safe for every
(s′, t′) ∈ P . We use it to construct KH .

Lemma 20. There exists an (s, t)-safe BPol(G)-cover KH of H.

Proof. Since L is a group language such that ε ∈ L, Proposition 16 yields a cover
U of H such that for every U ∈ U, there exist n ≥ 1 and a1, . . . , an ∈ A such
that a1 · · · an ∈ H and U = La1L · · · anL (note that n ≥ 1 as ε 6∈ H). For each

U ∈ U, we build an (s, t)-safe BPol(G)-cover KU of U . Since U is a cover of H,
it will then suffice to define KH as the union of all covers KU . We fix U ∈ U.

By definition, U = La1L · · · anL where a1 · · · an ∈ H. Since L ∈ G, ε ∈ L and
KL is a BPol(G)-cover of L, Proposition 15 yields a BPol(G)-cover KU of U such
that for each K ∈ KU , we have K ⊆ K0a1K1 · · · anKn for K0, . . . ,Kn ∈ KL. It
remains to show that KU is (s, t)-safe. We fix K ∈ KU as described above and
w,w′ ∈ K. We show that sα(w)t = sα(w′)t. By definition, we have wi, w

′
i ∈ Ki

for all i ≤ n such that w = w0a1w1 · · · anwn and w′ = w′0a1w
′
1 · · · anw′n. We let

ui = w0a1 · · ·wi−1ai and u′i = w′0a1 · · ·w′i−1ai for 0 ≤ i ≤ n (u0 = u′0 = ε).
We also let vi = ai+1wi+1 · · · anwn and v′i = ai+1w

′
i+1 · · · anw′n (vn = v′n = ε).

Note that uiw
′
iv
′
i = ui−1wi−1v

′
i−1 for 1 ≤ i ≤ n. Hence, it suffices to prove that

sα(uiwiv
′
i)t = sα(uiw

′
iv
′
i)t for 0 ≤ i ≤ n. By transitivity, it will then follow that

sα(unwnv
′
n)t = sα(u0w

′
0v
′
0)t, i.e., sα(w)t = sα(w′)t as desired.

We fix i ≤ n and show that sα(uiwiv
′
i)t = sα(uiw

′
iv
′
i)t. By hypothesis,

wi, w
′
i ∈ Ki. Since Ki ∈ KL is (s′, t′)-safe for all (s′, t′) ∈ P , it suffices to prove

that (sα(ui), α(v′i)t) ∈ P . There are two conditions to verify. First, we show
that (s, t) 6L (sα(ui), α(v′i)t). By definition of 6L, this boils down to proving
that uiv

′
i ∈ L. By definition, wj , w

′
j ∈ Kj for every j ≤ n. Moreover, since

Kj ∈ KL, it follows that wj , w
′
j ∈ L for every j ≤ n by definition of KL. It

follows that β(wj) = β(w′j) = 1G since L = β−1(1G). Therefore, by definition of
ui and v′i, we obtain β(ui) = β(a1 · · · ai) and β(v′i) = β(ai+1 · · · an). This yields
β(uiv

′
i) = β(a1 · · · an). Finally, since a1 · · · an ∈ H ⊆ L and L is recognized by β,

we get uiv
′
i ∈ L, as desired. It remains to prove that (sα(ui), α(v′i)t) 66L (s, t). By

contradiction, assume that (sα(ui), α(v′i)t) 6L (s, t). This yields x, y ∈ A∗ such
that xy ∈ L and s = sα(uix) and t = α(yv′i)t. Since xy ∈ L and wj , w

′
j ∈ L, it is

immediate by definition of ui and v′i that uixyvi ∈ ↑L(a1 · · · an). Hence, a1 · · · an
stabilizes (s, t). This is a contradiction since a1 · · · an ∈ H. ut

We are ready to construct the desired (s, t)-safe BPol(G)-cover K of L.
Let KH be the BPol(G)-cover of H given by Lemma 20. We let K⊥ = L \
(
⋃

K∈KH
K). Finally, we define K = {K⊥} ∪KH . It is immediate that K is a

BPol(G)-cover of L since BPol(G) is a Boolean algebra (recall that L ∈ G). It
remains to verify that K is (s, t)-safe. Since we already know that KH is (s, t)-
safe, it suffices to prove that for every w,w′ ∈ K⊥, we have sα(w)t = sα(w′)t.
We actually show that sα(w)t = st for every w ∈ K⊥. Since this is immediate
when w = ε, we assume that w ∈ A+ and let a1, . . . , an ∈ A be the letters such
that w = a1 · · · an.

By definition of K⊥, we know that w 6∈ K ′ for every K ′ ∈ KH . Since KH

is a cover of H, it follows that w 6∈ H, which means that w stabilizes (s, t)
by definition of H. We get u′, v′ ∈ A∗ such that u′v′ ∈ ↑Lw, sα(u′) = s and
α(v′)t = t. Since u′v′ ∈ ↑Lw, there exist 0 ≤ i ≤ n and x0, . . . , xi, yi, . . . , yn ∈ A∗
which satisfy x0, . . . , xi−1, xiyi, yi+1, . . . , yn ∈ L, u′ = x0a1x1 · · · aixi and v′ =
yiai+1xi+1 · · · anxn. We write u = a1 · · · ai and v = ai+1 · · · an. By definition
w = uv. We show that s = sα(uxi) and t = α(yiv)t. Let us first assume that
this holds and explain why this implies st = sα(w)t.

Since uv = w and w ∈ K⊥ ⊆ L = β−1(1G), we have β(u)β(v) = 1G. Let
p = ω(G). We have 1G = β((yiv)p). Thus, since G is a group, it follows that
β(u) = β((yiv)p−1yi). By definition of β, it follows that (α(u), α((yiv)p−1yi)) is
a G-pair. Consequently, we obtain from (4) that,

(α(uxi))
ω(α((yiv)p−1yiv))ω+1 = (α(uxi))

ωα(uv)(α((yiv)p−1yiv))ω.

We may now multiply by s on the left and t on the right. Since s = sα(uxi) and
t = α(yiv)t, this yields st = sα(uv)t. This concludes the proof since uv = w.

It remains to show that s = sα(uxi) and t = α(yiv)t. We prove the former
(the latter is symmetrical and left to the reader). For every j such that 0 ≤ j ≤ i,
we write zj = xjaj+1 · · ·xi−1aixi (when i = j, we let zi = xi). We use induction
on i to prove that s = sα(a1 · · · ajzj) for 0 ≤ j ≤ i. Clearly, the case j = i
yields s = sα(a1 · · · aixi) which exactly says that s = sα(uxi). When j = 0, we
have z0 = x0a1x1 · · · aixi = u′ and sα(u′) = s by hypothesis. Assume now that
1 ≤ j ≤ i. Since xj−1 ∈ L and L = β−1(1G), we have β(xj−1) = β(ε) = 1G.
Hence, (α(xj−1), 1M) is a G-pair by definition of β. Applying (4) with the values
α(xj−1), α(ajzja1 · · · aj−1), 1M , 1M yields that,

(α(xj−1ajzja1 · · · aj−1))ω = (α(xj−1ajzja1 · · · aj−1))ωα(xj−1). (5)

By induction hypothesis, we know that s = sα(a1 · · · aj−1zj−1). Since it is im-
mediate by definition that a1 · · · aj−1zj−1 = a1 · · · aj−1xj−1ajzj , we get,

s = sα(a1 · · · aj−1xj−1ajzj)
= s(α(a1 · · · aj−1xj−1ajzj))ω+1

= sα(a1 · · · aj−1)(α(xj−1ajzja1 · · · aj−1))ωα(xj−1)α(ajzj)
= sα(a1 · · · aj−1)(α(xj−1ajzja1 · · · aj−1))ωα(ajzj) by (5)
= s(α(a1 · · · aj−1xj−1ajzj))ωα(a1 · · · aj−1ajzj)
= sα(a1 · · · ajzj).

This concludes the proof. ut

4 Well-suited extensions

We turn to the classesBPol(G+) where G is an arbitrary group prevariety. Again,
we present a generic algebraic characterization, which implies that BPol(G+)-
membership is decidable when this is already the case for G-separation.

4.1 Preliminaries

In this case as well, we start with preliminary results that we use to build lan-
guages of BPol(G+). The first one is a simple corollary of Proposition 15 (the
concatenation principle for BPol(C)) which is more convenient to manipulate
when considering BPol(G+) (see the full version of the paper).

Corollary 21. Let C be a prevariety, L ∈ Pol(C+), H a BPol(C+)-cover of L,
n ∈ N and n+ 1 nonempty words w1, . . . , wn+1 ∈ A+. There exists a BPol(C+)-
cover K of w1L · · ·wnLwn+1 such that for every language K ∈ K, we have
K ⊆ w1H1 · · ·wnHnwn+1 for H1, . . . ,Hn ∈ H.

We complete Corollary 21 with a result that we use to build languages of the
form w1L · · ·wnLwn+1 with L ∈ Pol(C+). It is tailored to the case considered
in the section: C is a group prevariety G. Consider a morphism α : A∗ → M
and a nonempty word w ∈ A+. An α-guarded decomposition of w is a tuple
(w1, . . . , wn+1) where n ∈ N and w1, . . . , wn+1 ∈ A+ are nonempty words such
that w = w1 · · ·wn+1 and, if n ≥ 1, then for 1 ≤ i ≤ n, there exists an idempotent
ei ∈ α(A+) such that α(wi)ei = α(wi) and eiα(wi+1) = α(wi+1). The next result
is a corollary of Proposition 16. It is proved in the full version of the paper.

Proposition 22. Let H ⊆ A+ be a language, α : A∗ → M be a morphism and
L ⊆ A∗ be a group language such that ε ∈ L. There is a cover K of H such that
for all K ∈ K, there are w ∈ H and an α-guarded decomposition (w1, . . . , wn+1)
of w for some n ∈ N such that K = w1L · · ·wnLwn+1 (if n = 0, then K = {w1}).

4.2 Characterization

We may now present the characterization. As we explained, we actually charac-
terize the BPol(G+)-morphisms. Recall that since BPol(G+) is a prevariety, it
suffices to consider unordered monoids by Lemma 7.

Theorem 23. Let G be a group prevariety, α :A∗→M a surjective morphism
and S = α(A+). Then, α is a BPol(G+)-morphism if and only if the following
property holds:

(eqfre)ω(esfte)ω+1 = (eqfre)ωqft(esfte)ω

for all q, r, s, t ∈M and e, f ∈ E(S) such that (q, s) is a G-pair.
(6)

Again, by Proposition 8, Theorem 23 implies that if separation is decidable
for a group prevariety G, then membership is decidable for BPol(G+).

Theorem 23 can also be used to reprove famous results for specific classes G.
As seen in Section 3, since ST = {∅, A∗}, every pair (s, t) ∈ M2 is an ST-pair.
Thus, one may verify from Theorem 23 that a surjective morphism α : A∗ →M is
a BPol(ST+)-morphism if and only if (eqfre)ω(esfte)ω = (eqfre)ωqft(esfte)ω

for every q, r, s, t ∈ S and e, f ∈ E(S) (where S = α(A+)). This is exactly the
well-known characterization of the languages of dot-depth one by Knast [6] (i.e.,
the class BPol(ST+) = BΣ1(<,+1)). Additionally, there exists a specialized
characterization of BPol(MOD+) = BΣ1(<,+1,MOD) in the literature [7].
It can also be reproved as a corollary of Theorem 23. Yet, this requires some
technical work involving the MOD-pairs.

Proof (of Theorem 23). Assuming that α satisfies (6), we prove that it is a
BPol(G+)-morphism. The converse implication is proved in the full version of
the paper (the argument is based on Theorem 23).

Lemma 11 yields a G-morphism β : A∗ → G such that for u, v ∈ A∗, if
β(u) = β(v), then (α(u), α(v)) is a G-pair. Let L = β−1(1G) ∈ G. By hypothesis
on G, L is a group language. Moreover, ε ∈ L by definition. Given a finite set of
languages K, and s, t ∈ M , we say that K is (s, t)-safe if for every K ∈ K and
w,w′ ∈ K, we have sα(w)t = sα(w′)t. The proof is based on the next lemma.

Lemma 24. Let s, t ∈M . There exists an (s, t)-safe BPol(G+)-cover of L.

We first apply Lemma 24 to prove that α is a BPol(G+)-morphism. We use
for s = t = 1M . This yields a BPol(G+)-cover KL of L which is (1M , 1M)-safe.
One may now apply Proposition 15 and Proposition 16 to build a BPol(G)-
cover K of A∗ which is (1M , 1M)-safe from KL (see the proof of Theorem 17 for
details). Hence, for every F ⊆ M , the language α−1(F) is a union of languages
in K. By closure under union, it follows that α−1(F) ∈ BPol(G+). This exactly
says that all languages recognized by α belong to BPol(G+).

It remains to prove Lemma 24. We define a preorder on M2 that we shall
use as an induction parameter. Let (s, t), (s′, t′) ∈M2. We write (s, t) 6+

L (s′, t′)
if either (s, t) = (s′, t′) or there exist x, y ∈ A∗ and e ∈ E(S) such that xy ∈ L,
α(x)e = α(x), eα(y) = α(y), s′ = sα(x) and t′ = α(y)t. One may verify that
6+

L is a preorder. We may now start the proof. Let s, t ∈ M . We construct a
BPol(G+)-cover K of L which is (s, t)-safe. We proceed by induction on the
number of pairs (s′, t′) ∈ M2 such that (s, t) 6+

L (s′, t′). The base case and the
inductive step are handled simultaneously. First, we define a language H ⊆ L.
Let w ∈ L. We say w stabilizes (s, t) if w = ε or w ∈ A+ and there exists
n ≥ 1, an α-guarded decomposition (w1, . . . , wn+1) of w, an index 1 ≤ i ≤ n,
x1, . . . , xi, yi, . . . , yn ∈ A∗ and e ∈ E(S) which satisfy the following conditions:

– x1, . . . , xi−1, xiyi, yi+1, . . . , yn ∈ L, and,
– sα(w1x1 · · ·wixi)e = s, and,
– eα(yiwi+1 · · · ynwn+1)t = t.

We let H ⊆ L be the language of all words w ∈ L which do not stabilize (s, t).
Observe that by definition, we have ε 6∈ H. We first use induction to build
an (s, t)-safe BPol(G+)-cover of H. Then, we complete it to obtain the desired
BPol(G+)-cover of L. It may happen that H is empty. In this case, we do not
need induction: it suffices to use ∅ as this BPol(G+)-cover.

We let P ⊆ M2 be the set of all (s′, t′) ∈ M2 such that (s, t) 6+
L (s′, t′)

and (s′, t′) 66+
L (s, t). We define ` = |P | and write P = {(s′1, t′1), . . . , (s′`, t

′
`)}.

For every i ≤ `, we may apply induction in the proof of Lemma 24 to obtain a
BPol(G+)-cover Ki of L which is (s′i, t

′
i)-safe. We met KL as the finite set of

all languages L ∩ K1 ∩ · · · ∩ K` where Ki ∈ Ki for every i ≤ `. Since L ∈ G,
it is immediate that KL is a BPol(G+)-cover of L which is (s′, t′)-safe for all
(s′, t′) ∈ P . We use it to build KH .

Lemma 25. There exists an (s, t)-safe BPol(G+)-cover KH of H.

Proof. Since L is a group language such that ε ∈ L and ε 6∈ H, Proposition 22
yields a cover U of H such that each U ∈ U is of the form U = w1L · · ·wnLwn+1

where (w1, . . . , wn+1) is an α-guarded decomposition of a word w ∈ H. For each
U ∈ U, we build an (s, t)-safe BPol(G+)-cover KU of U . As U is a cover of H,
it will then suffice to define KH as the union of all covers KU . We fix U ∈ U.

By definition of U, U = w1L · · ·wnLwn+1 where (w1, . . . , wn+1) is an α-
guarded decomposition of a word w ∈ H. Since L ∈ G, ε ∈ L and KL is
a BPol(G+)-cover of L by hypothesis, Corollary 21 yields a BPol(G+)-cover
KU of U such that for each K ∈ KU , we have K ⊆ w1K1 · · ·wnKiwn+1 for
K1, . . . ,Kn ∈ KL. Let us prove that KU is (s, t)-safe. We fix K ∈ KU as de-
scribed above. For u, u′ ∈ K, we show that sα(u)t = sα(u′)t. If n = 0, then
K ⊆ {w1}. Hence u = u′ = w1 and the result is immediate. Assume now that
n ≥ 1. We get ui, u

′
i ∈ Ki for 1 ≤ i ≤ n such that u = w1u1 · · ·wnunwn+1 and

u′ = w1u
′
1 · · ·wnu

′
nwn+1. For 1 ≤ i ≤ n, we write xi = w1u1w2 · · ·ui−1wi and

x′i = w1u
′
1w2 · · ·u′i−1wi. Moreover, we let yi = wi+1ui+1 · · ·wnunwn+1 and y′i =

wi+1u
′
i+1 · · ·wnu

′
nwn+1. For 1 ≤ i ≤ n, we have xiu

′
iy
′
i = xi−1ui−1y

′
i−1. More-

over, one may use the hypotheses that w ∈ H and (w1, . . . , wn+1) is an α-guarded
decomposition of w to verify that (sα(xi), α(y′i)t) ∈ P . Hence, since Ki ∈ KL

which is (s′, t′)-safe for every (s′, t′) ∈ P , we have sα(xiuiy
′
i)t = sα(xiu

′
iy
′
i)t for

1 ≤ i ≤ n. It is now immediate by transitivity that sα(xnuny
′
n)t = sα(x1u

′
1y
′
1)t,

i.e. sα(u)t = sα(u′)t as desired. ut

We now define the desired (s, t)-safe BPol(G+)-cover K of L. Lemma 25
yields a BPol(G+)-cover KH of H. We let K⊥ = L \ (

⋃
K∈KH

K). Finally, we
let K = {K⊥} ∪KH . Clearly, K is a BPol(G+)-cover of L since BPol(G+) is
a Boolean algebra (recall that L ∈ G). It remains to verify that K is (s, t)-safe.
Since we already know that KH is (s, t)-safe, it suffices to prove that for every
w,w′ ∈ K⊥, we have sα(w)t = sα(w′)t. We actually show that sα(w)t = st for
every w ∈ K⊥. Since this is immediate when w = ε, we assume that w ∈ A+.

By definition of K⊥, we have w 6∈ K ′ for all K ′ ∈ KH . Since KH is a cover
of H, this yields w 6∈ H, i.e. w stabilizes (s, t). Since w 6= ε, we get an α-guarded
decomposition (w1, . . . , wn+1) of w, an index i ≤ n, x1, . . . , xi, yi, . . . , y1 ∈ A∗
and e∈E(S) such that x1, . . . , xi−1, xiyi, yi−1, . . . , yn∈L, sα(w1x1 · · ·wixi)e = s
and eα(yiwi+1 · · · ynwn)t = t. Let u = w1 · · ·wi and v = wi+1 · · ·wn+1. We show
that s = sα(uxi)e and t = eα(yiv)t (note that since e is an idempotent, this also
implies s = se and t = et) Let us first assume that this holds and explain why
this implies st = sα(w)t.

Since (w1, . . . , wn+1) is an α-guarded decomposition, there exist an idempo-
tent f ∈ E(S) such that α(wi)f = α(wi) and fα(wi+1) = α(wi+1). By definition
of u and v, we have α(u)f = α(u) and fα(v) = α(v). Clearly, we have uv = w.
Thus, since w ∈ L = β−1(1G), we have β(u)β(v) = 1G. Let p = ω(G). We have
1G = β((yiv)p). Thus, since G is a group, it follows that β(u) = β((yiv)p−1yi).
By definition of β, it follows that (α(u), α((ynv)p−1yi)) is a G-pair. Let q = α(u),
r = α(xi), q

′ = α((ynv)p−1yi) and r′ = α(v). Since we just proved that (q, q′) is
a G-pair, we obtain from (6) that,

(eqfre)ω(eq′fr′e)ω+1 = (eqfre)ωqfr′(eq′fr′e)ω. (7)

Since α(u)f = α(u), we have eqfre = eα(uxi)e and qfr′ = α(uv) = α(w).
Moreover, since fα(v) = α(v), we have eq′fr′e = eα((yiv)p)e. Hence, since we
have s = sα(uxi)e = se and t = eα(yiv)t = et, it is immediate that seqfre = s
and eq′fr′et = t. We may now multiply by s on the left and t on the right in (7)
to obtain st = sqfr′t = sα(w)t as desired.

It remains to prove that s = sα(uxi)e and t = eα(yiv)t. We concentrate on
s = sα(uxi)e (the other equality is symmetrical and left to the reader). For every
j such that 1 ≤ j ≤ i, we write rj = α(wjxj · · ·wixi)e and uj = w1 · · ·wj−1 (we
let u1 = ε). We use induction on j to prove that s = sα(uj)rj for 1 ≤ j ≤ i. This
concludes the argument: when j = i, we get s = sα(w1 · · ·wi−1wixi)e. Since
u = w1 · · ·wi, this exactly says that s = sα(uxi)e as desired. The case j = 1 is
immediate by definition: we have sα(w1x1 · · ·wixi)e = s. Thus, we now assume
that 2 ≤ j ≤ i. Since (w1, . . . , wn+1) is an α-guarded decomposition, there exist
an idempotent f ∈ E(S) such that α(wj−1)f = α(wj−1) and fα(wj) = α(wj).
By definition of uj and rj , we have α(uj)f = α(uj) and frj = rj . Moreover,
since xj−1 ∈ L and L = β−1(1G), we have β(xj−1) = β(ε) = 1G. By definition
of β, it follows that (α(xj−1), 1M) is a G-pair. Hence, we may apply (6) for
q = α(xj−1), r = rjα(uj) and s = t = 1M to obtain,

(fα(xj−1)frjα(uj)f)ω = (fα(xj−1)frjα(uj)f)ωα(xj−1)f. (8)

Induction yields that s = sα(uj−1)rj−1. Moreover, it is immediate from the def-
initions that α(uj−1)rj−1 = α(uj)α(xj−1)rj = α(uj)fα(xj−1)frj which yields,

s = sα(uj)fα(xj−1)frj
= s(α(uj)fα(xj−1)frj)

ω+1

= sα(uj)(fα(xj−1)frjα(uj)f)ωα(xj−1)frj
= sα(uj)(fα(xj−1)frjα(uj)f)ωrj by (8)
= s(α(uj)fα(xj−1)frj)

ωα(uj)frj
= sα(uj)frj .

This exactly says that q = sα(uj)rj which completes the proof. ut

5 Conclusion

We presented generic algebraic characterizations for classes of the form BPol(G)
and BPol(G+) when G is a group prevariety. They imply that membership is de-
cidable for these two classes as soon as separation is decidable for the input class
G. The most natural follow-up question is whether these characterizations can
be generalized to encompass all classes BPol(C) where C is an arbitrary prevari-
ety and obtain a characterization similar to the one provided by Theorem 12 for
Pol(C). This is a difficult question. In particular, it seems unlikely that BPol(C)-
membership boils down to C-separation in the general case. Indeed, a specialized
characterization for the class BPol(BPol(ST)) is known [13]. Yet, deciding it
involves looking at a more general question than BPol(ST)-separation.

References

1. Arfi, M.: Polynomial operations on rational languages. In: STACS’87. pp. 198–206.
Springer-Verlag, Berlin, Heidelberg (1987)

2. Ash, C.J.: Inevitable graphs: a proof of the type II conjecture and some related
decision procedures. Int. J. Algebra Comput. 1(1), 127–146 (1991)

3. Brzozowski, J.A., Cohen, R.S.: Dot-depth of star-free events. Journal of Computer
and System Sciences 5(1), 1–16 (1971)

4. Chaubard, L., Éric Pin, J., Straubing, H.: First order formulas with modular pred-
icates. In: Proceedings of the 21th IEEE Symposium on Logic in Computer Science
(LICS’06). pp. 211–220 (2006)

5. Henckell, K., Margolis, S., Pin, J.E., Rhodes, J.: Ash’s type II theorem, profinite
topology and Malcev products. Int. J. Algebra Comput. 1, 411–436 (1991)

6. Knast, R.: A semigroup characterization of dot-depth one languages. RAIRO -
Theoretical Informatics and Applications 17(4), 321–330 (1983)

7. Maciel, A., Péladeau, P., Thérien, D.: Programs over semigroups of dot-depth one.
Theoretical Computer Science 245(1), 135–148 (2000)

8. Margolis, S., Pin, J.E.: Product of Group Languages. In: FCT Conference. vol.
Lecture Notes in Computer Science, pp. 285–299. Springer-Verlag (1985)

9. Pin, J.E.: Algebraic tools for the concatenation product. Theoretical Computer
Science 292, 317–342 (2003)

10. Pin, J.E.: An explicit formula for the intersection of two polynomials of regular
languages. In: DLT 2013. Lect. Notes Comp. Sci., vol. 7907, pp. 31–45. Springer
(2013)

11. Pin, J.E.: Mathematical foundations of automata theory (2020),
http://www.irif.fr/ jep/PDF/MPRI/MPRI.pdf. In preparation

12. Place, T., Zeitoun, M.: Generic results for concatenation hierarchies. Theory of
Computing Systems (ToCS) 63(4), 849–901 (2019), selected papers from CSR’17

13. Place, T., Zeitoun, M.: Going higher in first-order quantifier alternation hierarchies
on words. Journal of the ACM 66(2), 12:1–12:65 (2019)

14. Place, T., Zeitoun, M.: Separation and covering for group based concatenation
hierarchies. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic
in Computer Science. pp. 1–13. LICS’19 (2019)

15. Place, T., Zeitoun, M.: Separation for dot-depth two. Logical Methods in Computer
Science Volume 17, Issue 3 (2021)

16. Place, T., Zeitoun, M.: Characterizing level one in group-based concatenation hi-
erarchies. CoRR abs/2201.06826 (2022), https://arxiv.org/abs/2201.06826

17. Simon, I.: Piecewise testable events. In: Proceedings of the 2nd GI Conference on
Automata Theory and Formal Languages. pp. 214–222. Springer-Verlag, Berlin,
Heidelberg (1975)

18. Steinberg, B.: Inevitable graphs and profinite topologies: Some solutions to algo-
rithmic problems in monoid and automata theory, stemming from group theory.
Int. J. Algebra Comput. 11(1), 25–72 (2001)

19. Straubing, H.: A generalization of the schützenberger product of finite monoids.
Theoretical Computer Science 13(2), 137–150 (1981)

20. Straubing, H.: Finite semigroup varieties of the form V ∗ D. Journal of Pure and
Applied Algebra 36, 53–94 (1985)

21. Thérien, D.: Classification of finite monoids: The language approach. Theoretical
Computer Science 14(2), 195–208 (1981)

22. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer
and System Sciences 25(3), 360–376 (1982)

http://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://arxiv.org/abs/2201.06826

	Characterizing level one in group-based concatenation hierarchies

