A generic polynomial time approach to separation by first-order logic without quantifier alternation

3 Thomas Place 🖂 😭

4 LaBRI, Bordeaux University, France

5 Marc Zeitoun ⊠ 😭

6 LaBRI, Bordeaux University, France

7 — Abstract

We look at classes of languages associated to the fragment of first-order logic $\mathcal{B}\Sigma_1$, in which quantifier 8 alternations are disallowed. Each class is defined by choosing the set of predicates on positions that may be used. Two key such fragments are those equipped with the linear ordering and possibly the 10 successor relation. Simon and Knast proved that these two variants have decidable *membership*: 11 "does an input regular language belong to the class ?". We rely on a characterization of $\mathcal{B}\Sigma_1$ by the 12 operator BPol: given an input class \mathcal{C} , it outputs a class $BPol(\mathcal{C})$ that corresponds to a variant of 13 $\mathcal{B}\Sigma_1$ equipped with special predicates associated to \mathcal{C} . We extend the above results in two orthogonal 14 directions. First, we use two kinds of inputs: classes \mathcal{G} of group languages (i.e., recognized by a DFA 15 in which each letter induces a permutation of the states) and extensions thereof, written \mathcal{G}^+ . The 16 classes $BPol(\mathcal{G})$ and $BPol(\mathcal{G}^+)$ capture many natural variants of $\mathcal{B}\Sigma_1$ which use predicates such as 17 the linear ordering, the successor, the modular predicates or the alphabetic modular predicates. 18 Second, instead of membership, we explore the more general separation problem: decide if two 19

20 regular languages can be separated by a language from the class under study. We show that separation is decidable for $BPol(\mathcal{G})$ and $BPol(\mathcal{G}^+)$ when this is the case for \mathcal{G} . This was known for $BPol(\mathcal{G})$ 21 and for two particular classes of the form $BPol(\mathcal{G}^+)$. Yet, the algorithms were indirect and relied on 22 involved frameworks, yielding poor upper complexity bounds. In contrast, the approach of the paper 23 is direct. We work only with elementary concepts (mainly, finite automata). Our main contribution 24 consists in polynomial time Turing reductions from both $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -separation to 25 \mathcal{G} -separation. This yields polynomial algorithms for many key variants of $\mathcal{B}\Sigma_1$, including those 26 equipped with the linear ordering and possibly the successor and/or the modular predicates. 27

²⁸ 2012 ACM Subject Classification Theory of computation \rightarrow Formal languages and automata theory;

 $_{29} \quad {\rm Theory} \ {\rm of} \ {\rm computation} \rightarrow {\rm Regular} \ {\rm languages}$

30 Keywords and phrases Automata, Separation, Covering, Concatenation hierarchies, Group languages

- ³¹ Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.29
- Related Version Full version of the paper: https://arxiv.org/abs/2210.00946 [25]

³³ **Funding** Supported by the DeLTA project (ANR-16-CE40-0007)

© T. Place and M. Zeitoun; licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 29; pp. 29:1–29:23

Leibniz International Proceedings in Informatics LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

29:2 A generic polynomial time approach to separation by alternation-free first-order logic

1 Introduction 34

75

An important question in automata theory is to precisely understand the prominent classes 35 of regular languages of finite words. We are interested in the classes associated to a piece 36 of syntax (such as regular expressions or logic), whose purpose is to specify the languages 37 of such classes. In the paper, we formalize the goal of "understanding a given class \mathcal{C} " by 38 looking at a decision problem: C-separation. It takes two regular languages L_1, L_2 as input 30 and asks whether there exists $K \in \mathcal{C}$ such that $L_1 \subseteq K$ and $K \cap L_2 = \emptyset$. The key idea is 40 that obtaining an algorithm for C-separation requires a solid understanding of C. 41

We investigate a family of classes associated to a fragment of first-order logic written $\mathcal{B}\Sigma_1$. 42 The sentences of $\mathcal{B}\Sigma_1$ are Boolean combinations of *existential* formulas, *i.e.*, whose prenex 43 normal form has the shape $\exists x_1 \exists x_2 \cdots \exists x_k \varphi$, with φ quantifier-free. Several classes are 44 associated to $\mathcal{B}\Sigma_1$, each determined by the predicates on positions that we allow. In the 45 literature, standard examples of predicates include the linear order "<" [27], the successor 46 relation "+1" [9] or modular predicates "MOD" [5]. Thus, a generic approach is desirable. 47 We tackle languages associated to $\mathcal{B}\Sigma_1$ through the operator $\mathcal{C} \mapsto BPol(\mathcal{C})$ defined on 48 classes of languages. It is the composition of the polynomial closure $\mathcal{C} \mapsto Pol(\mathcal{C})$ and the 49 Boolean closure $\mathcal{C} \mapsto Bool(\mathcal{C})$ operators: $BPol(\mathcal{C}) = Bool(Pol(\mathcal{C}))$. Recall that the polynomial 50 closure of a class \mathcal{C} consists of all finite unions of languages of the form $L_0 a_1 L_1 \cdots a_n L_n$. 51 where $n \geq 0$, each a_i is a letter and each L_i belongs to \mathcal{C} . Indeed, many classes associated 52 to $\mathcal{B}\Sigma_1$ are of the form $BPol(\mathcal{C})$ [34, 20]. In this paper, we look at specific input classes \mathcal{C} . 53 The group languages are those recognized by a finite group, or equivalently by a permuta-54 tion automaton [33] (*i.e.*, which is complete, deterministic and co-deterministic). We consider 55 input classes that are either a class \mathcal{G} consisting of group languages, or a well-suited extension 56 thereof, \mathcal{G}^+ (roughly, \mathcal{G}^+ is the least Boolean algebra containing \mathcal{G} and the singleton $\{\varepsilon\}$). 57 It is known [20] that if \mathcal{G} is a class of group languages, then $BPol(\mathcal{G}) = \mathcal{B}\Sigma_1(\langle,\mathbb{P}_{\mathcal{G}})$ and 58 $BPol(\mathcal{G}^+) = \mathcal{B}\Sigma_1(<, +1, \mathbb{P}_{\mathcal{G}})$. Here, $\mathbb{P}_{\mathcal{G}}$ is a set of predicates associated to \mathcal{G} : each language L 59 in \mathcal{G} gives rise to a predicate $P_L(x)$, which selects all positions x in a word w such that the 60 prefix of w up to position x (excluded) belongs to L. This captures most of the natural 61 examples. In particular, we get signatures including the aforementioned predicates, such as 62 $\{<\}, \{<,+1\}, \{<,MOD\}$ and $\{<,+1,MOD\}$ (we provide some more examples in the paper). 63 **State of the art.** Historically, $BPol(\mathcal{G})$ and $BPol(\mathcal{G}^+)$ were first investigated for particular 64 input classes. A prominent example is the class of piecewise testable languages [27], *i.e.*, the 65 class $BPol(ST) = \mathcal{B}\Sigma_1(<)$ where $ST = \{\emptyset, A^*\}$. It was shown that BPol(ST)-separation is 66 decidable in [1] using technical algebraic arguments. Simpler polynomial time algorithms were 67 discovered later [17, 6]. There also exists an involved specialized separation algorithm [36] for 68 $BPol(MOD) = \mathcal{B}\Sigma_1(\langle MOD \rangle)$, where MOD is the class of modulo languages. Decidability 69 can be lifted to $BPol(ST^+) = \mathcal{B}\Sigma_1(<,+1)$ (the languages of dot-depth one [9]) and to 70 $BPol(MOD^+) = \mathcal{B}\Sigma_1(<, +1, MOD)$ via transfer results [22, 16]. Unfortunately, this approach 71 yields an exponential complexity blow-up. Recently, a generic approach was developed for 72 $BPol(\mathcal{G})$. It is proved in [21] that if \mathcal{G} is a class of group languages with mild hypotheses, 73 $BPol(\mathcal{G})$ -separation is decidable when \mathcal{G} -separation is decidable. Yet, this generic approach 74 is indirect and considers a more general problem: *covering*. Because of this, the algorithms

and their proofs are complex and rely on an intricate framework [19], yielding poor upper 76 complexity bounds. This contrasts with the simple polynomial time procedures presented 77

in [17, 6] for BPol(ST). No generic result of this kind is known for the classes $BPol(\mathcal{G}^+)$. 78

Contributions. We give generic polynomial time Turing reductions from $BPol(\mathcal{G})$ - and 79 $BPol(\mathcal{G}^+)$ -separation to \mathcal{G} -separation, where \mathcal{G} is a class of group languages with mild prop-80

erties. We present them as greatest fixpoint procedures which use an oracle for *G*-separation at each step and run in *polynomial time* (for input languages represented by nondeterministic finite automata). While the proofs are involved, they are self-contained and based exclusively on elementary concepts from automata theory. No particular knowledge on group theory is required to follow them: we only use immediate consequences of the definition of a group.

For $BPol(\mathcal{G})$, this new approach is a significant improvement on the results of [21]. While 86 we do reuse some ideas of [21], we complement them with new ones and the presentation is 87 independent. We get a simpler algorithm, which requires only basic notions from automata 88 theory. In particular, one direction of the proof describes a generic construction for building 89 separators in $BPol(\mathcal{G})$ (when they exist). This serves our main objective: understanding 90 classes of languages. In addition, we obtain much better complexity upper bounds on 91 $BPol(\mathcal{G})$ -separation. Finally, our techniques can handle $BPol(\mathcal{G}^+)$ as well. This was not the 92 case in [21]: the generic reduction from $BPol(\mathcal{G}^+)$ -separation to \mathcal{G} -separation is a new result. 93

These results apply to several key classes. Separation is decidable in polynomial time 94 for ST = { \emptyset , A^* }, for the class MOD of modulo languages and for the class GR of all group 95 languages [26]. Hence, the problem is also decidable in polynomial time for BPol(ST) (*i.e.*, 96 $\mathcal{B}\Sigma_1(<)$, $BPol(ST^+)$ (*i.e.*, $\mathcal{B}\Sigma_1(<,+1)$), BPol(MOD) (*i.e.*, $\mathcal{B}\Sigma_1(<,MOD)$), $BPol(MOD^+)$ 97 $(i.e., \mathcal{B}\Sigma_1(<, +1, MOD)), BPol(GR)$ and $BPol(GR^+)$ (the logical characterization of the last 98 two classes is not standard, yet they are quite prominent as well [11, 8]). This reproves a known 99 result for BPol(ST) (in fact, we essentially reprove the algorithm of [6]). The polynomial time 100 upper bounds are new for all other classes. Another application is the class AMT of alphabet 101 modulo testable languages (which are recognized by commutative groups): BPol(AMT) and 102 $BPol(AMT^+)$ correspond to $\mathcal{B}\Sigma_1(<, AMOD)$ and $\mathcal{B}\Sigma_1(<, +1, AMOD)$ where "AMOD" is 103 the set of *alphabetic modular predicates*. We obtain the decidability of separation for these 104 classes (this is a new result for $BPol(AMT^+)$). However, we do not get a polynomial time 105 upper bound: this is because AMT-separation is co-NP-complete (see [26]). 106

Important remark. Eilenberg's theorem [7] connects some classes of regular languages (the 107 "varieties of languages") with varieties of finite monoids. It raised the hope to solve decision 108 problems on languages (such as membership) by translating them in terms of monoids and 109 solving the resulting purely algebraic questions—without referring to languages anymore. In 110 particular, Margolis and Pin [11, 13] characterized the algebraic counterpart of $BPol(\mathcal{G})$ in 111 Eilenberg's correspondence (when \mathcal{G} is a variety) as the "semidirect product" J * G, where J 112 is the variety of monoids corresponding to $\mathcal{B}\Sigma_1(<)$ and G is the one corresponding to \mathcal{G} . The 113 new purely algebraic question is then: "decide membership of a monoid in J * G". Tilson [35] 114 developed an involved framework to reformulate membership in semidirect products in terms 115 of categories, which was successfully exploited to handle (J * G)-membership [8, 28]. 116

Our results are completely independent from this algebraic approach. To clarify, we do 117 use combinatorics on monoids. Yet, our motivations and techniques are disconnected from the 118 theory of varieties of monoids, which is a distinct field. We avoid it by choice: while the above 119 approach highlights an interesting connection between two fields, it is not necessarily desirable 120 when looking back at our primary goal, understanding classes of languages. Indeed, a detour 121 via varieties of monoids would obfuscate the intuition at the language level. Fortunately, 122 this paper shows that this detour can be bypassed, while getting *stronger* results. First, our 123 results are more general: they apply to *separation*, and not only membership. It is not clear 124 at all that this can be obtained in the context of monoid varieties, as we rely strongly on the 125 definition of BPol: we work with languages of the form $L_0a_1L_1\cdots a_nL_n$, for $L_i\in\mathcal{G}$. Second, 126 we can handle $BPol(\mathcal{G}^+)$, thus capturing the successor relation on the logical side. As far as 127 we know, the only class of this kind captured by the above framework is $BPol(ST^+)$ (these 128

29:4 A generic polynomial time approach to separation by alternation-free first-order logic

are the well-known dot-depth one languages [30]). Third, using the above approach requires
varieties of languages as input classes. This, for example, excludes the class BPol(MOD).
This does not mean that this class cannot be handled by algebraic techniques: this was
actually done by Straubing [31, 15], who rebuilt the whole theory to be able to handle such
classes. In contrast, our result applies uniformly to MOD.

Organization of the paper. We present the objects that we investigate and terminology in Section 2. We introduce separation and the techniques that we use to handle it in Section 3. Finally, we present our results for $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -separation in Section 4. Due to space limitations, some proofs are only available in the full version of the paper [25].

¹³⁸ **2** Preliminaries

¹³⁹ 2.1 Words, regular languages and classes

We fix a finite alphabet A for the paper. As usual, A^* denotes the set of all finite words over A, including the empty word ε . We let $A^+ = A^* \setminus \{\varepsilon\}$. For $u, v \in A^*$, we let uv be the word obtained by concatenating u and v. A language is a subset of A^* . We denote the singleton language $\{u\}$ by u. We lift concatenation to languages: for $K, L \subseteq A^*$, we let $KL = \{uv \mid u \in K \text{ and } v \in L\}$. We shall consider marked products: given languages $L_0, \ldots, L_n \subseteq A^*$, a marked product of L_0, \ldots, L_n is a product of the form $L_0a_1L_1 \cdots a_nL_n$ where $a_1, \ldots, a_n \in A$ (note that " L_0 " is a marked product: this is the case n = 0).

Regular languages. In the paper, we consider *regular* languages. A nondeterministic finite 147 automaton (NFA) is a pair $\mathcal{A} = (Q, \delta)$ where Q is a finite set of states, and $\delta \subseteq Q \times A \times Q$ is a 148 set of transitions. We now define the languages recognized by \mathcal{A} . Given $q, r \in Q$ and $w \in A^*$, 149 we say that there exists a run labeled by w from q to r (in \mathcal{A}) if there exist $q_0, \ldots, q_n \in Q$ 150 and $a_1, \ldots, a_n \in A$ such that $w = a_1 \cdots a_n$, $q_0 = q$, $q_n = r$ and $(q_{i-1}, a_i, q_i) \in \delta$ for every 151 $1 \leq i \leq n$. Given two sets $I, F \subseteq Q$, we write $L_{\mathcal{A}}(I, F) \subseteq A^*$ for the language of all words 152 $w \in A^*$ such that there exist $q \in I$, $r \in F$, and a run labeled by w from q to r in A. We 153 say that a language $L \subseteq A^*$ is recognized by \mathcal{A} if and only if there exist $I, F \subseteq Q$ such that 154 $L = L_{\mathcal{A}}(I, F)$. The regular languages are those which can be recognized by an NFA. 155

We also use NFAs with ε -transitions. In such an NFA $\mathcal{A} = (Q, \delta)$, a transition may also be labeled by the empty word " ε " (that is, $\delta \subseteq Q \times (A \cup \{\varepsilon\}) \times Q$). We use the standard semantics: an ε -transition can be taken without consuming an input letter. Note that unless otherwise specified, the NFAs that we consider are assumed to be without ε -transitions.

Classes. A class of languages is a set of languages. A lattice is a class containing \emptyset and A^* and closed under both union and intersection. Moreover, a Boolean algebra is a lattice closed under complement. Finally, a class C is quotient-closed when for all $L \in C$ and all $v \in A^*$, the languages $v^{-1}L = \{w \in A^* \mid vw \in L\}$ and $Lv^{-1} = \{w \in A^* \mid wv \in L\}$ both belong to C as well. A positive prevariety (resp. a prevariety) is a quotient-closed lattice (resp. a quotient-closed Boolean algebra) containing regular languages only.

Group languages. A monoid is a set M equipped with a multiplication $s, t \mapsto st$, which is associative and has a neutral element denoted by " 1_M ". Observe that A^* endowed with concatenation is a monoid (ε is the neutral element). It is well-known that a language L is regular if and only if it is *recognized* by a morphism $\alpha : A^* \to M$ into a *finite* monoid M, *i.e.*, there exists $F \subseteq M$ such that $L = \alpha^{-1}(F)$. We now restrict this definition: a monoid G is a group if every element $g \in G$ has an inverse $g^{-1} \in G$, *i.e.*, such that $gg^{-1} = g^{-1}g = 1_G$. A "group language" is a language recognized by a morphism into a *finite group*.

We consider classes \mathcal{G} that are group prevarieties (*i.e.*, containing group languages only). 173 We let GR be the class of all group languages. Another important example is the class 174 AMT of alphabet modulo testable languages. For every $w \in A^*$ and every $a \in A$, we write 175 $\#_a(w) \in \mathbb{N}$ for the number of occurrences of "a" in w. The class AMT consists in all finite 176 Boolean combinations of languages $\{w \in A^* \mid \#_a(w) \equiv k \mod m\}$ where $a \in A$ and $k, m \in \mathbb{N}$ 177 are such that k < m. One may verify that these are exactly the languages recognized by 178 commutative groups. We also consider the class MOD, which consists in all finite Boolean 179 combinations of languages $\{w \in A^* \mid |w| \equiv k \mod m\}$ with $k, m \in \mathbb{N}$ such that k < m. 180 Finally, we write ST for the trivial class $ST = \{\emptyset, A^*\}$. One may verify that GR, AMT, 181 MOD and ST are all group prevarieties. 182

One may verify that $\{\varepsilon\}$ and A^+ are not group languages. This motivates the next definition: the well-suited extension of a class C, denoted by C^+ , consists of all languages of the form $L \cap A^+$ or $L \cup \{\varepsilon\}$ where $L \in C$. The next lemma follows from the definition.

Lemma 1. Let C be a prevariety. Then, C^+ is a prevariety containing $\{\varepsilon\}$ and A^+ .

¹⁸⁷ 2.2 Polynomial and Boolean closure

We investigate two operators that one may apply to a class C. The Boolean closure of C, written Bool(C), is the least Boolean algebra containing C. The polynomial closure of C, denoted by Pol(C), consists of all finite unions of marked products $L_0a_1L_1 \cdots a_nL_n$ where $L_0, \ldots, L_n \in C$ and $a_1, \ldots, a_n \in A$. Finally, we write BPol(C) for Bool(Pol(C)). If C is a prevariety, then Pol(C) is a positive prevariety and BPol(C) is a prevariety. Proving that Pol(C) is closed under intersection is not immediate. It was shown by Arfi [2] (see also [14, 20]).

▶ **Theorem 2.** If C is a prevariety, Pol(C) is a positive prevariety and BPol(C) is a prevariety.

The two operators *Pol* and *Bool* induce standard classifications called concatenation hierarchies: for a prevariety C, the *concatenation hierarchy of basis* C is built from C by alternatively applying the operators *Pol* and *Bool*. We are interested in *BPol*(C), which is level *one* in the concatenation hierarchy of basis C. We look at bases that are either a group prevariety G or its well-suited extension G^+ . Most of the prominent concatenation hierarchies in the literature use such bases. This is in part motivated by the logical characterization of concatenation hierarchies, due to Thomas [34]. We briefly recall it for the level one.

Consider a word $w = a_1 \cdots a_{|w|} \in A^*$. We view w as a linearly ordered set of |w| + 2202 positions $\{0, 1, \dots, |w|, |w|+1\}$ such that each position $1 \le i \le |w|$ carries the label $a_i \in A$ (on 203 the other hand, 0 and |w|+1 are artificial unlabeled leftmost and rightmost positions). We use 204 first-order logic to describe properties of words: a sentence can quantify over the positions of 205 a word and use a predetermined set of predicates to test properties of these positions. We also 206 allow two constants "min" and "max" interpreted as the artificial unlabeled positions 0 and 207 |w|+1 in a given word w. A first-order sentence φ defines the language of all words satisfying 208 the property stated by φ . We use several kinds of predicates. For each $a \in A$, we associate a 209 unary predicate (also denoted by a), which selects the positions labeled by "a". We also use 210 two binary predicates: the (strict) linear order "<" and the successor relation "+1". Finally, 211 we associate a set of predicates $\mathbb{P}_{\mathcal{G}}$ to each group prevariety \mathcal{G} . Every $L \in \mathcal{G}$ yields a unary 212 predicate P_L in $\mathbb{P}_{\mathcal{G}}$, which is interpreted as follows. Let $w = a_1 \cdots a_{|w|} \in A^*$. The unary 213 predicate P_L selects all positions $i \in \{0, \ldots, |w| + 1\}$ such that $i \neq 0$ and $a_1 \cdots a_{i-1} \in L$. 214

► Example 3. The sentence " $\exists x \exists y \ (x < y) \land a(x) \land b(y)$ " defines the language $A^*aA^*bA^*$. The sentence " $\exists x \exists y \ a(x) \land c(y) \land (y + 1 = max)$ " defines A^*aA^*c . Finally, if $L = (AA)^* \in \text{MOD}$ (the words of even length), the sentence " $\exists x \ a(x) \land P_L(x)$ " defines the language $(AA)^*aA^*$.

29:6 A generic polynomial time approach to separation by alternation-free first-order logic

The fragment of first-order logic containing exactly the Boolean combinations of existential first-order sentences is denoted by " $\mathcal{B}\Sigma_1$ ". Let \mathcal{G} be a group prevariety. We write $\mathcal{B}\Sigma_1(<,\mathbb{P}_{\mathcal{G}})$ for the class of all languages defined by a sentence of $\mathcal{B}\Sigma_1$ using only the label predicates, the linear order "<" and those in $\mathbb{P}_{\mathcal{G}}$. Moreover, we write $\mathcal{B}\Sigma_1(<,+1,\mathbb{P}_{\mathcal{G}})$ for the class of all languages defined by a sentence of $\mathcal{B}\Sigma_1$, which additionally allows the successor predicate "+1". The following proposition follows from the results of [20, 24].

▶ **Proposition 4.** Let \mathcal{G} be a group prevariety. We have $BPol(\mathcal{G}) = \mathcal{B}\Sigma_1(<, \mathbb{P}_{\mathcal{G}})$ and $BPol(\mathcal{G}^+) = \mathcal{B}\Sigma_1(<, +1, \mathbb{P}_{\mathcal{G}}).$

Key examples. The basis $ST = \{\emptyset, A^*\}$ yields the Straubing-Thérien hierarchy [29, 32] 226 (hence the notation of this basis). Its level one is the class of piecewise testable languages [27]. 227 Its well-suited extension ST^+ induces the *dot-depth hierarchy* [3]. In particular, BPol(ST) and 228 $BPol(ST^+)$ correspond to $\mathcal{B}\Sigma_1(<)$ and $\mathcal{B}\Sigma_1(<,+1)$, as all predicates in \mathbb{P}_{ST} are trivial. The 229 hierarchies of bases MOD and MOD^+ are also prominent (see for example [5, 10, 36]). The 230 classes BPol(MOD) and $BPol(MOD^+)$ correspond to $\mathcal{B}\Sigma_1(<, MOD)$ and $\mathcal{B}\Sigma_1(<, +1, MOD)$ 231 where "MOD" is the set of modular predicates (for all $r, q \in \mathbb{N}$ such that r < q, it contains a 232 unary predicate $M_{r,q}$ selecting the positions i such that $i \equiv r \mod q$). Similarly, BPol(AMT) 233 and $BPol(AMT^+)$ correspond to $\mathcal{B}\Sigma_1(<, AMOD)$ and $\mathcal{B}\Sigma_1(<, +1, AMOD)$ where "AMOD" 234 is the set of alphabetic modular predicates (for all $a \in A$ and $r, q \in \mathbb{N}$ such that r < q, it 235 contains a unary predicate $M_{r,q}^a$ selecting the positions i such the that number of positions 236 j < i with label a is congruent to r modulo q). Finally, the group hierarchy, whose basis is 237 GR is also prominent [11, 8], though its logical characterization is not standard. 238

Properties. We present a key ingredient [23, Lemma 3.6]. It describes a concatenation principle for the classes $BPol(\mathcal{C})$ based on the notion of "cover". Given a language L, a cover of L is a *finite* set \mathbf{K} of languages satisfying $L \subseteq \bigcup_{K \in \mathbf{K}} K$. If \mathcal{D} is a class, a \mathcal{D} -cover of L is a cover \mathbf{K} of L such that $\mathbf{K} \subseteq \mathcal{D}$.

Proposition 5. Let C be a prevariety, $n \in \mathbb{N}$, $L_0, \ldots, L_n \in Pol(C)$ and $a_1, \ldots, a_n \in A$. If H_i is a BPol(C)-cover of L_i for all i ≤ n, then there is a BPol(C)-cover **K** of $L_0a_1L_1 \cdots a_nL_n$ such that for all $K \in \mathbf{K}$, there exists $H_i \in \mathbf{H}_i$ for each $i \leq n$ satisfying $K \subseteq H_0a_1H_1 \cdots a_nH_n$.

For applying Proposition 5, we need a language $L_0a_1L_1 \cdots a_nL_n$ with $L_0, \ldots, L_n \in Pol(\mathcal{C})$. The next tailored statements build such languages when $\mathcal{C} = \mathcal{G}$ or \mathcal{G}^+ for a group prevariety \mathcal{G} . While simple, these results are central: this is the unique place where we use the fact that \mathcal{G} contains only group languages. Let $L \subseteq A^*$. With every word $w = a_1 \cdots a_n \in A^*$, we associate the language $\uparrow_L w = La_1L \cdots a_nL \subseteq A^*$ (we let $\uparrow_L \varepsilon = L$). We first present the statement for the case $\mathcal{C} = \mathcal{G}$, which can also be found in [4, Prop. 3.11].

▶ Proposition 6. Let $H \subseteq A^*$ be a language and $L \subseteq A^*$ be a group language containing ε . There exists a cover **K** of *H* such that every $K \in \mathbf{K}$ is of the form $K = \uparrow_L w$ for some $w \in H$.

The next statement, useful for the case $C = \mathcal{G}^+$, is a corollary of Proposition 6. Let $\mathcal{A} = (Q, \delta)$ be an NFA. Moreover, let $w, z \in A^*$. We say that z is a *left* \mathcal{A} -*loop* for w if for every $q, r \in Q$ such that $w \in L_{\mathcal{A}}(q, r)$, there exists $s \in Q$ such that $z \in L_{\mathcal{A}}(q, s) \cap L_{\mathcal{A}}(s, s)$ and $zw \in L_{\mathcal{A}}(s, r)$ (in particular, $zz^*zw \subseteq L_{\mathcal{A}}(q, r)$). Symmetrically, we say that z is a *right* \mathcal{A} -*loop* for w if for every $q, r \in Q$ such that $w \in L_{\mathcal{A}}(q, r)$, there exists $s \in Q$ such that $z \in L_{\mathcal{A}}(q, s)$ and $z \in L_{\mathcal{A}}(s, s) \cap L_{\mathcal{A}}(s, r)$ (in particular, $wzz^*z \subseteq L_{\mathcal{A}}(q, r)$).

Now, given an arbitrary word $w \in A^*$, an \mathcal{A} -guarded decomposition of w is a tuple (w_1, \ldots, w_{n+1}) for some $n \in \mathbb{N}$ where $w_1 \in A^*$ and $w_i \in A^+$ for $2 \leq i \leq n+1$, and such that $w = w_1 \cdots w_{n+1}$ and, if $n \geq 1$, then for every i satisfying $1 \leq i \leq n$, there exists a *nonempty* word $z_i \in A^+$ which is a right \mathcal{A} -loop for w_i and a left \mathcal{A} -loop for w_{i+1} .

▶ Proposition 7. Let $H \subseteq A^*$ be a language, A be an NFA and $L \subseteq A^*$ be a group language containing ε . There exists a cover \mathbf{K} of H such that for each $K \in \mathbf{K}$, there exist a word $w \in H$ and an A-guarded decomposition (w_1, \ldots, w_{n+1}) of w for some $n \in \mathbb{N}$ such that $K = w_1 L \cdots w_n L w_{n+1}$ (if n = 0, then $K = \{w_1\}$).

3 Separation framework

In order to investigate a given class C, we rely on a generic decision problem that one may associate to it: *C*-separation. We first define it and then present a variant, "tuple separation", that we shall require as a proof ingredient.

272 **3.1** The separation problem

²⁷³ Consider two languages $L_0, L_1 \subseteq A^*$. We say that a third language $K \subseteq A^*$ separates L_0 ²⁷⁴ from L_1 when $L_0 \subseteq K$ and $K \cap L_1 = \emptyset$. Then, given an arbitrary class \mathcal{C} , we say that L_0 is ²⁷⁵ *C*-separable from L_1 when there exists $K \in \mathcal{C}$ that separates L_0 from L_1 . For every class \mathcal{C} , ²⁷⁶ the *C*-separation problem takes two regular languages L_0 and L_1 as input (in the paper, they ²⁷⁷ are represented by NFAs) and asks whether L_0 is *C*-separable from L_1 . We complete the ²⁷⁸ definition with a useful result, which holds when \mathcal{C} is a positive prevariety.

▶ Lemma 8. Let C be a positive prevariety and $L_0, L_1, H_0, H_1 \subseteq A^*$. If L_0 is not C-separable from L_1 and H_0 is not C-separable from H_1 then L_0H_0 is not C-separable from L_1H_1 .

In the paper, we look at C-separation when $C = BPol(\mathcal{G})$ or $BPol(\mathcal{G}^+)$ for a group prevariety \mathcal{G} . We prove that in these two cases, there are polynomial time (Turing) reductions to \mathcal{G} -separation. We now introduce terminology that we shall use to present the algorithms.

Framework. Consider a class C and an NFA $\mathcal{A} = (Q, \delta)$. We associate a set $\mathcal{I}_{\mathcal{C}}[\mathcal{A}] \subseteq Q^4$: the *inseparable* C-quadruples associated to \mathcal{A} . We define,

$$\mathcal{I}_{\mathcal{C}}[\mathcal{A}] = \{ (q, r, s, t) \in Q^4 \mid L_{\mathcal{A}}(q, r) \text{ is } \underline{\text{not}} \ \mathcal{C}\text{-separable from } L_{\mathcal{A}}(s, t) \}.$$

 $_{287}$ The next easy result connects C-separation to this set, for input languages given by NFAs.

▶ Proposition 9. Let C be a lattice. Consider an NFA $\mathcal{A} = (Q, \delta)$ and four sets of states I₁, F₁, I₂, F₂ ⊆ Q. The two following conditions are equivalent:

²⁹⁰ 1. $L_{\mathcal{A}}(I_1, F_1)$ is C-separable from $L_{\mathcal{A}}(I_2, F_2)$.

²⁹¹ 2. $(I_1 \times F_1 \times I_2 \times F_2) \cap \mathcal{I}_{\mathcal{C}}[\mathcal{A}] = \emptyset.$

²⁹² Clearly, given as input two regular languages recognized by NFAs, one may compute in ²⁹³ polynomial time a single NFA recognizing both languages. Hence, Proposition 9 yields a ²⁹⁴ polynomial time reduction from C-separation to the problem of computing $\mathcal{I}_{\mathcal{C}}[\mathcal{A}]$ from an ²⁹⁵ input NFA. Naturally, this does not necessarily mean that there exists a polynomial time ²⁹⁶ algorithm for C-separation: depending on C, computing $\mathcal{I}_{\mathcal{C}}[\mathcal{A}]$ may or may not be costly.

We introduce a key definition for manipulating $\mathcal{I}_{\mathcal{C}}[\mathcal{A}]$, for an NFA $\mathcal{A} = (Q, \delta)$. Let $S \subseteq Q^4$ and **K** be a finite set of languages. We say that **K** is separating for S when for every $(q, r, s, t) \in$ Q^4 and every $K \in \mathbf{K}$, if K intersects both $L_{\mathcal{A}}(q, r)$ and $L_{\mathcal{A}}(s, t)$, then $(q, r, s, t) \in S$. Then, $\mathcal{I}_{\mathcal{C}}[\mathcal{A}]$ is the smallest set of 4-tuples admitting a C-cover of A^* which is separating for it.

³⁰² There exists a C-cover **K** of A^* which is separating for $\mathcal{I}_{\mathcal{C}}[\mathcal{A}]$.

³⁰³ Let $S \subseteq Q^4$. If there exists a \mathcal{C} -cover \mathbf{K} of A^* which is separating for S, then $\mathcal{I}_{\mathcal{C}}[\mathcal{A}] \subseteq S$.

29:7

 $_{301}$ ► Lemma 10. Let C be a Boolean algebra and $A = (Q, \delta)$ be an NFA. Then the following holds:

29:8 A generic polynomial time approach to separation by alternation-free first-order logic

Controlled separation. We present additional terminology tailored to the classes built from a group prevariety. Consider two classes C and D (in practice, D will be a group prevariety \mathcal{G} and \mathcal{C} will be either $BPol(\mathcal{G})$ or $BPol(\mathcal{G}^+)$). Let $L_0, L_1 \subseteq A^*$. We say that L_0 is C-separable from L_1 under D-control if there exists $H \in D$ such that $\varepsilon \in H$ and $L_0 \cap H$ is \mathcal{C} -separable from $L_1 \cap H$. Given an NFA $\mathcal{A} = (Q, \delta)$, we associate a set $\mathcal{I}_{\mathcal{C}}[D, \mathcal{A}] \subseteq Q^4$:

$$\mathcal{I}_{\mathcal{C}}[\mathcal{D},\mathcal{A}] = \{(q,r,s,t) \in Q^4 \mid L_{\mathcal{A}}(q,r) \text{ is } \underline{\mathrm{not}} \ \mathcal{C}\text{-separable from } L_{\mathcal{A}}(s,t) \text{ under } \mathcal{D}\text{-control}\}.$$

³¹⁰ Clearly, we have $\mathcal{I}_{\mathcal{C}}[\mathcal{D},\mathcal{A}] \subseteq \mathcal{I}_{\mathcal{C}}[\mathcal{A}]$. Let us connect this new definition to the notion of ³¹¹ separating cover presented above. In this case as well, this will be useful in proof arguments.

▶ Lemma 11. Let C and D be Boolean algebras such that $D \subseteq C$ and let $A = (Q, \delta)$ be an NFA. The following properties hold:

³¹⁴ There exists $L \in \mathcal{D}$ with $\varepsilon \in L$, and a \mathcal{C} -cover \mathbf{K} of L which is separating for $\mathcal{I}_{\mathcal{C}}[\mathcal{D}, \mathcal{A}]$.

Let $S \subseteq Q^4$. If there exist $L \in \mathcal{D}$ with $\varepsilon \in L$, and a \mathcal{C} -cover \mathbf{K} of L which is separating for S, then $\mathcal{I}_{\mathcal{C}}[\mathcal{D}, \mathcal{A}] \subseteq S$.

This notion is only useful if $\{\varepsilon\} \notin \mathcal{D}$. If $\{\varepsilon\} \in \mathcal{D}$, then L_0 is \mathcal{C} -separable from L_1 under \mathcal{D} -control if and only if either $\varepsilon \notin L_0$ or $\varepsilon \notin L_1$. This is why the notion is designed for group prevarieties: if \mathcal{G} is such a class, then $\{\varepsilon\} \notin \mathcal{G}$. In this case, if $\mathcal{C} \in \{\mathcal{G}, \mathcal{G}^+\}$, then the set $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G}, \mathcal{A}]$ carries more information than $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$. This is useful for the computation: rather than computing $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$ directly, our procedures first compute $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G}, \mathcal{A}]$. The proof is based on Propositions 5 and 6 (the latter requires \mathcal{G} to consist of group languages).

▶ Proposition 12. Let \mathcal{G} be a group prevariety, let \mathcal{C} be a prevariety such that $\mathcal{G} \subseteq \mathcal{C}$ and let $\mathcal{A} = (Q, \delta)$ be an NFA. Then, $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$ is the least set $S \subseteq Q^4$ that contains $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G}, \mathcal{A}]$ and satisfies the two following conditions:

1. For all $q, r, s, t \in Q$ and $a \in A$, if $(q, a, r), (s, a, t) \in \delta$, then $(q, r, s, t) \in S$.

227 **2.** For all $(q_1, r_1, s_1, t_1), (q_2, r_2, s_2, t_2) \in S$, if $r_1 = q_2$ and $t_1 = s_2$, then $(q_1, r_2, s_1, t_2) \in S$.

Proof. Let $S \subseteq Q^4$ be the least set containing $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G}, \mathcal{A}]$ and satisfying both conditions. 328 We prove that $S = \mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$. For $S \subseteq \mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$, since $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G}, \mathcal{A}] \subseteq \mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$ by 329 definition, it suffices to prove that $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$ satisfies both conditions in the proposition. 330 First, consider $a \in A$ and $q, r, s, t \in Q$ such that $(q, a, r), (s, a, t) \in \delta$. We have $a \in L_{\mathcal{A}}(q, r)$ 331 and $a \in L_{\mathcal{A}}(s,t)$. Hence, they are not $BPol(\mathcal{C})$ -separable and $(q,r,s,t) \in \mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$. 332 Now, let $(q_1, r_1, s_1, t_1), (q_2, r_2, s_2, t_2) \in \mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$ such that $r_1 = q_2$ and $t_1 = s_2$. For 333 $i \in \{1, 2\}$, we know that $L_{\mathcal{A}}(q_i, r_i)$ is not $BPol(\mathcal{C})$ -separable from $L_{\mathcal{A}}(s_i, t_i)$. Since $BPol(\mathcal{C})$ 334 is a prevariety by Theorem 2, it follows from Lemma 8 that $L_{\mathcal{A}}(q_1, r_1)L_{\mathcal{A}}(q_2, r_2)$ is not 335 $BPol(\mathcal{C})$ separable from $L_{\mathcal{A}}(s_1, t_1)L_{\mathcal{A}}(s_2, t_2)$. Since $r_1 = q_2$ and $t_1 = s_2$, it is immediate that 336 $L_{\mathcal{A}}(q_1, r_1)L_{\mathcal{A}}(q_2, r_2) \subseteq L_{\mathcal{A}}(q_1, r_2) \text{ and } L_{\mathcal{A}}(s_1, t_1)L_{\mathcal{A}}(s_2, t_2) \subseteq L_{\mathcal{A}}(s_1, t_2).$ Hence, $L_{\mathcal{A}}(q_1, r_2)$ 337 is not $BPol(\mathcal{C})$ -separable from $L_{\mathcal{A}}(s_1, t_2)$ and we get $(q_1, r_2, s_1, t_2) \in \mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$ as desired. 338 We turn to the inclusion $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}] \subseteq S$. By Lemma 11, there exists $L \in \mathcal{G}$ such that 339 $\varepsilon \in L$ and a $BPol(\mathcal{C})$ -cover V of L which is separating for $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G},\mathcal{A}]$. By hypothesis, L 340 is a group language and $\varepsilon \in L$. Hence, Proposition 6 yields a cover **P** of A^* such that every 341 $P \in \mathbf{P}$ is of the form $P = \uparrow_L w_P$ for some word $w_P \in A^*$. Let $P \in \mathbf{P}$ and $a_1, \ldots, a_n \in A$ be 342 the letters such that $w_P = a_1 \cdots a_n$. We have $P = La_1 L \cdots a_n L$ by definition (if $w_P = \varepsilon$, 343 then P = L). By definition, $L \in \mathcal{G} \subseteq Pol(\mathcal{C})$. Hence, since V is a $BPol(\mathcal{C})$ -cover of L, 344 Proposition 5 yields a $BPol(\mathcal{C})$ -cover \mathbf{K}_P of P such that for every $K \in \mathbf{K}_P$, there are 345 $V_0, \ldots, V_n \in \mathbf{V}$ such that $K \subseteq V_0 a_1 V_1 \cdots a_n V_n$. We let $\mathbf{K} = \bigcup_{P \in \mathbf{P}} \mathbf{K}_P$. Since **P** is a cover of 346 A^* and \mathbf{K}_P is a $BPol(\mathcal{C})$ -cover of P for each $P \in \mathbf{P}$, **K** is a $BPol(\mathcal{C})$ -cover of A^* . We show 347 that **K** is separating for S which implies that $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}] \subseteq S$ by Lemma 10. 348

Let $(q, r, s, t) \in Q^4$ and $K \in \mathbf{K}$ such that we have $x \in K \cap L_{\mathcal{A}}(q, r)$ and $y \in K \cap L_{\mathcal{A}}(s, t)$. 349 We show that $(q, r, s, t) \in S$. We have $K \in \mathbf{K}_P$ for some $P \in \mathbf{P}$. Let $a_1, \ldots, a_n \in A$ such 350 that $w_P = a_1 \cdots a_n$. By definition, there are $V_0, \ldots, V_n \in \mathbf{V}$ such that $K \subseteq V_0 a_1 V_1 \cdots a_n V_n$. 351 Since $x, y \in K$, we get $x_i, y_i \in V_i$ for $0 \leq i \leq n$ such that $x = x_0 a_1 x_1 \cdots a_n x_n$ and 352 $y = y_0 a_1 y_1 \cdots a_n y_n$. Since $x \in L_{\mathcal{A}}(q, r)$, we get $q_i, r_i \in Q$ for $0 \le i \le n$ such that $q_0 = q$, 353 $r_n = r, x_i \in L_{\mathcal{A}}(q_i, r_i)$ for $0 \leq i \leq n$ and $(r_{i-1}, a_i, q_i) \in \delta$ for $1 \leq i \leq n$. Finally, since 354 $y \in L_{\mathcal{A}}(s,t)$, we get $s_i, t_i \in Q$ for $0 \leq i \leq n$ such that $s_0 = s, t_n = t, y_i \in L_{\mathcal{A}}(s_i, t_i)$ 355 for $0 \leq i \leq n$ and $(t_{i-1}, a_i, s_i) \in \delta$ for $1 \leq i \leq n$. Since S satisfies Condition 1 in the 356 proposition, we get $(r_{i-1}, q_i, t_{i-1}, s_i) \in S$ for $1 \leq i \leq n$. Since $V_i \in \mathbf{V}$ which is separating for 357 $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G},\mathcal{A}]$ and $x_i, y_i \in V_i$, we also get $(q_i, r_i, q_i, t_i) \in \mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G},\mathcal{A}]$ for $0 \leq i \leq n$. Thus, 358 Condition 2 in the proposition yields $(q_0, r_0, s_n, t_n) \in S$, *i.e.* $(q, r, s, t) \in S$ as desired. 359

Proposition 12 provides a least fixpoint algorithm for computing the set $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{A}]$ from $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G},\mathcal{A}]$. Combined with Proposition 9, this yields a polynomial time reduction from $BPol(\mathcal{C})$ -separation to computing $\mathcal{I}_{BPol(\mathcal{C})}[\mathcal{G},\mathcal{A}]$ from an NFA. We shall prove that when $\mathcal{C} \in \{\mathcal{G}, \mathcal{G}^+\}$, there are polynomial time reductions of the latter problem to \mathcal{G} -separation.

364 3.2 Tuple separation

This generalized variant of separation is taken from [18]. We shall use it as a proof ingredient: for every lattice C, it is connected to the classical separation problem for Bool(C). For every $n \geq 1$, we call "*n*-tuple" a tuple of *n* languages (L_1, \ldots, L_n) . In the sequel, given another language *K*, we shall write $(L_1, \ldots, L_n) \cap K$ for the *n*-tuple $(L_1 \cap K, \ldots, L_n \cap K)$. Let C be a lattice, we use induction on *n* to define the *C*-separable *n*-tuples:

If n = 1, a 1-tuple (L_1) is \mathcal{C} -separable when $L_1 = \emptyset$.

If $n \geq 2$, an *n*-tuple (L_1, \ldots, L_n) is *C*-separable when there exists $K \in \mathcal{C}$ such that $L_1 \subseteq K$ and $(L_2, \ldots, L_n) \cap K$ is *C*-separable. We call K a separator of (L_1, \ldots, L_n) .

One may verify that classical separation is the special case n = 2. We generalize \mathcal{D} -controlled separation to this setting. For a class \mathcal{D} , we say that an *n*-tuple (L_1, \ldots, L_n) is \mathcal{C} -separable under \mathcal{D} -control if there exists $H \in \mathcal{D}$ such that $\varepsilon \in H$ and $(L_1, \ldots, L_n) \cap H$ is \mathcal{C} -separable. We complete the definition with two simple properties of tuple separation. The second one is based on closure under quotients and generalizes Lemma 8.

Lemma 13. Let C be a lattice and let $(L_1, ..., L_n), (H_1, ..., H_n)$ be two n-tuples. If $L_1 \cap \cdots \cap L_n \neq \emptyset$, then $(L_1, ..., L_n)$ is not C-separable. Moreover, if $L_i \subseteq H_i$ for every $i \le n$ and $(L_1, ..., L_n)$ is not C-separable, then $(H_1, ..., H_n)$ is not C-separable either.

▶ Lemma 14. Let C be a positive prevariety, $n \ge 1$ and let $(L_1, \ldots, L_n), (H_1, \ldots, H_n)$ be two n-tuples, which are not C-separable. Then, (L_1H_1, \ldots, L_nH_n) is not C-separable either.

A theorem of [18] connects tuple C-separation for a lattice C to Bool(C)-separation: L_0 is Bool(C)-separable from L_1 if and only if $(L_0, L_1)^p$ is C-separable for some $p \ge 1$. Here, $(L_0, L_1)^p$ denotes the 2*p*-tuple obtained by concatenating *p* copies of (L_0, L_1) . For example, $(L_0, L_1)^3 = (L_0, L_1, L_0, L_1, L_0, L_1)$. We use a corollary applying to \mathcal{D} -controlled separation.

Corollary 15. Let C and D be two lattices such that $D \subseteq C$ and let $L_0, L_1 \subseteq A^*$. The following properties are equivalent:

- **1.** L_0 is $Bool(\mathcal{C})$ -separable from L_1 under \mathcal{D} -control.
- 390 2. There exists $p \ge 1$ such that $(L_0, L_1)^p$ is C-separable under D-control.

29:10 A generic polynomial time approach to separation by alternation-free first-order logic

We only use the contrapositive of $1) \Rightarrow 2$ in Corollary 15. We complete the presentation with two important lemmas about tuple separation for $Pol(\mathcal{D})$ and $Pol(\mathcal{D}^+)$. We use them to prove that tuples are not separable. Note that in practice, \mathcal{D} will be a group prevariety \mathcal{G} . Yet, the results are true regardless of this hypothesis.

³⁹⁵ ► Lemma 16. Let \mathcal{D} be a prevariety and (L_1, \ldots, L_n) an n-tuple which is not $Pol(\mathcal{D})$ -³⁹⁶ separable under \mathcal{D} -control. Then, $(\{\varepsilon\}, L_1, \ldots, L_n)$ is not $Pol(\mathcal{D})$ -separable.

Proof. We prove the contrapositive. Assume that $(\{\varepsilon\}, L_1, \ldots, L_n)$ is $Pol(\mathcal{D})$ -separable: we get $K \in Pol(\mathcal{D})$ such that $\varepsilon \in K$ and $(L_1, \ldots, L_n) \cap K$ is $Pol(\mathcal{D})$ -separable. By definition, K is a finite union of marked product of languages in \mathcal{D} . Hence, since $\varepsilon \in K$, there exists a marked product involving a single language $H \in \mathcal{D}$ such that $\varepsilon \in H$ in the union defining K. In particular, $H \subseteq K$ and Lemma 13 implies that $(L_1, \ldots, L_n) \cap H$ is $Pol(\mathcal{D})$ -separable. Since $H \in \mathcal{D}$ and $\varepsilon \in H$, it follows that (L_1, \ldots, L_n) is $Pol(\mathcal{D})$ -separable under \mathcal{D} -control.

▶ Lemma 17. Let \mathcal{D} be a prevariety and $w \in A^+$. If (L_1, \ldots, L_n) is not $Pol(\mathcal{D}^+)$ -separable under \mathcal{D} -control, then $(w^+, w^+L_1w^+, \ldots, w^+L_nw^+)$ is not $Pol(\mathcal{D}^+)$ -separable.

Proof. We prove the contrapositive. Assuming that $(w^+, w^+L_1w^+, \ldots, w^+L_nw^+)$ is $Pol(\mathcal{D}^+)$ -405 separable, we show that (L_1, \ldots, L_n) is $Pol(\mathcal{D}^+)$ -separable under \mathcal{D} -control. There exists 406 $K \in Pol(\mathcal{D}^+)$ such that $w^+ \subseteq K$, and $(w^+L_1w^+, \ldots, w^+L_nw^+) \cap K$ is $Pol(\mathcal{D}^+)$ -separable. By 407 definition, K is a finite union of marked products $K_0a_1K_1 \cdots a_mK_m$ with $a_1, \ldots, a_m \in A$ and 408 $K_0, \ldots, K_m \in \mathcal{D}^+$. Let $k \in \mathbb{N}$ such that $m \leq k$ for every product $K_0 a_1 K_1 \cdots a_m K_m$ in this 409 union. Since $w^+ \subseteq K$, we have $w^{2(k+1)} \in K$. This yields a marked product $K_0 a_1 K_1 \cdots a_m K_m$ 410 such that $w^{2(k+1)} \in K_0 a_1 K_1 \cdots a_m K_m \subseteq K$, $m \leq k$ and $K_0, \ldots, K_m \in \mathcal{D}^+$. Therefore, we get $u_i \in K_i$ for each $i \leq m$ such that $w^{2(k+1)} = u_0 a_1 u_1 \cdots a_m u_m$. Moreover, since $m \leq k$, 411 412 there exists $i \leq m$ such that ww is an infix of u_i . Thus, we get $x, y \in A^*$ and $\ell_1, \ell_2 \in \mathbb{N}$ such 413 that $u_i = xwwy$, $u_0a_1u_1\cdots a_ix = w^{\ell_1}$, $y_{a_{i+1}}u_{i+1}\cdots a_mu_m = w^{\ell_2}$ and $\ell_1 + 2 + \ell_2 = 2(k+1)$ 414 By definition $K_i \in \mathcal{D}^+$ which yields $H \in \mathcal{D}$ such that either $K_i = H \cup \{\varepsilon\}$ or $K_i = H \cap A^+$. 415 Hence, since $u_i \in K_i$ and $u_i \in A^+$ (recall that $w \in A^+$), we have $xwwy = u_i \in H$. Let 416

⁴¹⁷ $H' = (xw)^{-1}H(wy)^{-1}$. By closure under quotients, we have $H' \in \mathcal{D}$ and it is clear that $\varepsilon \in H'$ ⁴¹⁸ since $xwwy \in H$. Hence, it remains to prove that $(L_1, \ldots, L_n) \cap H'$ is $Pol(\mathcal{D}^+)$ -separable. ⁴¹⁹ This will imply as desired that (L_1, \ldots, L_n) is $Pol(\mathcal{D}^+)$ -separable under \mathcal{D} -control.

We know that $(w^+L_1w^+, \ldots, w^+L_nw^+) \cap K$ is $Pol(\mathcal{D}^+)$ -separable. One may verify from the definitions that $w^{\ell_1+1}(L_j \cap H')w^{\ell_2+1} \subseteq w^+L_jw^+ \cap K$ for all $j \leq n$. Thus, Lemma 13 implies that $w^{\ell_1+1}(L_1 \cap H')w^{\ell_2+1}, \ldots, w^{\ell_1+1}(L_n \cap H')w^{\ell_2+1})$ is $Pol(\mathcal{D}^+)$ -separable. Finally, since $(w^{\ell_1+1}, \ldots, w^{\ell_1+1})$ and $(w^{\ell_2+1}, \ldots, w^{\ell_2+1})$ are not $Pol(\mathcal{D}^+)$ -separable, it follows from Lemma 14 that $((L_1 \cap H'), \ldots, (L_n \cap H'))$ is $Pol(\mathcal{D}^+)$ -separable as desired.

⁴²⁵ **4** Separation Algorithms for $BPol(\mathcal{G})$ and $BPol(\mathcal{G}^+)$

For a group prevariety \mathcal{G} , we now consider $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -separation. We rely on the notions of Section 3: given an arbitrary NFA $\mathcal{A} = (Q, \delta)$, we present a generic characterization of the inseparable $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -quadruples under \mathcal{G} control associated to \mathcal{A} , *i.e.*, of the subsets $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$ and $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$ of Q^4 . Thanks to Proposition 12, this also yields characterizations of $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{A}]$ and of $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{A}]$, which in turn, in view of Proposition 9, yield reductions from both $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -separation to \mathcal{G} -separation. These polynomial time reductions are therefore *effective* when \mathcal{G} -separation is decidable.

433 4.1 Statements

Let \mathcal{G} be a group prevariety and let $\mathcal{A} = (Q, \delta)$ be an NFA. We present characterizations of $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$ and $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$. They follow the same pattern, but each of them depends on a specific function from 2^{Q^4} to 2^{Q^4} , which we first describe.

Characterization of $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G},\mathcal{A}]$. We use a function $\tau_{\mathcal{A},\mathcal{G}}: 2^{Q^4} \to 2^{Q^4}$. For $S \subseteq Q^4$, we define the set $\tau_{\mathcal{A},\mathcal{G}}(S) \subseteq Q^4$. The definition is based on an auxiliary NFA $\mathcal{B}_S = (Q^3, \gamma_S)$ $\underbrace{with \ \varepsilon\text{-transitions}}_{\mathcal{A},\mathcal{G}}$, which depends on S. Its states are triples in Q^3 . The set $\gamma_S \subseteq Q^3 \times (\mathcal{A} \cup \{\varepsilon\}) \times Q^3$ includes two kinds of transitions. First, given $a \in A$ and $s_1, s_2, s_3, t_1, t_2, t_3 \in Q$, we let $((s_1, s_2, s_3), a, (t_1, t_2, t_3)) \in \gamma_S$ if and only if $(s_1, a, t_1) \in \delta$, $(s_2, a, t_2) \in \delta$ and $(s_3, a, t_3) \in \delta$. Second, for every state $q_1 \in Q$ and every $(q_2, r_2, q_3, r_3) \in S$, we add the following ε -transition: $((q_1, q_2, q_3), \varepsilon, (q_1, r_2, r_3)) \in \gamma_S$. We represent this construction process graphically in Figure 1.

⁴⁴⁴ ► Remark 18. The NFA \mathcal{B}_S and its counterpart \mathcal{B}_S^+ (which we define below as a means to ⁴⁴⁵ handle $BPol(\mathcal{G}^+)$) are the only NFAs with ε-transitions considered in the paper. In particular, ⁴⁴⁶ the original input NFA \mathcal{A} is assumed to be without ε-transitions.

We are ready to define $\tau_{\mathcal{A},\mathcal{G}}(S) \subseteq Q^4$. For every $(q,r,s,t) \in Q^4$, we let $(q,r,s,t) \in \tau_{\mathcal{A},\mathcal{G}}(S)$ if and only if the two following conditions hold:

$$\{\varepsilon\} \text{ is not } \mathcal{G}\text{-separable from } L_{\mathcal{B}_S}((s,q,s),(t,r,t)), \text{ and}$$

$$\{\varepsilon\} \text{ is not } \mathcal{G}\text{-separable from } L_{\mathcal{B}_S}((q,s,q),(r,t,r)).$$

$$(1)$$

A set $S \subseteq Q^4$ is (BPol, *)-sound for \mathcal{G} and \mathcal{A} if it is a fixpoint for $\tau_{\mathcal{A},\mathcal{G}}$, *i.e.* $\tau_{\mathcal{A},\mathcal{G}}(S) = S$. We have the following simple lemma which can be verified from the definition. It states that $\tau_{\mathcal{A},\mathcal{G}}: 2^{Q^4} \to 2^{Q^4}$ is *increasing* (for inclusion). In particular, this implies that it has a greatest fixpoint, *i.e.*, there is a greatest (BPol, *)-sound set.

⁴⁵⁴ ► Lemma 19. Let \mathcal{G} be a group prevariety and let $\mathcal{A} = (Q, \delta)$ be an NFA. For every ⁴⁵⁵ $S, S' \subseteq Q^4$, we have $S \subseteq S' \Rightarrow \tau_{\mathcal{A},\mathcal{G}}(S) \subseteq \tau_{\mathcal{A},\mathcal{G}}(S')$.

456 We may now state the first key theorem of the paper. It applies to $BPol(\mathcal{G})$ -separation.

⁴⁵⁷ ► **Theorem 20.** Let \mathcal{G} be a group prevariety and $\mathcal{A} = (Q, \delta)$ an NFA. Then, $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$ ⁴⁵⁸ is the greatest (BPol, *)-sound subset of Q^4 for \mathcal{G} and \mathcal{A} .

Characterization of $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G},\mathcal{A}]$. The characterization of $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G},\mathcal{A}]$ is analogous. Roughly, the only difference is that we modify the definition of the auxiliary automaton \mathcal{B}_S . Let \mathcal{G} be a group prevariety and $\mathcal{A} = (Q, \delta)$ be an NFA. We define a new function $\tau^+_{\mathcal{A},\mathcal{G}}: 2^{Q^4} \to 2^{Q^4}$. For $S \subseteq Q^4$, we define $\tau^+_{\mathcal{A},\mathcal{G}}(S) \subseteq Q^4$ using another auxiliary NFA $\mathcal{B}_S^+ = (Q^3, \gamma_S^+)$ with ε -transitions. Its states are triples in Q^3 and $\gamma_S^+ \subseteq Q^3 \times (\mathcal{A} \cup$

29:12 A generic polynomial time approach to separation by alternation-free first-order logic

 $\begin{array}{ll} _{464} \quad \{\varepsilon\}) \times Q^3 \text{ contains two kinds of transitions. First, for } a \in A \text{ and } s_1, s_2, s_3, t_1, t_2, t_3 \in Q, \\ _{465} \quad \text{we let } \left((s_1, s_2, s_3), a, (t_1, t_2, t_3)\right) \in \gamma_S^+ \text{ if and only if } (s_1, a, t_1) \in \delta, \ (s_2, a, t_2) \in \delta \text{ and} \\ _{466} \quad (s_3, a, t_3) \in \delta. \text{ Second, for all } q_1 \in Q \text{ and all } (q_2, r_2, q_3, r_3) \in S, \text{ if } A^+ \cap L_{\mathcal{A}}(q_1, q_1) \cap \\ _{467} \quad L_{\mathcal{A}}(q_2, q_2) \cap L_{\mathcal{A}}(q_3, q_3) \cap L_{\mathcal{A}}(r_2, r_2) \cap L_{\mathcal{A}}(r_3, r_3) \neq \emptyset, \text{ then we add the following ε-transition:} \\ _{468} \quad ((q_1, q_2, q_3), \varepsilon, (q_1, r_2, r_3)) \in \gamma_S^+. \text{ We represent this construction in Figure 2.} \end{array}$

Figure 2 Construction of the transitions in the auxiliary automaton \mathcal{B}_{S}^{+}

471

We are ready to define $\tau^+_{\mathcal{A},\mathcal{G}}(S) \subseteq Q^4$. For every $(q,r,s,t) \in Q^4$, we let $(q,r,s,t) \in \tau^+_{\mathcal{A},\mathcal{G}}(S)$ if and only if the two following conditions hold:

 $\{\varepsilon\} \text{ is not } \mathcal{G}\text{-separable from } L_{\mathcal{B}_{S}^{+}}((s,q,s),(t,r,t)), \text{ and} \\ \{\varepsilon\} \text{ is not } \mathcal{G}\text{-separable from } L_{\mathcal{B}_{S}^{+}}((q,s,q),(r,t,r)).$ (2)

⁵ ⁴⁷² A set $S \subseteq Q^4$ is (BPol, +)-sound for \mathcal{G} and \mathcal{A} if it is a fixpoint for $\tau^+_{\mathcal{A},\mathcal{G}}$, *i.e.* $\tau^+_{\mathcal{A},\mathcal{G}}(S) = S$.

⁴⁷² A set $S \subseteq Q^{*}$ is (BPol, +)-sound for G and A if it is a fixpoint for $\tau_{A,G}^{*}$, *i.e.* $\tau_{A,G}^{*}(S) = S^{*}_{A}$ ⁴⁷³ The following monotonicity lemma implies that there is a greatest (BPol, +)-sound set.

⁴⁷⁴ ► Lemma 21. Let *G* be a group prevariety and $\mathcal{A} = (Q, \delta)$ an NFA. For every $S, S' \subseteq Q^4$, ⁴⁷⁵ we have $S \subseteq S' \Rightarrow \tau^+_{\mathcal{A},\mathcal{G}}(S) \subseteq \tau^+_{\mathcal{A},\mathcal{G}}(S')$.

We may now state our second key theorem. It applies to $BPol(\mathcal{G}^+)$ -separation.

⁴⁷⁷ ► **Theorem 22.** Let \mathcal{G} be a group prevariety and $\mathcal{A} = (Q, \delta)$ an NFA. Then, $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$ ⁴⁷⁸ is the greatest (BPol, +)-sound subset of Q^4 for \mathcal{G} and \mathcal{A} .

Let us discuss the consequences of Theorems 20 and 22. Since \mathcal{B}_S and \mathcal{B}_S^+ can be computed 479 from \mathcal{A} and S, one can compute $\tau_{\mathcal{A},\mathcal{G}}(S)$ and $\tau^+_{\mathcal{A},\mathcal{G}}(S)$ from S provided that \mathcal{G} -separation 480 is decidable. Hence, if \mathcal{G} -separation is decidable, Theorem 20 (resp. Theorem 22) yields 481 a greatest fixpoint procedure for computing $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G},\mathcal{A}]$ (resp. $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G},\mathcal{A}]$). Indeed, 482 consider the sequence of subsets defined by $S_0 = Q^4$, and $S_n = \tau_{\mathcal{A},\mathcal{G}}(S_{n-1})$ for $n \ge 1$. By 483 definition, computing S_n from S_{n-1} boils down to deciding \mathcal{G} -separation. Since $\tau_{\mathcal{A},\mathcal{G}}$ is 484 increasing by Lemma 19, we get a decreasing sequence $Q^4 = S_0 \supseteq S_1 \supseteq S_2 \cdots$. Moreover, 485 since Q^4 is finite, this sequence stabilizes at some point: there exists $n \in \mathbb{N}$ such that 486 $S_n = S_j$ for all $j \ge n$. One may verify that S_n is the greatest (*BPol*, *)-sound subset of Q^4 . 487 By Theorem 20, it follows that $S_n = \mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$. Likewise, the sequence T_n defined by 488 $T_0 = Q^4$ and $T_n = \tau^+_{\mathcal{A},\mathcal{G}}(T_{n-1})$ is computable when \mathcal{G} -separation is decidable, and, since it is 489 decreasing, it stabilizes. By Theorem 22, its stabilization value is $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G},\mathcal{A}]$. 490

⁴⁹¹ By Proposition 12, $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{A}]$ (resp. $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{A}]$) can be computed from $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$ ⁴⁹² (resp. $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$) via a *least* fixpoint procedure. Altogether, by Proposition 9, we get ⁴⁹³ reductions from $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -separation to \mathcal{G} -separation. One may verify that

these are polynomial time reductions (we mean "reduction" in the Turing sense: $BPol(\mathcal{G})$ - and BPol(\mathcal{G}^+)-separation can be decided in polynomial time using an oracle for \mathcal{G} -separation).

Now, it is known that separation can be decided in polynomial time for the classes ST, 496 MOD and GR (this is trivial for ST, see [26] for MOD and GR). Hence, we obtain from 497 Theorem 20 that separation is decidable in polynomial time for BPol(ST) (*i.e.*, $\mathcal{B}\Sigma_1(<)$), 498 BPol(MOD) (*i.e.*, $\mathcal{B}\Sigma_1(\langle, MOD\rangle)$) and BPol(GR). This was well-know for BPol(ST) (the 499 class of piecewise testable languages, see [6, 17]). For the other two, decidability was 500 known [36, 21] but not the polynomial time upper bound. Using Theorem 22, we also obtain 501 that separation is decidable in polynomial time for $BPol(ST^+)$ (*i.e.*, the languages of dot-depth 502 one or equivalently $\mathcal{B}\Sigma_1(<,+1)$, $BPol(MOD^+)$ (*i.e.*, $\mathcal{B}\Sigma_1(<,+1,MOD)$) and $BPol(GR^+)$. 503 Decidability was already known for $BPol(ST^+)$ and $BPol(MOD^+)$: the results can be 504 obtained indirectly by reduction to BPol(ST)-separation using transfer theorems [22, 16]. 505 Yet, the polynomial time upper bounds are new as the transfer theorems have a built-in 506 exponential blow-up. Moreover, decidability of separation is a new result for $BPol(GR^+)$. 507

Finally, the statement applies to BPol(AMT) and $BPol(AMT^+)$ (*i.e.*, $\mathcal{B}\Sigma_1(\langle, AMOD\rangle)$ and $\mathcal{B}\Sigma_1(\langle, +1, AMOD\rangle)$). This is a new result for $BPol(AMT^+)$. Yet, since AMT-separation is co-NP-complete when the alphabet is part of the input [26] (the problem being in P for a fixed alphabet), the complexity analysis is not entirely immediate. However, one may verify that the procedures yield co-NP algorithms for both BPol(AMT)- and $BPol(AMT^+)$ separation. We summarize the upper bounds in Figure 3.

Input class \mathcal{G}	ST	MOD	AMT	GR
$BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -separation	Р	Р	co-NP	Р

Figure 3 Complexity of separation (for input languages represented by NFAs).

514 4.2 Proof of Theorem 20

⁵¹⁵ We now concentrate on the proof of Theorem 20. The key ingredients in this argument are ⁵¹⁶ Proposition 6 and Lemma 16. The proof of Theorem 22 is available in the appendix. It is ⁵¹⁷ based on similar ideas. Roughly, we replace Proposition 6 and Lemma 16 (which are tailored ⁵¹⁸ to classes $BPol(\mathcal{G})$) by their counterparts for $BPol(\mathcal{G}^+)$: Proposition 7 and Lemma 17. ⁵¹⁹ However, note that proving Theorem 22 is technically more involved as manipulating the ⁵²⁰ automaton \mathcal{B}_S^+ in the definition of $\tau_{\mathcal{A},\mathcal{G}}^+$ requires more work.

We fix a group prevariety \mathcal{G} and an NFA $\mathcal{A} = (Q, \delta)$. Let $S \subseteq Q^4$ be the greatest (*BPol*, *)-sound subset for \mathcal{G} and \mathcal{A} . We prove that $S = \mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$.

First part: $S \subseteq \mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$. We use *tuple separation* and Lemma 16. Let us start with some terminology. For every $n \geq 1$ and $(q_1, r_1, q_2, r_2) \in Q^4$, we associate an *n*-tuple of languages, written $T_n(q_1, r_1, q_2, r_2)$. We use induction on *n* and tuple concatenation to present the definition. If n = 1 then, $T_1(q_1, r_1, q_2, r_2) = (L_{\mathcal{A}}(q_2, r_2))$. If n > 1, then,

⁵²⁷
$$T_n(q_1, r_1, q_2, r_2) = \begin{cases} (L_{\mathcal{A}}(q_2, r_2)) \cdot T_{n-1}(q_1, r_1, q_2, r_2) & \text{if } n \text{ is odd} \\ (L_{\mathcal{A}}(q_1, r_1)) \cdot T_{n-1}(q_1, r_1, q_2, r_2) & \text{if } n \text{ is even} \end{cases}$$

For example, we have $T_3(q_1, r_1, q_2, r_2) = (L_{\mathcal{A}}(q_2, r_2), L_{\mathcal{A}}(q_1, r_1), L_{\mathcal{A}}(q_2, r_2)).$

29:14 A generic polynomial time approach to separation by alternation-free first-order logic

▶ Proposition 23. For every $n \ge 1$ and $(q_1, r_1, q_2, r_2) \in S$, the n-tuple $T_n(q_1, r_1, q_2, r_2)$ is not Pol(\mathcal{G})-separable under \mathcal{G} -control.

By definition, Proposition 23 implies that for all $p \ge 1$ and $(q_1, r_1, q_2, r_2) \in S$, the 2p-tuple $(L_{\mathcal{A}}(q_1, r_1), L_{\mathcal{A}}(q_2, r_2))^p$ is not $Pol(\mathcal{G})$ -separable under \mathcal{G} -control. By Corollary 15, it follows that $L_{\mathcal{A}}(q_1, r_1)$ is not $BPol(\mathcal{G})$ -separable from $L_{\mathcal{A}}(q_2, r_2)$ under \mathcal{G} -control, *i.e.*, that $(q_1, r_1, q_2, r_2) \in \mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$. We get $S \subseteq \mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$ as desired.

We prove Proposition 23 by induction on n. We fix $n \ge 1$ for the proof. In order to exploit the hypothesis that S is (BPol, *)-sound, we need a property of the NFA $\mathcal{B}_S = (Q^3, \gamma_S)$ used to define $\tau_{\mathcal{A},\mathcal{G}}$. When $n \ge 2$, this is where we use induction on n and Lemma 16.

Lemma 24. Let $(s_1, s_2, s_3), (t_1, t_2, t_3) \in Q^3$ and $w \in L_{\mathcal{B}_S}((s_1, s_2, s_3), (t_1, t_2, t_3))$. Then, w ∈ $L_{\mathcal{A}}(s_1, t_1)$ and, if $n \ge 2$, the n-tuple $(\{w\}) \cdot T_{n-1}(s_2, t_2, s_3, t_3)$ is not Pol(\mathcal{G})-separable.

Proof. Since $w \in L_{\mathcal{B}_S}((s_1, s_2, s_3), (t_1, t_2, t_3))$, there exists a run labeled by w from (s_1, s_2, s_3) 540 to (t_1, t_2, t_3) in \mathcal{B}_S . We use a sub-induction on the number of transitions involved in that run. 541 First, assume that no transitions are used: we have $w = \varepsilon$ and $(s_1, s_2, s_3) = (t_1, t_2, t_3)$. Clearly, 542 $\varepsilon \in L_{\mathcal{A}}(s_1, s_1)$ and, if $n \ge 2$, the *n*-tuple $(\{\varepsilon\}) \cdot T_{n-1}(s_2, s_2, s_3, s_3)$ is not $Pol(\mathcal{G})$ -separable by 543 Lemma 13 since $\varepsilon \in L_{\mathcal{A}}(s_2, s_2) \cap L_{\mathcal{A}}(s_3, s_3)$. We now assume that at least one transition is 544 used and consider the last one: we have $(q_1, q_2, q_3) \in Q^3$, $w' \in A^*$ and $x \in A \cup \{\varepsilon\}$ such that 545 $w = w'x, w' \in L_{\mathcal{B}_S}((s_1, s_2, s_3), (q_1, q_2, q_3))$ and $((q_1, q_2, q_3), x, (t_1, t_2, t_3)) \in \gamma_S$. By induction, 546 we have $w' \in L_{\mathcal{A}}(s_1, q_1)$ and, if $n \ge 2$, the *n*-tuple $(\{w'\}) \cdot T_{n-1}(s_2, q_2, s_3, q_3)$ is not $Pol(\mathcal{G})$ -547 separable. We prove that $x \in L_{\mathcal{A}}(q_1, t_1)$ and, if $n \geq 2$, the *n*-tuple $(\{x\}) \cdot T_{n-1}(q_2, t_2, q_3, t_3)$ 548 is not $Pol(\mathcal{G})$ -separable. It will then be immediate that $w = w'x \in L_{\mathcal{A}}(s_1, t_1)$ and, if $n \ge 2$, 549 Lemma 14 implies that $(\{w\}) \cdot T_{n-1}(s_2, t_2, s_3, t_3)$ is not $Pol(\mathcal{G})$ -separable. 550

We consider two cases depending on whether $x \in A$ or $x = \varepsilon$. First, if $x = a \in A$, then 551 $(q_i, a, t_i) \in \delta$ for $i = \{1, 2, 3\}$. Clearly, this implies that $a \in L_{\mathcal{A}}(q_1, t_1)$ and, if $n \geq 2$, then 552 $(\{a\}) \cdot T_{n-1}(q_2, t_2, q_3, t_3)$ is not $Pol(\mathcal{G})$ -separable by Lemma 13 since $a \in L_{\mathcal{A}}(q_2, t_2) \cap L_{\mathcal{A}}(q_3, t_3)$. 553 Assume now that $x = \varepsilon$: we are dealing with an ε -transition. By definition of γ_S , we have 554 $q_1 = t_1$ and $(q_2, t_2, q_3, t_3) \in S$. The former yields $\varepsilon \in L_{\mathcal{A}}(q_1, t_1)$. Moreover, if $n \geq 2$, since 555 $(q_2, t_2, q_3, t_3) \in S$, it follows from induction on n in Proposition 23 that the (n-1)-tuple 556 $T_{n-1}(q_2, t_2, q_3, t_3)$ is not $Pol(\mathcal{G})$ -separable under \mathcal{G} -control. Combined with Lemma 16, this 557 yields that $(\{\varepsilon\}) \cdot T_{n-1}(q_2, t_2, q_3, t_3)$ is not $Pol(\mathcal{G})$ -separable, as desired. 558

We may now complete the proof of Proposition 23. By symmetry, we only treat the 559 case when n is odd and leave the case when it is even to the reader. Let $(q_1, r_1, q_2, r_2) \in S$, 560 we have to prove that $T_n(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G})$ -separable under \mathcal{G} -control. Hence, we 561 fix $H \in \mathcal{G}$ such that $\varepsilon \in H$ and prove $H \cap T_n(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G})$ -separable. Since 562 S is (BPol,*)-sound, we have $\tau_{\mathcal{A},\mathcal{G}}(S) = S$, which implies that $(q_1,r_1,q_2,r_2) \in \tau_{\mathcal{A},\mathcal{G}}(S)$. 563 Hence, it follows from (1) that $\{\varepsilon\}$ is not \mathcal{G} -separable from $L_{\mathcal{B}_S}((q_2, q_1, q_2), (r_2, r_1, r_2))$. Since 564 $H \in \mathcal{G}$ and $\varepsilon \in H$, we get a word $w \in H \cap L_{\mathcal{B}_S}((q_2, q_1, q_2), (r_2, r_1, r_2))$. By Lemma 24, 565 we have $w \in H \cap L_{\mathcal{A}}(q_2, r_2)$. This completes the proof when n = 1. Indeed, in that 566 case we have $T_1(q_1, r_1, q_2, r_2) = (L_{\mathcal{A}}(q_2, r_2))$ and since $H \cap L_{\mathcal{A}}(q_2, r_2) \neq \emptyset$, it follows that 567 $H \cap T_1(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G})$ -separable, as desired. If $n \geq 2$, then Lemma 24 also 568 implies that $(\{w\}) \cdot T_{n-1}(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G})$ -separable. Since $w \in H \cap L_{\mathcal{A}}(q_2, r_2)$, 569 Lemma 13 yields that $(H \cap L_{\mathcal{A}}(q_2, r_2)) \cdot T_{n-1}(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G})$ -separable. Thus, since 570 $H \in \mathcal{G} \subseteq Pol(\mathcal{G})$, one may verify that the *n*-tuple $(H \cap L_{\mathcal{A}}(q_2, r_2)) \cdot (H \cap T_{n-1}(q_1, r_1, q_2, r_2))$ 571 is not $Pol(\mathcal{G})$ -separable. By definition, this exactly says that $H \cap T_n(q_1, r_1, q_2, r_2)$ is not 572 $Pol(\mathcal{G})$ -separable, completing the proof. 573

Second part: $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}] \subseteq S$. In the sequel, we say that an arbitrary set $R \subseteq Q^4$ is good if there exists $L \in \mathcal{G}$ such $\varepsilon \in L$ and a $BPol(\mathcal{G})$ -cover **K** of L which is separating for R.

Proposition 25. Let $R \subseteq Q^4$. If R is good, then $\tau_{\mathcal{A},\mathcal{G}}(R)$ is good as well.

We use Proposition 25 to complete the proof. Let $S_0 = Q^4$ and $S_i = \tau_{\mathcal{A},\mathcal{G}}(S_{i-1})$ for $i \geq 1$. By Lemma 19, we have $S_0 \supseteq S_1 \subseteq S_2 \supseteq \cdots$ and there is $n \in \mathbb{N}$ such that S_n is the greatest (BPol, *)-sound subset for \mathcal{G} and \mathcal{A} , *i.e.*, such that $S_n = S$. Since S_0 is good ($\{A^*\}$ is a $BPol(\mathcal{G})$ -cover of $A^* \in \mathcal{G}$ which is separating for $S_0 = Q^4$), Proposition 25 implies that S_i is good for all $i \in \mathbb{N}$. Thus, $S = S_n$ is good. We get $L \in \mathcal{G}$ such that $\varepsilon \in L$ and a $BPol(\mathcal{G})$ -cover **K** of L which is separating for S. Lemma 11 then yields $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}] \subseteq S$ as desired.

▶ Remark 26. The proof of Proposition 25 actually provides a construction for building $L \in \mathcal{G}$ such that $\varepsilon \in L$ and a $BPol(\mathcal{G})$ -cover **K** of L which is separating for S (yet, this involves building separators in \mathcal{G} , see Lemma 27). As we have now established that $S = \mathcal{I}_{BPol(\mathcal{G})}[\mathcal{G}, \mathcal{A}]$, one may then follow the proof of Proposition 12 to build a $BPol(\mathcal{G})$ -cover **H** of A^* which is separating for $\mathcal{I}_{BPol(\mathcal{G})}[\mathcal{A}]$. Finally, **H** encodes separators for all pairs of languages recognized by \mathcal{A} which are $BPol(\mathcal{G})$ -separable (roughly, this is the proof of Lemma 10). Altogether, we get a way to build separators in $BPol(\mathcal{G})$, when they exist.

We now prove Proposition 25. Let $R \subseteq Q^4$ be good. We have to build $L \in \mathcal{G}$ with $\varepsilon \in L$ and a $BPol(\mathcal{G})$ -cover **K** of L which is separating for $\tau_{\mathcal{A},\mathcal{G}}(R)$ (which will prove that $\tau_{\mathcal{A},\mathcal{G}}(R)$ is good as well). We first build L (this part is independent from our hypothesis on R).

▶ Lemma 27. There exists $L \in \mathcal{G}$ such that $\varepsilon \in L$ and for every $(q, r, s, t) \in Q^4$, if $\mathcal{L}_{\mathcal{B}_R}((q, s, q), (r, t, r)) \cap L \neq \emptyset$ and $\mathcal{L}_{\mathcal{B}_R}((s, q, s), (t, r, t)) \cap L \neq \emptyset$, then $(q, r, s, t) \in \tau_{\mathcal{A}, \mathcal{G}}(R)$.

Proof. Let **H** be the *finite* set of all languages recognized by \mathcal{B}_R such that $\{\varepsilon\}$ is \mathcal{G} -separable from H. For every $H \in \mathbf{H}$, there exists $L_H \in \mathcal{G}$ such that $\varepsilon \in L_H$ and $L_H \cap H = \emptyset$. We define $L = \bigcap_{H \in \mathbf{H}} L_H \in \mathcal{G}$. It is clear that $\varepsilon \in L$. Moreover, given $(q, r, s, t) \in Q^4$, if $L_{\mathcal{B}_R}((q, s, q), (r, t, r)) \cap L \neq \emptyset$ and $L_{\mathcal{B}_R}((s, q, s), (t, r, t)) \cap L \neq \emptyset$, it follows from the definition of L that $\{\varepsilon\}$ is not \mathcal{G} -separable from both $L_{\mathcal{B}_R}((q, s, q), (r, t, r))$ and $L_{\mathcal{B}_R}((s, q, s), (t, r, t))$. It follows from (1) in the definition of $\tau_{\mathcal{A},\mathcal{G}}$ that $(q, r, s, t) \in \tau_{\mathcal{A},\mathcal{G}}(R)$.

We fix $L \in \mathcal{G}$ as described in Lemma 27 for the remainder of the proof. We now build the $BPol(\mathcal{G})$ -cover **K** of L using the hypothesis that R is good and Proposition 6.

▶ Lemma 28. For all $(q,r) \in Q^2$, there is $H_{q,r} \in BPol(\mathcal{G})$ such that $L_{\mathcal{A}}(q,r) \cap L \subseteq H_{q,r}$ and for all pairs $(s,t) \in Q^2$, if $L_{\mathcal{A}}(s,t) \cap H_{q,r} \neq \emptyset$ then $L_{\mathcal{B}_R}((q,s,q),(r,t,r)) \cap L \neq \emptyset$.

Proof. Since R is good, there are $U \in \mathcal{G}$ such that $\varepsilon \in U$ and a $BPol(\mathcal{G})$ -cover V of 605 U which is separating for R. We use them to build $H_{q,r}$. Since U is a group language 606 and $\varepsilon \in U$, Proposition 6 yields a cover **P** of $L_{\mathcal{A}}(q,r) \cap L$ such that every $P \in \mathbf{P}$ is of 607 the form $P = \uparrow_U w_P$ where $w_P \in L_{\mathcal{A}}(q, r) \cap L$. For every $P \in \mathbf{P}$, we build a $BPol(\mathcal{G})$ -608 cover \mathbf{K}_P of P. Let $a_1, \ldots, a_n \in A$ be the letters such that $w_P = a_1 \cdots a_n$. We have 609 $P = Ua_1U \cdots a_nU$. Since $U \in \mathcal{G} \subseteq Pol(\mathcal{G})$ and **V** is a $BPol(\mathcal{G})$ -cover of U, Proposition 5 610 yields a $BPol(\mathcal{G})$ -cover \mathbf{K}_P of P such that for every $K \in \mathbf{K}_P$, there exist $V_0, \ldots, V_n \in \mathbf{V}$ 611 satisfying $K \subseteq V_0 a_1 V_1 \cdots a_n V_n$. We define $H_{q,r}$ as the union of all languages K such that 612 $K \in \mathbf{K}_P$ for some $P \in \mathbf{P}$ and $L_{\mathcal{A}}(q,r) \cap K \neq \emptyset$. Clearly, $H_{q,r} \in BPol(\mathcal{G})$. Moreover, 613 since **P** is a cover of $L_{\mathcal{A}}(q,r) \cap L$, and \mathbf{K}_P is a cover of P for each $P \in \mathbf{P}$, it is clear that 614 $L_{\mathcal{A}}(q,r) \cap L \subseteq H_{q,r}$. We now fix $(s,t) \in Q^2$ such that $L_{\mathcal{A}}(s,t) \cap H_{q,r} \neq \emptyset$ and show that 615 $L_{\mathcal{B}_R}((q,s,q),(r,t,r)) \cap L \neq \emptyset$. By definition of $H_{q,r}$, we get $P \in \mathbf{P}$ and $K \in \mathbf{K}_P$ such that 616 $L_{\mathcal{A}}(q,r) \cap K \neq \emptyset$ and $L_{\mathcal{A}}(s,t) \cap K \neq \emptyset$. By definition, $P = \uparrow_U w_P$ with $w_P \in L_{\mathcal{A}}(q,r) \cap L$. 617 Hence, it suffices to prove that $w_P \in L_{\mathcal{B}_R}((q, s, q), (r, t, r)).$ 618

We fix $x \in L_{\mathcal{A}}(s,t) \cap K$ and $y \in L_{\mathcal{A}}(q,r) \cap K$. Recall that $w_P = a_1 \cdots a_n$ (if n = 0, then $w_P = \varepsilon$). Since $w_P \in L_{\mathcal{A}}(q,r)$, we may consider the corresponding run in \mathcal{A} : we get

29:16 A generic polynomial time approach to separation by alternation-free first-order logic

 $p_0, \ldots, p_n \in Q$ such that $p_0 = q$, $p_n = r$ and $(p_{i-1}, a_i, p_i) \in \delta$ for $1 \leq i \leq n$. Moreover, since 621 $K \in \mathbf{K}_P$ and $w_P = a_1 \cdots a_n$, we have $K \subseteq V_0 a_1 V_1 \cdots a_n V_n$ for $V_0, \ldots, V_n \in \mathbf{V}$ (if n = 0, 622 then $K \subseteq V_0$). Since $x, y \in K$, we get $x_i, y_i \in V_i$ for $0 \le i \le n$ such that $x = x_0 a_1 x_1 \cdots a_n x_n$ 623 and $y = y_0 a_1 y_1 \cdots a_n y_n$. Since $x \in L_{\mathcal{A}}(s,t)$, we get $s_0, t_0, \ldots, s_n, t_n \in Q$ such that $s_0 = s$, 624 $t_n = t, x_i \in L_{\mathcal{A}}(s_i, t_i)$ for $0 \le i \le n$, and $(t_{i-1}, a_i, s_i) \in \delta$ for $1 \le i \le n$. Symmetrically, 625 since $y \in L_{\mathcal{A}}(q,r)$, we get $q_0, r_0, \ldots, q_n, r_n \in Q$ such that $q_0 = q$, $r_n = r$, $y_i \in L_{\mathcal{A}}(q_i, r_i)$ 626 for $0 \leq i \leq n$, and $(r_{i-1}, a_i, q_i) \in \delta$ for $1 \leq i \leq n$. By definition of γ_R , it is immediate 627 that $((p_{i-1}, t_{i-1}, r_{i-1}), a_i, (p_i, s_i, q_i)) \in \gamma_R$ for $1 \le i \le n$. Since $V_i \in \mathbf{V}$ and \mathbf{V} is separating 628 for R, the fact that $x_i, y_i \in V_i$ implies that $(s_i, t_i, q_i, r_i) \in R$ for $0 \leq i \leq n$. Hence, 629 $((p_i, s_i, q_i), \varepsilon, (p_i, t_i, r_i)) \in \gamma_R$ by definition. Thus, we get a run labeled by w_P from (p_0, s_0, q_0) 630 to (p_n, t_n, r_n) in \mathcal{B}_R , *i.e.*, $w_P \in L_{\mathcal{B}_R}((q, s, q), (r, t, r))$ as desired. 631

We may now build **K**. Let $\mathbf{H} = \{H_{q,r} \mid (q,r) \in Q^2\}$. Consider the following equivalence 632 ~ defined on L: given $u, v \in L$, we let $u \sim v$ if and only if $u \in H_{q,r} \Leftrightarrow v \in H_{q,r}$ for 633 every $(q,r) \in Q^2$. We let **K** as the partition of L into ~-classes. Clearly, each $K \in \mathbf{K}$ is a 634 Boolean combination involving the languages in **H** (which belong to $BPol(\mathcal{G})$) and $L \in \mathcal{G}$. 635 Hence, **K** is a $BPol(\mathcal{G})$ -cover of L. We now prove that it is separating for $\tau_{\mathcal{A},\mathcal{G}}(R)$. Let 636 $q, r, s, t \in Q$ and $K \in \mathbf{K}$ such that there are $u \in L_{\mathcal{A}}(q, r) \cap K$ and $v \in L_{\mathcal{A}}(s, t) \cap K$. We show 637 that $(q, r, s, t) \in \tau_{\mathcal{A}, \mathcal{G}}(R)$. By definition of **K**, we have $u, v \in L$ and $u \sim v$. In particular, 638 $u \in L_{\mathcal{A}}(q,r) \cap L$ which yields $u \in H_{q,r}$ by definition in Lemma 28. Together with $u \sim v$, this 639 yields $v \in H_{q,r}$. Hence, $L_{\mathcal{A}}(s,t) \cap H_{q,r} \neq \emptyset$ and Lemma 28 yields $L_{\mathcal{B}_R}((q,s,q),(r,t,r)) \cap L \neq \emptyset$. 640 One may now use a symmetrical argument to obtain $L_{\mathcal{B}_R}((s,q,s),(t,r,t)) \cap L \neq \emptyset$. By 641 definition of L in Lemma 27, this yields $(q, r, s, t) \in \tau_{\mathcal{A}, \mathcal{G}}(R)$, completing the proof. 642

5 Conclusion

In this paper, we proved that for every group prevariety \mathcal{G} , there exist generic polynomial 644 time Turing reductions from $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -separation to \mathcal{G} -separation, for input 645 languages represented by NFAs. While a generic reduction from $BPol(\mathcal{G})$ -separation to 646 \mathcal{G} -separation was already developed in [21], it relied on an involved machinery, which required 647 to dig into a more general problem than $BPol(\mathcal{G})$ -separation, namely " $BPol(\mathcal{G})$ -covering". In 648 particular, the techniques from [21] do not provide any way to build separators in $BPol(\mathcal{G})$ 649 (when they exist). They also yield poor upper complexity bounds. At last, the results of [21] 650 do not apply to $BPol(\mathcal{G}^+)$. In this case, even the existence of a generic reduction is new. It 651 would be interesting to unify ideas of the present paper with the techniques of [21], to lift 652 them to the setting of $BPol(\mathcal{G})$ - and $BPol(\mathcal{G}^+)$ -covering. We leave this for further work. 653

Our results imply that separation is decidable in *polynomial time* for a number of 654 standard classes: the piecewise testable languages (*i.e.*, BPol(ST) or equivalently $\mathcal{B}\Sigma_1(<)$), 655 the languages of dot-depth one (*i.e.*, $BPol(ST^+)$ or equivalently $\mathcal{B}\Sigma_1(<,+1)$), the classes 656 BPol(MOD) and $BPol(MOD^+)$ (*i.e.*, $\mathcal{B}\Sigma_1(<, MOD)$ and $\mathcal{B}\Sigma_1(<, +1, MOD)$) and the classes 657 BPol(GR) and $BPol(GR^+)$. While this was well-known for the piecewise testable lan-658 guages [17, 6], all other results are new—not only regarding the complexity, but even 659 regarding the decidability. Actually, it is shown in [12] that BPol(ST)-separation is P-660 complete. It turns out that the reduction of [12], from the circuit value problem, adapts to 661 prove the P-completeness of separation for all of the above classes (we leave the details for 662 further work). Finally, our results also apply to the classes BPol(AMT) and $BPol(AMT^+)$ 663 $(i.e., \mathcal{B}\Sigma_1(\langle AMOD \rangle)$ and $\mathcal{B}\Sigma_1(\langle +1, AMOD \rangle)$: we obtain that separation is in co-NP. 664 While this is currently unknown, we conjecture that this is a *tight* upper bound. Indeed, it is 665 known that AMT-separation is co-NP-complete [26]. 666

667		References
668	1	Jorge Almeida and Marc Zeitoun. The pseudovariety \mathbf{J} is hyperdecidable. <i>RAIRO Theoretical</i>
669		Informatics and Applications, 31(5):457–482, 1997.
670	2	Mustapha Arfi. Polynomial operations on rational languages. In Proceedings of the 4th Annual
671		Symposium on Theoretical Aspects of Computer Science, STACS'87, pages 198–206, Berlin,
672		Heidelberg, 1987. Springer-Verlag.
673	3	Janusz A. Brzozowski and Rina S. Cohen. Dot-depth of star-free events. <i>Journal of Computer</i>
674		and System Sciences, 5(1):1–16, 1971.
675	4	Antonio Cano, Giovanna Guaiana, and Jean-Eric Pin. Regular languages and partial commut-
676		ations. Journal of Information and Computation, 230:76–96, 2013.
677	5	Laura Chaubard, Jean Éric Pin, and Howard Straubing. First order formulas with modular
678		predicates. In Proceedings of the 21th IEEE Symposium on Logic in Computer Science
679		(<i>LICS'06</i>), pages 211–220, 2006.
680	6	Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular
681		languages by subsequences and suffixes. In Proceedings of the 40th International Colloquium
682		on Automata, Languages, and Programming, ICALP'13, pages 150–161, Berlin, Heidelberg,
683		2013. Springer-Verlag.
684	7	Samuel Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, Inc.,
685		Orlando, FL, USA, 1976.
686	8	Karsten Henckell, Stuart Margolis, Jean-Eric Pin, and John Rhodes. Ash's type II theorem,
687		profinite topology and Malcev products. International Journal of Algebra and Computation,
688		1:411-436, 1991.
689	9	Robert Knast. A semigroup characterization of dot-depth one languages. RAIRO - Theoretical
690		Informatics and Applications, 17(4):321–330, 1983.
691	10	Alexis Maciel, Pierre Péladeau, and Denis Thérien. Programs over semigroups of dot-depth
692		one. Theoretical Computer Science, 245(1):135–148, 2000.
693	11	Stuart Margolis and Jean-Eric Pin. Product of Group Languages. In FCT Conference, volume
694		Lecture Notes in Computer Science, pages 285–299. Springer-Verlag, 1985.
695	12	Tomás Masopust. Separability by piecewise testable languages is ptime-complete. <i>Theor.</i>
696		Comput. Sci., 711:109–114, 2018.
697	13	Jean-Eric Pin. Algebraic tools for the concatenation product. Theoretical Computer Science,
698		292:317–342, 2003.
699	14	Jean-Eric Pin. An explicit formula for the intersection of two polynomials of regular languages.
700		In DLT 2013, volume 7907 of Lect. Notes Comp. Sci., pages 31–45. Springer, 2013.
701	15	Jean-Eric Pin and Howard Straubing. Some results on C-varieties. RAIRO - Theoretical
702		Informatics and Applications, 39(1):239–262, 2005.
703	16	Thomas Place, Varun Ramanathan, and Pascal Weil. Covering and separation for logical
704		fragments with modular predicates. Logical Methods in Computer Science, 15(2), 2019.
705	17	Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
706		piecewise testable and unambiguous languages. In Proceedings of the 38th International
707		Symposium on Mathematical Foundations of Computer Science, MFCS'13, pages 729–740,
708		Berlin, Heidelberg, 2013. Springer-Verlag.
709	18	Thomas Place and Marc Zeitoun. Separation for dot-depth two. In Proceedings of the 32th
710		Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS'17), pages 202–213.
711		IEEE Computer Society, 2017.
712	19	Thomas Place and Marc Zeitoun. The covering problem. Logical Methods in Computer Science,
713		14(3), 2018.
714	20	Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of
715		Computing Systems (ToCS), 63(4):849–901, 2019. Selected papers from CSR'17.
716	21	Thomas Place and Marc Zeitoun. Separation and covering for group based concatenation
717		hierarchies. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
718		Science, LICS'19, pages 1–13, 2019.

29:18 A generic polynomial time approach to separation by alternation-free first-order logic

- Thomas Place and Marc Zeitoun. Adding successor: A transfer theorem for separation and covering. ACM Transactions on Computational Logic, 21(2):9:1–9:45, 2020.
- Thomas Place and Marc Zeitoun. Separation for dot-depth two. Logical Methods in Computer
 Science, Volume 17, Issue 3, 2021.
- Thomas Place and Marc Zeitoun. Characterizing level one in group-based concatenation hier archies. In *Computer Science Theory and Applications*, Cham, 2022. Springer International
 Publishing.
- Thomas Place and Marc Zeitoun. A generic polynomial time approach to separation by first-order logic without quantifier alternation, 2022. URL: https://arxiv.org/abs/2210.00946,
 doi:10.48550/ARXIV.2210.00946.
- Thomas Place and Marc Zeitoun. Group separation strikes back. To appear, a preliminary version is vailable at https://www.labri.fr/perso/tplace/Files/groups.pdf, 2022.
- Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata Theory and Formal Languages, pages 214–222, Berlin, Heidelberg, 1975. Springer-Verlag.
- Benjamin Steinberg. Inevitable graphs and profinite topologies: Some solutions to algorithmic
 problems in monoid and automata theory, stemming from group theory. International Journal
 of Algebra and Computation, 11(1):25–72, 2001.
- Howard Straubing. A generalization of the schützenberger product of finite monoids. *Theoretical Computer Science*, 13(2):137–150, 1981.
- ⁷³⁸ 30 Howard Straubing. Finite semigroup varieties of the form V * D. Journal of Pure and Applied
 ⁷³⁹ Algebra, 36:53–94, 1985.
- Howard Straubing. On logical descriptions of regular languages. In *Proceedings of the 5th Latin American Symposium on Theoretical Informatics*, LATIN'02, pages 528–538, Berlin, Heidelberg, 2002. Springer-Verlag.
- ⁷⁴³ 32 Denis Thérien. Classification of finite monoids: The language approach. *Theoretical Computer Science*, 14(2):195–208, 1981.
- 745 33 Gabriel Thierrin. Permutation automata. Theory of Computing Systems, 2(1):83—90, 1968.
- ⁷⁴⁶ 34 Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computer and
 ⁷⁴⁷ System Sciences, 25(3):360–376, 1982.
- ⁷⁴⁸ 35 Bret Tilson. Categories as algebra: essential ingredient in the theory of monoids. Journal of
 ⁷⁴⁹ Pure and Applied Algebra, 48(1):83–198, 1987.
- Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond
 subwords. In *Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science*, LICS'18, pages 929–938, 2018.

753 Appendix

⁷⁵⁴ In this appendix, we present the proof of Theorem 22. Let us first recall the statement.

⁷⁵⁵ ► **Theorem 22.** Let \mathcal{G} be a group prevariety and $\mathcal{A} = (Q, \delta)$ an NFA. Then, $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$ ⁷⁵⁶ is the greatest (BPol, +)-sound subset of Q^4 for \mathcal{G} and \mathcal{A} .

The proof argument is based on the same outline as the one presented for Theorem 20 in the main paper. We fix a group prevariety \mathcal{G} and an NFA $\mathcal{A} = (Q, \delta)$. Let $S \subseteq Q^4$ be the greatest (BPol, +)-sound subset for \mathcal{G} and \mathcal{A} . We prove that $S = \mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$.

First part: $S \subseteq \mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$. We use tuple separation and Lemma 17. Let us start with terminology. For every $n \ge 1$ and $(q_1, r_1, q_2, r_2) \in Q^4$, we associate an *n*-tuple $T_n(q_1, r_1, q_2, r_2)$. We use induction on *n* and tuple concatenation to present the definition. If n = 1 then, $T_1(q_1, r_1, q_2, r_2) = (L_{\mathcal{A}}(q_2, r_2))$. If n > 1, then,

$$T_{n}(q_{1}, r_{1}, q_{2}, r_{2}) = \begin{cases} (L_{\mathcal{A}}(q_{2}, r_{2})) \cdot T_{n-1}(q_{1}, r_{1}, q_{2}, r_{2}) & \text{if } n \text{ is odd} \\ (L_{\mathcal{A}}(q_{1}, r_{1})) \cdot T_{n-1}(q_{1}, r_{1}, q_{2}, r_{2}) & \text{if } n \text{ is even.} \end{cases}$$

We use induction on n to prove the following proposition.

Proposition 29. For every $n \ge 1$ and $(q_1, r_1, q_2, r_2) \in S$, the n-tuple $T_n(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G}^+)$ -separable under \mathcal{G} -control.

By definition, Proposition 29 implies that for every $p \ge 1$ and every $(q_1, r_1, q_2, r_2) \in S$, the 2p-tuple $(L_{\mathcal{A}}(q_1, r_1), L_{\mathcal{A}}(q_2, r_2))^p$ is not $Pol(\mathcal{G}^+)$ -separable under \mathcal{G} -control. By Corollary 15, it follows that $L_{\mathcal{A}}(q_1, r_1)$ is not $BPol(\mathcal{G}^+)$ -separable from $L_{\mathcal{A}}(q_2, r_2)$ under \mathcal{G} -control, *i.e.* 770 that $(q_1, r_1, q_2, r_2) \in \mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$. We get $S \subseteq \mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}]$ as desired.

⁷⁷² We prove Proposition 29 using induction on n. We fix $n \ge 1$ for the proof. In order to ⁷⁷³ exploit the fact that S is (BPol, +)-sound, we need a property of the NFA $\mathcal{B}_{S}^{+} = (Q^{3}, \gamma_{S})$ ⁷⁷⁴ used to define $\tau_{\mathcal{A},\mathcal{G}}^{+}$. When $n \ge 2$, this is where we use induction on n and Lemma 17.

Lemma 30. Consider $(s_1, s_2, s_3), (t_1, t_2, t_3) \in Q^3$ and a group language $H \subseteq A^*$. Assume that $H \cap L_{\mathcal{B}_S^+}((s_1, s_2, s_3), (t_1, t_2, t_3)) \neq \emptyset$. Then, $H \cap L_{\mathcal{A}}(s_1, t_1) \neq \emptyset$ and, if $n \ge 2$, then the *n*-tuple $(H \cap L_{\mathcal{A}}(s_1, t_1)) \cdot T_{n-1}(s_2, t_2, s_3, t_3)$ is not $Pol(\mathcal{G}^+)$ -separable.

Proof. By hypothesis, there exists $w \in H \cap L_{\mathcal{B}_S^+}((s_1, s_2, s_3), (t_1, t_2, t_3))$. Hence, the NFA \mathcal{B}_S^+ 778 contains some run labeled by w from (s_1, s_2, s_3) to (t_1, t_2, t_3) . We use a sub-induction on the 779 number of transitions involved in that run. When no transitions are used: we have $w = \varepsilon$ 780 and $(s_1, s_2, s_3) = (t_1, t_2, t_3)$. It follows that $w = \varepsilon \in H \cap L_{\mathcal{A}}(s_1, t_1)$. Moreover, if $n \geq 2$, the 781 *n*-tuple $(H \cap L_{\mathcal{A}}(s_1, t_1)) \cdot T_{n-1}(s_2, s_2, s_3, s_3)$ is not $Pol(\mathcal{G}^+)$ -separable by Lemma 13 since 782 $\varepsilon \in L_{\mathcal{A}}(s_2, s_2) \cap L_{\mathcal{A}}(s_3, s_3)$. We now assume that at least one transition is used. We get a 783 triple $(q_1, q_2, q_3) \in Q^3$, a word $w' \in A^*$ and $x \in A \cup \{\varepsilon\}$ such that we have $w = w'x, w' \in C^*$ 784 $L_{\mathcal{B}^+_{\alpha}}((s_1, s_2, s_3), (q_1, q_2, q_3))$ and $((q_1, q_2, q_3), x, (t_1, t_2, t_3)) \in \gamma_S^+$. Since H is a group language, 785 it is recognized by a morphism $\alpha : A^* \to G$ into a finite group G. Let $H' = \alpha^{-1}(\alpha(w'))$. 786 Clearly, H' is a group language and $w' \in H' \cap L_{\mathcal{B}^+_{\alpha}}((s_1, s_2, s_3), (q_1, q_2, q_3))$. Thus, induction 787 yields that $H' \cap L_{\mathcal{A}}(s_1, q_1) \neq \emptyset$ and, if $n \geq 2$, the *n*-tuple $(H' \cap L_{\mathcal{A}}(s_1, q_1)) \cdot T_{n-1}(s_2, q_2, s_3, q_3)$ 788 is not $Pol(\mathcal{G}^+)$ -separable. We now consider two cases depending on $x \in A \cup \{\varepsilon\}$. 789 Assume first that $x = a \in A$: we have $((q_1, q_2, q_3), a, (t_1, t_2, t_3)) \in \gamma_S^+$. By definition, it 790

follows that $(q_i, a, t_i) \in \delta$ for $i = \{1, 2, 3\}$. Observe that $(H' \cap L_{\mathcal{A}}(s_1, q_1))a \subseteq H \cap L_{\mathcal{A}}(s_1, t_1)$. Indeed, if $u \in (H' \cap L_{\mathcal{A}}(s_1, q_1))a$, then u = u'a where $u' \in H'$ and $u' \in L_{\mathcal{A}}(s_1, q_1)$. Since $H' = \alpha^{-1}(\alpha(w'))$, the hypothesis that $u' \in H'$ yields $\alpha(u) = \alpha(u'a) = \alpha(w'a) = \alpha(w)$ which

29:20 A generic polynomial time approach to separation by alternation-free first-order logic

implies that $u \in H$ since $w \in H$ and H is recognized by α . Moreover, since $u' \in L_{\mathcal{A}}(s_1, q_1)$ and $(q_1, a, t_1) \in \delta$, we get $u = u'a \in L_{\mathcal{A}}(s_1, t_1)$. Altogether, this yields $u \in H \cap L_{\mathcal{A}}(s_1, t_1)$ as desired. Since we already know that $H' \cap L_{\mathcal{A}}(s_1, q_1) \neq \emptyset$, we get $H \cap L_{\mathcal{A}}(s_1, t_1) \neq \emptyset$. Moreover, if $n \geq 2$, since $(q_2, a, t_2), (q_3, a, t_3) \in \delta$, Lemma 13 yields that $(\{a\}) \cdot T_{n-1}(q_2, t_2, q_3, t_3)$ is not $Pol(\mathcal{G}^+)$ -separable. Hence, since we already know that $(H' \cap L_{\mathcal{A}}(s_1, q_1)) \cdot T_{n-1}(s_2, q_2, s_3, q_3)$ is not $Pol(\mathcal{G}^+)$ -separable and $(H' \cap L_{\mathcal{A}}(s_1, q_1))a \subseteq H \cap L_{\mathcal{A}}(s_1, t_1)$, it follows from Lemma 14 that $(H \cap L_{\mathcal{A}}(s_1, t_1)) \cdot T_{n-1}(s_2, t_2, s_3, t_3)$ is not $Pol(\mathcal{G}^+)$ -separable.

Finally, assume that $x = \varepsilon$: we have $((q_1, q_2, q_3), \varepsilon, (t_1, t_2, t_3)) \in \gamma_S^+$. By definition, it 801 follows that $q_1 = t_1, (q_2, t_2, q_3, t_3) \in S$ and there exists a nonempty word $y \in A^+$ which 802 belongs to $L_{\mathcal{A}}(q_1, q_1), L_{\mathcal{A}}(q_2, q_2), L_{\mathcal{A}}(q_3, q_3), L_{\mathcal{A}}(t_2, t_2)$ and $L_{\mathcal{A}}(t_3, t_3)$. Since $x = \varepsilon$, we have 803 w = w'. Hence, since $w \in H$ and H is recognized by α , we obtain that $H' = \alpha(\alpha^{-1}(w')) \subseteq H$. 804 Since $H' \cap L_{\mathcal{A}}(s_1, q_1) \neq \emptyset$ and $q_1 = t_1$, we get $H \cap L_{\mathcal{A}}(s_1, t_1) \neq \emptyset$. We now assume that 805 $n \ge 2$. Since G is a finite group, there exists $k \ge 1$ such that $\alpha(y^k) = 1_G$. We write $z = y^k$. 806 By hypothesis on y, we also have $z \in L_{\mathcal{A}}(q_1, q_1)$. It follows that $z^+ \subseteq \alpha^{-1}(1_G) \cap L_{\mathcal{A}}(q_1, q_1)$. 807 Additionally, since z belongs to $L_{\mathcal{A}}(q_2, q_2)$, $L_{\mathcal{A}}(q_3, q_3)$, $L_{\mathcal{A}}(t_2, t_2)$ and $L_{\mathcal{A}}(t_3, t_3)$, we know 808 that $z^+ L_{\mathcal{A}}(q_2, t_2) z^+ \subseteq L_{\mathcal{A}}(q_2, t_2)$ and $z^+ L_{\mathcal{A}}(q_3, t_3) z^+ \subseteq L_{\mathcal{A}}(q_3, t_3)$. Since $(q_2, t_2, q_3, t_3) \in S$, 809 it follows from induction on n in Proposition 29 that the (n-1)-tuple $T_{n-1}(q_2, t_2, q_3, t_3)$ is not 810 $Pol(\mathcal{G}^+)$ -separable under \mathcal{G} -control. Altogether, we obtain from Lemma 17 that the *n*-tuple 811 $(\alpha^{-1}(1_G) \cap L_{\mathcal{A}}(q_1, q_1)) \cdot T_{n-1}(q_2, t_2, q_3, t_3)$ is not $Pol(\mathcal{G}^+)$ -separable. Finally, since $q_1 = t_1$ 812 and $H' \subseteq H$, one may verify that $(H' \cap L_{\mathcal{A}}(s_1, q_1))(\alpha^{-1}(1_G) \cap L_{\mathcal{A}}(q_1, q_1)) \subseteq (H \cap L_{\mathcal{A}}(s_1, t_1)).$ 813 Since we already know that $(H' \cap L_{\mathcal{A}}(s_1, q_1)) \cdot T_{n-1}(s_2, q_2, s_3, q_3)$ is not $Pol(\mathcal{G}^+)$ -separable, 814 Lemma 14 yields that $(H \cap L_{\mathcal{A}}(s_1, t_1)) \cdot T_{n-1}(s_2, t_2, s_3, t_3)$ is not $Pol(\mathcal{G}^+)$ -separable. 815

We may now complete the proof of Proposition 29. By symmetry, we only treat the 816 case when n is odd and leave the even case to the reader. Let $(q_1, r_1, q_2, r_2) \in S$, we have 817 to prove that $T_n(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G}^+)$ -separable under \mathcal{G} -control. Hence, we fix 818 $H \in \mathcal{G}$ such that $\varepsilon \in H$ and prove $H \cap T_n(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G}^+)$ -separable. Since 819 S is (BPol, +)-sound, we have $\tau^+_{\mathcal{A},\mathcal{G}}(S) = S$ which implies that $(q_1, r_1, q_2, r_2) \in \tau^+_{\mathcal{A},\mathcal{G}}(S)$. 820 Hence, it follows from (2) that $\{\varepsilon\}$ is not \mathcal{G} -separable from $L_{\mathcal{B}_{S}^{+}}((q_{2},q_{1},q_{2}),(r_{2},r_{1},r_{2})).$ 821 Since $H \in \mathcal{G}$ and $\varepsilon \in H$, it follows that $H \cap L_{\mathcal{B}^+_{\mathfrak{c}}}((q_2, q_1, q_2), (r_2, r_1, r_2)) \neq \emptyset$. If n = 1, 822 Lemma 30 yields $H \cap L_{\mathcal{A}}(q_2, r_2) \neq \emptyset$. Since $T_1(q_1, r_1, q_2, r_2) = (L_{\mathcal{A}}(q_2, r_2))$, we get that 823 $H \cap T_1(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G}^+)$ -separable as desired. If $n \geq 2$, then Lemma 30 implies that 824 $(H \cap L_{\mathcal{A}}(s_1, t_1)) \cdot T_{n-1}(s_2, t_2, s_3, t_3)$ is not $Pol(\mathcal{G}^+)$ -separable. Thus, since $H \in \mathcal{G} \subseteq Pol(\mathcal{G}^+)$, 825 one may verify that the *n*-tuple $(H \cap L_{\mathcal{A}}(q_2, r_2)) \cdot (H \cap T_{n-1}(q_1, r_1, q_2, r_2))$ is not $Pol(\mathcal{G}^+)$ -826 separable. By definition, this exactly says that $H \cap T_n(q_1, r_1, q_2, r_2)$ is not $Pol(\mathcal{G}^+)$ -separable, 827 completing the proof. 828

Second part: $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}] \subseteq S$. Consider an arbitrary set $R \subseteq Q^4$. We say that R is multiplication-closed to indicate that for every $(q, r, s, t) \in R$ and $(q', r', s', t') \in R$, if r = q'and t = s', then $(q, r', s, t') \in R$. Moreover, we say that an arbitrary set $R \subseteq Q^4$ is good if it is multiplication-closed and there are $L \in \mathcal{G}$ such $\varepsilon \in L$ and a $BPol(\mathcal{G}^+)$ -cover **K** of L which is separating for R.

Proposition 31. Let $R \subseteq Q^4$. If R is good, then $\tau^+_{\mathcal{A},\mathcal{G}}(R)$ is good as well.

We use Proposition 31 to complete the proof. Let $S_0 = Q^4$ and $S_i = \tau^+_{\mathcal{A},\mathcal{G}}(S_{i-1})$ for $i \geq 1$. By Lemma 21, we have $S_0 \supseteq S_1 \subseteq S_2 \supseteq \cdots$ and the is $n \in \mathbb{N}$ such that S_n is the greatest (BPol, +)-sound subset for \mathcal{G} and \mathcal{A} , *i.e.* such that $S_n = S$. Since S_0 is good (it is clearly multiplication-closed and $\{A^*\}$ is a $BPol(\mathcal{G}^+)$ -cover of $A^* \in \mathcal{G}$ which is separating for $S_0 = Q^4$), Proposition 31 implies that S_i is good for all $i \in \mathbb{N}$. Hence, $S = S_n$ is good. We

get $L \in \mathcal{G}$ such $\varepsilon \in L$ and a $BPol(\mathcal{G}^+)$ -cover **K** of L which is separating for S. By Lemma 11, this yields $\mathcal{I}_{BPol(\mathcal{G}^+)}[\mathcal{G}, \mathcal{A}] \subseteq S$ as desired.

We turn to Proposition 25. Let $R \subseteq Q^4$ be a good set. We have to prove that $\tau^+_{\mathcal{A},\mathcal{G}}(R)$ is multiplication-closed and build $L \in \mathcal{G}$ such $\varepsilon \in L$ and a $BPol(\mathcal{G}^+)$ -cover **K** of L which is separating for $\tau^+_{\mathcal{A},\mathcal{G}}(R)$. This proves that $\tau^+_{\mathcal{A},\mathcal{G}}(R)$ is good as desired. Let us first prove that $\tau^+_{\mathcal{A},\mathcal{G}}(R)$ is multiplication-closed (we use the hypothesis that R is good).

Lemma 32. The set $\tau^+_{\mathcal{A},\mathcal{G}}(R) \subseteq Q^4$ is multiplication-closed.

Proof. Let $(q, r, s, t) \in \tau^+_{\mathcal{A}, \mathcal{G}}(R)$ and $(q', r', s', t') \in \tau^+_{\mathcal{A}, \mathcal{G}}(R)$ such that r = q' and t = s'. We 847 need to prove that $(q, r', s, t') \in \tau^+_{\mathcal{A}, \mathcal{G}}(R)$. By (2) in the definition, this boils down to proving 848 that $\{\varepsilon\}$ is not \mathcal{G} -separable from $L_{\mathcal{B}_{\mathcal{P}}^+}((s,q,s),(t',r',t'))$ and $L_{\mathcal{B}_{\mathcal{P}}^+}((q,s,q),(r',t',r'))$. By sym-849 metry, we only prove the former. By hypothesis on (q, r, s, t) and (q', r', s', t'), we get from (2) 850 that $\{\varepsilon\}$ is not \mathcal{G} -separable from both $L_{\mathcal{B}^+_{\mathcal{D}}}((s,q,s),(t,r,t))$ and $L_{\mathcal{B}^+_{\mathcal{D}}}((s',q',s'),(t',r',t'))$. 851 Since \mathcal{G} is a prevariety it then follows from Lemma 14 that $\{\varepsilon\}$ is not \mathcal{G} -separable from the con-852 catenation $L_{\mathcal{B}_{R}^{+}}((s,q,s),(t,r,t))L_{\mathcal{B}_{R}^{+}}((s',q',s'),(t',r',t'))$. Finally, since (t,r,t) = (s',q',s'), 853 we know that $L_{\mathcal{B}_R^+}((s,q,s),(t,r,t))L_{\mathcal{B}_R^+}((s',q',s'),(t',r',t')) \subseteq L_{\mathcal{B}_R^+}((s,q,s),(t',r',t'))$. We conclude that $\{\varepsilon\}$ is not \mathcal{G} -separable from both $L_{\mathcal{B}_R^+}((s,q,s),(t',r',t'))$ as desired. 854 855

We now build $L \in \mathcal{G}$ such that $\varepsilon \in L$ (this part is independent from our hypothesis on R).

⁸⁵⁷ ► Lemma 33. There exists $L \in \mathcal{G}$ such that $\varepsilon \in L$ and for every $(q, r, s, t) \in Q^4$, if ⁸⁵⁸ $L_{\mathcal{B}_{p}^{+}}((q, s, q), (r, t, r)) \cap L \neq \emptyset$ and $L_{\mathcal{B}_{p}^{+}}((s, q, s), (t, r, t)) \cap L \neq \emptyset$, then $(q, r, s, t) \in \tau^{+}_{\mathcal{A}, \mathcal{G}}(R)$.

Proof. Let **H** be the *finite* set of all languages recognized by \mathcal{B}_{R}^{+} such that $\{\varepsilon\}$ is \mathcal{G} -separable from H. For every $H \in \mathbf{H}$, there exists $L_{H} \in \mathcal{G}$ such that $\varepsilon \in L_{H}$ and $L_{H} \cap H = \emptyset$. We define $L = \bigcap_{H \in \mathbf{H}} L_{H} \in \mathcal{G}$. It is clear that $\varepsilon \in L$. Moreover, given $(q, r, s, t) \in Q^{4}$, if $L_{\mathcal{B}_{R}^{+}}((q, s, q), (r, t, r)) \cap L \neq \emptyset$ and $L_{\mathcal{B}_{R}^{+}}((s, q, s), (t, r, t)) \cap L \neq \emptyset$, it follows from the definition of L that $\{\varepsilon\}$ is not \mathcal{G} -separable from both $L_{\mathcal{B}_{R}^{+}}((q, s, q), (r, t, r))$ and $L_{\mathcal{B}_{R}^{+}}((s, q, s), (t, r, t))$. It then follows from (2) in the definition of $\tau_{\mathcal{A},\mathcal{G}}^{+}$ that $(q, r, s, t) \in \tau_{\mathcal{A},\mathcal{G}}^{+}(R)$.

We fix $L \in \mathcal{G}$ as described in Lemma 33 for the remainder of the proof. We now build the $BPol(\mathcal{G}^+)$ -cover **K** of L using the hypothesis that R is good and Proposition 7.

▶ Lemma 34. For all $(q,r) \in Q^2$, there is $H_{q,r} \in BPol(\mathcal{G}^+)$ such that $L_{\mathcal{A}}(q,r) \cap L \subseteq H_{q,r}$ and for all pairs $(s,t) \in Q^2$, if $L_{\mathcal{A}}(s,t) \cap H_{q,r} \neq \emptyset$ then $L_{\mathcal{B}_{p}^+}((q,s,q),(r,t,r)) \cap L \neq \emptyset$.

Proof. Since R is good, there are $U \in \mathcal{G}$ such that $\varepsilon \in U$ and a $BPol(\mathcal{G}^+)$ -cover V of 869 U which is separating for R. We use them to build $H_{q,r}$. Since $U \in \mathcal{G}$ and $\varepsilon \in U$ 870 Proposition 7 yields a cover **P** of $L_{\mathcal{A}}(q,r) \cap L$ such that for each $P \in \mathbf{P}$, there exists a word 871 $w_P \in L_{\mathcal{A}}(q,r) \cap L$ and an \mathcal{A} -guarded decomposition (w_1,\ldots,w_{n+1}) of w_P for some $n \in \mathbb{N}$ 872 such that $P = w_1 U \cdots w_n U w_{n+1}$ (if n = 0, then $P = \{w_1\}$). Now, for every $P \in \mathbf{P}$, we build 873 a $BPol(\mathcal{G}^+)$ -cover \mathbf{K}_P of P from the cover \mathbf{V} of U. Let (w_1, \ldots, w_{n+1}) be the \mathcal{A} -guarded 874 decomposition of w_P such that $P = w_1 U \cdots w_n U w_{n+1}$ (in particular, this means that P 875 is of the form $U_0a_1U_1\cdots a_mU_m$ where $a_1\cdots a_m = w_1\cdots w_n$ and $U_i = U$ or $U_i = \{\varepsilon\}$ for 876 each $i \leq m$). By definition, **V** is a $BPol(\mathcal{G}^+)$ -cover of $U \in \mathcal{G} \subseteq Pol(\mathcal{G}^+)$. Moreover, we 877 have $\{\varepsilon\} \in \mathcal{G}^+ \subseteq Pol(\mathcal{G}^+)$ by definition of \mathcal{G}^+ and $\{\{\varepsilon\}\}$ is a $BPol(\mathcal{G}^+)$ -cover of $\{\varepsilon\}$. Hence, 878 Proposition 5 yields a $BPol(\mathcal{G}^+)$ -cover \mathbf{K}_P of $P = w_1 U \cdots w_n U w_{n+1}$ such that for every 879 $K \in \mathbf{K}_P$, there exist $V_1, \ldots, V_n \in \mathbf{V}$ such that $K \subseteq w_1 V_1 \cdots w_n V_n w_{n+1}$. We define $H_{q,r}$ 880 as the union of all languages K such that $K \in \mathbf{K}_P$ for some $P \in \mathbf{P}$ and $L_{\mathcal{A}}(q,r) \cap K \neq \emptyset$. 881 Clearly, $H_{q,r} \in BPol(\mathcal{G}^+)$. Moreover, since **P** is a cover of $L_{\mathcal{A}}(q,r) \cap L$, and \mathbf{K}_P is a cover 882

of P for each $P \in \mathbf{P}$, it is clear that $L_{\mathcal{A}}(q,r) \cap L \subseteq H_{q,r}$. We now fix $(s,t) \in Q^2$ such that $L_{\mathcal{A}}(s,t) \cap H_{q,r} \neq \emptyset$ and show that $L_{\mathcal{B}_R^+}((q,s,q),(r,t,r)) \cap L \neq \emptyset$. By definition of $H_{q,r}$, we get $P \in \mathbf{P}$ and $K \in \mathbf{K}_P$ such that $L_{\mathcal{A}}(q,r) \cap K \neq \emptyset$ and $L_{\mathcal{A}}(s,t) \cap K \neq \emptyset$. By definition, $P = w_1 U \cdots w_n U w_{n+1}$ where (w_1, \ldots, w_{n+1}) is an \mathcal{A} -guarded decomposition of $w_P \in L_{\mathcal{A}}(q,r) \cap L$. We use w_P to build a new word $w' \in L_{\mathcal{B}_P^+}((q,s,q),(r,t,r)) \cap L$.

We fix $x \in L_{\mathcal{A}}(s,t) \cap K$ and $y \in L_{\mathcal{A}}(q,r) \cap K$. Since $w_P = w_1 \cdots w_{n+1}$ and $w_P \in L_{\mathcal{A}}(q,r)$, 888 we may decompose the corresponding run in \mathcal{A} : we get $p_0, \ldots, p_{n+1} \in Q$ such that $p_0 = q$, 880 $p_{n+1} = r$ and $w_i \in L_{\mathcal{A}}(p_{i-1}, p_i)$ for $1 \leq i \leq n+1$. Moreover, since $K \in \mathbf{K}_P$, we have 890 $K \subseteq w_1 V_1 \cdots w_n V_n w_{n+1}$ for $V_1, \ldots, V_n \in \mathbf{V}$ (if n = 0, then $K \subseteq \{w_1\}$). Since $x, y \in K$, we 891 get $x_i, y_i \in V_i$ for $1 \le i \le n$ such that $x = w_1 x_1 \cdots w_n x_n w_{n+1}$ and $y = w_1 y_1 \cdots w_n y_n w_{n+1}$. 892 Since $x \in L_{\mathcal{A}}(s,t)$, we get $s_1, t_1, ..., s_{n+1}, t_{n+1} \in Q$ where $s_1 = s, t_{n+1} = t, w_i \in L_{\mathcal{A}}(s_i, t_i)$ 893 for $1 \leq i \leq n+1$ and $x_i \in L_{\mathcal{A}}(t_i, s_{i+1})$ for $1 \leq i \leq n$. Symmetrically, since $y \in L_{\mathcal{A}}(q, r)$, 894 we get $q_1, r_1, \ldots, q_{n+1}, r_{n+1} \in Q$ with $q_1 = q, r_{n+1} = r, w_i \in L_{\mathcal{A}}(q_i, r_i)$ for $1 \le i \le n+1$, 895 and $y_i \in L_{\mathcal{A}}(r_i, q_{i+1})$ for $1 \leq i \leq n$. First, note that when n = 0, we have $w_P = w_1$ and the 896 above implies that $w_P \in L_{\mathcal{A}}(q,r)$ and $w_P \in L_{\mathcal{A}}(s,t)$. Thus, $w_P \in L_{\mathcal{B}_p^+}((q,s,q),(r,t,r))$ by 897 definition of the labeled transition in \mathcal{B}_R^+ . This concludes the proof since we also know that 898 $w_P \in L$. We now assume that $n \geq 1$. 899

By hypothesis, (w_1, \ldots, w_{n+1}) is an \mathcal{A} -guarded decomposition. Hence, for $1 \leq i \leq n$, we 900 get $z_i \in A^+$ which is a right \mathcal{A} -loop for w_i and a left \mathcal{A} -loop for w_{i+1} . Let $\alpha : A^* \to G$ be a 901 morphism into a finite group G recognizing both L and U (recall that L and U are group 902 languages). Since g is a finite group, there exists $k \ge 1$ such that for each $1 \le i \le n$, we have 903 $\alpha(z_i^k) = 1_G$. We let $u_i = z_i^k$ for $1 \le i \le n$. One may verify that u_i remains a right \mathcal{A} -loop for 904 w_i and a left \mathcal{A} -loop for w_{i+1} . Moreover, since $\alpha(u_i) = 1_G$, we know that $u_i \in U$ (recall that 905 $\varepsilon \in U$ and U is recognized by α). We let $w'_1 = w_1 u_1$, $w'_{n+1} = u_n w_{n+1}$ and $w'_i = u_{i-1} w_i u_i$ for 906 $2 \leq i \leq n$. Finally, we let $w' = w'_1 \cdots w'_n w'_{n+1}$ and show that $w' \in L \cap L_{\mathcal{B}^+}((q, s, q), (r, t, r))$ 907 which completes the proof. First, since $\alpha(u_i) = 1_G$ for $1 \le i \le n$, it is immediate that 908 $\alpha(w') = \alpha(w_1 \cdots w_n w_{n+1}) = \alpha(w_P)$. Since $w_P \in L$ which is recognized by α , we get $w' \in L$. 909 We now concentrate on proving that $w' \in L_{\mathcal{B}_{p}^{+}}((q, s, q), (r, t, r))$. For $1 \leq i \leq n+1$, we 910 know that w_i belongs to $L_{\mathcal{A}}(p_{i-1}, p_i)$, $L_{\mathcal{A}}(s_i, t_i)$ and $L_{\mathcal{A}}(q_i, r_i)$. Hence, one may verify from 911 the definition of left/right \mathcal{A} -loops that there are $p'_0, \ldots, p'_{n+1} \in Q, s'_1, t'_1, \ldots, s'_{n+1}, t'_{n+1} \in Q$ 912

and $q'_1, r'_1, \ldots, q'_{n+1}, r'_{n+1} \in Q$ such that,

 $p'_{14} = p'_{0} = p_{0} = q, \ p'_{n+1} = p_{n+1} = r, \ w'_{i} \in L_{\mathcal{A}}(p'_{i-1}, p'_{i}) \text{ for } 1 \le i \le n+1 \text{ and } u_{i} \in L_{\mathcal{A}}(p'_{i}, p'_{i})$ for $1 \le i \le n$.

⁹¹⁶ $s'_0 = s_0 = s, t'_{n+1} = t_{n+1} = t, w'_i \in L_{\mathcal{A}}(s'_i, t'_i) \text{ for } 1 \leq i \leq n+1 \text{ and we have}$ ⁹¹⁷ $u_i \in L_{\mathcal{A}}(t'_i, t'_i) \cap L_{\mathcal{A}}(t'_i, t_i) \cap L_{\mathcal{A}}(s_{i+1}, s'_{i+1}) \cap L_{\mathcal{A}}(s'_{i+1}, s'_{i+1}) \text{ for } 1 \leq i \leq n.$

⁹¹⁸ $q'_0 = q_0 = q, r'_{n+1} = r_{n+1} = r, w'_i \in L_{\mathcal{A}}(q'_i, r'_i) \text{ for } 1 \le i \le n+1 \text{ and we have}$ ⁹¹⁹ $u_i \in L_{\mathcal{A}}(r'_i, r'_i) \cap L_{\mathcal{A}}(r'_i, r_i) \cap L_{\mathcal{A}}(q_{i+1}, q'_{i+1}) \cap L_{\mathcal{A}}(q'_{i+1}, q'_{i+1}) \text{ for } 1 \le i \le n.$

⁹²⁰ By definition of the labeled transitions in the NFA \mathcal{B}_R^+ , it is straightforward to verify that we ⁹²¹ have $w'_i \in L_{\mathcal{B}_R^+}((p'_{i-1}, s'_i, q'_i), (p'_i, t'_i, r'_i))$ for $1 \le i \le n+1$. We now prove the following fact.

P22 ► Fact 35. For $1 \le i \le n$, we have $((p'_i, t'_i, r'_i), ε, (p'_i, s'_{i+1}, q'_{i+1})) ∈ γ_R^+$.

Proof. We fix *i* for the proof. Since we know that $u_i \in A^+$ belongs to $L_{\mathcal{A}}(p'_i, p'_i)$, $L_{\mathcal{A}}(t'_i, t'_i)$, $L_{\mathcal{A}}(r'_i, r'_i)$, $L_{\mathcal{A}}(s'_{i+1}, s'_{i+1})$ and $L_{\mathcal{A}}(q'_{i+1}, q'_{i+1})$, it suffices to prove that $(t'_i, s'_{i+1}, r'_i, q'_{i+1}) \in R$. This will imply that $((p'_i, t'_i, r'_i), \varepsilon, (p'_i, s'_{i+1}, q'_{i+1})) \in \gamma_R^+$ by definition of γ_R^+ . Recall that $x_i \in L_{\mathcal{A}}(t_i, s_{i+1})$, $y_i \in L_{\mathcal{A}}(r_i, q_{i+1})$ and $x_i, y_i \in V_i$. Since $V_i \in \mathbf{V}$ which is separating for R, it follows that $(t_i, s_{i+1}, r_i, q_{i+1}) \in R$. Moreover, $u_i \in U$ which yields $V \in \mathbf{V}$ such that $u_i \in V$ since \mathbf{V} is a cover of U. Hence, since $u_i \in L_{\mathcal{A}}(t'_i, t_i)$ and $u_i \in L_{\mathcal{A}}(r'_i, r_i)$. The hypothesis that V is separating for R also yields $(t'_i, t_i, r'_i, r_i) \in R$. Symmetrically, one may use the hypotheses

⁹³⁰ that $u_i \in L_{\mathcal{A}}(s_{i+1}, s'_{i+1})$ and $u_i \in L_{\mathcal{A}}(q_{i+1}, q'_{i+1})$ to verify that $(s_{i+1}, s'_{i+1}, q_{i+1}, q'_{i+1}) \in R$. ⁹³¹ Altogether, since R is multiplication-closed, we get $(t'_i, s'_{i+1}, r'_i, q'_{i+1}) \in R$ as desired.

In view of Fact 35, we obtain $w' = w'_1 \cdots w'_n w'_{n+1} \in L_{\mathcal{B}_R^+}((p'_0, s'_1, q'_1), (p'_{n+1}, t'_{n+1}, r'_{n+1})).$ This exactly says that $w' \in L_{\mathcal{B}_R^+}((q, s, q), (r, t, r))$ which completes the proof.

We may now build **K**. Let $\mathbf{H} = \{H_{q,r} \mid (q,r) \in Q^2\}$. Consider the following equivalence 934 ~ defined on L: given $u, v \in L$, we let $u \sim v$ if and only if $u \in H_{q,r} \Leftrightarrow v \in H_{q,r}$ for every 935 $(q,r) \in Q^2$. We let **K** as the partition of L into ~-classes. Clearly, each $K \in \mathbf{K}$ is a Boolean 936 combination involving the languages in **H** (which belong to $BPol(\mathcal{G}^+)$) and $L \in \mathcal{G}$. Hence, 937 **K** is a $BPol(\mathcal{G}^+)$ -cover of L. It remains to prove that it is separating for $\tau^+_{\mathcal{A},\mathcal{G}}(R)$. Let 938 $q, r, s, t \in Q$ and $K \in \mathbf{K}$ such that there are $u \in L_{\mathcal{A}}(q, r) \cap K$ and $v \in L_{\mathcal{A}}(s, t) \cap K$. By 939 definition of **K**, we have $u, v \in L$ and $u \sim v$. In particular, we have $u \in L_{\mathcal{A}}(q, r) \cap L$ which 940 yields $u \in H_{q,r}$ by definition in Lemma 34. Together with $u \sim v$, this yields $v \in H_{q,r}$. Hence, 941 $L_{\mathcal{A}}(s,t) \cap H_{q,r} \neq \emptyset$ and Lemma 34 yields $L_{\mathcal{B}_{\mathcal{B}}^+}((q,s,q),(r,t,r)) \cap L \neq \emptyset$. One may now 942 use a symmetrical argument to obtain $L_{\mathcal{B}_{\mathcal{B}}^+}((s,q,s),(t,r,t)) \cap L \neq \emptyset$. By definition of L in 943 Lemma 33, this yields $(q, r, s, t) \in \tau_{\mathcal{A}, \mathcal{G}}(R)$, completing the proof. 944