
A generic polynomial time approach to separation1

by first-order logic without quantifier alternation2

Thomas Place # Ñ3

LaBRI, Bordeaux University, France4

Marc Zeitoun # Ñ5

LaBRI, Bordeaux University, France6

Abstract7

We look at classes of languages associated to the fragment of first-order logic BΣ1, in which quantifier8

alternations are disallowed. Each class is defined by choosing the set of predicates on positions that9

may be used. Two key such fragments are those equipped with the linear ordering and possibly the10

successor relation. Simon and Knast proved that these two variants have decidable membership:11

“does an input regular language belong to the class ?”. We rely on a characterization of BΣ1 by the12

operator BPol: given an input class C, it outputs a class BPol(C) that corresponds to a variant of13

BΣ1 equipped with special predicates associated to C. We extend the above results in two orthogonal14

directions. First, we use two kinds of inputs: classes G of group languages (i.e., recognized by a DFA15

in which each letter induces a permutation of the states) and extensions thereof, written G+. The16

classes BPol(G) and BPol(G+) capture many natural variants of BΣ1 which use predicates such as17

the linear ordering, the successor, the modular predicates or the alphabetic modular predicates.18

Second, instead of membership, we explore the more general separation problem: decide if two19

regular languages can be separated by a language from the class under study. We show that separation20

is decidable for BPol(G) and BPol(G+) when this is the case for G. This was known for BPol(G)21

and for two particular classes of the form BPol(G+). Yet, the algorithms were indirect and relied on22

involved frameworks, yielding poor upper complexity bounds. In contrast, the approach of the paper23

is direct. We work only with elementary concepts (mainly, finite automata). Our main contribution24

consists in polynomial time Turing reductions from both BPol(G)- and BPol(G+)-separation to25

G-separation. This yields polynomial algorithms for many key variants of BΣ1, including those26

equipped with the linear ordering and possibly the successor and/or the modular predicates.27

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;28

Theory of computation → Regular languages29

Keywords and phrases Automata, Separation, Covering, Concatenation hierarchies, Group languages30

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.2931

Related Version Full version of the paper : https://arxiv.org/abs/2210.00946 [25]32

Funding Supported by the DeLTA project (ANR-16-CE40-0007)33

© T. Place and M. Zeitoun;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 29; pp. 29:1–29:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tplace@labri.fr
http://www.labri.fr/perso/tplace
mailto:mz@labri.fr
http://www.labri.fr/perso/zeitoun
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.29
https://arxiv.org/abs/2210.00946
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A generic polynomial time approach to separation by alternation-free first-order logic

1 Introduction34

An important question in automata theory is to precisely understand the prominent classes35

of regular languages of finite words. We are interested in the classes associated to a piece36

of syntax (such as regular expressions or logic), whose purpose is to specify the languages37

of such classes. In the paper, we formalize the goal of “understanding a given class C” by38

looking at a decision problem: C-separation. It takes two regular languages L1, L2 as input39

and asks whether there exists K ∈ C such that L1 ⊆ K and K ∩ L2 = ∅. The key idea is40

that obtaining an algorithm for C-separation requires a solid understanding of C.41

We investigate a family of classes associated to a fragment of first-order logic written BΣ1.42

The sentences of BΣ1 are Boolean combinations of existential formulas, i.e., whose prenex43

normal form has the shape ∃x1∃x2 · · · ∃xkφ, with φ quantifier-free. Several classes are44

associated to BΣ1, each determined by the predicates on positions that we allow. In the45

literature, standard examples of predicates include the linear order “<” [27], the successor46

relation “+1” [9] or modular predicates “MOD” [5]. Thus, a generic approach is desirable.47

We tackle languages associated to BΣ1 through the operator C 7→ BPol(C) defined on48

classes of languages. It is the composition of the polynomial closure C 7→ Pol(C) and the49

Boolean closure C 7→ Bool(C) operators: BPol(C) = Bool(Pol(C)). Recall that the polynomial50

closure of a class C consists of all finite unions of languages of the form L0a1L1 · · · anLn,51

where n ≥ 0, each ai is a letter and each Li belongs to C. Indeed, many classes associated52

to BΣ1 are of the form BPol(C) [34, 20]. In this paper, we look at specific input classes C.53

The group languages are those recognized by a finite group, or equivalently by a permuta-54

tion automaton [33] (i.e., which is complete, deterministic and co-deterministic). We consider55

input classes that are either a class G consisting of group languages, or a well-suited extension56

thereof, G+ (roughly, G+ is the least Boolean algebra containing G and the singleton {ε}).57

It is known [20] that if G is a class of group languages, then BPol(G) = BΣ1(<,PG) and58

BPol(G+) = BΣ1(<, +1,PG). Here, PG is a set of predicates associated to G: each language L59

in G gives rise to a predicate PL(x), which selects all positions x in a word w such that the60

prefix of w up to position x (excluded) belongs to L. This captures most of the natural61

examples. In particular, we get signatures including the aforementioned predicates, such as62

{<}, {<, +1}, {<, MOD} and {<, +1, MOD} (we provide some more examples in the paper).63

State of the art. Historically, BPol(G) and BPol(G+) were first investigated for particular64

input classes. A prominent example is the class of piecewise testable languages [27], i.e., the65

class BPol(ST) = BΣ1(<) where ST = {∅, A∗}. It was shown that BPol(ST)-separation is66

decidable in [1] using technical algebraic arguments. Simpler polynomial time algorithms were67

discovered later [17, 6]. There also exists an involved specialized separation algorithm [36] for68

BPol(MOD) = BΣ1(<, MOD), where MOD is the class of modulo languages. Decidability69

can be lifted to BPol(ST+) = BΣ1(<, +1) (the languages of dot-depth one [9]) and to70

BPol(MOD+) = BΣ1(<, +1, MOD) via transfer results [22, 16]. Unfortunately, this approach71

yields an exponential complexity blow-up. Recently, a generic approach was developed for72

BPol(G). It is proved in [21] that if G is a class of group languages with mild hypotheses,73

BPol(G)-separation is decidable when G-separation is decidable. Yet, this generic approach74

is indirect and considers a more general problem: covering. Because of this, the algorithms75

and their proofs are complex and rely on an intricate framework [19], yielding poor upper76

complexity bounds. This contrasts with the simple polynomial time procedures presented77

in [17, 6] for BPol(ST). No generic result of this kind is known for the classes BPol(G+).78

Contributions. We give generic polynomial time Turing reductions from BPol(G)- and79

BPol(G+)-separation to G-separation, where G is a class of group languages with mild prop-80

T. Place and M. Zeitoun 29:3

erties. We present them as greatest fixpoint procedures which use an oracle for G-separation81

at each step and run in polynomial time (for input languages represented by nondeterministic82

finite automata). While the proofs are involved, they are self-contained and based exclusively83

on elementary concepts from automata theory. No particular knowledge on group theory is84

required to follow them: we only use immediate consequences of the definition of a group.85

For BPol(G), this new approach is a significant improvement on the results of [21]. While86

we do reuse some ideas of [21], we complement them with new ones and the presentation is87

independent. We get a simpler algorithm, which requires only basic notions from automata88

theory. In particular, one direction of the proof describes a generic construction for building89

separators in BPol(G) (when they exist). This serves our main objective: understanding90

classes of languages. In addition, we obtain much better complexity upper bounds on91

BPol(G)-separation. Finally, our techniques can handle BPol(G+) as well. This was not the92

case in [21]: the generic reduction from BPol(G+)-separation to G-separation is a new result.93

These results apply to several key classes. Separation is decidable in polynomial time94

for ST = {∅, A∗}, for the class MOD of modulo languages and for the class GR of all group95

languages [26]. Hence, the problem is also decidable in polynomial time for BPol(ST) (i.e.,96

BΣ1(<)), BPol(ST+) (i.e., BΣ1(<, +1)), BPol(MOD) (i.e., BΣ1(<, MOD)), BPol(MOD+)97

(i.e., BΣ1(<, +1, MOD)), BPol(GR) and BPol(GR+) (the logical characterization of the last98

two classes is not standard, yet they are quite prominent as well [11, 8]). This reproves a known99

result for BPol(ST) (in fact, we essentially reprove the algorithm of [6]). The polynomial time100

upper bounds are new for all other classes. Another application is the class AMT of alphabet101

modulo testable languages (which are recognized by commutative groups): BPol(AMT) and102

BPol(AMT+) correspond to BΣ1(<, AMOD) and BΣ1(<, +1, AMOD) where “AMOD” is103

the set of alphabetic modular predicates. We obtain the decidability of separation for these104

classes (this is a new result for BPol(AMT+)). However, we do not get a polynomial time105

upper bound: this is because AMT-separation is co-NP-complete (see [26]).106

Important remark. Eilenberg’s theorem [7] connects some classes of regular languages (the107

“varieties of languages”) with varieties of finite monoids. It raised the hope to solve decision108

problems on languages (such as membership) by translating them in terms of monoids and109

solving the resulting purely algebraic questions—without referring to languages anymore. In110

particular, Margolis and Pin [11, 13] characterized the algebraic counterpart of BPol(G) in111

Eilenberg’s correspondence (when G is a variety) as the “semidirect product” J ∗ G, where J112

is the variety of monoids corresponding to BΣ1(<) and G is the one corresponding to G. The113

new purely algebraic question is then: “decide membership of a monoid in J ∗ G”. Tilson [35]114

developed an involved framework to reformulate membership in semidirect products in terms115

of categories, which was successfully exploited to handle (J ∗ G)-membership [8, 28].116

Our results are completely independent from this algebraic approach. To clarify, we do117

use combinatorics on monoids. Yet, our motivations and techniques are disconnected from the118

theory of varieties of monoids, which is a distinct field. We avoid it by choice: while the above119

approach highlights an interesting connection between two fields, it is not necessarily desirable120

when looking back at our primary goal, understanding classes of languages. Indeed, a detour121

via varieties of monoids would obfuscate the intuition at the language level. Fortunately,122

this paper shows that this detour can be bypassed, while getting stronger results. First, our123

results are more general: they apply to separation, and not only membership. It is not clear124

at all that this can be obtained in the context of monoid varieties, as we rely strongly on the125

definition of BPol: we work with languages of the form L0a1L1 · · · anLn, for Li ∈ G. Second,126

we can handle BPol(G+), thus capturing the successor relation on the logical side. As far as127

we know, the only class of this kind captured by the above framework is BPol(ST+) (these128

FSTTCS 2022

29:4 A generic polynomial time approach to separation by alternation-free first-order logic

are the well-known dot-depth one languages [30]). Third, using the above approach requires129

varieties of languages as input classes. This, for example, excludes the class BPol(MOD).130

This does not mean that this class cannot be handled by algebraic techniques: this was131

actually done by Straubing [31, 15], who rebuilt the whole theory to be able to handle such132

classes. In contrast, our result applies uniformly to MOD.133

Organization of the paper. We present the objects that we investigate and terminology in134

Section 2. We introduce separation and the techniques that we use to handle it in Section 3.135

Finally, we present our results for BPol(G)- and BPol(G+)-separation in Section 4. Due to136

space limitations, some proofs are only available in the full version of the paper [25].137

2 Preliminaries138

2.1 Words, regular languages and classes139

We fix a finite alphabet A for the paper. As usual, A∗ denotes the set of all finite words140

over A, including the empty word ε. We let A+ = A∗ \ {ε}. For u, v ∈ A∗, we let uv be141

the word obtained by concatenating u and v. A language is a subset of A∗. We denote142

the singleton language {u} by u. We lift concatenation to languages: for K, L ⊆ A∗, we143

let KL = {uv | u ∈ K and v ∈ L}. We shall consider marked products: given languages144

L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln is a product of the form L0a1L1 · · · anLn145

where a1, . . . , an ∈ A (note that “L0” is a marked product: this is the case n = 0).146

Regular languages. In the paper, we consider regular languages. A nondeterministic finite147

automaton (NFA) is a pair A = (Q, δ) where Q is a finite set of states, and δ ⊆ Q×A×Q is a148

set of transitions. We now define the languages recognized by A. Given q, r ∈ Q and w ∈ A∗,149

we say that there exists a run labeled by w from q to r (in A) if there exist q0, . . . , qn ∈ Q150

and a1, . . . , an ∈ A such that w = a1 · · · an, q0 = q, qn = r and (qi−1, ai, qi) ∈ δ for every151

1 ≤ i ≤ n. Given two sets I, F ⊆ Q, we write LA(I, F) ⊆ A∗ for the language of all words152

w ∈ A∗ such that there exist q ∈ I, r ∈ F , and a run labeled by w from q to r in A. We153

say that a language L ⊆ A∗ is recognized by A if and only if there exist I, F ⊆ Q such that154

L = LA(I, F). The regular languages are those which can be recognized by an NFA.155

We also use NFAs with ε-transitions. In such an NFA A = (Q, δ), a transition may also156

be labeled by the empty word “ε” (that is, δ ⊆ Q × (A ∪ {ε}) × Q). We use the standard157

semantics: an ε-transition can be taken without consuming an input letter. Note that unless158

otherwise specified, the NFAs that we consider are assumed to be without ε-transitions.159

Classes. A class of languages is a set of languages. A lattice is a class containing ∅ and160

A∗ and closed under both union and intersection. Moreover, a Boolean algebra is a lattice161

closed under complement. Finally, a class C is quotient-closed when for all L ∈ C and all162

v ∈ A∗, the languages v−1L = {w ∈ A∗ | vw ∈ L} and Lv−1 = {w ∈ A∗ | wv ∈ L} both163

belong to C as well. A positive prevariety (resp. a prevariety) is a quotient-closed lattice164

(resp. a quotient-closed Boolean algebra) containing regular languages only.165

Group languages. A monoid is a set M equipped with a multiplication s, t 7→ st, which166

is associative and has a neutral element denoted by “1M ”. Observe that A∗ endowed with167

concatenation is a monoid (ε is the neutral element). It is well-known that a language L is168

regular if and only if it is recognized by a morphism α : A∗ → M into a finite monoid M , i.e.,169

there exists F ⊆ M such that L = α−1(F). We now restrict this definition: a monoid G is a170

group if every element g ∈ G has an inverse g−1 ∈ G, i.e., such that gg−1 = g−1g = 1G. A171

“group language” is a language recognized by a morphism into a finite group.172

T. Place and M. Zeitoun 29:5

We consider classes G that are group prevarieties (i.e., containing group languages only).173

We let GR be the class of all group languages. Another important example is the class174

AMT of alphabet modulo testable languages. For every w ∈ A∗ and every a ∈ A, we write175

#a(w) ∈ N for the number of occurrences of “a” in w. The class AMT consists in all finite176

Boolean combinations of languages {w ∈ A∗ | #a(w) ≡ k mod m} where a ∈ A and k, m ∈ N177

are such that k < m. One may verify that these are exactly the languages recognized by178

commutative groups. We also consider the class MOD, which consists in all finite Boolean179

combinations of languages {w ∈ A∗ | |w| ≡ k mod m} with k, m ∈ N such that k < m.180

Finally, we write ST for the trivial class ST = {∅, A∗}. One may verify that GR, AMT,181

MOD and ST are all group prevarieties.182

One may verify that {ε} and A+ are not group languages. This motivates the next183

definition: the well-suited extension of a class C, denoted by C+, consists of all languages of184

the form L ∩ A+ or L ∪ {ε} where L ∈ C. The next lemma follows from the definition.185

▶ Lemma 1. Let C be a prevariety. Then, C+ is a prevariety containing {ε} and A+.186

2.2 Polynomial and Boolean closure187

We investigate two operators that one may apply to a class C. The Boolean closure of C,188

written Bool(C), is the least Boolean algebra containing C. The polynomial closure of C,189

denoted by Pol(C), consists of all finite unions of marked products L0a1L1 · · · anLn where190

L0, . . . , Ln ∈ C and a1, . . . , an ∈ A. Finally, we write BPol(C) for Bool(Pol(C)). If C is a191

prevariety, then Pol(C) is a positive prevariety and BPol(C) is a prevariety. Proving that192

Pol(C) is closed under intersection is not immediate. It was shown by Arfi [2] (see also [14, 20]).193

▶ Theorem 2. If C is a prevariety, Pol(C) is a positive prevariety and BPol(C) is a prevariety.194

The two operators Pol and Bool induce standard classifications called concatenation195

hierarchies: for a prevariety C, the concatenation hierarchy of basis C is built from C by196

alternatively applying the operators Pol and Bool. We are interested in BPol(C), which is197

level one in the concatenation hierarchy of basis C. We look at bases that are either a group198

prevariety G or its well-suited extension G+. Most of the prominent concatenation hierarchies199

in the literature use such bases. This is in part motivated by the logical characterization of200

concatenation hierarchies, due to Thomas [34]. We briefly recall it for the level one.201

Consider a word w = a1 · · · a|w| ∈ A∗. We view w as a linearly ordered set of |w| + 2202

positions {0, 1, . . . , |w|, |w|+1} such that each position 1 ≤ i ≤ |w| carries the label ai ∈ A (on203

the other hand, 0 and |w|+1 are artificial unlabeled leftmost and rightmost positions). We use204

first-order logic to describe properties of words: a sentence can quantify over the positions of205

a word and use a predetermined set of predicates to test properties of these positions. We also206

allow two constants “min” and “max” interpreted as the artificial unlabeled positions 0 and207

|w|+1 in a given word w. A first-order sentence φ defines the language of all words satisfying208

the property stated by φ. We use several kinds of predicates. For each a ∈ A, we associate a209

unary predicate (also denoted by a), which selects the positions labeled by “a”. We also use210

two binary predicates: the (strict) linear order “<” and the successor relation “+1”. Finally,211

we associate a set of predicates PG to each group prevariety G. Every L ∈ G yields a unary212

predicate PL in PG , which is interpreted as follows. Let w = a1 · · · a|w| ∈ A∗. The unary213

predicate PL selects all positions i ∈ {0, . . . , |w| + 1} such that i ̸= 0 and a1 · · · ai−1 ∈ L.214

▶ Example 3. The sentence “∃x∃y (x < y)∧a(x)∧b(y)” defines the language A∗aA∗bA∗. The215

sentence “∃x∃y a(x) ∧ c(y) ∧ (y + 1 = max)” defines A∗aA∗c. Finally, if L = (AA)∗ ∈ MOD216

(the words of even length), the sentence “∃x a(x) ∧ PL(x)” defines the language (AA)∗aA∗.217

FSTTCS 2022

29:6 A generic polynomial time approach to separation by alternation-free first-order logic

The fragment of first-order logic containing exactly the Boolean combinations of existential218

first-order sentences is denoted by “BΣ1”. Let G be a group prevariety. We write BΣ1(<,PG)219

for the class of all languages defined by a sentence of BΣ1 using only the label predicates,220

the linear order “<” and those in PG . Moreover, we write BΣ1(<, +1,PG) for the class of all221

languages defined by a sentence of BΣ1, which additionally allows the successor predicate222

“+1”. The following proposition follows from the results of [20, 24].223

▶ Proposition 4. Let G be a group prevariety. We have BPol(G) = BΣ1(<,PG) and224

BPol(G+) = BΣ1(<, +1,PG).225

Key examples. The basis ST = {∅, A∗} yields the Straubing-Thérien hierarchy [29, 32]226

(hence the notation of this basis). Its level one is the class of piecewise testable languages [27].227

Its well-suited extension ST+ induces the dot-depth hierarchy [3]. In particular, BPol(ST) and228

BPol(ST+) correspond to BΣ1(<) and BΣ1(<, +1), as all predicates in PST are trivial. The229

hierarchies of bases MOD and MOD+ are also prominent (see for example [5, 10, 36]). The230

classes BPol(MOD) and BPol(MOD+) correspond to BΣ1(<, MOD) and BΣ1(<, +1, MOD)231

where “MOD” is the set of modular predicates (for all r, q ∈ N such that r < q, it contains a232

unary predicate Mr,q selecting the positions i such that i ≡ r mod q). Similarly, BPol(AMT)233

and BPol(AMT+) correspond to BΣ1(<, AMOD) and BΣ1(<, +1, AMOD) where “AMOD”234

is the set of alphabetic modular predicates (for all a ∈ A and r, q ∈ N such that r < q, it235

contains a unary predicate Ma
r,q selecting the positions i such the that number of positions236

j < i with label a is congruent to r modulo q). Finally, the group hierarchy, whose basis is237

GR is also prominent [11, 8], though its logical characterization is not standard.238

Properties. We present a key ingredient [23, Lemma 3.6]. It describes a concatenation239

principle for the classes BPol(C) based on the notion of “cover”. Given a language L, a cover240

of L is a finite set K of languages satisfying L ⊆
⋃

K∈K K. If D is a class, a D-cover of L is241

a cover K of L such that K ⊆ D.242

▶ Proposition 5. Let C be a prevariety, n ∈ N, L0, . . . , Ln ∈ Pol(C) and a1, . . . , an ∈ A. If243

Hi is a BPol(C)-cover of Li for all i ≤ n, then there is a BPol(C)-cover K of L0a1L1 · · · anLn244

such that for all K ∈ K, there exists Hi ∈ Hi for each i ≤ n satisfying K ⊆ H0a1H1 · · · anHn.245

For applying Proposition 5, we need a language L0a1L1 · · · anLn with L0, . . . , Ln ∈ Pol(C).246

The next tailored statements build such languages when C = G or G+ for a group prevariety G.247

While simple, these results are central: this is the unique place where we use the fact that248

G contains only group languages. Let L ⊆ A∗. With every word w = a1 · · · an ∈ A∗, we249

associate the language ↑Lw = La1L · · · anL ⊆ A∗ (we let ↑Lε = L). We first present the250

statement for the case C = G, which can also be found in [4, Prop. 3.11].251

▶ Proposition 6. Let H ⊆ A∗ be a language and L ⊆ A∗ be a group language containing ε.252

There exists a cover K of H such that every K ∈ K is of the form K = ↑Lw for some w ∈ H.253

The next statement, useful for the case C = G+, is a corollary of Proposition 6. Let254

A = (Q, δ) be an NFA. Moreover, let w, z ∈ A∗. We say that z is a left A-loop for w if for255

every q, r ∈ Q such that w ∈ LA(q, r), there exists s ∈ Q such that z ∈ LA(q, s) ∩ LA(s, s)256

and zw ∈ LA(s, r) (in particular, zz∗zw ⊆ LA(q, r)). Symmetrically, we say that z is a257

right A-loop for w if for every q, r ∈ Q such that w ∈ LA(q, r), there exists s ∈ Q such that258

wz ∈ LA(q, s) and z ∈ LA(s, s) ∩ LA(s, r) (in particular, wzz∗z ⊆ LA(q, r)).259

Now, given an arbitrary word w ∈ A∗, an A-guarded decomposition of w is a tuple260

(w1, . . . , wn+1) for some n ∈ N where w1 ∈ A∗ and wi ∈ A+ for 2 ≤ i ≤ n + 1, and such that261

w = w1 · · · wn+1 and, if n ≥ 1, then for every i satisfying 1 ≤ i ≤ n, there exists a nonempty262

word zi ∈ A+ which is a right A-loop for wi and a left A-loop for wi+1.263

T. Place and M. Zeitoun 29:7

▶ Proposition 7. Let H ⊆ A∗ be a language, A be an NFA and L ⊆ A∗ be a group language264

containing ε. There exists a cover K of H such that for each K ∈ K, there exist a word265

w ∈ H and an A-guarded decomposition (w1, . . . , wn+1) of w for some n ∈ N such that266

K = w1L · · · wnLwn+1 (if n = 0, then K = {w1}).267

3 Separation framework268

In order to investigate a given class C, we rely on a generic decision problem that one may269

associate to it: C-separation. We first define it and then present a variant, “tuple separation”,270

that we shall require as a proof ingredient.271

3.1 The separation problem272

Consider two languages L0, L1 ⊆ A∗. We say that a third language K ⊆ A∗ separates L0273

from L1 when L0 ⊆ K and K ∩ L1 = ∅. Then, given an arbitrary class C, we say that L0 is274

C-separable from L1 when there exists K ∈ C that separates L0 from L1. For every class C,275

the C-separation problem takes two regular languages L0 and L1 as input (in the paper, they276

are represented by NFAs) and asks whether L0 is C-separable from L1. We complete the277

definition with a useful result, which holds when C is a positive prevariety.278

▶ Lemma 8. Let C be a positive prevariety and L0, L1, H0, H1 ⊆ A∗. If L0 is not C-separable279

from L1 and H0 is not C-separable from H1 then L0H0 is not C-separable from L1H1.280

In the paper, we look at C-separation when C = BPol(G) or BPol(G+) for a group281

prevariety G. We prove that in these two cases, there are polynomial time (Turing) reductions282

to G-separation. We now introduce terminology that we shall use to present the algorithms.283

Framework. Consider a class C and an NFA A = (Q, δ). We associate a set IC[A] ⊆ Q4:284

the inseparable C-quadruples associated to A. We define,285

IC [A] =
{

(q, r, s, t) ∈ Q4 | LA(q, r) is not C-separable from LA(s, t)
}

.286

The next easy result connects C-separation to this set, for input languages given by NFAs.287

▶ Proposition 9. Let C be a lattice. Consider an NFA A = (Q, δ) and four sets of states288

I1, F1, I2, F2 ⊆ Q. The two following conditions are equivalent:289

1. LA(I1, F1) is C-separable from LA(I2, F2).290

2. (I1 × F1 × I2 × F2) ∩ IC [A] = ∅.291

Clearly, given as input two regular languages recognized by NFAs, one may compute in292

polynomial time a single NFA recognizing both languages. Hence, Proposition 9 yields a293

polynomial time reduction from C-separation to the problem of computing IC[A] from an294

input NFA. Naturally, this does not necessarily mean that there exists a polynomial time295

algorithm for C-separation: depending on C, computing IC [A] may or may not be costly.296

We introduce a key definition for manipulating IC [A], for an NFA A = (Q, δ). Let S ⊆ Q4
297

and K be a finite set of languages. We say that K is separating for S when for every (q, r, s, t) ∈298

Q4 and every K ∈ K, if K intersects both LA(q, r) and LA(s, t), then (q, r, s, t) ∈ S. Then,299

IC [A] is the smallest set of 4-tuples admitting a C-cover of A∗ which is separating for it.300

▶ Lemma 10. Let C be a Boolean algebra and A = (Q, δ) be an NFA. Then the following holds:301

There exists a C-cover K of A∗ which is separating for IC [A].302

Let S ⊆ Q4. If there exists a C-cover K of A∗ which is separating for S, then IC [A] ⊆ S.303

FSTTCS 2022

29:8 A generic polynomial time approach to separation by alternation-free first-order logic

Controlled separation. We present additional terminology tailored to the classes built304

from a group prevariety. Consider two classes C and D (in practice, D will be a group305

prevariety G and C will be either BPol(G) or BPol(G+)). Let L0, L1 ⊆ A∗. We say that L0306

is C-separable from L1 under D-control if there exists H ∈ D such that ε ∈ H and L0 ∩ H is307

C-separable from L1 ∩ H. Given an NFA A = (Q, δ), we associate a set IC [D, A] ⊆ Q4:308

IC [D, A] =
{

(q, r, s, t) ∈ Q4 | LA(q, r) is not C-separable from LA(s, t) under D-control
}

.309

Clearly, we have IC[D, A] ⊆ IC[A]. Let us connect this new definition to the notion of310

separating cover presented above. In this case as well, this will be useful in proof arguments.311

▶ Lemma 11. Let C and D be Boolean algebras such that D ⊆ C and let A = (Q, δ) be an312

NFA. The following properties hold:313

There exists L ∈ D with ε ∈ L, and a C-cover K of L which is separating for IC [D, A].314

Let S ⊆ Q4. If there exist L ∈ D with ε ∈ L, and a C-cover K of L which is separating315

for S, then IC [D, A] ⊆ S.316

This notion is only useful if {ε} ̸∈ D. If {ε} ∈ D, then L0 is C-separable from L1 under317

D-control if and only if either ε ̸∈ L0 or ε ̸∈ L1. This is why the notion is designed for group318

prevarieties: if G is such a class, then {ε} ̸∈ G. In this case, if C ∈ {G, G+}, then the set319

IBPol(C)[G, A] carries more information than IBPol(C)[A]. This is useful for the computation:320

rather than computing IBPol(C)[A] directly, our procedures first compute IBPol(C)[G, A]. The321

proof is based on Propositions 5 and 6 (the latter requires G to consist of group languages).322

▶ Proposition 12. Let G be a group prevariety, let C be a prevariety such that G ⊆ C and let323

A = (Q, δ) be an NFA. Then, IBPol(C)[A] is the least set S ⊆ Q4 that contains IBPol(C)[G, A]324

and satisfies the two following conditions:325

1. For all q, r, s, t ∈ Q and a ∈ A, if (q, a, r), (s, a, t) ∈ δ, then (q, r, s, t) ∈ S.326

2. For all (q1, r1, s1, t1), (q2, r2, s2, t2) ∈ S, if r1 = q2 and t1 = s2, then (q1, r2, s1, t2) ∈ S.327

Proof. Let S ⊆ Q4 be the least set containing IBPol(C)[G, A] and satisfying both conditions.328

We prove that S = IBPol(C)[A]. For S ⊆ IBPol(C)[A], since IBPol(C)[G, A] ⊆ IBPol(C)[A] by329

definition, it suffices to prove that IBPol(C)[A] satisfies both conditions in the proposition.330

First, consider a ∈ A and q, r, s, t ∈ Q such that (q, a, r), (s, a, t) ∈ δ. We have a ∈ LA(q, r)331

and a ∈ LA(s, t). Hence, they are not BPol(C)-separable and (q, r, s, t) ∈ IBPol(C)[A].332

Now, let (q1, r1, s1, t1), (q2, r2, s2, t2) ∈ IBPol(C)[A] such that r1 = q2 and t1 = s2. For333

i ∈ {1, 2}, we know that LA(qi, ri) is not BPol(C)-separable from LA(si, ti). Since BPol(C)334

is a prevariety by Theorem 2, it follows from Lemma 8 that LA(q1, r1)LA(q2, r2) is not335

BPol(C) separable from LA(s1, t1)LA(s2, t2). Since r1 = q2 and t1 = s2, it is immediate that336

LA(q1, r1)LA(q2, r2) ⊆ LA(q1, r2) and LA(s1, t1)LA(s2, t2) ⊆ LA(s1, t2). Hence, LA(q1, r2)337

is not BPol(C)-separable from LA(s1, t2) and we get (q1, r2, s1, t2) ∈ IBPol(C)[A] as desired.338

We turn to the inclusion IBPol(C)[A] ⊆ S. By Lemma 11, there exists L ∈ G such that339

ε ∈ L and a BPol(C)-cover V of L which is separating for IBPol(C)[G, A]. By hypothesis, L340

is a group language and ε ∈ L. Hence, Proposition 6 yields a cover P of A∗ such that every341

P ∈ P is of the form P = ↑LwP for some word wP ∈ A∗. Let P ∈ P and a1, . . . , an ∈ A be342

the letters such that wP = a1 · · · an. We have P = La1L · · · anL by definition (if wP = ε,343

then P = L). By definition, L ∈ G ⊆ Pol(C). Hence, since V is a BPol(C)-cover of L,344

Proposition 5 yields a BPol(C)-cover KP of P such that for every K ∈ KP , there are345

V0, . . . , Vn ∈ V such that K ⊆ V0a1V1 · · · anVn. We let K =
⋃

P ∈P KP . Since P is a cover of346

A∗ and KP is a BPol(C)-cover of P for each P ∈ P, K is a BPol(C)-cover of A∗. We show347

that K is separating for S which implies that IBPol(C)[A] ⊆ S by Lemma 10.348

T. Place and M. Zeitoun 29:9

Let (q, r, s, t) ∈ Q4 and K ∈ K such that we have x ∈ K ∩ LA(q, r) and y ∈ K ∩ LA(s, t).349

We show that (q, r, s, t) ∈ S. We have K ∈ KP for some P ∈ P. Let a1, . . . , an ∈ A such350

that wP = a1 · · · an. By definition, there are V0, . . . , Vn ∈ V such that K ⊆ V0a1V1 · · · anVn.351

Since x, y ∈ K, we get xi, yi ∈ Vi for 0 ≤ i ≤ n such that x = x0a1x1 · · · anxn and352

y = y0a1y1 · · · anyn. Since x ∈ LA(q, r), we get qi, ri ∈ Q for 0 ≤ i ≤ n such that q0 = q,353

rn = r, xi ∈ LA(qi, ri) for 0 ≤ i ≤ n and (ri−1, ai, qi) ∈ δ for 1 ≤ i ≤ n. Finally, since354

y ∈ LA(s, t), we get si, ti ∈ Q for 0 ≤ i ≤ n such that s0 = s, tn = t, yi ∈ LA(si, ti)355

for 0 ≤ i ≤ n and (ti−1, ai, si) ∈ δ for 1 ≤ i ≤ n. Since S satisfies Condition 1 in the356

proposition, we get (ri−1, qi, ti−1, si) ∈ S for 1 ≤ i ≤ n. Since Vi ∈ V which is separating for357

IBPol(C)[G, A] and xi, yi ∈ Vi, we also get (qi, ri, qi, ti) ∈ IBPol(C)[G, A] for 0 ≤ i ≤ n. Thus,358

Condition 2 in the proposition yields (q0, r0, sn, tn) ∈ S, i.e. (q, r, s, t) ∈ S as desired. ◀359

Proposition 12 provides a least fixpoint algorithm for computing the set IBPol(C)[A] from360

IBPol(C)[G, A]. Combined with Proposition 9, this yields a polynomial time reduction from361

BPol(C)-separation to computing IBPol(C)[G, A] from an NFA. We shall prove that when362

C ∈ {G, G+}, there are polynomial time reductions of the latter problem to G-separation.363

3.2 Tuple separation364

This generalized variant of separation is taken from [18]. We shall use it as a proof ingredient:365

for every lattice C, it is connected to the classical separation problem for Bool(C). For every366

n ≥ 1, we call “n-tuple” a tuple of n languages (L1, . . . , Ln). In the sequel, given another367

language K, we shall write (L1, . . . , Ln) ∩ K for the n-tuple (L1 ∩ K, . . . , Ln ∩ K). Let C be368

a lattice, we use induction on n to define the C-separable n-tuples:369

If n = 1, a 1-tuple (L1) is C-separable when L1 = ∅.370

If n ≥ 2, an n-tuple (L1, . . . , Ln) is C-separable when there exists K ∈ C such that371

L1 ⊆ K and (L2, . . . , Ln) ∩ K is C-separable. We call K a separator of (L1, . . . , Ln).372

One may verify that classical separation is the special case n = 2. We generalize D-controlled373

separation to this setting. For a class D, we say that an n-tuple (L1, . . . , Ln) is C-separable374

under D-control if there exists H ∈ D such that ε ∈ H and (L1, . . . , Ln) ∩ H is C-separable.375

We complete the definition with two simple properties of tuple separation. The second376

one is based on closure under quotients and generalizes Lemma 8.377

▶ Lemma 13. Let C be a lattice and let (L1, . . . , Ln), (H1, . . . , Hn) be two n-tuples. If378

L1 ∩ · · · ∩ Ln ̸= ∅, then (L1, . . . , Ln) is not C-separable. Moreover, if Li ⊆ Hi for every i ≤ n379

and (L1, . . . , Ln) is not C-separable, then (H1, . . . , Hn) is not C-separable either.380

▶ Lemma 14. Let C be a positive prevariety, n ≥ 1 and let (L1, . . . , Ln), (H1, . . . , Hn) be381

two n-tuples, which are not C-separable. Then, (L1H1, . . . , LnHn) is not C-separable either.382

A theorem of [18] connects tuple C-separation for a lattice C to Bool(C)-separation: L0383

is Bool(C)-separable from L1 if and only if (L0, L1)p is C-separable for some p ≥ 1. Here,384

(L0, L1)p denotes the 2p-tuple obtained by concatenating p copies of (L0, L1). For example,385

(L0, L1)3 = (L0, L1, L0, L1, L0, L1). We use a corollary applying to D-controlled separation.386

▶ Corollary 15. Let C and D be two lattices such that D ⊆ C and let L0, L1 ⊆ A∗. The387

following properties are equivalent:388

1. L0 is Bool(C)-separable from L1 under D-control.389

2. There exists p ≥ 1 such that (L0, L1)p is C-separable under D-control.390

FSTTCS 2022

29:10 A generic polynomial time approach to separation by alternation-free first-order logic

We only use the contrapositive of 1) ⇒ 2) in Corollary 15. We complete the presentation391

with two important lemmas about tuple separation for Pol(D) and Pol(D+). We use them392

to prove that tuples are not separable. Note that in practice, D will be a group prevariety G.393

Yet, the results are true regardless of this hypothesis.394

▶ Lemma 16. Let D be a prevariety and (L1, . . . , Ln) an n-tuple which is not Pol(D)-395

separable under D-control. Then, ({ε}, L1, . . . , Ln) is not Pol(D)-separable.396

Proof. We prove the contrapositive. Assume that ({ε}, L1, . . . , Ln) is Pol(D)-separable: we397

get K ∈ Pol(D) such that ε ∈ K and (L1, . . . , Ln) ∩ K is Pol(D)-separable. By definition,398

K is a finite union of marked product of languages in D. Hence, since ε ∈ K, there exists a399

marked product involving a single language H ∈ D such that ε ∈ H in the union defining K.400

In particular, H ⊆ K and Lemma 13 implies that (L1, . . . , Ln)∩H is Pol(D)-separable. Since401

H ∈ D and ε ∈ H, it follows that (L1, . . . , Ln) is Pol(D)-separable under D-control. ◀402

▶ Lemma 17. Let D be a prevariety and w ∈ A+. If (L1, . . . , Ln) is not Pol(D+)-separable403

under D-control, then (w+, w+L1w+, . . . , w+Lnw+) is not Pol(D+)-separable.404

Proof. We prove the contrapositive. Assuming that (w+, w+L1w+, . . . , w+Lnw+) is Pol(D+)-405

separable, we show that (L1, . . . , Ln) is Pol(D+)-separable under D-control. There exists406

K ∈ Pol(D+) such that w+ ⊆ K, and (w+L1w+, . . . , w+Lnw+)∩K is Pol(D+)-separable. By407

definition, K is a finite union of marked products K0a1K1 · · · amKm with a1, . . . , am ∈ A and408

K0, . . . , Km ∈ D+. Let k ∈ N such that m ≤ k for every product K0a1K1 · · · amKm in this409

union. Since w+ ⊆ K, we have w2(k+1) ∈ K. This yields a marked product K0a1K1 · · · amKm410

such that w2(k+1) ∈ K0a1K1 · · · amKm ⊆ K, m ≤ k and K0, . . . , Km ∈ D+. Therefore, we411

get ui ∈ Ki for each i ≤ m such that w2(k+1) = u0a1u1 · · · amum. Moreover, since m ≤ k,412

there exists i ≤ m such that ww is an infix of ui. Thus, we get x, y ∈ A∗ and ℓ1, ℓ2 ∈ N such413

that ui = xwwy, u0a1u1 · · · aix = wℓ1 , yai+1ui+1 · · · amum = wℓ2 and ℓ1 + 2 + ℓ2 = 2(k + 1)414

By definition Ki ∈ D+ which yields H ∈ D such that either Ki = H ∪{ε} or Ki = H ∩A+.415

Hence, since ui ∈ Ki and ui ∈ A+ (recall that w ∈ A+), we have xwwy = ui ∈ H. Let416

H ′ = (xw)−1H(wy)−1. By closure under quotients, we have H ′ ∈ D and it is clear that ε ∈ H ′
417

since xwwy ∈ H. Hence, it remains to prove that (L1, . . . , Ln) ∩ H ′ is Pol(D+)-separable.418

This will imply as desired that (L1, . . . , Ln) is Pol(D+)-separable under D-control.419

We know that (w+L1w+, . . . , w+Lnw+) ∩ K is Pol(D+)-separable. One may verify from420

the definitions that wℓ1+1(Lj ∩ H ′)wℓ2+1 ⊆ w+Ljw+ ∩ K for all j ≤ n. Thus, Lemma 13421

implies that wℓ1+1(L1 ∩ H ′)wℓ2+1, . . . , wℓ1+1(Ln ∩ H ′)wℓ2+1) is Pol(D+)-separable. Finally,422

since (wℓ1+1, . . . , wℓ1+1) and (wℓ2+1, . . . , wℓ2+1) are not Pol(D+)-separable, it follows from423

Lemma 14 that ((L1 ∩ H ′), . . . , (Ln ∩ H ′)) is Pol(D+)-separable as desired. ◀424

4 Separation Algorithms for BPol(G) and BPol(G+)425

For a group prevariety G, we now consider BPol(G)- and BPol(G+)-separation. We rely on the426

notions of Section 3: given an arbitrary NFA A = (Q, δ), we present a generic characterization427

of the inseparable BPol(G)- and BPol(G+)-quadruples under G control associated to A, i.e.,428

of the subsets IBPol(G)[G, A] and IBPol(G+)[G, A] of Q4. Thanks to Proposition 12, this429

also yields characterizations of IBPol(G)[A] and of IBPol(G+)[A], which in turn, in view of430

Proposition 9, yield reductions from both BPol(G)- and BPol(G+)-separation to G-separation.431

These polynomial time reductions are therefore effective when G-separation is decidable.432

T. Place and M. Zeitoun 29:11

4.1 Statements433

Let G be a group prevariety and let A = (Q, δ) be an NFA. We present characterizations of434

IBPol(G)[G, A] and IBPol(G+)[G, A]. They follow the same pattern, but each of them depends435

on a specific function from 2Q4 to 2Q4 , which we first describe.436

Characterization of IBPol(G)[G, A]. We use a function τA,G : 2Q4 → 2Q4 . For S ⊆ Q4, we437

define the set τA,G(S) ⊆ Q4. The definition is based on an auxiliary NFA BS = (Q3, γS)438

with ε-transitions, which depends on S. Its states are triples in Q3. The set γS ⊆ Q3 × (A ∪439

{ε})×Q3 includes two kinds of transitions. First, given a ∈ A and s1, s2, s3, t1, t2, t3 ∈ Q, we440

let
(
(s1, s2, s3), a, (t1, t2, t3)

)
∈ γS if and only if (s1, a, t1) ∈ δ, (s2, a, t2) ∈ δ and (s3, a, t3) ∈ δ.441

Second, for every state q1 ∈ Q and every (q2, r2, q3, r3) ∈ S, we add the following ε-transition:442

((q1, q2, q3), ε, (q1, r2, r3)) ∈ γS . We represent this construction process graphically in Figure 1.443

s1 t1 s2 t2 s3 t3
a a a

Transitions in A

(s1, s2, s3) (t1, t2, t3)a

Produced transition in BS

q1 ∈ Q and (q2, r2, q3, r3) ∈ Ss1 t1 s2 t2 s3 t3
a a a

Single state and quadruple in S

q1 ∈ Q and (q2, r2, q3, r3) ∈ S (q1, q2, q3) (q1, r2, r3)ε

Produced ε-transition in BS

Figure 1 Construction of the transitions in the auxiliary automaton BS

▶ Remark 18. The NFA BS and its counterpart B+
S (which we define below as a means to444

handle BPol(G+)) are the only NFAs with ε-transitions considered in the paper. In particular,445

the original input NFA A is assumed to be without ε-transitions.446

We are ready to define τA,G(S) ⊆ Q4. For every (q, r, s, t) ∈ Q4, we let (q, r, s, t) ∈ τA,G(S)447

if and only if the two following conditions hold:448

{ε} is not G-separable from LBS
((s, q, s), (t, r, t)), and

{ε} is not G-separable from LBS
((q, s, q), (r, t, r)). (1)449

A set S ⊆ Q4 is (BPol, ∗)-sound for G and A if it is a fixpoint for τA,G , i.e. τA,G(S) = S.450

We have the following simple lemma which can be verified from the definition. It states451

that τA,G : 2Q4 → 2Q4 is increasing (for inclusion). In particular, this implies that it has a452

greatest fixpoint, i.e., there is a greatest (BPol, ∗)-sound set.453

▶ Lemma 19. Let G be a group prevariety and let A = (Q, δ) be an NFA. For every454

S, S′ ⊆ Q4, we have S ⊆ S′ ⇒ τA,G(S) ⊆ τA,G(S′).455

We may now state the first key theorem of the paper. It applies to BPol(G)-separation.456

▶ Theorem 20. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G)[G, A]457

is the greatest (BPol, ∗)-sound subset of Q4 for G and A.458

Characterization of IBPol(G+)[G, A]. The characterization of IBPol(G+)[G, A] is analog-459

ous. Roughly, the only difference is that we modify the definition of the auxiliary auto-460

maton BS . Let G be a group prevariety and A = (Q, δ) be an NFA. We define a new461

function τ+
A,G : 2Q4 → 2Q4 . For S ⊆ Q4, we define τ+

A,G(S) ⊆ Q4 using another auxiliary462

NFA B+
S = (Q3, γ+

S) with ε-transitions. Its states are triples in Q3 and γ+
S ⊆ Q3 × (A ∪463

FSTTCS 2022

29:12 A generic polynomial time approach to separation by alternation-free first-order logic

{ε}) × Q3 contains two kinds of transitions. First, for a ∈ A and s1, s2, s3, t1, t2, t3 ∈ Q,464

we let
(
(s1, s2, s3), a, (t1, t2, t3)

)
∈ γ+

S if and only if (s1, a, t1) ∈ δ, (s2, a, t2) ∈ δ and465

(s3, a, t3) ∈ δ. Second, for all q1 ∈ Q and all (q2, r2, q3, r3) ∈ S, if A+ ∩ LA(q1, q1) ∩466

LA(q2, q2) ∩ LA(q3, q3) ∩ LA(r2, r2) ∩ LA(r3, r3) ̸= ∅, then we add the following ε-transition:467

((q1, q2, q3), ε, (q1, r2, r3)) ∈ γ+
S . We represent this construction in Figure 2.468

s1 t1 s2 t2 s3 t3
a a a

Transitions in A

(s1, s2, s3) (t1, t2, t3)a

Produced transition in B+
S

s1 t1 s2 t2 s3 t3
a a a

q1 ∈ Q, (q2, r2, q3, r3) ∈ S and z ∈ A+

such that q1

z

q2

z

r2

z

q3

z

r3

z

Single state and quadruple in S

(q1, q2, q3) (q1, r2, r3)ε

Produced ε-transition in B+
S

Figure 2 Construction of the transitions in the auxiliary automaton B+
S

We are ready to define τ+
A,G(S) ⊆ Q4. For every (q, r, s, t) ∈ Q4, we let (q, r, s, t) ∈ τ+

A,G(S)469

if and only if the two following conditions hold:470

{ε} is not G-separable from LB+
S

((s, q, s), (t, r, t)), and
{ε} is not G-separable from LB+

S
((q, s, q), (r, t, r)). (2)471

A set S ⊆ Q4 is (BPol, +)-sound for G and A if it is a fixpoint for τ+
A,G , i.e. τ+

A,G(S) = S.472

The following monotonicity lemma implies that there is a greatest (BPol, +)-sound set.473

▶ Lemma 21. Let G be a group prevariety and A = (Q, δ) an NFA. For every S, S′ ⊆ Q4,474

we have S ⊆ S′ ⇒ τ+
A,G(S) ⊆ τ+

A,G(S′).475

We may now state our second key theorem. It applies to BPol(G+)-separation.476

▶ Theorem 22. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G+)[G, A]477

is the greatest (BPol, +)-sound subset of Q4 for G and A.478

Let us discuss the consequences of Theorems 20 and 22. Since BS and B+
S can be computed479

from A and S, one can compute τA,G(S) and τ+
A,G(S) from S provided that G-separation480

is decidable. Hence, if G-separation is decidable, Theorem 20 (resp. Theorem 22) yields481

a greatest fixpoint procedure for computing IBPol(G)[G, A] (resp. IBPol(G+)[G, A]). Indeed,482

consider the sequence of subsets defined by S0 = Q4, and Sn = τA,G(Sn−1) for n ≥ 1. By483

definition, computing Sn from Sn−1 boils down to deciding G-separation. Since τA,G is484

increasing by Lemma 19, we get a decreasing sequence Q4 = S0 ⊇ S1 ⊇ S2 · · · . Moreover,485

since Q4 is finite, this sequence stabilizes at some point: there exists n ∈ N such that486

Sn = Sj for all j ≥ n. One may verify that Sn is the greatest (BPol, ∗)-sound subset of Q4.487

By Theorem 20, it follows that Sn = IBPol(G)[G, A]. Likewise, the sequence Tn defined by488

T0 = Q4 and Tn = τ+
A,G(Tn−1) is computable when G-separation is decidable, and, since it is489

decreasing, it stabilizes. By Theorem 22, its stabilization value is IBPol(G+)[G, A].490

By Proposition 12, IBPol(G)[A] (resp. IBPol(G+)[A]) can be computed from IBPol(G)[G, A]491

(resp. IBPol(G+)[G, A]) via a least fixpoint procedure. Altogether, by Proposition 9, we get492

reductions from BPol(G)- and BPol(G+)-separation to G-separation. One may verify that493

T. Place and M. Zeitoun 29:13

these are polynomial time reductions (we mean “reduction” in the Turing sense: BPol(G)- and494

BPol(G+)-separation can be decided in polynomial time using an oracle for G-separation).495

Now, it is known that separation can be decided in polynomial time for the classes ST,496

MOD and GR (this is trivial for ST, see [26] for MOD and GR). Hence, we obtain from497

Theorem 20 that separation is decidable in polynomial time for BPol(ST) (i.e., BΣ1(<)),498

BPol(MOD) (i.e., BΣ1(<, MOD)) and BPol(GR). This was well-know for BPol(ST) (the499

class of piecewise testable languages, see [6, 17]). For the other two, decidability was500

known [36, 21] but not the polynomial time upper bound. Using Theorem 22, we also obtain501

that separation is decidable in polynomial time for BPol(ST+) (i.e., the languages of dot-depth502

one or equivalently BΣ1(<, +1)), BPol(MOD+) (i.e., BΣ1(<, +1, MOD)) and BPol(GR+).503

Decidability was already known for BPol(ST+) and BPol(MOD+): the results can be504

obtained indirectly by reduction to BPol(ST)-separation using transfer theorems [22, 16].505

Yet, the polynomial time upper bounds are new as the transfer theorems have a built-in506

exponential blow-up. Moreover, decidability of separation is a new result for BPol(GR+).507

Finally, the statement applies to BPol(AMT) and BPol(AMT+) (i.e., BΣ1(<, AMOD)508

and BΣ1(<, +1, AMOD)). This is a new result for BPol(AMT+). Yet, since AMT-separation509

is co-NP-complete when the alphabet is part of the input [26] (the problem being in P for510

a fixed alphabet), the complexity analysis is not entirely immediate. However, one may511

verify that the procedures yield co-NP algorithms for both BPol(AMT)- and BPol(AMT+)-512

separation. We summarize the upper bounds in Figure 3.513

Input class G ST MOD AMT GR

BPol(G)- and BPol(G+)-separation P P co-NP P

Figure 3 Complexity of separation (for input languages represented by NFAs).

4.2 Proof of Theorem 20514

We now concentrate on the proof of Theorem 20. The key ingredients in this argument are515

Proposition 6 and Lemma 16. The proof of Theorem 22 is available in the appendix. It is516

based on similar ideas. Roughly, we replace Proposition 6 and Lemma 16 (which are tailored517

to classes BPol(G)) by their counterparts for BPol(G+): Proposition 7 and Lemma 17.518

However, note that proving Theorem 22 is technically more involved as manipulating the519

automaton B+
S in the definition of τ+

A,G requires more work.520

We fix a group prevariety G and an NFA A = (Q, δ). Let S ⊆ Q4 be the greatest521

(BPol, ∗)-sound subset for G and A. We prove that S = IBPol(G)[G, A].522

First part: S ⊆ IBPol(G)[G, A]. We use tuple separation and Lemma 16. Let us start523

with some terminology. For every n ≥ 1 and (q1, r1, q2, r2) ∈ Q4, we associate an n-tuple524

of languages, written Tn(q1, r1, q2, r2). We use induction on n and tuple concatenation to525

present the definition. If n = 1 then, T1(q1, r1, q2, r2) =
(
LA(q2, r2)

)
. If n > 1, then,526

Tn(q1, r1, q2, r2) =
{

(LA(q2, r2)) · Tn−1(q1, r1, q2, r2) if n is odd
(LA(q1, r1)) · Tn−1(q1, r1, q2, r2) if n is even.527

For example, we have T3(q1, r1, q2, r2) = (LA(q2, r2), LA(q1, r1), LA(q2, r2)).528

FSTTCS 2022

29:14 A generic polynomial time approach to separation by alternation-free first-order logic

▶ Proposition 23. For every n ≥ 1 and (q1, r1, q2, r2) ∈ S, the n-tuple Tn(q1, r1, q2, r2) is529

not Pol(G)-separable under G-control.530

By definition, Proposition 23 implies that for all p ≥ 1 and (q1, r1, q2, r2) ∈ S, the531

2p-tuple (LA(q1, r1), LA(q2, r2))p is not Pol(G)-separable under G-control. By Corollary 15,532

it follows that LA(q1, r1) is not BPol(G)-separable from LA(q2, r2) under G-control, i.e., that533

(q1, r1, q2, r2) ∈ IBPol(G)[G, A]. We get S ⊆ IBPol(G)[G, A] as desired.534

We prove Proposition 23 by induction on n. We fix n ≥ 1 for the proof. In order to exploit535

the hypothesis that S is (BPol, ∗)-sound, we need a property of the NFA BS = (Q3, γS) used536

to define τA,G . When n ≥ 2, this is where we use induction on n and Lemma 16.537

▶ Lemma 24. Let (s1, s2, s3), (t1, t2, t3) ∈ Q3 and w ∈ LBS
((s1, s2, s3), (t1, t2, t3)). Then,538

w ∈ LA(s1, t1) and, if n ≥ 2, the n-tuple ({w}) · Tn−1(s2, t2, s3, t3) is not Pol(G)-separable.539

Proof. Since w ∈ LBS
((s1, s2, s3), (t1, t2, t3)), there exists a run labeled by w from (s1, s2, s3)540

to (t1, t2, t3) in BS . We use a sub-induction on the number of transitions involved in that run.541

First, assume that no transitions are used: we have w = ε and (s1, s2, s3) = (t1, t2, t3). Clearly,542

ε ∈ LA(s1, s1) and, if n ≥ 2, the n-tuple ({ε}) · Tn−1(s2, s2, s3, s3) is not Pol(G)-separable by543

Lemma 13 since ε ∈ LA(s2, s2) ∩ LA(s3, s3). We now assume that at least one transition is544

used and consider the last one: we have (q1, q2, q3) ∈ Q3, w′ ∈ A∗ and x ∈ A ∪ {ε} such that545

w = w′x, w′ ∈ LBS
((s1, s2, s3), (q1, q2, q3)) and ((q1, q2, q3), x, (t1, t2, t3)) ∈ γS . By induction,546

we have w′ ∈ LA(s1, q1) and, if n ≥ 2, the n-tuple ({w′}) · Tn−1(s2, q2, s3, q3) is not Pol(G)-547

separable. We prove that x ∈ LA(q1, t1) and, if n ≥ 2, the n-tuple ({x}) · Tn−1(q2, t2, q3, t3)548

is not Pol(G)-separable. It will then be immediate that w = w′x ∈ LA(s1, t1) and, if n ≥ 2,549

Lemma 14 implies that ({w}) · Tn−1(s2, t2, s3, t3) is not Pol(G)-separable.550

We consider two cases depending on whether x ∈ A or x = ε. First, if x = a ∈ A, then551

(qi, a, ti) ∈ δ for i = {1, 2, 3}. Clearly, this implies that a ∈ LA(q1, t1) and, if n ≥ 2, then552

({a})·Tn−1(q2, t2, q3, t3) is not Pol(G)-separable by Lemma 13 since a ∈ LA(q2, t2)∩LA(q3, t3).553

Assume now that x = ε: we are dealing with an ε-transition. By definition of γS , we have554

q1 = t1 and (q2, t2, q3, t3) ∈ S. The former yields ε ∈ LA(q1, t1). Moreover, if n ≥ 2, since555

(q2, t2, q3, t3) ∈ S, it follows from induction on n in Proposition 23 that the (n − 1)-tuple556

Tn−1(q2, t2, q3, t3) is not Pol(G)-separable under G-control. Combined with Lemma 16, this557

yields that ({ε}) · Tn−1(q2, t2, q3, t3) is not Pol(G)-separable, as desired. ◀558

We may now complete the proof of Proposition 23. By symmetry, we only treat the559

case when n is odd and leave the case when it is even to the reader. Let (q1, r1, q2, r2) ∈ S,560

we have to prove that Tn(q1, r1, q2, r2) is not Pol(G)-separable under G-control. Hence, we561

fix H ∈ G such that ε ∈ H and prove H ∩ Tn(q1, r1, q2, r2) is not Pol(G)-separable. Since562

S is (BPol, ∗)-sound, we have τA,G(S) = S, which implies that (q1, r1, q2, r2) ∈ τA,G(S).563

Hence, it follows from (1) that {ε} is not G-separable from LBS
((q2, q1, q2), (r2, r1, r2)). Since564

H ∈ G and ε ∈ H, we get a word w ∈ H ∩ LBS
((q2, q1, q2), (r2, r1, r2)). By Lemma 24,565

we have w ∈ H ∩ LA(q2, r2). This completes the proof when n = 1. Indeed, in that566

case we have T1(q1, r1, q2, r2) = (LA(q2, r2)) and since H ∩ LA(q2, r2) ̸= ∅, it follows that567

H ∩ T1(q1, r1, q2, r2) is not Pol(G)-separable, as desired. If n ≥ 2, then Lemma 24 also568

implies that ({w}) · Tn−1(q1, r1, q2, r2) is not Pol(G)-separable. Since w ∈ H ∩ LA(q2, r2),569

Lemma 13 yields that (H∩LA(q2, r2))·Tn−1(q1, r1, q2, r2) is not Pol(G)-separable. Thus, since570

H ∈ G ⊆ Pol(G), one may verify that the n-tuple (H ∩ LA(q2, r2)) · (H ∩ Tn−1(q1, r1, q2, r2))571

is not Pol(G)-separable. By definition, this exactly says that H ∩ Tn(q1, r1, q2, r2) is not572

Pol(G)-separable, completing the proof.573

Second part: IBPol(G)[G, A] ⊆ S. In the sequel, we say that an arbitrary set R ⊆ Q4 is574

good if there exists L ∈ G such ε ∈ L and a BPol(G)-cover K of L which is separating for R.575

T. Place and M. Zeitoun 29:15

▶ Proposition 25. Let R ⊆ Q4. If R is good, then τA,G(R) is good as well.576

We use Proposition 25 to complete the proof. Let S0 = Q4 and Si = τA,G(Si−1) for i ≥ 1.577

By Lemma 19, we have S0 ⊇ S1 ⊆ S2 ⊇ · · · and there is n ∈ N such that Sn is the greatest578

(BPol, ∗)-sound subset for G and A, i.e., such that Sn = S. Since S0 is good ({A∗} is a579

BPol(G)-cover of A∗ ∈ G which is separating for S0 = Q4), Proposition 25 implies that Si is580

good for all i ∈ N. Thus, S = Sn is good. We get L ∈ G such that ε ∈ L and a BPol(G)-cover581

K of L which is separating for S. Lemma 11 then yields IBPol(G)[G, A] ⊆ S as desired.582

▶ Remark 26. The proof of Proposition 25 actually provides a construction for building L ∈ G583

such that ε ∈ L and a BPol(G)-cover K of L which is separating for S (yet, this involves584

building separators in G, see Lemma 27). As we have now established that S = IBPol(G)[G, A],585

one may then follow the proof of Proposition 12 to build a BPol(G)-cover H of A∗ which is586

separating for IBPol(G)[A]. Finally, H encodes separators for all pairs of languages recognized587

by A which are BPol(G)-separable (roughly, this is the proof of Lemma 10). Altogether, we588

get a way to build separators in BPol(G), when they exist.589

We now prove Proposition 25. Let R ⊆ Q4 be good. We have to build L ∈ G with ε ∈ L590

and a BPol(G)-cover K of L which is separating for τA,G(R) (which will prove that τA,G(R)591

is good as well). We first build L (this part is independent from our hypothesis on R).592

▶ Lemma 27. There exists L ∈ G such that ε ∈ L and for every (q, r, s, t) ∈ Q4, if593

LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LBR

((s, q, s), (t, r, t)) ∩ L ̸= ∅, then (q, r, s, t) ∈ τA,G(R).594

Proof. Let H be the finite set of all languages recognized by BR such that {ε} is G-separable595

from H. For every H ∈ H, there exists LH ∈ G such that ε ∈ LH and LH ∩ H = ∅. We596

define L =
⋂

H∈H LH ∈ G. It is clear that ε ∈ L. Moreover, given (q, r, s, t) ∈ Q4, if597

LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LBR

((s, q, s), (t, r, t)) ∩ L ̸= ∅, it follows from the definition598

of L that {ε} is not G-separable from both LBR
((q, s, q), (r, t, r)) and LBR

((s, q, s), (t, r, t)).599

It follows from (1) in the definition of τA,G that (q, r, s, t) ∈ τA,G(R). ◀600

We fix L ∈ G as described in Lemma 27 for the remainder of the proof. We now build601

the BPol(G)-cover K of L using the hypothesis that R is good and Proposition 6.602

▶ Lemma 28. For all (q, r) ∈ Q2, there is Hq,r ∈ BPol(G) such that LA(q, r) ∩ L ⊆ Hq,r603

and for all pairs (s, t) ∈ Q2, if LA(s, t) ∩ Hq,r ̸= ∅ then LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅.604

Proof. Since R is good, there are U ∈ G such that ε ∈ U and a BPol(G)-cover V of605

U which is separating for R. We use them to build Hq,r. Since U is a group language606

and ε ∈ U , Proposition 6 yields a cover P of LA(q, r) ∩ L such that every P ∈ P is of607

the form P = ↑U wP where wP ∈ LA(q, r) ∩ L. For every P ∈ P, we build a BPol(G)-608

cover KP of P . Let a1, . . . , an ∈ A be the letters such that wP = a1 · · · an. We have609

P = Ua1U · · · anU . Since U ∈ G ⊆ Pol(G) and V is a BPol(G)-cover of U , Proposition 5610

yields a BPol(G)-cover KP of P such that for every K ∈ KP , there exist V0, . . . , Vn ∈ V611

satisfying K ⊆ V0a1V1 · · · anVn. We define Hq,r as the union of all languages K such that612

K ∈ KP for some P ∈ P and LA(q, r) ∩ K ̸= ∅. Clearly, Hq,r ∈ BPol(G). Moreover,613

since P is a cover of LA(q, r) ∩ L, and KP is a cover of P for each P ∈ P, it is clear that614

LA(q, r) ∩ L ⊆ Hq,r. We now fix (s, t) ∈ Q2 such that LA(s, t) ∩ Hq,r ̸= ∅ and show that615

LBR
((q, s, q), (r, t, r)) ∩ L ̸= ∅. By definition of Hq,r, we get P ∈ P and K ∈ KP such that616

LA(q, r) ∩ K ̸= ∅ and LA(s, t) ∩ K ̸= ∅. By definition, P = ↑U wP with wP ∈ LA(q, r) ∩ L.617

Hence, it suffices to prove that wP ∈ LBR
((q, s, q), (r, t, r)).618

We fix x ∈ LA(s, t) ∩ K and y ∈ LA(q, r) ∩ K. Recall that wP = a1 · · · an (if n = 0,619

then wP = ε). Since wP ∈ LA(q, r), we may consider the corresponding run in A: we get620

FSTTCS 2022

29:16 A generic polynomial time approach to separation by alternation-free first-order logic

p0, . . . , pn ∈ Q such that p0 = q, pn = r and (pi−1, ai, pi) ∈ δ for 1 ≤ i ≤ n. Moreover, since621

K ∈ KP and wP = a1 · · · an, we have K ⊆ V0a1V1 · · · anVn for V0, . . . , Vn ∈ V (if n = 0,622

then K ⊆ V0). Since x, y ∈ K, we get xi, yi ∈ Vi for 0 ≤ i ≤ n such that x = x0a1x1 · · · anxn623

and y = y0a1y1 · · · anyn. Since x ∈ LA(s, t), we get s0, t0, . . . , sn, tn ∈ Q such that s0 = s,624

tn = t, xi ∈ LA(si, ti) for 0 ≤ i ≤ n, and (ti−1, ai, si) ∈ δ for 1 ≤ i ≤ n. Symmetrically,625

since y ∈ LA(q, r), we get q0, r0, . . . , qn, rn ∈ Q such that q0 = q, rn = r, yi ∈ LA(qi, ri)626

for 0 ≤ i ≤ n, and (ri−1, ai, qi) ∈ δ for 1 ≤ i ≤ n. By definition of γR, it is immediate627

that ((pi−1, ti−1, ri−1), ai, (pi, si, qi)) ∈ γR for 1 ≤ i ≤ n. Since Vi ∈ V and V is separating628

for R, the fact that xi, yi ∈ Vi implies that (si, ti, qi, ri) ∈ R for 0 ≤ i ≤ n. Hence,629

((pi, si, qi), ε, (pi, ti, ri)) ∈ γR by definition. Thus, we get a run labeled by wP from (p0, s0, q0)630

to (pn, tn, rn) in BR, i.e., wP ∈ LBR
((q, s, q), (r, t, r)) as desired. ◀631

We may now build K. Let H =
{

Hq,r | (q, r) ∈ Q2}
. Consider the following equivalence632

∼ defined on L: given u, v ∈ L, we let u ∼ v if and only if u ∈ Hq,r ⇔ v ∈ Hq,r for633

every (q, r) ∈ Q2. We let K as the partition of L into ∼-classes. Clearly, each K ∈ K is a634

Boolean combination involving the languages in H (which belong to BPol(G)) and L ∈ G.635

Hence, K is a BPol(G)-cover of L. We now prove that it is separating for τA,G(R). Let636

q, r, s, t ∈ Q and K ∈ K such that there are u ∈ LA(q, r) ∩ K and v ∈ LA(s, t) ∩ K. We show637

that (q, r, s, t) ∈ τA,G(R). By definition of K, we have u, v ∈ L and u ∼ v. In particular,638

u ∈ LA(q, r) ∩ L which yields u ∈ Hq,r by definition in Lemma 28. Together with u ∼ v, this639

yields v ∈ Hq,r. Hence, LA(s, t)∩Hq,r ̸= ∅ and Lemma 28 yields LBR
((q, s, q), (r, t, r))∩L ̸= ∅.640

One may now use a symmetrical argument to obtain LBR
((s, q, s), (t, r, t)) ∩ L ̸= ∅. By641

definition of L in Lemma 27, this yields (q, r, s, t) ∈ τA,G(R), completing the proof.642

5 Conclusion643

In this paper, we proved that for every group prevariety G, there exist generic polynomial644

time Turing reductions from BPol(G)- and BPol(G+)-separation to G-separation, for input645

languages represented by NFAs. While a generic reduction from BPol(G)-separation to646

G-separation was already developed in [21], it relied on an involved machinery, which required647

to dig into a more general problem than BPol(G)-separation, namely “BPol(G)-covering”. In648

particular, the techniques from [21] do not provide any way to build separators in BPol(G)649

(when they exist). They also yield poor upper complexity bounds. At last, the results of [21]650

do not apply to BPol(G+). In this case, even the existence of a generic reduction is new. It651

would be interesting to unify ideas of the present paper with the techniques of [21], to lift652

them to the setting of BPol(G)- and BPol(G+)-covering. We leave this for further work.653

Our results imply that separation is decidable in polynomial time for a number of654

standard classes: the piecewise testable languages (i.e., BPol(ST) or equivalently BΣ1(<)),655

the languages of dot-depth one (i.e., BPol(ST+) or equivalently BΣ1(<, +1)), the classes656

BPol(MOD) and BPol(MOD+) (i.e., BΣ1(<, MOD) and BΣ1(<, +1, MOD)) and the classes657

BPol(GR) and BPol(GR+). While this was well-known for the piecewise testable lan-658

guages [17, 6], all other results are new—not only regarding the complexity, but even659

regarding the decidability. Actually, it is shown in [12] that BPol(ST)-separation is P-660

complete. It turns out that the reduction of [12], from the circuit value problem, adapts to661

prove the P-completeness of separation for all of the above classes (we leave the details for662

further work). Finally, our results also apply to the classes BPol(AMT) and BPol(AMT+)663

(i.e., BΣ1(<, AMOD) and BΣ1(<, +1, AMOD)): we obtain that separation is in co-NP.664

While this is currently unknown, we conjecture that this is a tight upper bound. Indeed, it is665

known that AMT-separation is co-NP-complete [26].666

T. Place and M. Zeitoun 29:17

References667

1 Jorge Almeida and Marc Zeitoun. The pseudovariety J is hyperdecidable. RAIRO Theoretical668

Informatics and Applications, 31(5):457–482, 1997.669

2 Mustapha Arfi. Polynomial operations on rational languages. In Proceedings of the 4th Annual670

Symposium on Theoretical Aspects of Computer Science, STACS’87, pages 198–206, Berlin,671

Heidelberg, 1987. Springer-Verlag.672

3 Janusz A. Brzozowski and Rina S. Cohen. Dot-depth of star-free events. Journal of Computer673

and System Sciences, 5(1):1–16, 1971.674

4 Antonio Cano, Giovanna Guaiana, and Jean-Eric Pin. Regular languages and partial commut-675

ations. Journal of Information and Computation, 230:76–96, 2013.676

5 Laura Chaubard, Jean Éric Pin, and Howard Straubing. First order formulas with modular677

predicates. In Proceedings of the 21th IEEE Symposium on Logic in Computer Science678

(LICS’06), pages 211–220, 2006.679

6 Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular680

languages by subsequences and suffixes. In Proceedings of the 40th International Colloquium681

on Automata, Languages, and Programming, ICALP’13, pages 150–161, Berlin, Heidelberg,682

2013. Springer-Verlag.683

7 Samuel Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, Inc.,684

Orlando, FL, USA, 1976.685

8 Karsten Henckell, Stuart Margolis, Jean-Eric Pin, and John Rhodes. Ash’s type II theorem,686

profinite topology and Malcev products. International Journal of Algebra and Computation,687

1:411–436, 1991.688

9 Robert Knast. A semigroup characterization of dot-depth one languages. RAIRO - Theoretical689

Informatics and Applications, 17(4):321–330, 1983.690

10 Alexis Maciel, Pierre Péladeau, and Denis Thérien. Programs over semigroups of dot-depth691

one. Theoretical Computer Science, 245(1):135–148, 2000.692

11 Stuart Margolis and Jean-Eric Pin. Product of Group Languages. In FCT Conference, volume693

Lecture Notes in Computer Science, pages 285–299. Springer-Verlag, 1985.694

12 Tomás Masopust. Separability by piecewise testable languages is ptime-complete. Theor.695

Comput. Sci., 711:109–114, 2018.696

13 Jean-Eric Pin. Algebraic tools for the concatenation product. Theoretical Computer Science,697

292:317–342, 2003.698

14 Jean-Eric Pin. An explicit formula for the intersection of two polynomials of regular languages.699

In DLT 2013, volume 7907 of Lect. Notes Comp. Sci., pages 31–45. Springer, 2013.700

15 Jean-Eric Pin and Howard Straubing. Some results on C-varieties. RAIRO - Theoretical701

Informatics and Applications, 39(1):239–262, 2005.702

16 Thomas Place, Varun Ramanathan, and Pascal Weil. Covering and separation for logical703

fragments with modular predicates. Logical Methods in Computer Science, 15(2), 2019.704

17 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by705

piecewise testable and unambiguous languages. In Proceedings of the 38th International706

Symposium on Mathematical Foundations of Computer Science, MFCS’13, pages 729–740,707

Berlin, Heidelberg, 2013. Springer-Verlag.708

18 Thomas Place and Marc Zeitoun. Separation for dot-depth two. In Proceedings of the 32th709

Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS’17), pages 202–213.710

IEEE Computer Society, 2017.711

19 Thomas Place and Marc Zeitoun. The covering problem. Logical Methods in Computer Science,712

14(3), 2018.713

20 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of714

Computing Systems (ToCS), 63(4):849–901, 2019. Selected papers from CSR’17.715

21 Thomas Place and Marc Zeitoun. Separation and covering for group based concatenation716

hierarchies. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer717

Science, LICS’19, pages 1–13, 2019.718

FSTTCS 2022

29:18 A generic polynomial time approach to separation by alternation-free first-order logic

22 Thomas Place and Marc Zeitoun. Adding successor: A transfer theorem for separation and719

covering. ACM Transactions on Computational Logic, 21(2):9:1–9:45, 2020.720

23 Thomas Place and Marc Zeitoun. Separation for dot-depth two. Logical Methods in Computer721

Science, Volume 17, Issue 3, 2021.722

24 Thomas Place and Marc Zeitoun. Characterizing level one in group-based concatenation hier-723

archies. In Computer Science – Theory and Applications, Cham, 2022. Springer International724

Publishing.725

25 Thomas Place and Marc Zeitoun. A generic polynomial time approach to separation by first-726

order logic without quantifier alternation, 2022. URL: https://arxiv.org/abs/2210.00946,727

doi:10.48550/ARXIV.2210.00946.728

26 Thomas Place and Marc Zeitoun. Group separation strikes back. To appear, a preliminary729

version is vailable at https://www.labri.fr/perso/tplace/Files/groups.pdf, 2022.730

27 Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata731

Theory and Formal Languages, pages 214–222, Berlin, Heidelberg, 1975. Springer-Verlag.732

28 Benjamin Steinberg. Inevitable graphs and profinite topologies: Some solutions to algorithmic733

problems in monoid and automata theory, stemming from group theory. International Journal734

of Algebra and Computation, 11(1):25–72, 2001.735

29 Howard Straubing. A generalization of the schützenberger product of finite monoids. Theoretical736

Computer Science, 13(2):137–150, 1981.737

30 Howard Straubing. Finite semigroup varieties of the form V ∗ D. Journal of Pure and Applied738

Algebra, 36:53–94, 1985.739

31 Howard Straubing. On logical descriptions of regular languages. In Proceedings of the 5th740

Latin American Symposium on Theoretical Informatics, LATIN’02, pages 528–538, Berlin,741

Heidelberg, 2002. Springer-Verlag.742

32 Denis Thérien. Classification of finite monoids: The language approach. Theoretical Computer743

Science, 14(2):195–208, 1981.744

33 Gabriel Thierrin. Permutation automata. Theory of Computing Systems, 2(1):83—-90, 1968.745

34 Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computer and746

System Sciences, 25(3):360–376, 1982.747

35 Bret Tilson. Categories as algebra: essential ingredient in the theory of monoids. Journal of748

Pure and Applied Algebra, 48(1):83–198, 1987.749

36 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond750

subwords. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer751

Science, LICS’18, pages 929–938, 2018.752

https://arxiv.org/abs/2210.00946
https://doi.org/10.48550/ARXIV.2210.00946
https://www.labri.fr/perso/tplace/Files/groups.pdf

T. Place and M. Zeitoun 29:19

Appendix753

In this appendix, we present the proof of Theorem 22. Let us first recall the statement.754

▶ Theorem 22. Let G be a group prevariety and A = (Q, δ) an NFA. Then, IBPol(G+)[G, A]755

is the greatest (BPol, +)-sound subset of Q4 for G and A.756

The proof argument is based on the same outline as the one presented for Theorem 20 in757

the main paper. We fix a group prevariety G and an NFA A = (Q, δ). Let S ⊆ Q4 be the758

greatest (BPol, +)-sound subset for G and A. We prove that S = IBPol(G+)[G, A].759

First part: S ⊆ IBPol(G+)[G, A]. We use tuple separation and Lemma 17. Let us start with760

terminology. For every n ≥ 1 and (q1, r1, q2, r2) ∈ Q4, we associate an n-tuple Tn(q1, r1, q2, r2).761

We use induction on n and tuple concatenation to present the definition. If n = 1 then,762

T1(q1, r1, q2, r2) = (LA(q2, r2)). If n > 1, then,763

Tn(q1, r1, q2, r2) =
{

(LA(q2, r2)) · Tn−1(q1, r1, q2, r2) if n is odd
(LA(q1, r1)) · Tn−1(q1, r1, q2, r2) if n is even.764

We use induction on n to prove the following proposition.765

▶ Proposition 29. For every n ≥ 1 and (q1, r1, q2, r2) ∈ S, the n-tuple Tn(q1, r1, q2, r2) is766

not Pol(G+)-separable under G-control.767

By definition, Proposition 29 implies that for every p ≥ 1 and every (q1, r1, q2, r2) ∈ S, the768

2p-tuple (LA(q1, r1), LA(q2, r2))p is not Pol(G+)-separable under G-control. By Corollary 15,769

it follows that LA(q1, r1) is not BPol(G+)-separable from LA(q2, r2) under G-control, i.e.770

that (q1, r1, q2, r2) ∈ IBPol(G+)[G, A]. We get S ⊆ IBPol(G+)[G, A] as desired.771

We prove Proposition 29 using induction on n. We fix n ≥ 1 for the proof. In order to772

exploit the fact that S is (BPol, +)-sound, we need a property of the NFA B+
S = (Q3, γS)773

used to define τ+
A,G . When n ≥ 2, this is where we use induction on n and Lemma 17.774

▶ Lemma 30. Consider (s1, s2, s3), (t1, t2, t3) ∈ Q3 and a group language H ⊆ A∗. Assume775

that H ∩ LB+
S

((s1, s2, s3), (t1, t2, t3)) ̸= ∅. Then, H ∩ LA(s1, t1) ̸= ∅ and, if n ≥ 2, then the776

n-tuple (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable.777

Proof. By hypothesis, there exists w ∈ H ∩ LB+
S

((s1, s2, s3), (t1, t2, t3)). Hence, the NFA B+
S778

contains some run labeled by w from (s1, s2, s3) to (t1, t2, t3). We use a sub-induction on the779

number of transitions involved in that run. When no transitions are used: we have w = ε780

and (s1, s2, s3) = (t1, t2, t3). It follows that w = ε ∈ H ∩ LA(s1, t1). Moreover, if n ≥ 2, the781

n-tuple (H ∩ LA(s1, t1)) · Tn−1(s2, s2, s3, s3) is not Pol(G+)-separable by Lemma 13 since782

ε ∈ LA(s2, s2) ∩ LA(s3, s3). We now assume that at least one transition is used. We get a783

triple (q1, q2, q3) ∈ Q3, a word w′ ∈ A∗ and x ∈ A ∪ {ε} such that we have w = w′x, w′ ∈784

LB+
S

((s1, s2, s3), (q1, q2, q3)) and ((q1, q2, q3), x, (t1, t2, t3)) ∈ γ+
S . Since H is a group language,785

it is recognized by a morphism α : A∗ → G into a finite group G. Let H ′ = α−1(α(w′)).786

Clearly, H ′ is a group language and w′ ∈ H ′ ∩ LB+
S

((s1, s2, s3), (q1, q2, q3)). Thus, induction787

yields that H ′ ∩LA(s1, q1) ̸= ∅ and, if n ≥ 2, the n-tuple (H ′ ∩LA(s1, q1)) ·Tn−1(s2, q2, s3, q3)788

is not Pol(G+)-separable. We now consider two cases depending on x ∈ A ∪ {ε}.789

Assume first that x = a ∈ A: we have ((q1, q2, q3), a, (t1, t2, t3)) ∈ γ+
S . By definition, it790

follows that (qi, a, ti) ∈ δ for i = {1, 2, 3}. Observe that (H ′ ∩ LA(s1, q1))a ⊆ H ∩ LA(s1, t1).791

Indeed, if u ∈ (H ′ ∩ LA(s1, q1))a, then u = u′a where u′ ∈ H ′ and u′ ∈ LA(s1, q1). Since792

H ′ = α−1(α(w′)), the hypothesis that u′ ∈ H ′ yields α(u) = α(u′a) = α(w′a) = α(w) which793

FSTTCS 2022

29:20 A generic polynomial time approach to separation by alternation-free first-order logic

implies that u ∈ H since w ∈ H and H is recognized by α. Moreover, since u′ ∈ LA(s1, q1)794

and (q1, a, t1) ∈ δ, we get u = u′a ∈ LA(s1, t1). Altogether, this yields u ∈ H ∩ LA(s1, t1) as795

desired. Since we already know that H ′ ∩LA(s1, q1) ̸= ∅, we get H ∩LA(s1, t1) ̸= ∅. Moreover,796

if n ≥ 2, since (q2, a, t2), (q3, a, t3) ∈ δ, Lemma 13 yields that ({a}) · Tn−1(q2, t2, q3, t3) is not797

Pol(G+)-separable. Hence, since we already know that (H ′ ∩ LA(s1, q1)) · Tn−1(s2, q2, s3, q3)798

is not Pol(G+)-separable and (H ′ ∩ LA(s1, q1))a ⊆ H ∩ LA(s1, t1), it follows from Lemma 14799

that (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable.800

Finally, assume that x = ε: we have ((q1, q2, q3), ε, (t1, t2, t3)) ∈ γ+
S . By definition, it801

follows that q1 = t1, (q2, t2, q3, t3) ∈ S and there exists a nonempty word y ∈ A+ which802

belongs to LA(q1, q1), LA(q2, q2), LA(q3, q3), LA(t2, t2) and LA(t3, t3). Since x = ε, we have803

w = w′. Hence, since w ∈ H and H is recognized by α, we obtain that H ′ = α(α−1(w′)) ⊆ H.804

Since H ′ ∩ LA(s1, q1) ̸= ∅ and q1 = t1, we get H ∩ LA(s1, t1) ̸= ∅. We now assume that805

n ≥ 2. Since G is a finite group, there exists k ≥ 1 such that α(yk) = 1G. We write z = yk.806

By hypothesis on y, we also have z ∈ LA(q1, q1). It follows that z+ ⊆ α−1(1G) ∩ LA(q1, q1).807

Additionally, since z belongs to LA(q2, q2), LA(q3, q3), LA(t2, t2) and LA(t3, t3), we know808

that z+LA(q2, t2)z+ ⊆ LA(q2, t2) and z+LA(q3, t3)z+ ⊆ LA(q3, t3). Since (q2, t2, q3, t3) ∈ S,809

it follows from induction on n in Proposition 29 that the (n−1)-tuple Tn−1(q2, t2, q3, t3) is not810

Pol(G+)-separable under G-control. Altogether, we obtain from Lemma 17 that the n-tuple811

(α−1(1G) ∩ LA(q1, q1)) · Tn−1(q2, t2, q3, t3) is not Pol(G+)-separable. Finally, since q1 = t1812

and H ′ ⊆ H, one may verify that (H ′ ∩LA(s1, q1))(α−1(1G)∩LA(q1, q1)) ⊆ (H ∩LA(s1, t1)).813

Since we already know that (H ′ ∩ LA(s1, q1)) · Tn−1(s2, q2, s3, q3) is not Pol(G+)-separable,814

Lemma 14 yields that (H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable. ◀815

We may now complete the proof of Proposition 29. By symmetry, we only treat the816

case when n is odd and leave the even case to the reader. Let (q1, r1, q2, r2) ∈ S, we have817

to prove that Tn(q1, r1, q2, r2) is not Pol(G+)-separable under G-control. Hence, we fix818

H ∈ G such that ε ∈ H and prove H ∩ Tn(q1, r1, q2, r2) is not Pol(G+)-separable. Since819

S is (BPol, +)-sound, we have τ+
A,G(S) = S which implies that (q1, r1, q2, r2) ∈ τ+

A,G(S).820

Hence, it follows from (2) that {ε} is not G-separable from LB+
S

((q2, q1, q2), (r2, r1, r2)).821

Since H ∈ G and ε ∈ H, it follows that H ∩ LB+
S

((q2, q1, q2), (r2, r1, r2)) ̸= ∅. If n = 1,822

Lemma 30 yields H ∩ LA(q2, r2) ̸= ∅. Since T1(q1, r1, q2, r2) = (LA(q2, r2)), we get that823

H∩T1(q1, r1, q2, r2) is not Pol(G+)-separable as desired. If n ≥ 2, then Lemma 30 implies that824

(H ∩ LA(s1, t1)) · Tn−1(s2, t2, s3, t3) is not Pol(G+)-separable. Thus, since H ∈ G ⊆ Pol(G+),825

one may verify that the n-tuple (H ∩ LA(q2, r2)) · (H ∩ Tn−1(q1, r1, q2, r2)) is not Pol(G+)-826

separable. By definition, this exactly says that H ∩ Tn(q1, r1, q2, r2) is not Pol(G+)-separable,827

completing the proof.828

Second part: IBPol(G+)[G, A] ⊆ S. Consider an arbitrary set R ⊆ Q4. We say that R is829

multiplication-closed to indicate that for every (q, r, s, t) ∈ R and (q′, r′, s′, t′) ∈ R, if r = q′
830

and t = s′, then (q, r′, s, t′) ∈ R. Moreover, we say that an arbitrary set R ⊆ Q4 is good if it831

is multiplication-closed and there are L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which832

is separating for R.833

▶ Proposition 31. Let R ⊆ Q4. If R is good, then τ+
A,G(R) is good as well.834

We use Proposition 31 to complete the proof. Let S0 = Q4 and Si = τ+
A,G(Si−1) for835

i ≥ 1. By Lemma 21, we have S0 ⊇ S1 ⊆ S2 ⊇ · · · and the is n ∈ N such that Sn is the836

greatest (BPol, +)-sound subset for G and A, i.e. such that Sn = S. Since S0 is good (it is837

clearly multiplication-closed and {A∗} is a BPol(G+)-cover of A∗ ∈ G which is separating for838

S0 = Q4), Proposition 31 implies that Si is good for all i ∈ N. Hence, S = Sn is good. We839

T. Place and M. Zeitoun 29:21

get L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which is separating for S. By Lemma 11,840

this yields IBPol(G+)[G, A] ⊆ S as desired.841

We turn to Proposition 25. Let R ⊆ Q4 be a good set. We have to prove that τ+
A,G(R)842

is multiplication-closed and build L ∈ G such ε ∈ L and a BPol(G+)-cover K of L which is843

separating for τ+
A,G(R). This proves that τ+

A,G(R) is good as desired. Let us first prove that844

τ+
A,G(R) is multiplication-closed (we use the hypothesis that R is good).845

▶ Lemma 32. The set τ+
A,G(R) ⊆ Q4 is multiplication-closed.846

Proof. Let (q, r, s, t) ∈ τ+
A,G(R) and (q′, r′, s′, t′) ∈ τ+

A,G(R) such that r = q′ and t = s′. We847

need to prove that (q, r′, s, t′) ∈ τ+
A,G(R). By (2) in the definition, this boils down to proving848

that {ε} is not G-separable from LB+
R

((s, q, s), (t′, r′, t′)) and LB+
R

((q, s, q), (r′, t′, r′)). By sym-849

metry, we only prove the former. By hypothesis on (q, r, s, t) and (q′, r′, s′, t′), we get from (2)850

that {ε} is not G-separable from both LB+
R

((s, q, s), (t, r, t)) and LB+
R

((s′, q′, s′), (t′, r′, t′)).851

Since G is a prevariety it then follows from Lemma 14 that {ε} is not G-separable from the con-852

catenation LB+
R

((s, q, s), (t, r, t))LB+
R

((s′, q′, s′), (t′, r′, t′)). Finally, since (t, r, t) = (s′, q′, s′),853

we know that LB+
R

((s, q, s), (t, r, t))LB+
R

((s′, q′, s′), (t′, r′, t′)) ⊆ LB+
R

((s, q, s), (t′, r′, t′)). We854

conclude that {ε} is not G-separable from both LB+
R

((s, q, s), (t′, r′, t′)) as desired. ◀855

We now build L ∈ G such that ε ∈ L (this part is independent from our hypothesis on R).856

▶ Lemma 33. There exists L ∈ G such that ε ∈ L and for every (q, r, s, t) ∈ Q4, if857

LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LB+
R

((s, q, s), (t, r, t)) ∩ L ̸= ∅, then (q, r, s, t) ∈ τ+
A,G(R).858

Proof. Let H be the finite set of all languages recognized by B+
R such that {ε} is G-separable859

from H. For every H ∈ H, there exists LH ∈ G such that ε ∈ LH and LH ∩ H = ∅. We860

define L =
⋂

H∈H LH ∈ G. It is clear that ε ∈ L. Moreover, given (q, r, s, t) ∈ Q4, if861

LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅ and LB+
R

((s, q, s), (t, r, t)) ∩ L ̸= ∅, it follows from the definition862

of L that {ε} is not G-separable from both LB+
R

((q, s, q), (r, t, r)) and LB+
R

((s, q, s), (t, r, t)).863

It then follows from (2) in the definition of τ+
A,G that (q, r, s, t) ∈ τ+

A,G(R). ◀864

We fix L ∈ G as described in Lemma 33 for the remainder of the proof. We now build865

the BPol(G+)-cover K of L using the hypothesis that R is good and Proposition 7.866

▶ Lemma 34. For all (q, r) ∈ Q2, there is Hq,r ∈ BPol(G+) such that LA(q, r) ∩ L ⊆ Hq,r867

and for all pairs (s, t) ∈ Q2, if LA(s, t) ∩ Hq,r ̸= ∅ then LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅.868

Proof. Since R is good, there are U ∈ G such that ε ∈ U and a BPol(G+)-cover V of869

U which is separating for R. We use them to build Hq,r. Since U ∈ G and ε ∈ U870

Proposition 7 yields a cover P of LA(q, r) ∩ L such that for each P ∈ P, there exists a word871

wP ∈ LA(q, r) ∩ L and an A-guarded decomposition (w1, . . . , wn+1) of wP for some n ∈ N872

such that P = w1U · · · wnUwn+1 (if n = 0, then P = {w1}). Now, for every P ∈ P, we build873

a BPol(G+)-cover KP of P from the cover V of U . Let (w1, . . . , wn+1) be the A-guarded874

decomposition of wP such that P = w1U · · · wnUwn+1 (in particular, this means that P875

is of the form U0a1U1 · · · amUm where a1 · · · am = w1 · · · wn and Ui = U or Ui = {ε} for876

each i ≤ m). By definition, V is a BPol(G+)-cover of U ∈ G ⊆ Pol(G+). Moreover, we877

have {ε} ∈ G+ ⊆ Pol(G+) by definition of G+ and {{ε}} is a BPol(G+)-cover of {ε}. Hence,878

Proposition 5 yields a BPol(G+)-cover KP of P = w1U · · · wnUwn+1 such that for every879

K ∈ KP , there exist V1, . . . , Vn ∈ V such that K ⊆ w1V1 · · · wnVnwn+1. We define Hq,r880

as the union of all languages K such that K ∈ KP for some P ∈ P and LA(q, r) ∩ K ≠ ∅.881

Clearly, Hq,r ∈ BPol(G+). Moreover, since P is a cover of LA(q, r) ∩ L, and KP is a cover882

FSTTCS 2022

29:22 A generic polynomial time approach to separation by alternation-free first-order logic

of P for each P ∈ P, it is clear that LA(q, r) ∩ L ⊆ Hq,r. We now fix (s, t) ∈ Q2 such883

that LA(s, t) ∩ Hq,r ̸= ∅ and show that LB+
R

((q, s, q), (r, t, r)) ∩ L ≠ ∅. By definition of884

Hq,r, we get P ∈ P and K ∈ KP such that LA(q, r) ∩ K ̸= ∅ and LA(s, t) ∩ K ̸= ∅. By885

definition, P = w1U · · · wnUwn+1 where (w1, . . . , wn+1) is an A-guarded decomposition of886

wP ∈ LA(q, r) ∩ L. We use wP to build a new word w′ ∈ LB+
R

((q, s, q), (r, t, r)) ∩ L.887

We fix x ∈ LA(s, t)∩K and y ∈ LA(q, r)∩K. Since wP = w1 · · · wn+1 and wP ∈ LA(q, r),888

we may decompose the corresponding run in A: we get p0, . . . , pn+1 ∈ Q such that p0 = q,889

pn+1 = r and wi ∈ LA(pi−1, pi) for 1 ≤ i ≤ n + 1. Moreover, since K ∈ KP , we have890

K ⊆ w1V1 · · · wnVnwn+1 for V1, . . . , Vn ∈ V (if n = 0, then K ⊆ {w1}). Since x, y ∈ K, we891

get xi, yi ∈ Vi for 1 ≤ i ≤ n such that x = w1x1 · · · wnxnwn+1 and y = w1y1 · · · wnynwn+1.892

Since x ∈ LA(s, t), we get s1, t1, . . . , sn+1, tn+1 ∈ Q where s1 = s, tn+1 = t, wi ∈ LA(si, ti)893

for 1 ≤ i ≤ n + 1 and xi ∈ LA(ti, si+1) for 1 ≤ i ≤ n. Symmetrically, since y ∈ LA(q, r),894

we get q1, r1, . . . , qn+1, rn+1 ∈ Q with q1 = q, rn+1 = r, wi ∈ LA(qi, ri) for 1 ≤ i ≤ n + 1,895

and yi ∈ LA(ri, qi+1) for 1 ≤ i ≤ n. First, note that when n = 0, we have wP = w1 and the896

above implies that wP ∈ LA(q, r) and wP ∈ LA(s, t). Thus, wP ∈ LB+
R

((q, s, q), (r, t, r)) by897

definition of the labeled transition in B+
R . This concludes the proof since we also know that898

wP ∈ L. We now assume that n ≥ 1.899

By hypothesis, (w1, . . . , wn+1) is an A-guarded decomposition. Hence, for 1 ≤ i ≤ n, we900

get zi ∈ A+ which is a right A-loop for wi and a left A-loop for wi+1. Let α : A∗ → G be a901

morphism into a finite group G recognizing both L and U (recall that L and U are group902

languages). Since g is a finite group, there exists k ≥ 1 such that for each 1 ≤ i ≤ n, we have903

α(zk
i) = 1G. We let ui = zk

i for 1 ≤ i ≤ n. One may verify that ui remains a right A-loop for904

wi and a left A-loop for wi+1. Moreover, since α(ui) = 1G, we know that ui ∈ U (recall that905

ε ∈ U and U is recognized by α). We let w′
1 = w1u1, w′

n+1 = unwn+1 and w′
i = ui−1wiui for906

2 ≤ i ≤ n. Finally, we let w′ = w′
1 · · · w′

nw′
n+1 and show that w′ ∈ L ∩ LB+

R
((q, s, q), (r, t, r))907

which completes the proof. First, since α(ui) = 1G for 1 ≤ i ≤ n, it is immediate that908

α(w′) = α(w1 · · · wnwn+1) = α(wP). Since wP ∈ L which is recognized by α, we get w′ ∈ L.909

We now concentrate on proving that w′ ∈ LB+
R

((q, s, q), (r, t, r)). For 1 ≤ i ≤ n + 1, we910

know that wi belongs to LA(pi−1, pi), LA(si, ti) and LA(qi, ri). Hence, one may verify from911

the definition of left/right A-loops that there are p′
0, . . . , p′

n+1 ∈ Q, s′
1, t′

1, . . . , s′
n+1, t′

n+1 ∈ Q912

and q′
1, r′

1, . . . , q′
n+1, r′

n+1 ∈ Q such that,913

p′
0 = p0 = q, p′

n+1 = pn+1 = r, w′
i ∈ LA(p′

i−1, p′
i) for 1 ≤ i ≤ n + 1 and ui ∈ LA(p′

i, p′
i)914

for 1 ≤ i ≤ n.915

s′
0 = s0 = s, t′

n+1 = tn+1 = t, w′
i ∈ LA(s′

i, t′
i) for 1 ≤ i ≤ n + 1 and we have916

ui ∈ LA(t′
i, t′

i) ∩ LA(t′
i, ti) ∩ LA(si+1, s′

i+1) ∩ LA(s′
i+1, s′

i+1) for 1 ≤ i ≤ n.917

q′
0 = q0 = q, r′

n+1 = rn+1 = r, w′
i ∈ LA(q′

i, r′
i) for 1 ≤ i ≤ n + 1 and we have918

ui ∈ LA(r′
i, r′

i) ∩ LA(r′
i, ri) ∩ LA(qi+1, q′

i+1) ∩ LA(q′
i+1, q′

i+1) for 1 ≤ i ≤ n.919

By definition of the labeled transitions in the NFA B+
R , it is straightforward to verify that we920

have w′
i ∈ LB+

R
((p′

i−1, s′
i, q′

i), (p′
i, t′

i, r′
i)) for 1 ≤ i ≤ n + 1. We now prove the following fact.921

▶ Fact 35. For 1 ≤ i ≤ n, we have ((p′
i, t′

i, r′
i), ε, (p′

i, s′
i+1, q′

i+1)) ∈ γ+
R .922

Proof. We fix i for the proof. Since we know that ui ∈ A+ belongs to LA(p′
i, p′

i), LA(t′
i, t′

i),923

LA(r′
i, r′

i), LA(s′
i+1, s′

i+1) and LA(q′
i+1, q′

i+1), it suffices to prove that (t′
i, s′

i+1, r′
i, q′

i+1) ∈ R.924

This will imply that ((p′
i, t′

i, r′
i), ε, (p′

i, s′
i+1, q′

i+1)) ∈ γ+
R by definition of γ+

R . Recall that925

xi ∈ LA(ti, si+1), yi ∈ LA(ri, qi+1) and xi, yi ∈ Vi. Since Vi ∈ V which is separating for R,926

it follows that (ti, si+1, ri, qi+1) ∈ R. Moreover, ui ∈ U which yields V ∈ V such that ui ∈ V927

since V is a cover of U . Hence, since ui ∈ LA(t′
i, ti) and ui ∈ LA(r′

i, ri). The hypothesis that928

V is separating for R also yields (t′
i, ti, r′

i, ri) ∈ R. Symmetrically, one may use the hypotheses929

T. Place and M. Zeitoun 29:23

that ui ∈ LA(si+1, s′
i+1) and ui ∈ LA(qi+1, q′

i+1) to verify that (si+1, s′
i+1, qi+1, q′

i+1) ∈ R.930

Altogether, since R is multiplication-closed, we get (t′
i, s′

i+1, r′
i, q′

i+1) ∈ R as desired. ◀931

In view of Fact 35, we obtain w′ = w′
1 · · · w′

nw′
n+1 ∈ LB+

R
((p′

0, s′
1, q′

1), (p′
n+1, t′

n+1, r′
n+1)).932

This exactly says that w′ ∈ LB+
R

((q, s, q), (r, t, r)) which completes the proof. ◀933

We may now build K. Let H = {Hq,r | (q, r) ∈ Q2}. Consider the following equivalence934

∼ defined on L: given u, v ∈ L, we let u ∼ v if and only if u ∈ Hq,r ⇔ v ∈ Hq,r for every935

(q, r) ∈ Q2. We let K as the partition of L into ∼-classes. Clearly, each K ∈ K is a Boolean936

combination involving the languages in H (which belong to BPol(G+)) and L ∈ G. Hence,937

K is a BPol(G+)-cover of L. It remains to prove that it is separating for τ+
A,G(R). Let938

q, r, s, t ∈ Q and K ∈ K such that there are u ∈ LA(q, r) ∩ K and v ∈ LA(s, t) ∩ K. By939

definition of K, we have u, v ∈ L and u ∼ v. In particular, we have u ∈ LA(q, r) ∩ L which940

yields u ∈ Hq,r by definition in Lemma 34. Together with u ∼ v, this yields v ∈ Hq,r. Hence,941

LA(s, t) ∩ Hq,r ≠ ∅ and Lemma 34 yields LB+
R

((q, s, q), (r, t, r)) ∩ L ̸= ∅. One may now942

use a symmetrical argument to obtain LB+
R

((s, q, s), (t, r, t)) ∩ L ≠ ∅. By definition of L in943

Lemma 33, this yields (q, r, s, t) ∈ τA,G(R), completing the proof.944

FSTTCS 2022

	1 Introduction
	2 Preliminaries
	2.1 Words, regular languages and classes
	2.2 Polynomial and Boolean closure

	3 Separation framework
	3.1 The separation problem
	3.2 Tuple separation

	4 Separation Algorithms for BPol(G) and BPol(G+)
	4.1 Statements
	4.2 Proof of Theorem 20

	5 Conclusion

