
How many times do you need to go back to the
future in Unary Temporal Logic?⋆

Thomas Place1,2 and Marc Zeitoun1[0000−0003−4101−8437]

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400 Talence, France
2 Institut Universitaire de France

firstname.name@labri.fr

Abstract. Unary temporal logic (UTL) can express properties on finite
words with the temporal modalities “sometimes in the future/past”. The
languages definable in UTL are well-understood. In particular, they cor-
respond to unambiguous languages, which are built by applying succes-
sively three standard operators to the trivial class of languages (consist-
ing of the empty language and the universal one): polynomial, Boolean,
and finally unambiguous polynomial closures. Moreover, it is known that
one can decide whether a given regular language is expressible in UTL.
We extend these results in two ways. First, we use generalized temporal
modalities “sometimes in the future/past”, which depend on a class “C”
of languages. Second, we investigate a hierarchy inside such a variant of
UTL: its future/past hierarchy. Each level in this hierarchy consists of all
languages definable with a bounded number of alternations between the
“sometimes in the future” and “sometimes in the past” modalities.
We show that if C is a class of group languages with mild properties,
there is a correspondence between levels of such a C-specified hierarchy
and classes of languages obtained from C by applying standard operators:
the polynomial, the Boolean, and the left/right deterministic closures.
We also show that if C has decidable “separation problem”, then one
can decide membership of a regular language within any level of the
corresponding future/past hierarchy. Finally, these results extend to the
case where we allow “tomorrow” and “yesterday” temporal modalities.

1 Introduction

The goal of this paper is to understand the fine-grained structure of fragments of
a standard temporal logic, and in particular, their expressive power. Temporal
logics are common formalisms in computer science, whose purpose is to specify
properties of finite or infinite structures, such as words or trees. Their success
stems from the good balance between their ease of use and their expressiveness.
For instance, it is well known [6] that on words, linear time temporal logic is
exactly as powerful as first-order logic. Another standard logic is unary temporal
logic (UTL, or TL for short), which shares ties with navigational logics for trees.
Here, we focus on fragments of TL on finite words over some alphabet A.
⋆ Funded by the DeLTA project (ANR-16-CE40-0007).

2 T. Place and M. Zeitoun

The logic TL has two temporal operators: “sometimes in the future” and
“sometimes in the past”. Each TL formula defines a regular language on A∗.
Therefore, TL defines a class of regular languages, which turns out to be one
of the most robust ones [26]: first, Etessami, Vardi and Wilke [3,4] proved that
TL has the same expressiveness as FO2, the restriction of first-order logic to two
variables. Second, Thérien and Wilke [27] designed a decidable characterization
of FO2, i.e., a membership algorithm that decides whether a given regular lan-
guage is definable in this logic. Obtaining such an algorithm is important, as this
requires a solid understanding on the investigated languages. Third, Schützen-
berger [24], Pin, Straubing and Thérien [13,15] described this class in terms of
languages built from ∅ and A∗ by applying standard operators: the Boolean,
polynomial and unambiguous polynomial closures. Here, the Boolean closure
Bool(C) of a class of languages C is the smallest Boolean algebra containing C.
The polynomial closure Pol(C) of C is the smallest class containing C closed
under union and (marked) language concatenation. Finally, the unambiguous
polynomial closure UPol(C) of C is a subclass of Pol(C), defined by semantic
restrictions on the allowed unions and marked products. The results of [15] show
that languages definable in TL are exactly those of UPol(Bool(Pol({∅, A∗}))).

This smoothly generalizes to TL(C), a version of TL parameterized by a
“base class” C of languages [19,23] (TL corresponds to TL({∅, A∗})). On the log-
ical side, this boils down to enriching TL with temporal operators (or FO2 with
predicates) built from C in a natural way. Moreover, if C is a class of group lan-
guages satisfying mild properties, TL(C) is exactly UPol(Bool(Pol(C))). In this
case, [19,23] provide yet another definition of the languages in TL(C). They are
built from Bool(Pol(C)) by applying two other closure operators in alternation:
the left (resp. right) deterministic closure LPol (resp. RPol). Finally, member-
ship remains decidable for TL(C), provided that C satisfies some properties.

Contributions. These multiple equivalent definitions of TL(C) lead to natural
hierarchies: the quantifier alternation hierarchy of FO2, the LPol/RPol alterna-
tion hierarchy, called the deterministic hierarchy, and the future-past hierarchy,
which counts the number of alternations between future and past operators.
While the first has been already investigated [5,8,11] for a particular base class,
this is not the case for the future-past hierarchy. Our first contribution connects
the future-past hierarchy with the deterministic hierarchy: we show that the
future-past hierarchy inside TL(C) coincides with the deterministic hierarchy of
base class Bool(Pol(C)). This holds when C is a class of group languages satisfy-
ing mild properties, and for extensions of such classes capturing the variants of
TL allowing the “tomorrow” and “yesterday” operators. In practice, this makes
it possible to cope with temporal operators controlling the words that may be
used along future/past jumps (typical properties are modulo tests on the length
of such words, or on the number of occurrences of a specific letter). The second
result is that membership is decidable for all levels of this hierarchy. For some
of them, we use the language-theoretic characterization together with generic
results of [19,23,18]. For others (the so-called join levels), this requires specific
work. Altogether, these results generalize work by Kufleitner and Lauser [9,8].

How many times do you need to go back to the future in UTL? 3

Other hierarchies. Two alternative hierarchies inside TL are known, albeit
specific to TL({∅, A∗}). First, a hierarchy based on the notion of “ranker” is
considered in [10]. Another hierarchy is investigated in [8]. It is based on unam-
biguous interval temporal logic (this is another logic equivalent to TL introduced
in [12]). These hierarchies are independent from our work.
Organization. We present terminology in Section 2 and future-past hierarchies
in Section 3. Their characterization by deterministic hierarchies is proved in
Section 4. Finally, Section 5 is devoted to membership for the join levels. Due to
space limitations, several proofs are postponed to the full version of the paper.

2 Preliminaries

We fix a finite alphabet A for the whole paper. As usual, A∗ is the set of all
finite words over A, including the empty word ε. We let A+ = A∗ \ {ε}. For
u, v ∈ A∗, we let uv be the word obtained by concatenating u and v. Given
w ∈ A∗, we write |w| ∈ N for the length of w. We also consider positions. A word
w = a1 · · · a|w| ∈ A∗ is viewed as an ordered set Pos(w) = {0, 1, . . . , |w|, |w|+ 1}
of |w|+2 positions. Each position i such that 1 ≤ i ≤ |w| carries the label ai ∈ A.
Positions 0 and |w|+1 are artificial leftmost and rightmost positions, which carry
no label. For every i ∈ Pos(w), we define an element w[i] ∈ A ∪ {min,max}
(where “min” and “max” do not belong to A). We let w[0] = min, w[i] = ai if
1 ≤ i ≤ |w| and w[|w| + 1] = max. Finally, given i, j ∈ Pos(w) such that i < j,
we write w(i, j) = ai+1 · · · aj−1 ∈ A∗ (i.e., we keep the letters carried by all
positions that are strictly between i and j). Note that w(0, |w|+ 1) = w.

A language is a subset of A∗. We look at regular languages, i.e., that can
be equivalently defined by a regular expression, an automaton or a morphism
into a finite monoid. We work with the latter definition. A monoid is a set M
equipped with a multiplication s, t 7→ st, which is associative and has an identity
element written “1M ”. An element e ∈M is idempotent if it satisfies ee = e. For
all S ⊆M , we write E(S) for the set of all idempotents in S. It is standard that
when M is finite, there exists ω(M) ∈ N (written ω when M is understood) such
that sω is idempotent for every s ∈M . Clearly, A∗ equipped with concatenation
is a monoid (ε is the identity). Hence, we may consider morphisms α : A∗ →M
into a monoid M . We say that L ⊆ A∗ is recognized by such a morphism α when
there exists F ⊆ M such that L = α−1(F). It is well known that a language is
regular if and only if it can be recognized by a morphism into a finite monoid.

Remark 1. The only infinite monoid that we consider is A∗. From now on, we
implicitly assume that every other monoid M,N, . . . in this paper is finite.

Classes of languages. A class of languages C is a set of languages. Such a class
forms a lattice if it is closed under both union and intersection, and contains
the languages ∅ and A∗. It is a Boolean algebra if it is additionally closed under
complement. Finally, a class C is quotient-closed when for all L ∈ C and u, v ∈ A∗,
the language {w ∈ A∗ | uwv ∈ L} belongs to C as well. A class C is a prevariety
when it is a quotient-closed Boolean algebra and contains only regular languages.

4 T. Place and M. Zeitoun

We use a decision problem called membership as a means to investigate
classes. For a class C, the C-membership problem takes as input a regular lan-
guage L and asks if L ∈ C. Intuitively, obtaining a procedure for C-membership
requires a solid understanding of C. We also look at a more involved problem,
called separation. For a class C and two languages L0 and L1, we say that L0 is
C-separable from L1 when there exists K ∈ C such that L0 ⊆ K and L1∩K = ∅.
The C-separation problem takes two regular languages L0 and L1 as input and
asks whether L0 is C-separable from L1. We do not present separation algorithms
in this paper: we only use them as an intermediary to investigate membership.

We turn to a key tool. Let C be a prevariety. A C-morphism is a surjective
morphism η : A∗ → N such that η−1(F) ∈ C for all F ⊆ N . We use this notion
to handle membership. It is well known that for every regular language L, there
exists a canonical morphism recognizing L. We briefly recall its definition. We
associate with L an equivalence ≡L on A∗: given u, v ∈ A∗, we let u ≡L v when
xuy ∈ L⇔ xvy ∈ L for all x, y ∈ A∗. One may verify that ≡L is a congruence and
that, since L is regular, it has finite index. Thus, the quotient set ML = A∗/≡L

is a finite monoid. The syntactic morphism of L is the morphism αL : A∗ →ML

which maps a word to its ≡L-class. It can be computed from any representation
of L. We have the following standard property (see, e.g., [17, Proposition 3])

Proposition 1. Let C be a prevariety. A regular language L belongs to C if and
only if its syntactic morphism αL : A∗ →ML is a C-morphism.

In view of Proposition 1, getting an algorithm for C-membership boils down
to finding a procedure that decides whether an input morphism α : A∗ → M is
a C-morphism. This is how we approach the question in the paper. We shall also
use C-morphisms as mathematical tools in proof arguments. In this context, we
shall need the following simple corollary of Proposition 1.

Proposition 2. Let C be a prevariety, k ≥ 1 and L1, . . . , Lk ∈ C. There exists
a C-morphism η : A∗ → N such that L1, . . . , Lk are recognized by η.

Group languages. A group is a monoid G such that every element g ∈ G has
an inverse g−1 ∈ G, i.e., such that gg−1 = g−1g = 1G. We call group language a
language recognized by a morphism into a finite group. We shall consider classes
G that are group prevarieties (i.e., containing group languages only).

We let GR be the class of all group languages. Another example is the class
AMT of alphabet modulo testable languages. For all w ∈ A∗ and a ∈ A, we let
#a(w) ∈ N be the number of occurrences of “a” in w. The class AMT consists
of all finite Boolean combinations of languages {w ∈ A∗ | #a(w) ≡ k mod m}
where a ∈ A and k,m ∈ N are such that k < m (these are exactly the languages
recognized by commutative groups). We also look at MOD, which consists of
all finite Boolean combinations of languages {w ∈ A∗ | |w| ≡ k mod m} with
k,m ∈ N such that k < m. Finally, we write ST for the trivial class ST = {∅, A∗}.
One may verify that GR, AMT, MOD and ST are all group prevarieties.

By definition, {ε} and A+ are not group languages. This motivates the next
definition: the well-suited extension of a class C, written C+, consists of all lan-
guages L∩A+ and L∪{ε} for L ∈ C (hence, C ⊆ C+). The following lemma is easy.

How many times do you need to go back to the future in UTL? 5

Lemma 1. We have {ε}, A+ ∈ C+. In addition, if C is a prevariety, so is C+.

We conclude with a lemma concerning G-morphisms and G+-morphisms.

Lemma 2. Let G be a group prevariety and η : A∗ →M be a morphism. If η is
a G-morphism, then M is a group. If η is a G+-morphism, then η(A+) is a group.

3 Future/past hierarchies of unary temporal logic

We define unary temporal logic and its future/past hierarchies. We work with
a generalized definition of unary temporal logic introduced in [23]: with every
class C, we associate a logic TL(C) and its future/past hierarchy.

3.1 Definition

Syntax. We first recall the definition of the full logic used in [23]. A TL formula is
built from atomic formulas using Boolean connectives and temporal operators.
The atomic formulas are ⊤, ⊥, min, max and a for every letter a ∈ A. All
Boolean connectives are allowed: if ψ1 and ψ2 are TL formulas, then so are
(ψ1 ∨ ψ2), (ψ1 ∧ ψ2) and (¬ψ1). We also associate two temporal operators with
every language L ⊆ A∗ which we write FL and PL: if ψ is a TL formula, then
so are (FL ψ) and (PL ψ). We omit parentheses when there is no ambiguity.

We now classify the TL formulas by counting the alternations between future
and past operators in their parse tree. With all n ∈ N, we associate three sets
of TL formulas: FLn, PLn and BLn (where F,P and B stand for future, past
and Boolean combinations respectively). The first two are defined by induction
on n ∈ N. The FL0 and PL0 formulas are the Boolean combinations of atomic
formulas (i.e., they do not contain temporal operators). Assume now that n ≥ 1.

– FLn is the least set containing the PLn−1 formulas and closed under Boolean
connectives and future operators: if ψ ∈ FLn and L ⊆ A∗, then FL ψ ∈ FLn.

– PLn is the least set containing the FLn−1 formulas and closed under Boolean
connectives and past operators: if ψ ∈ PLn and L ⊆ A∗, then PL ψ ∈ PLn.

Finally, for each n ∈ N, we define the BLn formulas as the Boolean combinations
of FLn and PLn formulas.
Semantics. Evaluating a TL formula φ requires a word w ∈ A∗ and a position
i ∈ Pos(w). We use structural induction on φ to define what it means for (w, i)
to satisfy φ. We denote this property by w, i |= φ:

– w, i |= ⊤ always holds and w, i |= ⊥ never holds.
– for ℓ ∈ A ∪ {min,max}, w, i |= ℓ holds if w[i] = ℓ.
– w, i |= ψ1 ∨ ψ2 if w, i |= ψ1 or w, i |= ψ2.
– w, i |= ψ1 ∧ ψ2 if w, i |= ψ1 and w, i |= ψ2.
– w, i |= ¬ψ if w, i |= ψ does not hold.
– w, i |= FL ψ if there is j ∈ Pos(w) such that i < j, w(i, j) ∈ L and w, j |= ψ.
– w, i |= PL ψ if there is j ∈ Pos(w) such that j < i, w(j, i) ∈ L and w, j |= ψ.

6 T. Place and M. Zeitoun

When no distinguished position is specified, we evaluate formulas at the two
unlabeled positions 0 and |w|+1 simultaneously. Given a TL formula φ and w ∈
A∗, we write w |= φ and say that w satisfies φ when w, 0 |= φ and w, |w|+1 |= φ.
The language defined by φ is L(φ) = {w ∈ A∗ | w |= φ}.

Each language L is defined by “(min ∧ FL max) ∨max”. Thus, we restrict
the available formulas using a class C. Let n ∈ N and Z ∈ {TL,FLn,PLn,BLn}.
We write Z[C] for the set of all Z formulas φ such that every operator FL or
PL occurring in φ satisfies L ∈ C. Finally, we write Z(C) for the class of all
languages that can be defined by a Z[C] formula. We are mainly interested in
the case when C is a group prevariety G or its well-suited extension G+.

Example 1. Let ST = {∅, A∗}. Then, TL(ST) corresponds to a classic variant
of unary temporal logic: FA∗ or PA∗ are the standard operators “sometimes in
the future” (F) and “sometimes in the past” (P). Let A = {a, b, c}. The language
L = a∗bA∗ca∗ is defined by (min ∧ F (c ∧ ¬F b)) ∨ (max ∧ P (b ∧ ¬P c)), which
is a BL1[ST] formula. Note that it is important here that formulas be evaluated
at both unlabeled positions simultaneously: the formula states that F (c∧¬F b)
holds at “0” and P (b ∧ ¬P c)) holds at “|w|+ 1”. We get L ∈ BL1(ST).

The logic TL(MOD) is also interesting. Let K = A∗b(aa)∗ which is defined
by the FL1[MOD] formula (min ∧ F (b ∧ (¬F (b ∨ c)) ∧ F(AA)∗ max)) ∨ max

(clearly, A∗, (AA)∗ ∈ MOD). We get K ∈ FL1(MOD). Finally, it is also natural
to consider TL(AMT): when using a temporal operator, one may then count the
number of occurrences of each letter between two positions, modulo some integer.

Remark 2. Well-suited extensions are natural inputs as well. It is shown in [23]
that for all prevarieties C, we have TL(C+) = TLX(C) where TLX is a stronger
variant which allows additional operators “tomorrow” (X) and “yesterday” (Y).
Roughly, the idea is that since {ε} ∈ C+ by Lemma 1, one may use the operators
F{ε} and P{ε} in TL[C+] formulas. They are clearly equivalent to X and Y.
Hence, TL(ST+) = TLX(ST) is the standard variant of unary temporal logic
(which allows F, P, X and Y). While we do not detail this point due to space
limitations, the result of [23] extends to future/past hierarchies (the proof is
identical). For example, BLn(C+) = BLXn(C) for all n ∈ N.

3.2 Tools

We define equivalence relations that we shall use as tools. For each TL formula φ,
we define the rank of φ as the length of the longest sequence of nested temporal
operators within its parse tree: the rank of an atomic formula is 0, the rank
of (ψ1 ∨ ψ2) and (ψ1 ∧ ψ2) is the maximum between the ranks of ψ1 and ψ2,
the rank of (¬ψ) is the rank of ψ and the rank of (FL ψ) and (PL ψ) is the
rank of ψ plus one. Moreover, given n ∈ N and a morphism η : A∗ → N , an
FLn[η] (resp. PLn[η]) formula is an FLn (resp. PLn) formula φ such that for all
operators FL or PL occurring in φ, the language L ⊆ A∗ is recognized by η.

We are ready to define our equivalences. Let η : A∗ → N be a morphism
and let k, n ∈ N. We define two relations on pairs (w, i), where w ∈ A∗ and i ∈

How many times do you need to go back to the future in UTL? 7

Pos(w). Let w,w′ ∈ A∗, i ∈ Pos(w) and i′ ∈ Pos(w′). We write w, i ▶n,η,k w
′, i′

(resp. w, i ◀n,η,k w
′, i′) to mean that for every FLn[η] (resp. PLn[η]) formula φ

of rank at most k, we have w, i |= φ⇔ w′, i′ |= φ. Note that despite the notation,
w, i ▶n,η,k w

′, i′ does not entail w′, i′ ◀n,η,k w, i in general. By definition, ▶n,η,k

and ◀n,η,k are equivalences of finite index (one may verify that there are finitely
many non-equivalent FLn[η] (resp. PLn[η]) formulas of rank at most k).

We adapt these relations to words. Let ∼= ∈ {▶n,η,k,◀n,η,k} and w,w′ ∈ A∗.
We write w ∼= w′ when w, 0 ∼= w′, 0 and w, |w| + 1 ∼= w′, |w′| + 1. This defines
equivalences of finite index on A∗. We use them to characterize the two classes
FLn(C) and PLn(C) for a given prevariety C (the proof is presented in the full
version of the paper).

Lemma 3. Let C be a prevariety, n ≥ 1 and L ⊆ A∗. Then, L ∈ FLn(C) (resp.
L ∈ PLn(C)) if and only if there exists a C-morphism η : A∗ → N and k ∈ N
such that L is a union of ▶n,η,k-classes (resp. of ◀n,η,k-classes).

We complete the definition with properties. The proofs rely on arguments
similar to Ehrenfeucht-Fraïssé games (strictly speaking, we use alternative in-
ductive definitions of ▶n,η,k and ◀n,η,k rather than a “game”). They are presented
in the full version of the paper. First, these equivalences are congruences.

Lemma 4. Let η : A∗ → N be a morphism, and let n ≥ 1, k ∈ N and ∼= ∈
{▶n,η,k,◀n,η,k}. For every u, v, u′, v′ ∈ A∗, if u ∼= v and u′ ∼= v′, then uu′ ∼= vv′.

We now consider the special case of morphisms η : A∗ → N such that η(A+)
is a group (this is mandatory in the next two results). In view of Lemma 2, this
corresponds to the case C ∈ {G,G+} for a group prevariety G. We present two
properties for the cases n = 1 and n > 1. We shall use them in Section 4 to
establish the language theoretic characterization of future/past hierarchies.

We start with the case n = 1. Let η : A∗ → N be a morphism and k ∈ N.
We define an equivalence ∼η,k on A∗, in two steps. First, given w,w′ ∈ A∗, i ∈
Pos(w) and i′ ∈ Pos(w′), we write w, i ≡η,k w

′, i′ if the following conditions hold:

1. We have w[i] = w′[i′].
2. If k ≥ 1, then η(w(0, i)) = η(w(0, i′)) and η(w(i, |w|+1)) = η(w′(i′, |w′|+1)).
3. If η−1(1N) = {ε}, then for every h ∈ Z such that −k ≤ h ≤ k, we have
i+ h ∈ Pos(w) ⇔ i′ + h ∈ Pos(w′) and in that case, w[i+ h] = w′[i′ + h].

When η−1(1N)∩A+ ̸= ∅, Condition 3 is trivial: it can be discarded (roughly, this
hypothesis distinguishes the case C = G from C = G+). Finally, given w,w′ ∈ A∗,
we let w ∼η,k w

′ if for all i ∈ Pos(w) (resp. i′ ∈ Pos(w′)) there exists i′ ∈ Pos(w′)
(resp. i ∈ Pos(w)) such that w, i ≡η,k w

′, i′. We may now state our first property.

Lemma 5. Let η : A∗ → N be a morphism such that η(A+) is a group and let
k ∈ N. Let p = ω(N). For all u, v ∈ A∗, if u ∼η,k v, then uv2kp ▶1,η,k v

2kp+1

and v2kpu ◀1,η,k v
2kp+1.

We now present a second property, which we shall use in order to handle the
case when n > 1.

8 T. Place and M. Zeitoun

Proposition 3. Let η : A∗ → N be a morphism such that η(A+) is a group and
k ∈ N. Let p = ω(N). The following properties hold for all n ≥ 1 and u, v ∈ A∗,

– If n is even and u ▶n,η,k2 v, then uv2kp ▶n+1,η,k v
2kp+1.

– If n is odd and u ◀n,η,k2 v, then uv2kp ◀n+1,η,k v
2kp+1.

– If n is odd and u ▶n,η,k2 v, then v2kpu ▶n+1,η,k v
2kp+1.

– If n is even and u ◀n,η,k2 v, then v2kpu ◀n+1,η,k v
2kp+1.

Remark 3. It might be surprising that there are four cases in Proposition 3. This
is because the property does not only depend on the outermost kind of temporal
operator in formulas (i.e., future for FLn[η] and past for PLn[η]) but also on the
innermost kind (which depends on whether n is odd or even).

4 Characterization by deterministic hierarchies

We present a generic language theoretic characterization of future/past hierar-
chies associated with group prevarieties. It generalizes the characterization of
the full logic presented in [23]. It is based on variants of polynomial closure.

4.1 Polynomial closure

Given finitely many languages L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln

is a product of the form L0a1L1 · · · anLn where a1, . . . , an ∈ A. In particular, a
single language L0 is a marked product (this is the case n = 0).

The polynomial closure of a class C, denoted by Pol(C), consists of all finite
unions of marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C. If C is a
prevariety, then Pol(C) is a quotient-closed lattice (this is due to Arfi [2], see
also [14,20] for recent proofs). Yet, Pol(C) need not be closed under complement.
Hence, it is often combined with another operator. The Boolean closure of a
class D, denoted by Bool(D), is the smallest Boolean algebra containing D.
Finally, we write BPol(C) for Bool(Pol(C)). The following result is standard
(see [20], for example).

Proposition 4. If C is a prevariety, then so is BPol(C).

Remark 4. The classes Pol(C) and BPol(C) are quite prominent. For example,
Pol(ST) contains exactly the finite unions of languages A∗a1A

∗ · · · anA∗ where
n ∈ N and a1, · · · , an ∈ A are letters. Moreover, BPol(ST) consists of all fi-
nite Boolean combinations of such languages: this is the famous class of piece-
wise testable languages [25]. In the literature, such classes are more often as-
sociated with classical logic rather than with temporal logic. Indeed, it is well
known [28,20] that BPol corresponds to the quantifier alternation free fragment
of first-order logic (BΣ1). For each prevariety C, there exists a set of first-order
predicates IC such that BPol(C) contains exactly the languages that can be de-
fined by a BΣ1 sentence using only predicates in IC . On the other hand, no
characterization of BPol based on temporal logic is known. In order to establish
a connection with unary temporal logic, we have to apply additional operators
on top of BPol .

How many times do you need to go back to the future in UTL? 9

4.2 Deterministic variants

We consider four restrictions of Pol : UPol , LPol , RPol and MPol . The first
three are standard (see for example [24,13,15]). On the other hand, MPol was
introduced recently in [18]. We restrict the marked products to those satisfying
specific semantic conditions and the unions to disjoint ones. Consider a marked
product L0a1L1 · · · anLn. For 1 ≤ i ≤ n, we let L′

i = L0a1L1 · · · ai−1Li−1 and
L′′
i = Liai+1 · · ·Ln−1anLn. In particular, L′

1 = L0 and L′′
n = Ln. We say that,

– L0a1L1 · · · anLn is left deterministic when L′
i ∩ L′

iaiA
∗ = ∅ for 1 ≤ i ≤ n.

– L0a1L1 · · · anLn is right deterministic when L′′
i ∩A∗aiL

′′
i = ∅ for 1 ≤ i ≤ n.

– L0a1L1 · · · anLn is mixed deterministic when either L′
i ∩ L′

iaiA
∗ = ∅, or

L′′
i ∩A∗aiL

′′
i = ∅ for 1 ≤ i ≤ n.

– L0a1L1 · · · anLn is unambiguous when for all w ∈ L0a1L1 · · · anLn, there is
a unique decomposition w = w0a1w1 · · · anwn where wi ∈ Li for 1 ≤ i ≤ n.

By definition, a left or right deterministic marked product is also mixed deter-
ministic. It is also simple to verify that mixed deterministic marked products are
unambiguous. Note that these four notions depend on the product itself and not
only on the resulting language. For example, A∗aA∗ (which is not unambiguous)
and (A \ {a})∗aA∗ (which is left deterministic) evaluate to the same language.

Remark 5. A mixed deterministic product need not be left or right deterministic.
For example, let L1 = (ab)+, L2 = c+ and L3 = (ba)+. The product L1cL2cL3

is mixed deterministic since L1 ∩ L1cA
∗ = ∅ and L3 ∩ A∗cL3 = ∅. However,

it is neither left deterministic nor right deterministic. Similarly, a unambiguous
product need not be mixed deterministic. If L4 = (ca)+, the product L1aL4 is
unambiguous but it neither left nor right deterministic.

The left polynomial closure of a class C, written LPol(C), consists of all finite
disjoint unions of left deterministic marked products L0a1L1 · · · anLn such that
L0, . . . , Ln ∈ C (by “disjoint” we mean that the languages in the union must
be pairwise disjoint). The right polynomial closure of C (RPol(C)), the mixed
polynomial closure of C (MPol(C)) and the unambiguous polynomial closure
of C (UPol(C)) are defined analogously by replacing the requirement to be “left
deterministic” for marked products by the appropriate one.

We introduce a key property of these operators, which is not apparent on the
definition: when applied to a prevariety, they also yield a prevariety. Moreover,
in that case, the four operators preserve the decidability of membership. This is
proved in [19,23] for UPol and in [18] for LPol , RPol and MPol . From this, we
shall obtain decidability of membership for classes built with FLn,PLn and BLn.

Theorem 1 ([23,18]). Let X ∈ {UPol ,LPol ,RPol ,MPol}. For every preva-
riety C, the class X(C) is a prevariety as well. Moreover, if C has decidable
membership, then so does X(C).

For each operator, Theorem 1 is based on a generic algebraic characteriza-
tion of the classes that it builds. In Theorem 2 below, we recall the symmetric

10 T. Place and M. Zeitoun

characterizations of LPol and RPol , as we shall need them in order to establish
the correspondence with future/past hierarchies. This requires two notions.

Let C be a prevariety and let α : A∗ → M be a morphism. We define two
relations on M (both depending on α). Given s, t ∈ M , we say that (s, t) is
a C-pair if α−1(s) is not C-separable from α−1(t). This relation is not very
robust: it is reflexive (if α is surjective) and symmetric (this is tied to C being
closed under complement). The second relation is an equivalence “∼C” on M .
For s, t ∈ M , we write s ∼C t when s ∈ F ⇔ t ∈ F for every F ⊆ M such that
α−1(F) ∈ C. By definition, ∼C is an equivalence relation. In fact, it is shown
in [23,20] that it is the reflexive transitive closure of the “C-pair” relation (we do
not use this property). We now present the characterizations of LPol and RPol
taken from [18]. They are crucial for proving Theorem 3 below, which expresses
FLn(C),PLn(C),BLn(C) in terms of the operators LPol , RPol and BPol .

Theorem 2 ([18]). Let C be a prevariety and let α : A∗ → M be a surjective
morphism. The three following properties are equivalent:

1. The morphism α is an LPol(C)-morphism (resp. an RPol(C)-morphism).
2. For all C-pairs (s, t) ∈M2, we have sω+1 = sωt (resp. sω+1 = tsω).
3. For all s, t ∈M such that s ∼C t, we have sω+1 = sωt (resp. sω+1 = tsω).

This implies the statement on membership in Theorem 1 for LPol and RPol .
Let us explain how on LPol , for instance. By Proposition 1, deciding LPol(C)-
membership boils down to deciding if an input morphism α : A∗ → M is an
LPol(C)-morphism. By the third assertion in Theorem 2, this is possible if one
can compute the equivalence ∼C on M . By definition, this boils down to C-
membership (it suffices to compute all subsets F ⊆M such that α−1(F) ∈ C).

4.3 Characterization of future/past hierarchies

It is well known that there is a correspondence between full unary temporal logic
and UPol . This was first proved for the standard variants in [27,4,16], and was
then generalized to our extended definition in [23]. More precisely, for each group
prevariety G, we have TL(G)=UPol(BPol(G)) and TL(G+)=UPol(BPol(G+)).
Here, we generalize these results to future/past hierarchies.

We use LPol and RPol to define hierarchies (the definition is taken from [18]).
It is shown in [19,23] that for all prevarieties C, the class UPol(C) is the least
one containing C and closed under left and right deterministic marked products
as well as disjoint union. Thus, applying LPol and RPol in alternation builds a
classification of UPol(C): the deterministic hierarchy of basis C. For all n ∈ N,
we define two levels LPoln(C) and RPoln(C). We let LPol0(C) = RPol0(C) = C.
For n ≥ 1, LPoln(C) = LPol(RPoln−1(C)) and RPoln(C) = RPol(LPoln−1(C)).
The union of all levels is exactly UPol(C). These are strict hierarchies and the
levels LPoln(C) and RPoln(C) are incomparable for all n ≥ 1, in general. This
motivates additional intermediary levels “combining” LPoln(C) and RPoln(C):
for all n ≥ 1, we let LPoln(C)∨RPoln(C) be the least Boolean algebra containing
both LPoln(C) and RPoln(C).

How many times do you need to go back to the future in UTL? 11

For every prevariety C, we connect the future/past hierarchy of TL(C) with
the deterministic hierarchy of basis BPol(C). In the general case, we only prove
that the latter is included in the former. This inclusion is strict in general: an
example of prevariety C such that UPol(BPol(C)) is strictly included in TL(C)
is provided in [23] (strictness follows from results of [7]).

Proposition 5. Let C be prevariety. The following properties hold for all n ≥ 1:

1. If n is odd, RPoln(BPol(C)) ⊆ FLn(C) and LPoln(BPol(C)) ⊆ PLn(C).
2. If n is even, LPoln(BPol(C)) ⊆ FLn(C) and RPoln(BPol(C)) ⊆ PLn(C).

Remark 6. There are four cases in Proposition 5. This is because for every level
RPoln(BPol(C)) or LPoln(BPol(C)), the notation highlights the last operator
used in its construction from BPol(C). However, the logic corresponding to this
level is determined by the first operator in the construction. For example, we have
RPol(BPol(C)) ⊆ FL1(C) and all classes which are built from RPol(BPol(C))
by applying LPol and RPol in alternation are included in a level FLn(C).

Proof (of Proposition 5). We use induction on n. There are four cases. We prove
that if n is odd, then RPoln(BPol(C)) ⊆ FLn(C) (the other cases are symmetric).
Let D = LPoln−1(BPol(C)) and fix L ∈ RPoln(BPol(C)) = RPol(D). We prove
that L ∈ FLn(C). We need the next easy lemma.

Lemma 6. Let K ∈ BPol(C). There exists an FL1[C] formula ξK such that for
all w ∈ A∗ and all i ∈ Pos(w), we have

w, i |= ξK ⇐⇒ i ≤ |w| and w(i, |w|+ 1) ∈ K.

Proof. By definition, K ∈ BPol(C) is a Boolean combination of languages of
the form K0a1K1 · · · anKn with a1, . . . , an ∈ A and K0, . . . ,Kn ∈ C. Since we
may use Boolean connectives freely in FL1[C], we may assume without loss of
generality that K itself is of the form K0a1K1 · · · anKn. It now suffices to verify
that the following formula ξK satisfies the desired property:

ξK = FK0
(a1 ∧ FK1

(a2 ∧ FK2
(· · · an ∧ FKn

max))) . ⊓⊔

Since L ∈ RPol(D) with D = LPoln−1(BPol(C)), it is shown in [18, Propo-
sition 5.3] that L is a finite union of products L0a1L1 · · · amLm satisfying the
two following conditions: (1) Lh ∈ D for every h ≤ m, and (2) there exists a
right deterministic marked product K0a1K1 · · · amKm such that Kh ∈ BPol(C)
and Lh ⊆ Kh for every h ≤ m. Hence, by closure under union, it suffices to
prove that every such product L0a1L1 · · · amLm belongs to FLn(C). We use a
subinduction on h to prove that L0a1L1 · · · ahLh ∈ FLn(C) for 0 ≤ h ≤ m.

When h = 0, there are two cases. If n = 1, then D = BPol(C) which means
that L0 ∈ BPol(C) and it is defined by the FL1[C] formula (min ∧ ξL0

) ∨max,
where ξL0

is given by Lemma 6. Otherwise, n > 1 and D = LPoln−1(BPol(C))
with n − 1 ≥ 1. Consequently, since (n − 1) is even, the main induction on n
yields L0 ∈ D ⊆ FLn−1(C) ⊆ FLn(C), which completes this case.

12 T. Place and M. Zeitoun

We now assume that h ≥ 1. Let R = L0a1L1 · · · ah−1Lh−1. We prove that
RahLh ∈ FLn(C). Induction on h yields FLn[C] formulas φR and φLh

defining R
and Lh. We also use the FL1[C] formula ξKh

associated with Kh ∈ BPol(C) by
Lemma 6. We write ψ for the FL1[C] formula ah ∧ ξKh

. Since K0a1K1 · · · amKm

is right deterministic, one may verify that A∗ahKh is unambiguous. Hence, by
definition of ψ, for every w ∈ A∗, there exists at most one position i ∈ Pos(w)
such that w, i |= ψ. Therefore, since Lh ⊆ Kh, it follows that for every w ∈ A∗,
we have w ∈ RahLh if and only if w satisfies the three following conditions:

1. There exists i ∈ Pos(w) (which must be unique) such that w, i |= ψ.
2. The prefix w(0, i) belongs to R (i.e., we have w(0, i) |= φR).
3. The suffix w(i, |w|+ 1) belongs to Lh (i.e., we have w(i, |w|+ 1) |= φLh

).

It remains to prove that these properties can be expressed in FLn[C]. Condition 1
is expressed by the FL1[C] formula (min∧F ψ)∨max. We turn to Condition 2.
We modify φR into a new formula φ′

R expressing the desired property. For every
word w ∈ A∗, we restrict the evaluation of φR to the positions j ∈ Pos(w) such
that either w, j |= F ψ or j = |w|+1. We build φ′

R by applying the two following
modifications to φR. First, we recursively replace every subformula PU ζ by
(max ∧ P (ψ ∧ PU ζ))∨(F ψ ∧ PU ζ). Second, we replace every subformula FU ζ
by (FU (ζ ∧ F ψ))∨(FU (ψ ∧ F (max ∧ ζ))). Since φR is an FLn[C] formula and
n is odd, one may verify that φ′

R is also an FLn[C] formula. The key point is
that since n is odd, the FLn[C] formulas are defined inductively from the FL1[C]
formulas and inserting the FL1[C] formula ψ in an FLn[C] formula yields a new
FLn[C] formula. It can be verified that φ′

R expresses Condition 2.
We turn to Condition 3. We modify φLh

into another formula φ′
Lh

expressing
the desired property. For all w ∈ A∗, we restrict the evaluation of φLh

to the
positions j ∈ Pos(w) such that j = 0 or w, j |= P ψ. We build φ′

Lh
by applying

the two following modifications to φLh
. We recursively replace every subformula

PU ζ by (PU (ψ ∧ P (min ∧ ζ))) ∨ (PU (ζ ∧ P ψ)). Moreover, we replace every
subformula FU ζ by (min ∧ F (ψ ∧ FU ζ)) ∨ (P ψ ∧ FU ζ). As in the previous
case, since n is odd, one may verify that φ′

Lh
remains an FLn[C] formula and

that it expresses Condition 3. Finally, the language RahLh is now defined by the
following FLn[C] formula: ((min ∧ F ψ) ∨max) ∧ φ′

R ∧ φ′
Lh

. ⊓⊔

With Proposition 5 in hand, we may now consider the case when C ∈ {G,G+}
for a group prevariety G. In this case, there is an exact correspondence.

Theorem 3. Let G be a group prevariety and let C ∈ {G,G+}. The three follow-
ing properties hold for every n ≥ 1:

1. If n is odd, FLn(C) = RPoln(BPol(C)) and PLn(C) = LPoln(BPol(C)).
2. If n is even, FLn(C) = LPoln(BPol(C)) and PLn(C) = RPoln(BPol(C)).
3. We have BLn(C) = LPoln(BPol(C)) ∨RPoln(BPol(C)).

Before we prove Theorem 3, let us discuss its consequences. An important
application is membership for future/past hierarchies. Let G be a group preva-
riety and C ∈ {G,G+}. In view of Theorem 3 and Theorem 1, it is immediate

How many times do you need to go back to the future in UTL? 13

that membership is decidable for all levels FLn(C) and PLn(C) as soon as this
problem is decidable for BPol(C). Since C ∈ {G,G+}, it follows from results
of [22] that BPol(C)-membership boils down to G-separation (this is based on
independent techniques). Hence, we obtain the following corollary.

Corollary 1. Consider a group prevariety G with decidable separation and let
C ∈ {G,G+}. For every n ≥ 1, membership is decidable for FLn(C) and PLn(C).

Remark 7. We do not mention the levels BLn(C) yet as this requires more work.
This is the topic of Section 5: we prove that Corollary 1 also holds for them.

Proof (of Theorem 3). By definition, the third assertion is an immediate con-
sequence of the others. Hence, we focus on the first two. We use induction
on n. By symmetry, we only treat the case when n is odd and show that
FLn(C) = RPoln(BPol(C)). Proposition 5 yields the right to left inclusion. We fix
L ∈ FLn(C) and prove that L ∈ RPoln(BPol(C)). Let D = LPoln−1(BPol(C)):
we prove that L ∈ RPol(D). Let αL : A∗ → ML be the syntactic morphism
of L. By Proposition 1 and Theorem 2, it suffices to prove that for every D-
pair (s, t) ∈ M2

L, we have sω+1 = tsω. Since L ∈ FLn(C), Lemma 3 yields a
C-morphism η : A∗ → N and k ∈ N such that L is a union of ▶n,η,k-classes.
Note that since C ∈ {G,G+}, we know that η(A+) is a group by Lemma 2.
Let p = ω(N). We claim that since (s, t) is D-pair, there exist u, v ∈ A∗ such
that αL(u) = t, αL(v) = s and v2kp+1 ▶n,η,k uv2kp. Let us first explain why
this completes the proof. Since ▶n,η,k is a congruence by Lemma 4, we get
xv2kp+1y ▶n,η,k xuv

2kpy for every x, y ∈ A∗. Since L is a union of ▶n,η,k-classes,
this yields xv2kp+1y ∈ L⇔ xuv2kpy ∈ L for all x, y ∈ A∗, i.e., v2kp+1 ≡L uv

2kp.
Hence, αL(v

2kp+1) = αL(uv
2kp), i.e., s2kp+1 = ts2kp. We now multiply by

enough copies of s on the right to get sω+1 = tsω, as desired.
We now build u, v ∈ A∗. There are two cases depending on n. If n = 1, then

D = BPol(C). We use the equivalence ∼η,k defined in Section 3. Observe that
the ∼η,k-classes belong to BPol(C). There are two subcases depending on η.

– If η−1(1N) ∩ A+ ̸= ∅, then Condition 3 in the definition of ∼η,k is trivial.
Hence, one may verify that the ∼η,k-classes are Boolean combinations of
languages of the form η−1(g) and η−1(g1)aη

−1(g2) for a ∈ A and g, g1, g2 ∈
N , i.e., languages in BPol(C), since η is a C-morphism.

– Otherwise, η−1(1N) = {ε} and one may verify that the ∼η,k-classes are
Boolean combinations of languages wη−1(g), η−1(g)w and η−1(g1)wη

−1(g2)
for w ∈ A∗ and g, g1, g2 ∈ N . These are languages in BPol(C) since η is a
C-morphism (which implies that {ε} ∈ C, since it is recognized by η).

Since (s, t) is a BPol(C)-pair, it follows that there exist u, v ∈ A∗ such that
αL(u) = t, αL(v) = s and u ∼η,k v (otherwise, α−1

L (s) can be separated from
α−1
L (t) by a union of ∼η,k-classes, i.e., by a language in BPol(C)). Thus, since
α(A+) is a group, Lemma 5 yields v2kp+1 ▶1,η,k uv2kp, completing the case
n = 1.

We now assume that n > 1. Lemma 3 implies that the ▶n−1,η,k2 -classes
belong to FLn−1(C). Hence, since n−1 is even (n is odd by hypothesis) induction

14 T. Place and M. Zeitoun

yields that the ▶n−1,η,k2-classes belong to D = LPoln−1(BPol(C)). Since (s, t)
is a D-pair, this yields u, v ∈ A∗ such that α(u) = t, α(v) = s and u ▶n−1,η,k2 v
(otherwise, α−1(s) can be separated from α−1(t) by a union of ▶n−1,η,k2-classes,
i.e., by a language in D). Since n−1 is even and α(A+) is a group, it then follows
from Proposition 3 that uv2kp ▶n,η,k v

2kp+1, completing the proof. ⊓⊔

5 Intermediary levels

We now consider the levels BLn(C) in future/past hierarchies. We prove that
when C ∈ {G,G+} where G is a group prevariety with decidable separation,
membership is decidable for all levels BLn(C). By Theorem 3, we know that
BLn(C) = LPoln(BPol(C))∨RPoln(BPol(C)) for every n ≥ 1. A key ingredient
in our approach is a result of [18] based on mixed polynomial closure (MPol).

Theorem 4 ([18]). Let D be a prevariety. For every number n ≥ 1, we have
LPoln+1(D) ∨RPoln+1(D) =MPol(LPoln(D) ∨RPoln(D)).

Combining Theorem 4 with Theorem 3 yields BLn+1(C) = MPol(BLn(C)).
Now, recall that by Theorem 1, MPol preserves the decidability of membership
(this is shown in [18]). Therefore, an immediate induction reduces membership
for BLn(C) to membership for BL1(C). Thus, we concentrate on this case: we
prove that for every group prevariety G with decidable separation, if C ∈ {G,G+},
then membership is decidable for BL1(C) = LPol(BPol(C)) ∨ RPol(BPol(C)).

We present algebraic characterizations of LPol(BPol(C)) ∨ RPol(BPol(C)).
There are two statements depending on whether C = G or C = G+. We use
the G-pair relation defined in Section 4 (this is how the statement depends on
G-separation). We first characterize the classes LPol(BPol(G))∨RPol(BPol(G)).

Theorem 5. Let G be a group prevariety and let α : A∗ → M be a surjective
morphism. Then, α is an LPol(BPol(G))∨RPol(BPol(G))-morphism if and only
if it satisfies the following property:

(sq(tq′)ω)ωs((r′t)ωrs)ω = (sq(tq′)ω)ωt((r′t)ωrs)ω

for all q, q′, r, r′ ∈M and all G-pairs (s, t) ∈M2. (1)

We complete Theorem 5 with a second statement, which applies to the classes
LPol(BPol(G+)) ∨ RPol(BPol(G+)).

Theorem 6. Let G be a group prevariety and let α : A∗ → M be a surjective
morphism. Then, α is an LPol(BPol(G+)) ∨RPol(BPol(G+))-morphism if and
only if it satisfies the following property:

(esfq(etfq′)ω)ωesf((r′etf)ωresf)ω = (esfq(etfq′)ω)ωetf((r′etf)ωresf)ω

for all q, q′, r, r′ ∈M , all e, f ∈ E(α(A+)) and all G-pairs (s, t) ∈M2. (2)

Recall that the G-pairs associated with a morphism can be computed pro-
vided that G-separation is decidable (by definition, (s, t) is a G-pair if and only

How many times do you need to go back to the future in UTL? 15

if α−1(s) is not G-separable from α−1(t)). Hence, Theorem 5 and Theorem 6
imply that if G is a group prevariety with decidable separation and C ∈ {G,G+},
then membership is decidable for the class LPol(BPol(C)) ∨ RPol(BPol(C)).
Using Theorem 1 and Theorem 4, one may then lift decidability to all levels
LPoln(BPol(C)) ∨ RPoln(BPol(C)) for n ≥ 1. Finally, Theorem 3 yields the
following corollary.

Corollary 2. Let G be a group prevariety with decidable separation. For every
n ≥ 1, membership is decidable for BLn(G) and BLn(G+).

Remark 8. Theorem 5 generalizes a known result in the special case when G is
the trivial class ST = {∅, A∗}. In this case, it is known [1,9] that a surjective mor-
phism α : A∗ → M is an LPol(BPol(ST)) ∨ RPol(BPol(ST))-morphism if and
only if M satisfies the equation (sq)ωs(rs)ω = (sq)ω(rs)ω for all q, r, s ∈M . This
equation is equivalent to (1) in this case. Indeed, since ST is trivial, every pair in
M2 is an ST-pair. In particular, if q, r, s ∈M , then (s, 1M) is an ST-pair. Hence,
the above equation is the special case of (1) when t = q′ = r′ = 1M . Conversely,
if the above equation holds, then given elements s, t, q, q′, r, r′ ∈ M , we may
apply the equation twice to get (sq(tq′)ω)ωs((r′t)ωrs)ω = (sq(tq′)ω)ω((r′t)ωrs)ω

and (tq′)ωt(r′t)ω = (tq′)ω(r′t)ω. When combined, the two imply that (1) holds.

The proofs of Theorem 5 and Theorem 6 are presented in the full ver-
sion of the paper. The two arguments are similar (though the one of The-
orem 6 is technically more involved). Let us point out that these proofs are
nontrivial. As for most algebraic characterizations of this kind, the challenging
direction consists in proving that if some morphism α : A∗ → M satisfies (1)
(resp. (2)), then it must be an LPol(BPol(G))∨RPol(BPol(G))-morphism (resp.
an LPol(BPol(G+))∨RPol(BPol(G+))-morphism). In particular, this part of the
proof relies heavily on properties of the operators LPol , RPol and UPol estab-
lished in [18] and [19,23].

6 Conclusion

For all group prevarieties G, we characterized the future/past hierarchies within
the variants TL(G) and TL(G+) of unary temporal logic with the deterministic
hierarchies of bases BPol(G) and BPol(G+). We used these results to prove that
if G-separation is decidable, then membership is also decidable for all levels
FLn(G), PLn(G), BLn(G), FLn(G+), PLn(G+) and BLn(G+) in such hierarchies.

A natural question is whether decidability can be pushed to more general
problems than membership, e.g., separation. When G is the trivial class ST =
{∅, A∗}, it is known that separation is decidable for all levels FLn(ST) and
PLn(ST) (this is shown for their counterparts in deterministic hierarchies [18]).
Moreover, it is also known that if G is a group prevariety with decidable separa-
tion, then BPol(G)- and BPol(G+)-separation are also decidable [21]. In view of
our characterizations, this suggests that similar results may hold for the whole
future/past hierarchies of TL(G) and TL(G+).

16 T. Place and M. Zeitoun

References

1. Almeida, J., Azevedo, A.: The join of the pseudovarieties of R-trivial and L-trivial
monoids. Journal of Pure and Applied Algebra 60(2), 129–137 (1989)

2. Arfi, M.: Polynomial operations on rational languages. In: Proceedings of the 4th
Annual Symposium on Theoretical Aspects of Computer Science. pp. 198–206.
STACS’87, Springer-Verlag, Berlin, Heidelberg (1987)

3. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and
unary temporal logic. In: Proceedings of the 12th Annual IEEE Symposium on
Logic in Computer Science. pp. 228–235. LICS’97 (1997)

4. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and
unary temporal logic. Information and Computation 179(2), 279–295 (2002)

5. Fleischer, L., Kufleitner, M., Lauser, A.: The half-levels of the FO2 alternation
hierarchy. Theory of Computing Systems 61(2), 352–370 (2017)

6. Kamp, H.W.: Tense Logic and the Theory of Linear Order. Phd thesis, Computer
Science Department, University of California at Los Angeles, USA (1968)

7. Krebs, A., Lodaya, K., Pandya, P.K., Straubing, H.: Two-variable logics with
some betweenness relations: Expressiveness, satisfiability and membership. Log-
ical Methods in Computer Science Volume 16, Issue 3 (2020)

8. Kufleitner, M., Lauser, A.: The join levels of the Trotter-Weil hierarchy are de-
cidable. In: Proceedings of the 37th International Symposium on Mathematical
Foundations of Computer Science. MFCS’12, vol. 7464, pp. 603–614 (2012)

9. Kufleitner, M., Lauser, A.: The join of R-trivial and L-trivial monoids via combi-
natorics on words. Discrete Mathematics & Theoretical Computer Science 14(1),
141–146 (2012)

10. Kufleitner, M., Weil, P.: On logical hierarchies within FO2-definable languages.
Logical Methods in Computer Science 8(3:11), 1–30 (2012)

11. Kufleitner, M., Weil, P.: The FO2 alternation hierarchy is decidable. In: Proceed-
ings of the 21st International Conference on Computer Science Logic. pp. 426–439.
CSL’12 (2012)

12. Lodaya, K., Pandya, P.K., Shah, S.S.: Marking the chops: an unambiguous tempo-
ral logic. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, C.L. (eds.) Fifth IFIP
International Conference On Theoretical Computer Science - TCS 2008, IFIP 20th
World Computer Congress, TC 1, Foundations of Computer Science, September
7-10, 2008, Milano, Italy. IFIP, vol. 273, pp. 461–476. Springer (2008)

13. Pin, J.E.: Propriétés syntactiques du produit non ambigu. In: Proceedings of the
7th International Colloquium on Automata, Languages and Programming. pp.
483–499. ICALP’80 (1980)

14. Pin, J.E.: An explicit formula for the intersection of two polynomials of regular
languages. In: DLT 2013. Lect. Notes Comp. Sci., vol. 7907, pp. 31–45. Springer
(2013)

15. Pin, J.E., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous
concatenation. Journal of Pure and Applied Algebra 52(3), 297 – 311 (1988)

16. Pin, J.E., Weil, P.: Polynomial closure and unambiguous product. Theory of Com-
puting Systems 30(4), 383–422 (1997)

17. Place, T.: Deciding classes of regular languages: The covering approach. In: Lan-
guage and Automata Theory and Applications - 14th International Conference,
LATA 2020, Milan, Italy, March 4-6, 2020, Proceedings. Lecture Notes in Com-
puter Science, vol. 12038, pp. 89–112. Springer (2020)

How many times do you need to go back to the future in UTL? 17

18. Place, T.: The amazing mixed polynomial closure and its applications to two-
variable first-order logic. In: Proceedings of the 37th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science. LICS’22 (2022)

19. Place, T., Zeitoun, M.: Separating without any ambiguity. In: Proceedings of the
45th International Colloquium on Automata, Languages, and Programming. pp.
137:1–137:14. ICALP’18 (2018)

20. Place, T., Zeitoun, M.: Generic results for concatenation hierarchies. Theory of
Computing Systems (ToCS) 63(4), 849–901 (2019), selected papers from CSR’17

21. Place, T., Zeitoun, M.: Separation and covering for group based concatenation
hierarchies. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic
in Computer Science. pp. 1–13. LICS’19 (2019)

22. Place, T., Zeitoun, M.: Characterizing level one in group-based concatenation hi-
erarchies. In: Proceeding of the 17th International Computer Science Symposium
in Russia. CSR’22 (2022)

23. Place, T., Zeitoun, M.: Unambiguous polynomial closure explained (2022). https:
//doi.org/10.48550/ARXIV.2205.12703, https://arxiv.org/abs/2205.12703

24. Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup
Forum 13, 47–75 (1976)

25. Simon, I.: Piecewise testable events. In: Proceedings of the 2nd GI Conference on
Automata Theory and Formal Languages. pp. 214–222. Springer-Verlag, Berlin,
Heidelberg (1975)

26. Tesson, P., Therien, D.: Diamonds are forever: The variety DA. In: Semigroups,
Algorithms, Automata and Languages, Coimbra (Portugal) 2001. pp. 475–500.
World Scientific (2002)

27. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier
alternation. In: Proceedings of the 30th Annual ACM Symposium on Theory of
Computing. pp. 234–240. STOC’98, ACM, New York, NY, USA (1998)

28. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer
and System Sciences 25(3), 360–376 (1982)

https://doi.org/10.48550/ARXIV.2205.12703
https://doi.org/10.48550/ARXIV.2205.12703
https://doi.org/10.48550/ARXIV.2205.12703
https://doi.org/10.48550/ARXIV.2205.12703
https://arxiv.org/abs/2205.12703

	How many times do you need to go back to the future in Unary Temporal Logic?

