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ABSTRACT

Polynomial closure is a standard operator which is applied to a class
of regular languages. In this paper, we investigate three restrictions
called left (LPol), right (RPol) and mixed polynomial closure (MPol).
The first two were known while MPol is new. We look at two deci-
sion problems that are defined for every class €. Membership takes
a regular language as input and asks if it belongs to €. Separation
takes two regular languages as input and asks if there exists a third
language in € including the first one and disjoint from the second.
We prove that LPol, RPol and MPol preserve the decidability of
membership under mild hypotheses on the input class, and the
decidability of separation under much stronger hypotheses. We
apply these results to natural hierarchies.

First, we look at several language theoretic hierarchies that are
built by applying LPol, RPol and MPol recursively to a single input
class. We prove that these hierarchies can actually be defined using
almost exclusively MPol. We also consider quantifier alternation
hierarchies for two-variable first-order logic (FO?) and prove that
one can climb them using MPol. The result is generic in the sense
that it holds for most standard choices of signatures. We use it to
prove that for most of these choices, membership is decidable for all
levels in the hierarchy. Finally, we prove that separation is decidable
for the hierarchy of two-variable first-order logic equipped with
only the linear order (FO?(<)).
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1 INTRODUCTION

This paper is part of a research program whose aim is to investigate
natural subclasses of the regular languages of finite words. We
are interested in the classes associated to a piece of syntax which
is used to define their languages (such as regular expressions or
logic) . For each class €, we look at two decision problems. First, €-
membership takes a regular language L as input and asks if L € €.
Also, €-separation takes two regular languages H, L as input and
asks if there exists K € € such that H € K and KNL=0.1In
practice, getting algorithms for these problems requires techniques
that cannot be developed without a solid understanding of €.

We consider generic families of classes. Let us use logic to clarify.
Each logical fragment is associated to several classes defined by
choosing a signature (i.e., a set of predicates one may use in formu-
las). For instance, in the literature, several classes are associated to
first-order logic (FO) by considering natural predicates such as the
linear order “<” [19, 32], successor “+1” [4] or modular predicates
“MOD” [3]. Hence, a generic approach is desirable. This typically
involves two independent steps. The first one consists in character-
izing a particular fragment by an operator on classes. For example,
first-order logic corresponds to star-free closure: which builds the
least class SF(%) containing an input class € and closed under
union, complement and concatenation. It was shown [19, 27, 36]
that if € is a Boolean algebra closed under quotients (we call this
a prevariety), there exists a signature I such that SF(®) corre-
sponds to FO(Ig). This captures most of the natural signature
choices. The second step consists in proving that the operator pre-
serves the decidability of membership/separation. It was proved
that SF [28] preserves the decidability of separation when applied
to a prevariety containing only group languages. These are the lan-
guages recognized by a finite group, or equivalently by a permuta-
tion automaton (i.e., a complete, deterministic and co-deterministic
automaton). This implies that separation is decidable for variants
of FO such as FO(<) or FO(<, MOD).

We investigate restrictions of a well-known operator: polynomial
closure. For an input class @, it builds the least class Pol(%) con-
taining all finite unions of marked products Kya1Kj - - - anK,, with
ai,...,an letters and Ky, . .., K, € €. We look at variants obtained
by imposing semantic restrictions on the products. A marked prod-
uct KpaiKj - - - anKy, is unambiguous if for all w € Koa1K1 - - - anKp,
the decomposition of w witnessing this membership is unique.
This defines unambiguous polynomial closure (UPol) which is well-
understood [20, 22, 26]. We look at stronger restrictions. For a
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marked product Kpa1K7 - - - apKp, we let L; = Koa1K1 . .. ai-1Ki—1
and R; = Kjaj+1 -+ Kp—1anKy for all i < n. The whole marked
product is left (resp. right) deterministic if for all i < n, Lja;A*
(resp. A*a;R;) is unambiguous. It is mixed deterministic if for all
i < n, either L;a;A* or A*a;R; is unambiguous. This leads to three
operators: left, right and mixed polynomial closure (LPol, RPol and
MPol). Historically, LPol and RPol are well-known. They were first
investigated by Schiitzenberger [33] and Pin [20, 21]. On the other
hand, MPol is new. We first prove that these operators have robust
properties which are similar to those proved for UPol in [26]. First,
they preserve the closure properties of input classes: if € is a preva-
riety, then so are LPol(®), RPol(%) and MPol(€). Moreover, we
prove that if € has decidable membership, then this is also the case
for LPol(®), RPol(€) and MPol(%).

We look at hierarchies that are built with these operators. In gen-
eral, LPol(%) and RPol(€) are incomparable. Thus, given an input
class €, two hierarchies can be built. The first levels are LPol(€)
and RPol(%), then for all n > 1, the levels LP,(€) and RP, (%) are
defined as LPol(RPp-1(®)) and RPol(LPp-1(%)). One may also
define combined levels LP,,(€) NRP, (%) (the languages belonging
to both classes) and LP,,(€) VRP, (%) (the least Boolean algebra
containing both classes). It follows from results of [26] that the
union of all levels is UPol(%). In the literature, this construction
is well-known for a specific input class: the piecewise testable lan-
guages PT [34] (i.e., the Boolean combinations of marked products
A*a1A* - - - anA"). This hierarchy is strict and has characterizations
based on algebra [15, 37] and logic [16, 17]. By definition, each hier-
archy contains four distinct kinds of levels. Yet, we prove that their
construction process can be unified: all four kinds can be climbed
from the first level by using only MPol. For example, we show that
for every n > 1, MPol(LPp—1(€)VRPp—1(€)) = LP,(€)VRP, ().
This makes the investigation of such hierarchies easier.

In the second part of the paper, we investigate the quantifier
alternation hierarchies of two-variable first-order logic (FO?). The
fragment FO? contains the first-order formulas using at most two
distinct reusable variables. For all n > 1, we let @Z% as the set of
all FO? formulas such that each branch in their parse trees con-
tains at most n blocks of alternating quantifiers “3” and “V”. There
are important classes associated to these fragments and several
of them are prominent in the literature. Historically, the full logic
FO? was first considered. It is known that membership is decidable
for the variants FO?(<) and FO?(<, +1) equipped with the linear
order and successor [35], as well as for FO?(<, MOD) equipped
with modular predicates [6]. For quantifier alternation, it is known
that membership is decidable for all levels B22 (<) [11, 16, 17]
and B¥2(<,+1) [14]. Note that while the arguments are related
these results involve tailored proofs for each particular choice of
signature. In this paper, we develop a generic approach based on
MPol and look at a family of signatures. Given a prevariety &
containing only group languages, we associate a generic set of
predicates Pg. For every L € &, it contains a unary predicate
Pr(x): it checks if the prefix preceding a given position belongs
to L. We consider all signatures of the form {<,Pg} or {<,+1,Pg}.
This captures most of the natural examples such as {<}, {<, +1},
{<,MOD}, or {<,+1, MOD} (we present other examples in this
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paper). We prove that if S is one of the two above kinds of signa-
tures, one may climb the quantifier alternation hierarchy of FO?(S)
using MPol: 932’21“(8) = MPol(#32(S)) for all n > 1. This also
implies that FO?(S) = UPol((%’Zf(S)). Hence, we obtain a generic
language theoretic characterization of FO? and its quantifier alter-
nation hierarchy which holds for many natural signature choices.
Moreover, MPol and UPol preserve the decidability of member-
ship and independent results [31] state that if S is a signature built
from a group prevariety & as above, then membership for 932% (S)
boils down to separation for & (these results exploit the fact that
%’Ef (S) = BZ1(S), the level one in the hierarchy of full first-order
logic). Altogether, it follows that membership is decidable for all
classes captured by our results as soon as separation is decidable for
the input group prevariety &. This reproves the aforementioned
results and yields new ones.

In the last part of the paper, we come back to LPol, RPol and
MPol. We look at separation and prove that if € is a finite preva-
riety and @ is a prevariety with decidable separation such that
€ C D C UPol(¥), then separation is decidable for LPol(9D),
RPol(2) and MPol(9). This is weaker than what we have for mem-
bership since € must be finite. Yet, we detail a key application: the
prevariety PT of piecewise testable languages. While PT is infinite,
it is known and simple to verify that AT € PT C UPol(AT) where
AT is the finite prevariety of alphabet testable languages (i.e., the
Boolean combinations of languages A*aA*). Since PT-separation
is decidable [5, 24], a simple induction yields the decidability of
separation for all classes that can be built recursively from PT by
applying LPol, RPol and MPol. This includes all levels LP,(PT)
and RP, (PT). Moreover, since PT = 932% (<), this can be combined
with our generic language theoretic characterization of quantifier
alternation for FO? to prove that B2 (<)-separation is decidable
for every n > 1.

In Section 2, we introduce the definitions and standard tools that
we shall need. In Section 3, we present LPol, RPol and MPol and
their properties. In Section 4, we present algebraic characterizations
of these operators which imply that they preserve the decidability
of membership. We discuss the language theoretic hierarchies that
can be built with our operators in Section 5. We turn to logic in
Section 6 and use MPol to characterize the quantifier alternation
hierarchies of two-variable first-order logic. Finally, Section 7 is
devoted to the separation problem. Due to space limitations, several
proofs are postponed to the full version of the paper.

2 PRELIMINARIES

We present terminology that we use throughout the paper. The
statements are proved in the full version of the paper.

2.1 Finite words and classes of languages

We fix an arbitrary finite alphabet A for the whole paper. As usual,
A* denotes the set of all words over A, including the empty word e.
We let AT = A* \ {¢}. For u,v € A*, we write uv the word obtained
by concatenating u and v. Also, if w € A*, we write |w| € N for
its length. We also consider positions. A word w = ay - - - a},,| € A*
is viewed as an ordered set P(w) = {0, 1,..., |wl|, |w| + 1} of |w| + 2
positions. A position i such that 1 < i < |w]| carries the label a; € A.
We write P.(w) = {1,...,|w|} for this set of labeled positions. On
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the other hand, the positions 0 and |w| + 1 are artificial leftmost
and rightmost positions which carry no label. Finally, given a word
w =ai---aj, € A" and i,j € P(w) such that i < j, we write
w(i, j) = ajy1 -+ -aj—1 € A (i.e, the infix obtained by keeping the
letters carried by the positions that are strictly between i and j).
Note that w(0, [w| + 1) = w.

A language is a subset of A*. We lift concatenation to languages:
forK,LC A", KL={uv |u € Kandov € L}.

Regular languages and morphisms. All languages that we con-
sider in this paper are regular. These are the languages which can
be defined by a finite automaton or a morphism into a finite monoid.
We work with the latter definition which we recall now. A semi-
group is a pair (S, -) where S is a set and “-” is an associative binary
operation on S (often called multiplication). It is standard to abuse
terminology and make the binary operation implicit: one simply
says that “S is a semigroup”. A monoid M is a semigroup whose
multiplication has a neutral element denoted by “13;”. Recall that
an idempotent of a semigroup S is an element e € S such that ee = e.
A standard result in semigroup theory states that when S is finite,
there exists w(S) € N (written w when S is understood) such that
s® is idempotent for every s € S.

Clearly, A* is a monoid whose multiplication is concatenation (e
is the neutral element). Thus, given a monoid M, we may consider
morphisms a : A* — M. A language L C A" is recognized by such
a morphism  when there exists F C M such that L = a~!(F). It
is well-known that the regular languages are exactly those which
can be recognized by a morphism « : A* — M where M is a finite
monoid.

REMARK 2.1. Since the only infinite monoid that we consider is A*,
we implicitly assume that every arbitrary monoid M, N, . .. that we
consider is finite from now on.

We shall also consider the standard Green relations that one may
associate to every monoid M. Given s,t € M, we write s <g t if
there exists r € M such that s = ¢tr. Moreover, s < t if there exists
g € M such that s = gt. Finally, s < ¢ t if there exist ¢,r € M such
that s = gtr. One may verify that these are preorders. We write %,
% and 7 for the equivalences associated to <g, <& and < g (for
example, s # t when s <g t and t <g s). Finally, we write <g,
<g and < ¢ for the strict variants of these preorders (for example,
s <g twhens <g tands # t).

Classes and decision problems. A class of languages € is a set
of languages. A lattice is a class which is closed under both union
and intersection, and containing the languages @ and A*. Moreover,
a Boolean algebra is a lattice closed under complement. Finally, a
class € is quotient-closed when for all L € € and all u,0 € A*,
the language {w € A* | uwo € L} belongs to L. Finally, we say that
a class € is a prevariety to indicate that it is a quotient-closed
Boolean algebra containing only regular languages . In this paper,
we investigate specific prevarieties. For this purpose, we rely on
two decision problems that one may associate to a fixed class €.
The key idea is that finding an algorithm for each of these problems
provides a solid understanding of €.

The most simple problem, & -membership, takes as input a regular
language L and asks whether L € &. We turn to the second problem.
Given two languages Ly and L, we say that Ly is €-separable
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from Ly if there exists K € € such that Ly € Kand L1 N K = 0.
The @ -separation problem takes as input two regular languages
Lo and Ly and asks whether L is €-separable from L;. Note that
¢ -membership can be reduced to €-separation: clearly, L € € if
and only if L is €-separable from A* \ L (here, we use the fact that
the regular languages are closed under complement).

Group languages. When applying our results to logic, we shall
consider a particular kind of class. A group is a monoid G such that
each g € Ghasaninverseg~! € G, ie, gg~! = g7 lg = 1. A “group
language” is a language which is recognized by a morphism into a
finite group. In Section 6, we shall consider classes & that are group
prevarieties (i.e., containing group languages only).

Additionally, we shall consider “extensions” of the group preva-
rieties. One may verify from the definition that {¢} and A* are not
group languages. This motivates the following notion: for a class
€, the well-suited extension of €, denoted by €*, consists of all
languages of the form L N A* or L U {¢} where L € €. One may
verify that when € is a prevariety, €* is a prevariety as well.

2.2 ¢-morphisms

Let € be a prevariety. A €-morphism is a surjective morphism
n : A* — N such that every language recognized by n belongs to
€. This notion serves as a key mathematical tool in this paper. First,
we use it for the membership problem.

Given a regular language L, one may associate a canonical mor-
phism recognizing L. Let us briefly recall the definition. We associate
a relation = on A* to L. Given u,v € A*, we have u = v if and
only if xuy € L & xvy € L for every x,y € A*. It can be verified
that =p is a congruence of A* and, since L is regular, that it has
finite index. Therefore, the map « : A* — A* /=] which associates
its =1 -class to each word is a morphism into a finite monoid. It is
called the syntactic morphism of L and it can be computed from any
representation of L. We have the following standard result which
connects it to -membership.

PROPOSITION 2.2. Let € be a prevariety. A regular language be-
longs to € iff its syntactic morphism is a € -morphism.

By Proposition 2.2, getting an algorithm for €-membership boils
down to finding a procedure which decides if some input morphism
a: A* — M is a €-morphism. This is how we approach the ques-
tion in this paper. We shall also use €-morphisms as mathematical
tools in proof arguments. In this context, we shall use the following
statement which is a simple corollary of Proposition 2.2.

PROPOSITION 2.3. Let @ be a prevariety and consider finitely many
languages Ly, ...,L; € B. There exists a €-morphismn : A* - N
such that Ly, ..., Ly are recognized by .

2.3 Canonical relations

Given a prevariety % and a morphism « : A* — M, we associate
two relations on M. The definitions are adapted from notions in-
troduced in [26, 27]. For the first one, we say that (s, t) is a €-pair
(for a) if and only if a~!(s) is not €-separable from a~!(t). The
€ -pair relation is not very robust. It is symmetric (this is tied to
closure under complement for %) and reflexive (if « is surjective).
However, it is not transitive in general.
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We turn to the second relation. Let s,t € M. We write s ~¢ o t
ifand only if s € F & t € F for all F C M such that a~!(F) € &.
It is immediate by definition that ~¢ , is an equivalence. For the
sake of avoiding clutter, we shall abuse terminology when the
morphism « is understood and write ~¢ for ~¢ ,. Additionally,
for every element s € M, we write [s]g € M/~¢ for the ~¢-
class of s. Observe that by definition, computing ~g ,, boils down
to computing the sets F C M such that a”(F) € %, ie. to &-
membership.

FACT 2.4. Let G be a prevariety with decidable membership. Given
as input a morphism a : A* — M, one may compute the equivalence
~g.a on M.

We now connect our two relations in the following lemma.

LEMMA 2.5. Let® be a prevariety and a : A* — M be a morphism.
The equivalence ~g , on M is the reflexive transitive closure of the
@ -pair relation associated to a.

It can be verified than when the morphism a is surjective, the
equivalence ~¢ , is a congruence of the monoid M.

LEMMA 2.6. Let € be a prevariety and o : A* — M be a surjective
morphism. Then, ~g  is a congruence of M.

In view of Lemma 2.6, when a : A* — M is surjective, the
map [-]lg : M — M/~¢ which associates its ~g-class to every
element in M is a morphism. A key property is that the composition
[[lg oca: A" - M/~g is a €-morphism.

LEMMA 2.7. Let € be a prevariety and e : A* — M be a surjective
morphism. The languages recognized by [-]g o a : A* — M/~g are
exactly those which are simultaneously in ‘€ and recognized by a.

3 OPERATORS

We introduce the operators that we investigate in this paper. We
first recall the definition of standard polynomial closure. Then, we
define four semantic restrictions

3.1 Polynomial closure

Given finitely many languages Ly, ...,L, C A", a marked prod-
uct of Ly,...,L, is a product of the form LoaiL; - - - a,L, where
ai,...,ap € A. Note that a single language Ly is a marked prod-
uct (this is the case n = 0). In the case n = 1 (i.e, there are two
languages), we speak of marked concatenations.

The polynomial closure of a class €, denoted by Pol(€¥), is the
class containing all finite unions of marked products Loai L1 - - - anLn
such that Ly, ..., L, € €.If ¥ is a prevariety, Pol(%) is a quotient-
closed lattice (this is due to Arfi [2], see also [21, 27] for recent
proofs). On the other hand, Pol(€) need not be closed under com-
plement. Hence, it is natural to combine Pol with another opera-
tor. The Boolean closure of a class 9, denoted by Bool(9), is the
least Boolean algebra containing <. Finally, we write BPol(€) for
Bool(Pol(%)). The following proposition is standard (see [27] for
example).

PROPOSITION 3.1. If€ is a prevariety, then so is BPol(%).

We do not investigate BPol itself. Yet, we use the classes BPol(%)
as inputs for the operators that we do investigate.
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3.2 Deterministic restrictions

We define weaker operators from Pol by restricting the marked
products to those satisfying specific semantic conditions and the
finite unions to disjoint ones.

Consider a marked product LoaiL; ---apLp. For 1 < i < n,
we define L] = LoaiL---a;-1Li—1 (in particular, L] = Lo) and
L = Liaj+1Lis1 - - - anLy (in particular, Ly = Ly,). We say that,

e LoaiLy - - - apLy is left deterministic if and only if for all i such
that 1 < i < n, we have L] N La;A™ = 0.
e LoaiLy - --apLy is right deterministic if and only if for all i
such that 1 < i < n, we have Llf' NA*aq;L] = 0.
e LoaiLy - - apLy is mixed deterministic if and only if for all i
suchthat1 < i < n, either L/NL/a;A* =0 or L)'NA*a;L]’ =0.
e LoaiLy - - - apLy is unambiguous if and only if for every word
w € LoajLy - - - anLy, there exists a unique decomposition
W = woaiwy - - dpwp withw; € Ly for1 <i <n.
These notions depend on the product itself and not only on the
resulting language. For example, the marked concatenations A*aA*
(which is not unambiguous) and (A \ {a})*aA* (which is left de-
terministic) evaluate to the same language. By definition, a left or
right deterministic marked product is also mixed deterministic. It
is also simple to verify that mixed deterministic marked products
are unambiguous.

REMARK 3.2. A mixed deterministic product need not be left or right
deterministic. For example, let Ly = (ab)*, Ly = ¢* and L3 = (ba)™.
The product LicLycLs is mixed deterministic since L1 N LicA* = 0
and L3 N A*cLs = 0. However, it is neither left deterministic nor right
deterministic. Similarly, a unambiguous product need not be mixed
deterministic. If Ly = (ca)*, the product LiaLy is unambiguous but it
neither left nor right deterministic.

The left polynomial closure of a class €, written LPol(%), con-
tains the finite disjoint unions of left deterministic marked products
LoaiL; -+ - anLy such that Ly, ...,L, € € (by “disjoint” we mean
that the languages in the union must be pairwise disjoint). The
right polynomial closure of € (RPol()), the mixed polynomial clo-
sure of € (MPol(€)) and the unambiguous polynomial closure of
@ (UPol(%)) are defined analogously by replacing the “left deter-
ministic” requirement on marked products by the appropriate one.
The following lemma can be verified from the definition.

LEMMA 3.3. Let € be a class. Then, we have LPol(€) C MPol(%),
RPol(€) € MPol(€) and MPol(%) C UPol(¥) C Pol(®).

The operators LPol, RPol and UPol are fairly standard. See for
example [20, 22, 33]. In particular, they admit the following standard
alternate definition (see [21] for a proof).

LEMMA 3.4. Let € be a class. Then, LPol(€) (resp. RPol(¥),
UPol(%)) is the least class containing € which is closed under disjoint
union and left deterministic (resp. right deterministic, unambiguous)
marked concatenation.

On the other hand, MPol is new. It is arguably the key notion
of the paper. In particular, the application to two-variable first-
order logic is based on it (see Section 6). Unfortunately, it is less
robust than the other operators: there is no equivalent to Lemma 3.4
for MPol. In particular, it is not idempotent: in general MPol(€)



The amazing mixed polynomial closure and its applications to two-variable first-order logic

is strictly included in MPol(MPol(€)). This is because a mixed
product of mixed products is not a mixed product itself in general.

Example 3.5. Consider the alphabet A = {a, b, c}. We let Ly = b*,
Li=atand K = (a+ b +¢)*. Clearly, LobL; and K are defined by
mixed deterministic products. Moreover, if L = LybL1, then LcK is
mixed deterministic. However, the combined product LobLicK is
not mixed deterministic itself. Indeed, the marked concatenation
(Lo)b(L1cK) is neither left deterministic nor right deterministic.

Note that UPol is well-understood. In particular, we shall use
two key results from [26]. First, while this is not apparent on the
definition, UPol(%) has robust properties.

THEOREM 3.6 ([26]). If € is a prevariety, then so is UPol(F).

Moreover, we have the following generic characterization of the
UPol(®)-morphisms.

THEOREM 3.7 ([26]). Let € be a prevariety and a : A* — M a
surjective morphism. The following are equivalent:
a) a is a UPol(®)-morphism.
b) st = s@ts® for all €-pairs (s, t) € M.
c) s@Hl = W@ foralls,t € M such thats ~g t.

By Fact 2.4, the equivalence ~% can be computed from & as soon
as ¥-membership is decidable. Hence, in view of Proposition 2.2,
Theorem 3.7 implies that when €-membership is decidable, then so
is UPol(®)-membership. We prove similar results for LPol, RPol
and MPol in Section 4.

3.3 Framework

We present a general framework and use it to characterize the
languages in LPol(€), RPol(€) and MPol(%) for a prevariety €
(the statements are proved in the full version of the paper). We rely
on it whenever we manipulate these classes in proof arguments.
In particular, we apply it at the end of the section to generalize
Theorem 3.6 to LPol, RPol and MPol.

Sets of positions associated to a morphism. Given an arbitrary
surjective morphism n : A* — N and k € N, we use the Green
relations of N to associate three sets of positions to every w € A*.
Letw = a; ---ap € A*. We define two sets Pi (5, k,w) C P.(w)
and P4 (7, k, w) € P.(w) by induction on k. When k = 0, we define
Po(n,0,w) = P4(n,0,w) = 0. Assume now that k > 1 and let
i € Po(w). We let,
o i€ Py(nk,w) if there is j € Pr.(n,k — 1, w) U {0} such that
Jj <iandn(w(j,D)ai) <@ n(w(j,i).
o i€ Py(n k,w)ifthereis j € Pu(n,k—1,w)U{|w|+1} such
that i < j and n(a;w(i, j)) <z n(w(i, j)).
Finally, we let Poa(n, k,w) = Pu(n,k,w) U P4(n, k, w) for every
k € N. We turn to an important lemma which we shall use when con-
sidering UPol(®)-morphisms. The proof is based on Theorem 3.7.

LEMMA 3.8. Let € be a prevariety and a : A* — M a UPol(€)-
morphism. For every h € N and every word w € A*, P.(a, h, w) C
Pu([-]g o @, hIM|, w) and Po(a, h,w) C Pa([-]g o , hIM|, w).

We turn to an independent definition that we shall use conjointly
with the first one. Consider a surjective morphism  : A* — N.
Givenawordw = ay ---ap € A* and a set P C P.(w), we use 5 to
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associate a tuple in N x (A x N)IP| that we call the p-snapshot of
(w, P). For the definition, we write k = |P| and let iy < --- < i} be
the positions such that P = {iy, ..., ii}. Finally, we let iy = 0 and
igg1 = |w|+1.For 0 < h < k, welet sy = n(w(ip, ipye1))) € N. The
n-snapshot of (w, P), denoted by oy (w, P), is the following tuple:

U,](W,P) = (80, @iy, S15 - - -» Aip, Sk) € N X (A X N)k.
We connect the two notions with the following key lemma.

LEMMA 3.9. Letn : A* — N be a surjective morphism, k € N and
x € {>, <,»<}. Consider two words w,w’ € A* and P’ C P.(w’). If
oy(w,Px(n,k,w)) = ay(w', P’), then P’ = P (1, k, w’).

We may now connect these notions to our three operators LPol,
RPol and MPol.

LEmMA 3.10. Let n : A* — N be a morphism, w € A* and
k € N. Let P be the set Pr. (1, k, w) (resp. Po(n,k, w), Poa(n, k, w))
and (s, 1,81+ -»An>Sp) = 0',7(w, P). Then, the marked product
0 (s0)a1n™1(s1) - - - ann ™ (sp) is left (vesp. right, mixed) determin-
istic.

Finally, we present an important property of these sets which
is specific to the case when n : A* — N is either a BPol(%)- or a
BPol(Z*)-morphism for some group prevariety . We prove that
for such morphisms, we may restrict ourselves to the special case
when k = 1. This property will be crucial in Section 6 in order to
prove the characterization of quantifier alternation for two-variable
first-order logic with mixed polynomial closure.

PROPOSITION 3.11. Let & be a group prevariety and € € {€,%*}.
Ifn : A* — N is a BPol(€)-morphism and k € N, there exists a
BPol(®)-morphism,y : A* — Q such thatPy(n,k,w) C Pu(y, 1, w)
andP4(n,k,w) € Pa(y, 1, w).

Equivalence relations. We define equivalences and use them to
characterize the classes built with LPol, RPol and MPol. Consider
a surjective morphism 1 : A* — N. For every k € N, we associate
three equivalence relations >, < ¢ and »<, ;. on A*. Consider
u,v € A*. We define,

® Ubpk 0 if o (u, P (1, k, u)) = 0 (0, P (1, k, 0)).

® Uk if Op (u,Pa(n,k,u)) = 0'17(”» P4(n,k,0)).

® uvrd, v if o (u, Pea (17, k, ) = 0y (0, Pea (17, k, 0)).
It is immediate by definition that >k, < x and >, ¢ are equiva-
lence relations. It turns out that they are actually congruences of
finite index.

LEMMA 3.12. Ifn : A* — N is a surjective morphism and k € N,
then >y i, <, k. and <y i are congruences of finite index.

We are ready to characterize the classes built with LPol, RPol
and MPol with these three equivalences.

PROPOSITION 3.13. Let € be a prevariety and L C A*. Then,
L € LPol(€) (resp. L € RPol(¥), L € MPol(%)) if and only if there
exist a €-morphismn : A* — N and k € N such that L is a union of
>, k-classes (resp. <ty g -classes, <y, . -classes).

We complete the statement with a useful corollary. It strengthens
the “only if ” implication in Proposition 3.13.
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COROLLARY 3.14. Let € be a prevariety and Ly, . .., Ly, finitely
many languages in LPol(€) (resp. RPol(€), MPol(€)). There is a
€ -morphismn : A* — N andk € N such that Ly, . .., Ly, are unions
of &y, . -classes (resp. <y g -classes, <y, . -classes).

Let us present a first application. We use Proposition 3.13 to
investigate closure properties.

THEOREM 3.15. Let G a be a prevariety. Then, LPol(€), RPol(¥)
and MPol(®) are prevarieties as well.

Proor. We present a proof for MPol (the argument is symmetri-
cal for LPol and RPol). Let K, L € MPol(%) and u,v € A*. We show
that K UL, A*\ Land H = {w | uwo € L} belong to MPol(%).
By Corollary 3.14, there exist a €-morphism 5 : A* — N and
k € N such that K and L are unions of >« i -classes. We show that
KUL, A*\ L and H are also unions of >, ¢ -classes which completes
the proof by Proposition 3.13. This is immediate for K U L and
A*\ L. Hence, we concentrate on H. Given w, w’ € A* such that
w <, k. w’, we have to show that w € H <& w’ € H. Since »<p ¢
is a congruence by Lemma 3.12, we have uwo b4, uw’v. Since L
is a union of b« ;. ~classes, this implies that uwo € L & uw’v € L.
Therefore, we get w € H © w’ € H by definition of H which
completes the proof. O

4 ALGEBRAIC CHARACTERIZATIONS

For every prevariety &, we present generic algebraic characteriza-
tions for LPol(€), RPol(€¢) and MPol(%). The statements are sim-
ilar to the characterization of UPol(%) presented in Theorem 3.7.
First, we present symmetrical statements for LPol and RPol.

THEOREM 4.1. Let @ be a prevariety and a : A* — M a surjective
morphism. The following properties are equivalent:
a) a is an LPol(€)-morphism.
b) st = 5@t for all €-pairs (s, t) € M2,
¢) sl =59t for all s,t € M such thats ~g t.

THEOREM 4.2. Let @ be a prevariety and a : A* — M a surjective
morphism. The following properties are equivalent:
a) a is an RPol(€)-morphism.
b) st = ts® for all €-pairs (s, t) € M2.
¢) sl = ts@ for all s,t € M such thats ~g t.

Theorem 4.1 and Theorem 4.2 are proved in the full version of
the paper. We concentrate on the more involved characterization
of MPol(%) which is as follows.

THEOREM 4.3. Let @ be a prevariety and a : A* — M a surjective
morphism. The following properties are equivalent:
a) a is an MPol(€)-morphism.
b) (sq)®s(rs)® = (sq)®t(rs)® for all €-pairs (s,t) € M? and
allg,r e M.
c) (sq)?s(rs)? = (sq)“t(rs)® for all q,r,s,t € M such that
s ~g t.

By Fact 2.4, one may compute the equivalence ~¢ associated
to a morphism provided that €-membership is decidable. Hence,
in view of Proposition 2.2, we obtain the following corollary of
Theorems 4.1, 4.2 and 4.3.
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COROLLARY 4.4. Let € be a prevariety. If € -membership is decid-
able, then so are LPol(€)-, RPol(®)- and MPol(€)-membership.

Proor or THEOREM 4.3. We fix a prevariety € and a surjective
morphism « : A* — M. We start with a) = b). Assume that
a is an MPol(€)-morphism. Let q,r,s,t € M such that (s, ) is a
@ -pair. We show that (sq)“s(rs)® = (sq)“t(rs)®. Corollary 3.14
yields a €-morphism n : A* — N and k € N such that every
language recognized by « is a union of >, ;. -classes. Since (s, ?) is
a @-pair and 7 is a €-morphism, one may verify that there exist
u,v € A" such that n(u) = n(v), a(u) = sand a(v) = t.Letx,y € A*
such that a(x) = q and a(y) = r. We define p = w(M) - o(N).
Let w = (ux)P*u(yu)P* and w’ = (ux)P*o(yu)P¥. The following
lemma can be verified from the definition of P.«(1, k, w) and the
fact that (n(ux))? and (n(yu))? are idempotents of N.

LEMMA 4.5. For every i € Pui(n,k, w), either i < |(ux)pk| or
i> |(ux)Pkyl.

Lemma 4.5 states that all positions in P.« (7, k, w) belong either
to the prefix (ux)PX or to the suffix (yu)Pk. We consider the set P’
made of the corresponding positions in P. (w’):

P'= {i|i€Pulnkw)andi<|(ux)Pk|} U
{i—|ul+o| | i € Poa(n,k,w)andi > |(ux)Pkul}.

Since n(u) = n(v), one may verify from the definition that we
have oy (w,Pw(7,k,w)) = ay(w’,P’). Thus, P’ = Ps(n,k, w’) by
Lemma 3.9 and we get w »<, ;. w’. Since the languages recognized
by a are unions of <, ; -classes, we get a(w)=a(w’). By definition,
this yields (sq)“s(rs)® = (sq)“t(rs)®.

We turn to the implication b) = c). Assume that b) holds and
consider g, r,s,t € M such thats ~¢ t. We show that (sq)“s(rs)® =
(sq)“t(rs)®. We start with a preliminary remark. By hypothesis,
the second assertion in Theorem 3.7 holds (this is the special case
of b) when q = r = 1j7). Thus, Theorem 3.7 yields the following
property:

x@* = x®yx® forall x,y € M such that x ~¢ y. (1)

Since s ~¢ t, Lemma 2.5 yields sg,...,s, € M such that s = s,
sn = t and (s}, si+1) is a €-pair for all i < n. We now prove that
(sq@)?si(rt)® = (sq)“si41(rt)® for every i < n. Since s = s9 and
I = sp, this yields the desired result by transitivity. We fix i < n.
By definition, s ~¢ t ~g s;. Hence, since ~¢ is a congruence,
we get sq ~¢ siq and rt ~g rs;. It then follows from (1) that
(sq)“""1 = (59)“siq(sq)® and (rs)® = (rs)®rsi(rs)®. Thus,

(s9” = ((s9)?siq(sq)?)? = (sq)(siq(sq))“.

(rs)© = ((rs)“rsi(rs)©)? ((rs)“rs;)® (rs)®.

Moreover, since (s, si+1) is @ €-pair and b) holds, we know that
(siq(sq))“si((rs)“rsi) = (siq(sq)”)“si+1((rs)“rs;)®. Hence,

(sq)®si(rs)® = (sq) (siq(sq)®)si((rs)“rsi)® (rs)®
(sq) (siq(sQ)”)“sis1((rs)“rsi) (rs)®
= (sq)“sit1(rs)”.

This concludes the proof for the implication b) = c).

It remains to prove ¢) = a). We assume that c) holds and show
that a is an MPol(%)-morphism. Let N = M/~¢ and recall that
N is a monoid since ~g is a congruence by Lemma 2.6. We write
n=1[]goa: A" - N which is a €-morphism by Lemma 2.7. We
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let k = |M| and consider the equivalence »<,, ;. on A*. We prove the
following property:

for every w,w’ € A", woap W = a(w) =a(w’).  (2)

This implies that every language recognized by « is a union of
><y, k-classes. Together with Proposition 3.13 this yields that ev-
ery language recognized by a belongs to MPol(€) since n is a
%-morphism. We now concentrate on (2). Let w,w’ € A* such
that w »<y . w’. We show that a(w) = a(w’). We first use our
hypothesis to prove the following lemma.

LEMMA 4.6. There exist P C P.(w) and P’ C P.(w’) which satisfy
Py (a,1,w) C P,Po(a, 1,w') C P’ and oy (w, P) = ay(w’, P').

Proor. We write Q = Poa(n, k, w) and Q’ = Poa(n, k, w’). Since
w b, i w', we have oy (w, Q) = oy (w’,Q’). In particular, we have
|Q] = |Q’| and there is a unique increasing bijection f : Q — Q’.
Since «a satisfies c), one may verify from Theorem 3.7 that it is
a UPol(€)-morphism. Thus, since k = |M|, Lemma 3.8 yields
Po(a,1,w) CPu(n,k,w) CQO and Pg(a, 1,w’) CPa(n,k,w') CQ".
Therefore, the set f(Ps(a, 1, w)) € Q is well-defined. We define
P’ = f(Pu(a,1,w)) UP4(a, 1, w’) € Q" and P = f~1(P’). 1t is clear
from the definition that P (a, 1,w) € P and P4(a, 1,w’) C P’.
Moreover, since o, (w, Q) = o;(w’,Q”), it is immediate from the

definition that oy (w, P) = gy (w’, P’) as well. O
Consider the a-snapshots (s, a1, s1, - - -, an, Sp) = 0g(w, P) and
(to,b1,t1, ..., bm, tm) = oa(w’, P’). Since oy(w,P) = ay(w’,P’),

wegetn=m,a; =bjforl <i<nands; ~g tifor0<i<n
by definition of 5. Therefore, we have a(w) = spays; - - - ans, and
a(w’) = toayty - - - apty by definition of a-snapshots (for the sake of
avoiding clutter, we abuse terminology and write a; for a(a;)). We
now prove that spajsy - - - apsp = toaity - - - anty. For all h such that
0 < h < n,wewrite q, = soa1 - - Sp_1ap and ry, = apyp1tper - Antn
(g0 = 1pyand ry, = 1p). Since Py (ar, 1, w) € PandPo(a, 1, w’) C P/,
one may verify from the definitions that q,sp £ gy, and tyry, £ 1y,
for 0 < h < n. We prove that qspry = qptpry for 0 < h < n.

Let us first explain why this implies a(w) = a(w’). One may
verify from the definition that gy sy, = qpe1tpe17her for0 < h < n.
Together with qpspry = qutpry, this yields qutprn = qpeitheiThet-
By transitivity, we get qotoro = qninrn. Together with the fact
that qosoro = qotoro, this yields qosoro = gntnrn. By definition,
this states that sgpaisy - - - ansp = toaity - - - anty, i.e. we obtain that
a(w) = a(w’) as desired.

We now fix an index h such that 0 < h < n and show that
quShTh = qutpry- Recall that gpsy, R qp, and tyry, & rp,. Hence, we
get two elements x,y € M such that q;, = qpspx = q(spx)® and
rp = ytpry, = (ytp)“ry. Since sy, ~¢ ty, and ~¢ is a congruence we
have ys, ~g ytp. By c), this yields (yt,)°™ = (ytp)“ysy (yty)®.
Therefore, (yt,)” = ((ytn)“ysn(ytn) ) = ((Ytn)“ysn)® (ytp).
Moreover, since sp, ~¢ t, and « satisfies c), we have,

(s1n) s ((ytn) ysp)” = (spx)ty ((ytn) “ysp)®.

We now multiply by (yt,)® on the right. As shown above, this
yields (spx)“sp(ytp)® = (spx)@ty(yty)®. Hence, since we have
qn = qn(spx)? and ry, = (yty)“ry, it follows that q,sprn = qptnrn
as desired which completes the proof. O
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5 DETERMINISTIC HIERARCHIES

We present a construction process which take a single input class
€ and uses LPol and RPol to build a hierarchy which classifies
the languages in UPol(%). Then, we prove the mixed polynomial
closure is a key ingredient for investigating these hierarchies.

5.1 Definition

The definition is motivated by a result of [26]. Let € be a prevariety.
We define the alternating polynomial closure of € (APol(%)) as the
least class containing € and closed under both left deterministic
and right deterministic marked products and under disjoint union.
The following theorem is proved in [26].

THEOREM 5.1. If€ is a prevariety, then UPol(€) = APol(%).

Hence, for a prevariety €, applying LPol and RPol in alterna-
tion builds a classification of UPol(%). For all n € N, there are
two levels LP, (%) and RP,(€). We let LPy(€) = RPy(¥) = 6.
Then, for every n > 1, we define LP,(%) = LPol(RP,—1(%))
and RP,(%) = RPol(LP,-1(%)). Clearly, the union of all levels
LP,(®) (or RP,(¥)) is exactly the class APol(%), i.e. UPol(®) by
Theorem 5.1. In general these are strict hierarchies (we discuss a
well-known example below) and the levels LP,, (%) and RP, (%) are
incomparable for every n > 1. This motivates the introduction of
additional intermediary levels “combining” LP, (%) and RP,(%).

Consider two classes &1 and 9y. We write &1 N 9, for the
class made of all languages which belong simultaneously to 9
and 9;. Moreover, we write 91 V 9 for the least Boolean alge-
bra containing both 9; and 9. We consider the additional levels
LP,(®€) N RP,(¥) and LP,,(€)VRP,(®). The following statement
can be verified from Theorem 3.15.

COROLLARY 5.2. Let € be a prevariety. For everyn € N, LP,(€),
RP,(€), LPy(€) N RP,(¥) and LP,(¥)VRP, () are prevarieties.

A specific hierarchy of this kind is well-known. Its input & is the
class PT of piecewise testable languages: the class BPol(ST) with
ST = {0, A*} as the trivial prevariety. This hierarchy is known to
be strict and has many characterizations based on algebra [15, 37]
or logic [16, 17] (we come back ot the second point in Section 6). It
is known [15] that membership is decidable for LP,(PT), RP,(PT)
and LP,(PT) N RP,(PT) for every n € N. This can be reproved
using Corollary 4.4 and the decidability of PT-membership [34].
It is also know [1, 12, 13] that for every n € N, membership is
decidable for LP,(PT) VvV RP,(PT). We explain below that part of
these results can be reproved using Corollary 5.2.

We complete the definition of determinsitic hierarchies with a
useful result. We prove that when applying LPol, RPol or MPol to
some level in a deterministic hierarchy, one may strengthen the
requirements on marked products. Let € be a prevariety. We say
that a marked product Loai Ly - - - apLy, is left (resp. right, mixed) € -
deterministic when there exist Hy, . .., H, € € such that L; C H; for
eachi < nand Hoa1Hj - - - anHp is left (resp. right, mixed) determin-
istic. In other words, LoajL; - - - anLp can be “over-approximated”
by a left (resp. right, mixed) deterministic marked product of lan-
guages in €. We use Lemma 3.8 and Proposition 3.13 to prove the
following result.
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PROPOSITION 5.3. Let €, D be two prevarieties such that € C 9
and @ C UPol(€). Moreover, consider a language L in LPol(D)
(resp. RPol(D), MPol(D)). Then, L is a finite union of left (resp.
right, mixed) € -deterministic marked products of languages in 9.

ProoF. We present a proof for the case when L € MPol(D)
(the two other cases are symmetrical). Proposition 3.13 yields a
@-morphism « : A* — M and k € N such that L is a union of >« -
classes. Thus, it suffices to prove that each >, j-class is a finite
union of mixed @-deterministic marked products of languages
in . Letw € A" and K C A" its »a, g-class. For every u € A*
such that u >, ;. w, we build a language H, C A" defined by a
mixed €-deterministic marked product of languages in & and such
that u € H, C L. Moreover, we show that while there might be
infinitely many words u € A* such that u »<, ;. w, there are only
finitely many distinct languages H,. Altogether, it will follow that
K is equal to the finite union of all languages H,, for u € A* such
that u »<, ;. w which completes the proof. For the construction, we
consider the canonical equivalence ~¢ on M and write N = M/~¢.
We also define 7 as the morphism 5 = [-]g o : A* — N. We know
from Lemma 2.7 that 7 is a -morphism.

We now consider u € A" such that u »,; w and build H,.
We write P, = Poa(n, k|M|, u). One may verify from the definition
that |Py| < 2|N|k|M| (the key point is that this bound is inde-
pendent from u). We let (so, a1, 51, . . ., an, Sn) = 0 (u, P,) and de-
fine Hy, = a*(sg)aia™ (s1) - - - ana~1(sp). Since |Py| < 2|N|FIMI,
we know that H,, is the marked product of at most 2IN|KIMI 4
languages recognized by a. Hence, there are only finitely many
languages Hy, for u € A" such that u <, w. Moreover, the
languages in the product defining H, belong to & by hypothe-
sis on a. We now prove that this marked product is mixed &-
deterministic. Let (o, a1, t1, ..., an, tn) = oy(u, P,). Since we have
Py = Poa(n, k|M|, u) and 1y is a €-morphism, Lemma 3.8 implies that
Y (to)ain (t1) - - - any~'(ty) is a mixed deterministic marked
product of languages in €. Moreover, since n = [-]Jg © a, we
have a'(s;) € n~1(t;) for every i < n. Therefore, the marked
product a~!(so)aja~!(s1) - - - ana~ ! (sp) which defines H,, is mixed
@ -deterministic as desired.

It remains to prove that u € Hy, C L. That u € H,, is immediate
by definition since (so, a1, 81, - -, an, Sn) = 0 (4, P,). Hence, we let
v € Hy, and prove that v € L, i.e. v >y u. By definition of Hy,
we know that there exists a set Q C P(w) such that o4(v,Q) =
(50, a1,81, .- ., an,Sn) = 0q(u, P,). Moreover, since 2 C UPol(®)
by hypothesis, we know « is a UPol(%)-morphism. Therefore,
Poa(at, k,w) C Pua(n, k|M|,u) = P, by Lemma 3.8. Hence, since
0a (v, Q) = 04 (u, P,), one may verify that there exists 9’ C Q such
that 04 (v, Q") = 04 (4, Pea(a, k, u)). Finally, Lemma 3.9 implies that
Q’ =Pus(at, k, u) and we obtain v », ;. u as desired. O

5.2 Connection with mixed polynomial closure

The definition associates four closely related hierarchies to ev-
ery prevariety €. Their construction processes can be unified us-
ing MPol. As seen in Section 3, MPol is not idempotent: given a
prevariety 9, it may happen that MPol(9D) is strictly included in
MPol(MPol(2)). Hence, a hierarchy is obtained by applying MPol
iteratively to 2. It turns out that all levels in the above hierarchies
can be built in this way. First, the levels LP,(%) and RP, (%) can
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be built from LPol(€) and RPol(€) using only MPol (this can be
verified from the definition).

LEMMA 5.4. Let € be a prevariety. For every n > 1, we have
LPy41(€)=MPol(RPn(®)) and RPp41(€)=MPol(LP,(F)).

Moreover, the levels LP, (%) N RP, (%) can all be built from
LPol(€) N RPol(¥) using only MPol (the proof is based on the
algebraic characterizations of LPol, RPol and MPol).

THEOREM 5.5. Let € be a prevariety. For every n > 1, we have
LPpy1(€) N RPpy1(€) = MPol(LP,(€) N RP4(F)).

A similar result holds for the levels LP,, (%) VRP,(%): they can
all be built from LPol(€) V RPol(€) using only MPol. We present
the proof below.

THEOREM 5.6. Let € be a prevariety. For every n > 1, we have
LPy41(€)VRPp11(€) = MPol(LP,(€)VRP,(F)).

Theorem 5.6 has an interesting application. Since MPol preserves
the decidability of membership by Corollary 4.4, we get that for all
prevarieties €, if membership is decidable for LPol(®)VRPol(%),
then this is also the case for all levels LP,,(%€)VRP,(%). This can
be applied for € = PT. It is known that membership is decidable
for LPol(PT) VRPol(PT) [1, 13]. Thus, we lift this result to every
level LP,,(PT)VRP,(PT) “for free”. This reproves a result of [12].

Proor or THEOREM 5.6. We fix a prevariety € and n > 1. Let
us start with LP,41(®)V RPp41(€) S MPol(LP,(€)V RP,(F)).
By Theorem 3.15, MPol(LP,(€)VRP, (%)) is a prevariety. Hence,
it suffices to prove that LPy41(%) and RP,41(%) are included in
MPol(LP,(€)VRP,(%)). By symmetry, we only prove the former.
By definition, we have LPp41(%) = LPol(RP,(%)) which yields
LPpy1(€) € MPol(RP,(%)). Finally, since it is immediate by defi-
nition that RP, (%) € LP,(®)VRP, (%), we obtain the inclusion
LPp4+1(®) S MPol(LP,(€)VRP, (%)) as desired which completes
the proof for the left to right inclusion.

We now prove that the class MPol(LPy, (€ )VRP, (%)) is included
in LPp41(€)VRPy1+1(E). We write D = LP,(€)VRP,(€) for the
proof. Corollary 5.2 implies that & is a prevariety. Moreover, it
is immediate that € € 2 C UPol(¥) (UPol(€) is a prevariety
by Theorem 3.6 and it contains both LP, (%) and RP,(%)). Hence,
Proposition 5.3 implies that every language in MPol(9D) is a disjoint
union of mixed €-deterministic marked products of languages in
2. It now remains to prove that for every mixed €-deterministic
marked product L = LgaiL; ---anL, such that Ly,...,L, € 9,
we have L € LPp41(%)VRPp41(%). The definition yields H; € €
for each i < n such that L; € H; and Hya1H; - - - apHy, is mixed
deterministic.

Consider i < n. We have L; € @ and @ = LP,(%)VRP,(F).
Hence, by definition L; is a Boolean combination of languages
in LP, (%) and RP,(%). We can put the Boolean combination in
disjunctive normal form. Moreover, since LP,,(¢) and RP, (%) are
prevarieties by Corollary 5.2, each disjunct is the intersection of
a single language in LP,(%¥) with a single language in RP,(%).
Altogether, it follows that L; is a finite union of languages P; N Q;
with P; € LP,(¥) and Q; € RP,(€). Moreover, since L; C H; € €,
we may assume without loss of generality that all languages P; and
Q; are included in H; as well (otherwise we may replace them by
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P; N H; and Q; N H;). Consequently, since marked concatenation
distributes over union, we obtain that L = Lya1L;---auL, is a
finite union of products (Py N Qp)ai(P1 N Q1) - - - an(Pn N Qp) such
that P; € LP,(¥) and Q; € RP,(%) are included in H; for every
i < n. It now suffices to prove that every such marked product
belongs to LP;+1(€)VRPp41(€). Since Hya1Hy - - - apHy, is mixed
deterministic, it is also unambiguous. Hence, since P; and Q; are
included in H; for every i < n, one may verify that the language
(Po N Qo)ai(P1 N Q1) --an(Py N Qp) is equal to the intersection,

(PoaiP1 - -+ anPp) N (Qoa1Q1 -+ - anQn) .
Finally, it is clear that PyaiP; - - - apPp and Qa1 Q1 - - - anQyn are
mixed deterministic marked products since this is the case for
Hoya1H;j - - - apHy,. By definition, it follows that they both belong to
MPol(LP, (%)) and MPol(RP, (%)) respectively. Thus, we obtain
PoaiPy -+ apPy € RPyy1(€) and Qoa1 Q1 - - - anQn € LPp+1(€) by
Lemma 5.4. Hence, the intersection of these two languages belongs
to LPy41(%) VRPp41(®) which completes the proof. O

6 TWO-VARIABLE FIRST-ORDER LOGIC

We look at quantifier alternation hierarchies for two-variable first-
order logic over words (FO?). We characterize several hierarchies
of this kind with mixed polynomial closure.

6.1 Definitions

We first recall the definition of first-order logic over words. We
view a word w € A" as a logical structure. Its domain is the set
P(w) = {0,...,|w| + 1} of positions in w. A position i such that
1 < i < |w| carries a label in A. On the other hand, 0 and |w| + 1
are artificial unlabeled positions. We use first-order logic (FO) to
express properties of words w: a formula can quantify over the
positions in w and use a predetermined set of predicates to test
properties of these positions. We also allow two constants “min”
and “max” interpreted as the artificial unlabeled positions 0 and
|w|+1. Given a formula ¢(x1, . . ., x,,) with free variables x1, . . ., xp,
w e A*andiy,...,ip € P(w),wewritew = ¢(iy, . .., in) to indicate
that w satisfies ¢ when x1, ..., x, are interpreted as the positions
i1,...,in. As usual, a sentence ¢ is a formula without free variables.
It defines the language L(¢) = {w € A" | w £ ¢}. We use standard
predicates. For each a € A, we use a unary predicate (also denoted

by a) selecting all positions labeled by “a”. We also use three bi-

nary predicates: equality “=", the (strict) linear order “<” and the
successor “+1”.

Example 6.1. The language A*aA*bA*c is defined by the FO
sentence (IxTy (x < y) Aa(x) Ab(y)) A (Tx c(x) A (x+1 = max)).

A fragment of first-order logic consists in the specification of a
(possibly finite) set V of variables and a set # of FO formulas using
only the variables in V which contains all quantifier-free formulas
and is closed under disjunction, conjunction and quantifier-free sub-
stitution (if ¢ € &, a quantifier-free sub-formula can be replaced by
another quantifier-free formula in ). If S is a set of predicates and
F is a fragment, we let # (S) be the class containing all languages
L(¢) where ¢ is a sentence of & using only the predicates in S,
equality and the label predicates.

In this paper, we use generic sets of predicates which are built
from an arbitrary input class €. There are two of them. The first
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one, written Iy, contains a binary “infix” predicate I (x,y) for
every L € €. Given w € A* and two positions i, j € P(w), we have
w [ I (i, j) if and only if i < j and w(i, j) € L. The second set,
written Pg, contains a unary “prefix” predicate Py (x) for every
L € €.Given w € A* and a position i € P(w), we have w |= P (i)
if and only if 0 < i and w(0,i) € L. The predicates in Pg are
easily expressed from those in Ig: clearly, P; (x) is equivalent to
I1 (min, x). In practice, we only consider the sets P and Iz when
@ is either a group prevariety € or its well-suited extension &*.
This is motivated by the following lemma.

LEmMMA 6.2. If @ is a group prevariety and & is a fragment of FO,
then F (Ig) = F(<,Pg) and F (Ig+) = F(<,+1,Pg).

Lemma 6.2 covers many important sets of predicates. We present

three important cases. If & is the trivial prevariety ST = {0, A*},
all predicates in Pgt are trivial. Hence, we get the classes F (<)
and F (<, +1). We also look at the class MOD of modulo languages:
the Boolean combination of languages {w € A* | |w| = k mod m}
with k, m € N such that k < m. One may verify that in this case, we
obtain the classes # (<, MOD) and & (<, +1, MOD) where “MOD”
is the set of modular predicates (for all k,m € N such that k < m,
it contains a unary predicate My ,, selecting the positions i such
that i = k mod m). Finally, we consider the class AMT of alphabet
modulo testable languages. If w € A* and a € A, welet #4(w) € Nbe
the number of occurrences of “a” in w. AMT contains the Boolean
combinations of languages {w € A* | #,(w) = k mod m} where
a € Aand k,m € N such that k < m (these are the languages
recognized by commutative groups). In this case, we get the classes
F(<,AMOD) and & (<, +1, AMOD) where “AMOD” is the set of
alphabetic modular predicates (for all a € A and k, m € N such that
k < m, it contains a unary predicate Ml? ., Selecting the positions i
such #4(w(0,1)) = k mod m). ’
Quantifier alternation in FO?. We may now present the partic-
ular fragments that we shall consider. First, we write FO? for the
fragment made of all first-order formulas which use at most two
distinct variables (which can be reused). In the formal definition
of fragments, this boils down to picking a set V of variables which
has size two. We do not look at FO? directly. Instead, we consider
its quantifier-alternation hierarchy. Let us first present the one of
full first-order logic.

For every n € N, we associate two fragments X, and %B%,, of FO.
We present the definition by induction on n € N. When n = 0, we
let 3o = 9By as the fragment containing exactly the quantifier-free
formulas of FO. Assume now that n > 1. We let X, as the least set
of expressions which contains the %%,,_; formulas and is closed
under disjunction (V), conjunction (A) and existential quantification
(3). Moreover, we let B, as the set of all Boolean combinations
of X, formulas, i.e. the least one containing >, and closed under
disjunction (V), conjunction (A) and negation (=).

For every n € N, we define 32 (resp. %>2) as the fragment
containing all formulas which belong simultaneously to FO? and %,
(resp. BEy,). In this paper, we look at classes of the form %22 (Ig)
where € is a prevariety. Our results only apply in the case when
% is either a group prevariety & or its well-suited extension &*
(in which case Lemma 6.2 applies). However, we shall need the
following general result which is specific to the classes %E%(Hg).
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THEOREM 6.3. Consider a prevariety €. We have the following
correspondences %Z? (Ig) = %21 (Ig) = BPol(%).

Proor. That B3 (Ig) = BPol(¥) is proved in [27]. This is a
specific case of the generic correspondence between the quantifier
alternation hierarchies of FO and concatenation hierarchies (which
are built with Pol and Bool). The inclusion %’Z%(]Ig) C Bx1(lg)
is trivial. Hence, it suffices to show that BPol(%) C 932% (Ig). By
definition, BPol(%)) contains all Boolean combinations of marked
products LoajL; - - - apLy, with Ly, ...,L, € . Since %’Z?(]qu) is
closed under Boolean operations, it suffices to prove that all marked
products of this kind belong to 2% (Iz). We use induction to build
a formula ¢ (x) of 2% (I) for each k < n which has one free
variable x and such that for all w € A* and i € P(w), we have
w | (i) if and only if 0 < i and w(0,i) € LoaiLq---apLg. It
will then follow that LoaiL; - - - anLy, is defined by the sentence
¢n(max) of Z? (I), completing the proof. If k = 0, it suffices to
define @o(x) := Ir, (min, x). Assume now that k > 1. It suffices to
define ¢y (x) = Jy (@r—_1(y) A ax(y) A I, (y,x)) (the definition
involves implicit renaming of the variables in ¢_1, this is standard
in FO?). By definition, ¢ (x) is a formula of Z%(Hg) as desired. O

6.2 Connection with mixed polynomial closure

We prove that when using the predicates Ig and Ig+ for a group
prevariety &, one may “climb” the quantifier alternation hierarchy
of FO? using mixed polynomial closure.

THEOREM 6.4. IfZ is a group prevariety and € € {€, &}, then
95’2?”1(1[%9) = MPol(B%2(Ig)) foralln > 1.

Theorem 6.3 and Theorem 6.4 imply that for every group prevari-
ety ©,if € € {€, €}, then all levels B2 (Ig) are built iteratively
from BPol(¥) by applying MPol. By Proposition 3.1, BPol(%) is a
prevariety. Moreover, Theorem 3.15 and Corollary 4.4 imply that
when MPol is applied to a prevariety, it outputs a prevariety and
preserves the decidability of membership. It follows that when
membership is decidable for BPol(%), this is also the case for
all levels B3%(Ig). Since € € {¥,%€*}, it is known [31] that
membership is decidable for BPol(%) when separation is decid-
able for & (this is based on independent techniques). Finally, we
have B%2 (Ig) = BT2(<,Py) and B2 (Ig+) = BT (<, +1,Pg)
by Lemma 6.2. Altogether, we obtain the following corollary.

COROLLARY 6.5. Let & be a group prevariety with decidable sep-
aration. For every n > 1, membership is decidable for B%%(<,Pg)
and 932%(<, +1,Pg).

Corollary 6.5 reproves earlier results. Separation is clearly de-
cidable for ST = {0, A*}. Hence, B3%(<) and &322 (<,+1) have
decidable membership for all n > 1. For B2 (<), this was first
proved independently by Kufleitner and Weil [17] and Krebs and
Straubing [11]. For B2 (<, +1), this was first proved by Kufleitner
and Lauser [14].

REMARK 6.6. In [17], it is also shown that for everyn > 1, we
have B32(<) = LP,(PT) N RP,(PT) (with PT = BPol(ST)). This
can be reproved using Theorem 5.5, Theorem 6.4 and the fact that
PT = LPol(PT) N RPol(PT). This is specific to B2 (<): this fails in
general. This is because the equality PT = LPol(PT) N RPol(PT) is
specific to PT = BPol(ST).
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Additionally, it is known that separation is decidable for the
group prevarieties MOD and AMT. This is straightforward for MOD
and proved in [8] for AMT. Hence, we also obtain the decidability of
membership for all levels %’Z?I (<,MOD) and %Zi(<, +1, MOD),
as well as all levels B>2 (<, AMOD) and 32 (<, +1, AMOD). Note
that for the levels B32 (<, +1, MOD) was already known. This was
proved in [7] using a reduction to the levels BX2 (<, +1).

Theorem 6.4 also yields characterizations of FO?. Indeed, one
may verify from Theorem 5.1 that given a prevariety 9, the union
of all classes built from 9 by iteratively applying MPol is UPol(9D).
Hence, we obtain the following corollary.

COROLLARY 6.7. If € is a group prevariety, then FO?(<,Pg) =
UPol(BPol(%)) and FO?(<, +1,Pg) = UPol(BPol(%€™)).

Since UPol preserves the decidability of membership by Theo-
rem 3.7, the above argument also implies that for all group prevari-
eties € with decidable separation, FO?(<, Pg) and FO?(<, +1, Pg)
have decidable membership. This yields known results [6, 35] in
the cases & = ST and ¥ = MOD.

REMARK 6.8. Corollary 6.7 can be used to prove specialized charac-
terizations for F02(<, Pg) and F02(<, +1,Pg). Yet, this involves the
characterizations of BPol(€) and BPol(%™") presented in [31], which
is outside of the scope of this paper.

ProoF oF THEOREM 6.4. We fix a group prevariety & andlet € €
{©,€"}. Forall n > 1, we write @, = B>2 (Ig). We use induction
to prove that D41 = MPol(Dp) for all n > 1. The inclusion
Dn+1 S MPol(Dp,) is based on the algebraic characterization of
MPol (i.e., Theorem 4.3) and arguments analogous to Ehrenfeucht-
Fraissé games and the hypothesis € € {&, &*}. It is proved in the
full version of the paper.

We focus on the inclusion MPol(Dy,) € Dp41.Itisbased on akey
property of MPol. We say that a marked product Loa1L; - - - amLm
is G-pointed if for all 1 < i < m, there are K;,K; € BPol(®)
such that KiaiKi’ is unambiguous, LoaiL; ---aj—1Li—1 € Kj and
Liaj+1Li+1 -+ - amLm C Kl.'. We now use Proposition 3.11 to prove
the following lemma (we need the hypothesis that € € {&, £*}).

LEMMA 6.9. Every language in MPol(2y,) is a finite union of
@ -pointed marked products of languages in D,

Proor. We fix L € MPol(92,) for the proof. Proposition 3.13
yields a Dp-morphism « : A* — M and k € N such that L is a finite
union of >« -classes. Hence, it suffices to prove that every v« -
class is a finite union of €-pointed marked products of languages
in 9y,. First, we associate a language U,, to every word w € A*.

Let 1 be the morphism 7 : [-]g o & : A* — M/~pp,i(%). We
know that 5 is a BPol(%)-morphism by Lemma 2.7. Moreover,
observe that BPol(€) € 9, C UPol(BPol(%)). Indeed, we know
that 21 = BPol(€) by Theorem 6.3 and induction in Theorem 6.4
implies that 9y, is built from 2; by applying MPol iteratively.
Therefore, Lemma 3.8 implies that Poo(a, k, w) C Pua(n, k|M|, w).
Finally, since € € {&, %"} and ¥ is a group prevariety, it follows
from Proposition 3.11 that there exists another BPol(%)-morphism,
y : A* — Q such that Poo(n, k| M|, w) C Pus(y, 1, w). We define,

(s0,a1,81,---»ap,sp) =  0a(w,Poa(a, k, w)).
(90.a1,91, .- -, ap.qn) = oy(w,Pea(a, k, w)).
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For alli < h, welet Vi = a~!(s;) N y~'(g;). Finally, we define
Uy, = Voa1Vi - - - aVp. By definition, h = |Pea(a, k, w)| < 2|M|¥.
Thus, there are finitely many languages U,, even though there
infinitely many w € A*. Moreover, it is clear that w € U,,. We
now prove that U,, is included in the v<, ;-class of w and that
Voai1Vi - - - apVy, is a €-pointed marked product of languages in Oy,
It will then follow that each »«, ;-class is the finite union of all
languages U,, for the words w in the v, i -class, i.e. a finite union
of €-pointed marked product of languages in 9, as desired.

We first show that if u € U, then u >« ;. w. By definition of U,
there exists P C P(u) such that o4 (u, P) = (so,a1,51,.--,ap,Sp) =
0a(w,Pua(at, k, w)). Hence, Lemma 3.9 yields P = Poo(a, k, u) and
we obtain u ><, ;. w as desired.

It remains to show that Vpai Vi - - - apV}, is a €-pointed marked
product of languages in Dp,. As « is a D,-morphism, y is a BPol(%)-
morphism and BPol(€) € Dy, it is immediate by definition that
Vi € Dy, for all i < h. We prove that Voa1 Vi - - - ap,Vy, is €-pointed.
We fix i < h for the proof. Let r; = qoy(a1)q1 - - - y(ai-1)qi—1 and
K; = y~1(r;). Moreover, we let rl.' = qiy(ai+1)qi+1 - - - y(ap)qp and
Kl' =y! (rl.’). One may verify that Vpa1V; - - - ai-1Vi—1 € Kj and
Viaj+1Vie1 -+ - apVy C K|. Hence, we have to prove that Kja;K] is
unambiguous. We have Po.(a, k, w) C Poa(y, 1, w) by construction
of y. Therefore, all letters in the y-snapshot o (w, Poa(a, k, w)) =
(g0, 41,91, - - ., ap, q) correspond to positions in Pu(y, 1, w). By
definition, this implies that either r;y(a;) <g ri or y(a;)r] < r}.
By symmetry, we assume that the former holds and prove that
K,-aiKi’ is left deterministic. By contradiction, assume that there
exists some word x € K; N Kja;A*. Since K; = y~1(r;), this yields
y € A" such that r; = rijy(a;)y(u), contradicting the hypothesis
that ry(a;) <g r and concluding the proof. O

We now prove that MPol(2,) € Dp41. In view of Lemma 6.9
and since Dp41 = .932?1 +1Ig) is closed under union, it suffices to
show that if Ly, ..., Ly € Dy and LoaiLy - - - amLy, is a €-pointed
marked product, then Loa1L; - - - amLm € Dp+1. We do so by build-
ing a %’Ziﬂ(lcg) sentence defining LoaiL; - - - amLm. We have
Ky, K; € BPol(%) for every h < m such that Kya,K; is unambigu-
ous, LoaiL1 -+~ ap_1Lp—y € Ky and LpapyiLpyy - amlm € K;. It
follows that for all w € A*, we have w € LyaiLq - - - amLm, if and
only if the two following properties are satisfied:

a) There are positions i, i1, . . ., im, im+1 € P(w) which satisfy
0=1iy <i] < <im<imt1 = |w|+1and such that for
all A such that 1 < h < m, iy, has label aj, w(0, i) € Kp and
w(ip, |w| + 1) € K;l Observe that these positions must be
unique since KhahK;'l is unambiguous.

b) For 0 < h < m, we have w(ip, ipy1) € Lp.

We show that both properties can be expressed in 9323”1 (Ig). First,
we build @Z%(Hg) formulas with the following lemma.

LEMMA 6.10. For 1 < h < m, there exists a formula Yy, (x) of
932% (Ig) with one free variable x such that for every w € A* and
i € P(w), we havew |= Yy, (i) if and only ifi has label ap, w(0, i) € K,
andw(i,|w|+1) € K;l

Lemma 6.10 holds since Kth;l € BPol(%) (the proof is iden-
tical to that of BPol(%) C %Z% (Ig) in Theorem 6.3). We fix the
932% (Ig) formulas ¢, . . ., Ym for the proof. We use them to define
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new formulas I, (x) for 1 < h < m. We let Iy (x) = ¢4 (x). Addi-
tionally, for h > 1, we define I}, (x) := 5 (x) ATy (y < x AT,_1(y))
(the definition involves implicit variable renaming, this is standard
in FO?). Finally, we let T := 3x Ij, (x). By definition, T is a sentence
of %Z%(Hg) c %’Zle (I) and it expresses Condition a).

We turn to Condition b). We define yy(x) := (x = min) and
Ym+1(x) == (x = max) for the construction. For every h such that
0 < h < m, we construct a %Zi +1 (%) sentence ¢, which satisfies
the following property: for every word w € A* such thatw T
(which yields unique positions iy, i1 € P(w) such thatw = ¢y, (ip)
and w | Yp41(ipe1)), we have w | ¢y, if and only w(ip, ipeq) € Lp.
It will then be immediate that LoaiLg - - - am Ly, is defined by the
sentence ¢ := T'A Ag<p<m @ of %’ZIZHI (Ig), completing the proof.

We now fix h such that 0 < h < m and construct ¢p. By hypoth-
esis, we have Ly, € @, = B2 (Ig). Hence, we get a sentence &}, of
B2 (1) defining Ly,. We build ¢y, from 8}, by applying two kinds
of modifications. First, we restrict the quantifications in §y, to the
positions that are in-between the two unique ones satisfying i,
and 5, 1. We recursively replace each sub-formula of the form 3x {
by the following (we write “x < y” for the formula “x < y v x = ¢”):

Ix (A Gy Un(y) Ay <x) ATy Y (y) Ax <y))).

Intuitively, we are using the unique positions satisfying 3, and ¢,
as substitutes for the two artificial unlabeled positions. Hence, we
also need to tweak the atomic sub-formulas in &y,. First, we replace
all atomic sub-formulas b(x) with b € A by,

b(x) A Gy Wn(y) Ay <x)) A 3y (Yh(y) Ax <y).

We also need to modify the atomic sub-formulas involving the con-
stants min and max. All sub-formulas P(min, x) with P(min, x) =
(min = x) or P(min,x) := Ir(min, x) where L € € are replaced
by y(¥n(y) A P(y, x)). Symmetrically, all sub-formulas P(x, max)
with P(x, max) := (x = max) or P(x, max) := I (x, max) where
L € € are replaced by Jy(¥n41(y) A P(x,y)). Finally, all sub-
formulas Ij (min, max) for L € € are replaced by the formula
AxTy (P (x) A Ype1(y) A IL(x, y)). There can be other atomic sub-
formulas involving min and max such as b(min), (min = max) or
It (max, x). We do not modify them since they are equivalent to L
(i.e., false).

By definition, ¢y, is built by nesting the 932% (Iz) formulas ¥,
and 5, under the sentence &, of B2 (I). Thus, one may verify
that ¢y, is a sentence of 932?1 +1 (%) as desired. One may also verify
that @y, satisfies the desired property: for every word w € A* such
that w = T (we get unique positions iy, ip,; € P(w) such that
w E Yp(ip) and w E Ypeq(ipe1)), we know that w | ¢y, if and
only if w(ip, ipy1) E Oy (i-e, w(ip, ipyq) € Ly). This concludes the
proof. O

7 SEPARATION

We prove that if € is a finite prevariety with decidable separation
and D is a prevariety which satisfy € € 2 C UPol(®), separation
is decidable for the classes LPol(D), RPol(2) and MPol(D). This
result is designed to handle the hierarchies of Section 5 associated
to an input class € which is a finite prevariety. Using Theorem 6.4,
we also get the decidability of separation for all levels B2 (<) in
the quantifier-alternation hierarchy of FO?(<).
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REMARK 7.1. Separation is often considered alongside a more gen-
eral problem called covering (see [25]). We do not discuss it since this
involves too much machinery. However, the results of this section can
be generalized to this problem.

7.1 Preliminaries

We present notions that we use in our separation algorithms. First,
we explain how finite prevarieties are handled.

%-compatible morphisms. Let € be a finite prevariety. A mor-
phism « : A* — M is €-compatible if and only if it is surjective
and recognizes all languages in €.

FAcT 7.2. Let € be a finite prevariety. Given as input two regular
languages Ly and Ly, one may compute a € -compatible morphism
recognizing both Ly and L;.

Non-separable pairs. Let a : A* — M be a morphism and 9 a
prevariety. We let 118g [a] € M? as the set of all D-pairs for a,
ie (s,s") € NSy |[a] if and only if a~1(s) is not D-separable from
a~1(s"). Clearly, 1S [a] can be computed from a if P-separation
is decidable. We have the converse.

LEMMA 7.3. Let D be a prevariety, a : A* — M a morphism and
Fo, F1 C M. In this case, a ' (Fy) is D-separable from a~'(Fy) if and
only if (Fo X F1) N NSg[a] = 0.

For a fixed finite prevariety &, Fact 7.2 implies that given as
input two regular languages Ly and L1, one may compute a single
% -compatible morphism « : A* — M recognizing both Ly and L;.
Thus, by Lemma 7.3, finding a &-separation algorithm boils down
to exhibiting an algorithm for computing 118g [«] from an input
% -compatible morphism « : A* — M. We use this approach below.

We complete the definition with a useful property of the sets
NSgy[a]. Aset S C M? is saturated (for a) if (a(w), a(w)) € S for
every w € A* and S is closed under multiplication: if (s;, s}) € S for
i =1,2, then (slsg,s{sé) €S.

LEMMA 7.4. Let D be a prevariety and a : A* — M a morphism.
Then, N1Sg [ a] is saturated for a.

Alphabet testable languages. The key applications of our sepa-
ration results consider a particular finite prevariety . Let AT be
the class containing the Boolean combinations of languages A*aA*
where a € A. One may verify that AT is a finite prevariety. This
class is connected to the class PT = BPol(ST) of piecewise testable
languages.

LEMMA 7.5. The following equalities hold: UPol(AT) = UPol(PT),
LPol(AT) = LPol(PT) and RPol(AT) = RPol(PT).

REMARK 7.6. This fails for MPol: MPol(AT) € MPol(PT).

7.2 Left/right polynomial closure

Given a finite prevariety € and a prevariety & which satisfy the
inclusions € € @ C UPol(€), we characterize 1187 po(9) [@]
and 11Sgpyi(9) [@] for an arbitrary €-compatible morphism . If
D-separation is decidable, this yields procedures for computing
both sets. By Lemma 7.3, it follows that separation is decidable for
LPol(D) and RPol(D).

We first present the characterization. Let « : A* — M be a sur-
jective morphism. Recall that by Lemma 2.7, the quotient M/~ is a

Thomas Place

monoid. We use the Green relations <g and <g defined on M/~¢.
Let P C M?. We say that another set S C M? is (LPol, P)-saturated
(for @) when it is saturated (for «), and satisfies the following addi-
tional property:
if (e,e”) € S is a pair of idempotents and (s,s”) € P
satisfies [e]g <% [s]g, then (es,e’s’) € S.

(3)

Symmetrically, S is (RPol, P)-saturated when it is saturated (for @),
and satisfies the following additional property:

if (e,e’) € S is a pair of idempotents and (s,s’) € P @)
satisfies [e]g <o [s]g, then (se,s’e’) € S.

We are ready to state the characterization.

THEOREM 7.7. Let € be a finite prevariety and D a prevariety such
that € € 2 C UPol(¥). Leta : A* — M be a €-compatible mor-
phism and P = NSg [a]. Then, 1St poy () [a] is the least (LPol, P)-
saturated subset of M? and NSrpoi(w) L] is the least (RPol, P)-
saturated subset of M? for a.

In view of Theorem 7.7, once we have P = 11 Sg[a] in hand (this
boils down to P-separation by definition), it is possible to compute
NS1poi() [@] and 1Spp,i (o) [@] from & using least fixpoint pro-
cedures. Therefore, we obtain the following corollary from Fact 7.2
and Lemma 7.3.

COROLLARY 7.8. Let € be a finite prevariety and D a prevariety
with decidable separation such that € C 2 C UPol(€). Then
separation is decidable for LPol(2) and RPol(9D).

A key application is the case € = AT. Since AT is finite, AT-
separation is decidable (there are finitely many separator candidates
and we may test them all). Therefore, we may apply Corollary 7.8
recursively to obtain that for every n € N, LP, (AT) and RP,(AT)
are both decidable. By Lemma 7.5, these are also the classes LP, (PT)
and RP, (PT).

COROLLARY 7.9. For every n € N, separation is decidable for
LP,(PT) and RP,(PT).

7.3 Mixed polynomial closure

Given a finite prevariety € and a prevariety 2 which satisfy the
inclusions € € 2 C UPol(%), we characterize 11Sypo(9) [@] for
an arbitrary €-compatible morphism «a. If @-separation is decid-
able, this yields an algorithm for computing this set. By Lemma 7.3,
we get that separation is decidable for MPol(9D).
We first present the characterization. Let ¢ : A* — M be
a surjective morphism. By Lemma 2.7, the quotient M/~¢ is a
monoid. We use the Green relation ,# on M/~g. Let P, P, P, C M?.
We start with a preliminary notion. A (Py, P, Py)-block is a pair
(s1e153€252, s7e7s5e55,) € M? which satisfies (s1,57), (e1,e]) € Py,
(s2, sé), (e, eé) € P, and (s3, sé) € P. Moreover, eq, e{, es, eé must be
idempotents of M such that [e1]¢ £ [e2]le F [sie1s3e2s2]e. We
consider a set S € M2. We say that S is (MPol, Py, P, P;)-saturated
(for ) when it is saturated (for «), and satisfies the following addi-
tional property for every n € N:
if (50,59)s - - -» (Sn, Spy) € M? are (Py, P, P;)-blocks and
(t1,8]), .., (tn, 1) € P satisty [si-1tilg J [si-1lg
and [tisi]lg F [silgfor1 <i<n,
then (sot1s1 -+ tnSn, Sgt;S1 -+ - thsp) € S.
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When n = 0, (5) states that if (so, s(’)) is a (Py, P, Py)-block, then
(50, 39) € S. We may now present the characterization.

THEOREM 7.10. Let € be a finite prevariety and D a prevariety
such that € C @ C UPol(®). Moreover, let a : A* — M be a
G -compatible morphism and let P = NSg [a], P = NS poi(9) (@]
and P; = NSppoi(z) [al. Then, the set NlSypoy(o) [@] is the least
(MPol, Py, P, Py)-saturated subset ofM2 fora.

By Theorem 7.10, once we have the three sets P = 11S8g[«],
Py = NSpoi(w) la] and Py = NSppoi(z)le] in hand, we may
compute 11Sprpor (o) [@] from and & using a least fixpoint algorithm
(note that while (5) must hold for every n € N, one may verify
using a pumping argument that this is equivalent to (5) holding for
n < |M|?). Computing P boils down to D-separation by definition.
It is also possible to compute P; and P, when 9-separation is
decidable by Theorem 7.7. Thus, we get the following corollary
from Lemma 7.3.

COROLLARY 7.11. Let € be a finite prevariety and & a prevariety
with decidable separation such that € C 2 C UPol(€). Then
separation is decidable for MPol(D).

Corollary 7.11 applies to the quantifier alternation hierarchy of
FO?(<). Indeed, it follows from Theorem 6.3 and Lemma 6.2 that
95’2?(<) = BPol(ST) = PT. Moreover, the class PT of piecewise
testable languages is known to have decidable separation (see [5,
24]). Additionally, we have AT C PT C UPol(AT) by Lemma 7.5
and AT is a finite prevariety. Finally, Theorem 6.4 implies that
the levels B2 (<) are built from PT by applying MPol iteratively.
We obtain the following result from Corollary 7.11 and a simple
induction.

COROLLARY 7.12. For all n € N, separation is decidable for the
level BZ2(<).

Let us point out that Corollary 7.12 was proved independently
in [9] using distinct techniques.

REMARK 7.13. Using independent techniques, one may lift Corol-
lary 7.12 to the levels B¥2(<,+1) and B2 (<,+1, MOD) in the
hierarchies of FO?(<,+1) and FO?(<,+1, MOD). It turns out that
BL (<), Br2(<,+1) and B¥2(<,+1, MOD) are connected by an-
other operator called “enrichment” or “wreath product” which is used
to combine two classes into a larger one. First, we have BEZ (<, +1) =
B2 (<) o SU with SU as the class of “suffix languages” (the Boolean
combinations of languages A*w with w € A*). A proof is available
in [18]. Moreover, B3 (<, +1, MOD) = %B¥2(<,+1) o MOD (this is
a standard property which holds for many fragments of first-order
logic, see [23] for example). Finally, it is known that the operators
€ — € oSU and € +— € o SU o MOD preserve the decidabil-
ity of separation [23, 30]. Therefore, Corollary 7.12 also implies that
for every n € N, separation is decidable for both B¥2(<,+1) and
B¥2(<,+1,MOD).

8 CONCLUSION

We investigated the operators LPol, RPol and MPol, and the associ-
ated deterministic hierarchies. We proved that these three operators
preserve the decidability of membership. Moreover, we used MPol
to characterize the quantifier alternation hierarchies of the variants
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FO?(<,Pg) and FO?(<, +1,Pg) of FO? for a group prevariety €.
They imply the decidability of membership for all levels when sep-
aration is decidable for &. Finally, we looked at separation for our
operators and used the results to show that all levels in the quanti-
fier alternation hierarchy of FO?(<) have decidable separation. In
particular, MPol is the linchpin upon which most of our results are
based.

There are several follow-up questions. A first point concerns
membership for the levels LP,, (€)VRP, (%) of the hierarchies intro-
duced in Section 5. These are the only levels which we are not able
to handle in a generic manner. Indeed, it follows from Theorems 4.3
and 5.6 that membership is decidable for all these levels as soon as
this is the case for the first one: LPol(‘€) VRPol(€). Yet, we do not
have a generic result for handling this initial level. Another ques-
tion is whether our separation results for the levels B2 (<) can be
generalized to the variants B2 (<, Pg) and B2 (<, +1,Py) for
arbitrary group prevarieties &. Such a result is proved in [29] for the
first level: if € has decidable separation, then so does 35’2%(<, Pg)
(the proof considers BPol(€) which characterizes 932% (<,Pg) by
Theorem 6.3) Finally, one may also look at the other variants of
FO?: the classes FO?(Ig) for an arbitrary prevariety €. Unfortu-
nately, our results fail in the general case. An example is considered
in [10]: FO? with “between relations”. It is simple to verify from
the definition that this class corresponds to FO? (IaT). The results
of [10] imply that FO?(Iot) is distinct from UPol(BPol(AT)) which
means that Corollary 6.7 fails in this case.
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A APPENDIX TO SECTION 2

We provide proof for the statements presented in Section 2. We
start with those concerning €-morphisms. First, we consider the
following proposition.

PROPOSITION 2.2. Let € be a prevariety. A regular language be-
longs to € iff its syntactic morphism is a € -morphism.

Proor. We fix a regular language L for the proof. Moreover, we
let ap : A* — M as its syntactic morphism. Since L is recognized

Thomas Place

by ar, it is immediate that if @ is a €-morphism, then L € @.
We prove the converse implication. Assume that L € €. We show
that a1 (F) € & for every F C M. Since € is closed under union,
it suffices to consider the case when F = {s} for some s € M.
By definition of the syntactic morphism, &~ (s) is an equivalence
class of =1 . Moreover, since =} has finite index, it is immediate by
definition that it is a finite Boolean combination of languages of
the form {w | xwy € L} for w,y € A*. Since L € ¥ and % is closed
under quotients, all languages {w | xwy € L} belong to €. Hence,
since % is a Boolean algebra, we get a~1(s) € ¥ which completes
the proof. O

We turn to the proposition used to construct €-morphisms.

PROPOSITION 2.3. Let @ be a prevariety and consider finitely many
languages Ly, ..., Ly € B. There exists a €-morphismn : A* - N
such that Ly, ..., Ly are recognized by .

Proor. For every i < k, we let ¢; : A* — M; as the syntactic
morphism of L;. We know from Proposition 2.2 that «; is a €-
morphism. Let M = Mj X - - - X My be the monoid equipped with
the componentwise multiplication and a : A* — M the morphism
defined by a(w) = (a1(w),...,an(w)) for every w € A*. Clearly,
the languages Ly, ..., L, are all recognized by a. Moreover, for
every § = (s1,...,sp) € M, it is immediate that &~ 1(5) = al’l(sl) N
-~ Na,(sy). Hence, a~1(5) € € by closure under intersection. It
follows that every language recognized by « belongs to €. Hence,
it suffices to define 7 as the surjective restriction of « to get the
desired €-morphism. O

We turn to the statements concerning the canonical equivalence
~g associated to every morphism.

LEMMA 2.5. Let @ be a prevariety and ot : A* — M be a morphism.
The equivalence ~g ,, on M is the reflexive transitive closure of the
G -pair relation associated to a.

Proor. We write = for the reflexive transitive closure of the &-
pair relation. We show that ==~g¢ ,. We start with the left to right
inclusion. Since ~g ,, is an equivalence by definition, it suffices that
for every €-pair (s,t) € M?, we have s ~¢ 4 t. Given F C M such
that a1 (F) € €, we have to show thats € F © t € F. We first
prove thats € F = t € F.If s € F, then a~!(s) € &' (F). Hence,
since a1 (F) € € and (s, t) is a €-pair (which means that &1 (s) is
not @-separable from a~!(t)), we have a1 (F) N~ (t) # 0. Thus,
we get t € F as desired. The implication t € F = s € F is proved
symmetrically since (t,s) is also a €-pair (this is immediate from
the definition as % is closed under complement).

We now prove that ~¢ ,C=. Let s,t € M such that s ~¢ , t.
We show that s = t.Let F = {g € M | s = g}. We prove that
a~1(F) € €. Since s ~@.a t, it will follow that ¢t € F by definition,
ie.thats = t as desired. Let ¢ € F and r ¢ F. By definition of =, it is
immediate that (g,r) is not a €-pair. Hence, there exists Hy,r € €
such that @1 (q) € Hg,r and a~!(r) N Hy,r = 0. For every q € F,

we define,
Hy =) Hgr.
r¢F
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Clearly Hy € & since € is a lattice. Moreover, al(q) ¢ Hy and
a~1(r) N H, = 0 for every r ¢ F. This yields,

a (F) = U Hy.
q€eF
Therefore, 2~ (F) € € since € is a lattice. O

We turn to Lemma 2.6.

LEMMA 2.6. Let € be a prevariety and a : A* — M be a surjective
morphism. Then, ~g  is a congruence of M.

Proor. We fix s1, 11, 2, 12 € M such that sy ~¢ t; and s ~¢ 1.
We prove that s;sy ~g titz. Let F € M such that a7 1(F) € €.
We show that sysy € F & tif € F. By symmetry, we only prove
the left to tight implication. Hence, we assume that s;sp € F. Let
u,v € A* such that a(u) = s; and a(v) = ¢ (this is where we use
the hypothesis that « is surjective). Let X = {q € M | s1q € F}.
We have s; € X and a”1(X) = {w € A* | uw € ¢ !(F)} which
belongs to & by closure under quotients. Hence, since s; ~¢ t2,
we get tp € X which yields sit2 € F.LetY = {r € M | rts € F}.
We know that s; € Y since sitp € F. Moreover, we know that
a 1(Y) = {w € A* | wo € a1 (F)} which belongs to & by closure
under quotients. Hence, since s; ~¢ t1, we get t; € Y which yields
t1tp € F as desired. |

It remains to prove Lemma 2.7.

LEMMA 2.7. Let € be a prevariety and a : A* — M be a surjective
morphism. The languages recognized by [-]@ o a : A* — M/~g are
exactly those which are simultaneously in € and recognized by a.

PrOOF. By definition, the languages recognized by [-]¢ o « are
those of the form a~!(F) where F is a ~¢-class. Hence, it suffices
to prove that for every F C M, we have a ' (F) € € if and only
if F is a ~g-class. We fix F € M for the proof. Assume first that
a1 (F) € € we prove that F is a ~g-class. Let s € Fand t € M
such that s ~¢ t. By definition of ~¢ and since a™!(F) € €, we
have t € F. Hence F is a ~g-class as desired. Conversely, assume
that F is a ~g-class. We prove that 2~ (F) € €. Consider s € F. By
definition, we know that for every element r ¢ F, we have s £¢ r.
Hence, there exists a set Fs € M such that (x’l(Fs,r) €6,s€Fs,
and r ¢ Fs . It is now immediate that,

F= U (ﬂ Fs,,).

SE€F \r¢F

Hence, since inverse image commutes with Boolean operation, we

obtain,
(= (ﬂ a*(Fs,r)) :
s€F \r¢F
This yields @~ (F) € € since € is a Boolean algebra. O

B APPENDIX TO SECTION 3

In this appendix, we prove the statements involved in the frame-
work that we use for handling LPol, RPol and MPol. We separate
Proposition 3.11 from the rest as it requires quite a bit of work.
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B.1 Statements involved in the definition
We start with Lemma 3.8.

LEMMA 3.8. Let € be a prevariety and a : A* — M a UPol(%)-
morphism. For every h € N and every word w € A*, Ps.(a, h,w) C
Po([]lg © &, h|M|,w) and P4(a, h,w) C Po([‘]g © a, h|M|, w).

Proor. We write N = M/~g andny = [-]g ca : A* - N
for the proof. We show that Py (e, b, w) C Pi(n, h|M|, w) for all
w € A* and h € N. The other inclusion is symmetrical and left to
the reader. Let ay, .. ., as € A be the letters such that w = a; - - - ap.
We use induction on h. If h = 0, then Py (o, 0, w) = Pi. (5,0, w) = 0.
Assume now that h > 1 and let i € Py (a, h, w). We show that
i € Pr(n, h|M|, w). By definition, there is j € Pr (o, h — 1, w) U {0}
such that j < i and a(w(j,i)a;) <@ a(w(j,i)). By induction,
we get j € Pu(n,(h — 1)|M|,w) U {0}. Let i1,...,in € Pc(w)
be all the positions in w which satisfy j < i; < -+ < iy and
a(w(j,ir)ai,) <g a(w(j, i) for 1 < ¢ < n. Note that n < |M|
by definition. Since i € {iy, ..., in} by hypothesis, it now suffices
to prove that iy,...,i, € Py (n, h|M|, w). We write iy = j. For ev-
ery £ such that 1 < ¢ < n, we prove that n(w(i,—1,ir)ai,) <g
n(w(ip-1,ip)). Since we have iy = j € Pr.(n, h|M| — |M|,w) U {0}
and n < |M|, this implies that iy, ..., in € Ps (5, h|M|, w) by defini-
tion.

We proceed by contradiction. Assume that there exists an in-
dex 1 < ¢ < n such that n(w(ie—1,ir)ai,) R n(wlic-1,ir)). We
write u = w(j,ip-1)ai,_,, v = w(ip—1,ir). Our contradiction hy-
pothesis states that n(va;,) £ n(v). This yields y € A* such
that n(va;,y) = n(v). Moreover, a(uva;,) <g a(uv) X a(u) by
definition of iy, ..., i,. Hence, we get a word z € A" such that
a(uvz) = a(u). Since n(va;,y) = n(v), we have n(va;,yz) = n(vz),
ie. a(va;j,yz) ~¢ a(vz) by definition of 5. Therefore, since « is a
UPol(%)-morphism, it follows from Theorem 3.7 that (a(vz))“*! =
(a(vz))?a(vai,yz) (a(vz))®. We multiply on the left by a(u). Since
a(uvz) = a(u), we get a(u) = a(u)a(va;,yz)(a(vz))“. Hence,
we obtain a(uv) <g a(uva;,), contradicting the hypothesis that
a(uva;,) <g a(uv). This concludes the proof. O

We now prove Lemma 3.9. We first present a preliminary result
that we shall reuse to prove other statements.

Fact B.1. Letn : A* — N be a surjective morphism and consider
w,w’ € A*, P C Pc(w) and P’ C P.(w’). Assume that ;) (w, P) =
oy(w’,P’) and let P1,P; C P such that Py U P, = P. There exist
P{,P, C P’ such that P{ U P; = P’, oy(w,P1) = oy(w’,P|) and
oy (w, Pz) = oy (w’, Py).

PRroOF. Since oy (w, P) = oy (w’, P’), we have |P| = |P’|. Hence,
there exists a unique increasing bijection f : P — P’ (by “increas-
ing”, we mean that i < j = f(i) < f(j) for every i,j € P). We
let P{ = f(P1) and P; = f(P2). Clearly, we have P{ U P} = P’
since P; U P2 = P. One may then verify using our hypothesis on
(w,P) and (w’, P’) that oy(w, P1) = g;(w’, P{) and oy (w,P2) =
on(w', Py). o

We now turn to Lemma 3.9 itself.

LEMMA 3.9. Letn : A* — N be a surjective morphism, k € N and
x € {>, <,»<}. Consider two words w,w’ € A* and P’ C P.(w’). If
on(w, Pz (11, k, w)) = oy (W', P’), then P’ = P (n,k, w’).
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Proor. First, note that the case £ = » is a corollary of the
other two. Indeed, assume for now that they hold and that we
have oy (w, Pua(9, k, w)) = oy (w’, P’). By definition, we know that
Poa(n,k,w) = Pu(n,k,w) UP4(n, k, w). Consequently, Fact B.1
yields PJ, P; C P’ which satisfy P’ = P{ U P,, oy (w,Pn(1,k, w)) =
oy(w’, P) and o, (w,Pq(n,k,w)) = oy(w’, P;). Hence, the cases
when x € {>, <} yield Pl' =P.(n,k,w’) and PZ’ =P4(n,k,w’). We
get P’ =P (n,k,w) UP4(n, k, w') = Poa(n,k, w’) as desired.

We turn to the case x = 1> (the case = < is symmetrical and
left to the reader). Let w = ay ---am € A* and w’ = by - - b, € A*.
Additionally, we assume that o (w, P» (7, k, w)) = o (w’, P’). We
prove P’ = Pi. (5, k, w”). We have |Ps (1, k, w)| = |[P’| by hypothesis.
Consider the unique increasing bijection f : Py (n,k,w) — P’
(by “increasing”, we mean that i < j = f(i) < f(j) for all i, j).
We extend it to the unlabeled positions 0 and |w| + 1 by defining
f(0) = 0and f(|]w| + 1) = |w’| + 1. One may now verify that our
hypothesis implies the following two properties:

(1) foralli € Pi (7, k, w), we have a; = by(;) (i and f(i) have

the same label), and,

(2) foralli, j € Po(n,k,w) U{0,|w|+ 1}, if i < j, then we have

n(w(i, j)) = n(w’(f (D), £()))-

First, we show that P’ C P.(n,k,w’). Let h < k. Using induc-
tion on h, we prove that f(i) € P.(n, h,w’) for all i € P.(n, h, w).
Since f is surjective, the case h = k yields P’ C Pi.(n,k, w’). We
consider i € Py (1, h,w). By definition, » > 1 and there exists
Jj € Po(n,h—1,w) U {0} such that j < i and we have the inequality
n(w(j,i)ai) <g n(w(j,i)). We have f(j) < f(i) since f is increas-
ing. Moreover we know that f(j) € Pr (5, h—1,w’) U{0} by induc-
tion. We know that a; = br(;) and n(w(j, i) = n(w’(f(j), f(i))).
Thus, we get n(w’(f(j), f(D)br(i)) <z n(w’(f(j), f(i))) and we
conclude that f(i) € Pi (7, h, w’) as desired.

We now prove that Py (1, k, w’) € P’. Let h < k. Using induction
on h, we prove that for all i’ € Py (5, h, w’), there is i € Pi.(, h, w)
such that i’ = f(i). This implies Py (5,k,w’) C P’ as desired.
We fix i’ € Po(n, h,w’). By definition, h > 1, and there exists
Jj  €Pu(n,h—1,w)U{0} suchthat j* < i’ and n(w’(j’,i")by) <z
n(w’(j’,i’)). Induction yields a position j € Py (7, h — 1,w) U {0}
such that j* = f(j). Let iy, ..., ip be all positions of w such that j <
iy <+ <ipandn(w(j,ig)ai,) <g n(w(j,ir))forl < £ < n.Since
we have j € Po.(n,h — 1,w) U {0}, we get i1,...,in € Pu(n, h,w).
Thus, it suffices to prove that i’ = f(i;) for some £ < p. We proceed
by contradiction. Assume that i’ # f(ig) for 1 < £ < p. For the
proof, we write iy = j and ip+1 = |w| + 1. Clearly, we have ip <
iy < -+ < ipy1 which implies that f(ig) < f(i1) <+ < f(ip+1).
Hence, by hypothesis on i’ and since f(ip) = j’ < i’, there exists
¢ such that 0 < £ < nand f(if) < i’ < f(ig+1). By definition of
it,..... ip, we have n(w(j,ir)a;,) % n(w(j.is1)). Since ' = £(j),
we get n(w'(j’, f(ie)br(i,)) R n(w(j’, f (ie+1))). Therefore, since
flie) <i" < f(iex1), we get n(w’(j’,i")) R n(w(j’,i")bi). This is
a contradiction since n(w’(j’,i")by) <g n(w’(j’,i’)) by hypothe-
sis. ]

We turn to Lemma 3.10.

LEmMA 3.10. Let n : A* — N be a morphism, w € A* and
k € N. Let P be the set Pr (5, k,w) (resp. Pa(n,k,w), Poa(n, k, w))
and (sg,a1,81,...,an,Sn) = aq(w,P). Then, the marked product
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07 (so)a1n~1(s1) - - ann” (sn) is left (vesp. right, mixed) determin-
istic.

PROOF. We treat the case when P = Po« (7, k, w) (the other cases
are similar and left to the reader). For all h such that 1 < h < n,
we define U, = 7 (so)a1n~'(s1) - ap_1n ' (sp—1) and we de-
fine V, = n7 (sp)apsr -1 (snm1)ann " (sn). We show that ei-
ther Uy N UpapA* = Q0 or Vi, N A%apVy, = 0. Let iy <-+- <y
such that Poo(n,k,w) = {i1,...,in} (i, has label ap). By defini-
tion of Poo(1, k, w), we know that either iy, € Po(n,k,w) or i}, €
P4(n,k,w) for 1 < h < n.In the former case, one may prove
that U, N UpapA™ = 0 and in the latter case, one may prove that
Vi, NA*apVy, = 0. By symmetry, we only prove the former property.
Let h such that 1 < h < n and assume that i, € Py (9, k, w). We
use induction on the least number m such that iy, € Py (17, m, w) to
show that Uy, N UpapA* = 0.

By definition, we get a position j € P (,m — 1, w) U {0} such
that n(w(j,ip)ap) <g n(w(j,ip)). Let ¢ = n(w(j, ip)). Observe
that n71(q)apA* N n~1(q) = 0. Indeed, otherwise we get x € A*
such that g = gqn(ap)n(x) which contradicts gn(ay) <g gq. This
concludes the proof when j = 0. Since g = n(w(0, i,)) in this case,
one may verify that U, C n7!(gq). Hence, we get Uy, N UpapA* = 0.
Assume now that j # 0. Hence, j € P (1, m — 1, w) which implies
that j = iy for some g < h. By induction, Uy N UyagA* = 0. We use
contradiction to prove that Uy N UpapA* = 0. Assume that there
exists u € Up NUpapA*. Since q = n(w(ig, ip)), one may verify that
Uy € Ugagn™1(q). Hence, we get x,x” € Uy, y,y’ € 7 (q) and z €
A” such that u = xagyapz = x"agy’. Since we have UyNUjagA* = 0,
this yields x = x’. Thus, yapz = y’. This is a contradiction since
n ' (@apA* N~ (g) = 0. =

We now prove Lemma 3.12.

LEMMA 3.12. Ifn : A* — N is a surjective morphism and k € N,
then >y i, <, k. and <y i are congruences of finite index.

Proor. We present a proof for »<, ;. It is immediate from the
definition that >« ; is an equivalence. Moreover, it has finite index.
Indeed, one may verify using induction on k that for every w € A*,
we have |Poa(7, k, w)| < 2|N|¥ (the key point being that this bound
does not depend on w). Hence, there are only finite possible 7-
snapshots oy (w, Pea(, k, w)) for w € A*. Tt follows that >, ; has
finite index. It remains to prove that »<, ; is a congruence. Let
uy, up, 01,02 € A* such that uy, <y k Up for h = 1, 2. We prove that
Utz p<p i 0102. We let P as the set of all positions i € P, (uiup) such
that either i € Poa(#, k, u1) ori —|u1| € Poa(n, k, uz). Symmetrically,
we let Q as the set of all positions i € P.(v1v2) such that either
i € Poa(n, k,01) ori—|v1| € Poa(n, k,02).

By hypothesis, oy (up, Poa(1, k,up)) = oy (0p, Pes(n, k, vp)) for
h = 1,2. This yields oy (u1u2, P) = oy (v102, Q) by definition. More-
over, one may verify from the definitions that Poa(, k, uguz) C P.
Hence, Fact B.1 yields Q" C Q such that oy (u1uz, Pea(n, k, uyuz)) =
oy (0102, Q). Therefore, Q" = Pua(7, k,v102) by Lemma 3.9. Alto-
gether, this yields ujuz > ¢ 0102, completing the proof. O

We turn to the proof of Proposition 3.13.

PROPOSITION 3.13. Let € be a prevariety and L C A*. Then,
L € LPol(®) (resp. L € RPol(€), L € MPol(¥)) if and only if there
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exist a €-morphismn : A* — N and k € N such that L is a union of
>y, k-classes (resp. < . -classes, <y, . -classes).

Proor. We present a proof argument for MPol(%) (the other
cases are similar and left to the reader). Assume first that L €
MPol(®). We exhibit a €-morphism 5 : A* — N and k € N such
that L is a union of >, ;. -classes. By definition of MPol(%), there
exists a finite set H of languages in € and m > 1 such that L is a
finite disjoint union of mixed deterministic marked products of at
most m languages in H. By definition, every unambiguous product
of languages in H belongs to UPol(‘%). Hence, since UPol(%) is
a prevariety by Theorem 3.6, Proposition 2.3 yields a UPol(%)-
morphism « : A* — M recognizing every unambiguous marked
product of at most m languages in H. Consider the congruence ~¢
on M. Welet N =M/~gandn=[]goa:A" — Nand k = |M|.
Lemma 2.7 implies that 7 is a €-morphism. Moreover, since all
H € H belong to & and are recognized by « (by definition), the
lemma also implies that 7 recognizes every H € H. It remains to
prove that L is a union of M”!k—classes. For all w, w” € A* such that
w <, ;. w', we prove that w € L & w’ € L. By symmetry, we only
prove the left to right implication. Thus, we assume that w € L and
prove that w’ € L.

Since w € L, it follows from the definition of H and m that there
exist Hy,...,H, e Hand ay,...,a, € Asuchthatn+1 < m,w €
Hypa1Hy - - anH, C L and Hya1H; - - - anHy, is mixed deterministic.
Consequently, it suffices to prove w’ € Hpa1Hj - - - apHy. Since
w € Hoa1Hy -+ -apHp, we get wj € Hj for 0 < j < n such that
w = woaiwi - - - apwp. Let P C P.(w) be the set of all positions
carrying the letters ay, . . ., ap. We prove that P C Poo(7, k, w). Let
us first explain why this implies w’ € Hpa1Hj - - - anHp. Assume
for now that P C P.«(n, k, w). Since we have w >y k w’, Fact B.1
yields a set P’ C Pua(1, k, w') such that ;) (w, P) = ;(w’,P’). By
definition of P, this exactly says that w’ admits a decomposition
w’ = wgarwj - - - apwy, such that ry(wj'.) = n(wj) for every j < n.
Since H, ..., Hy, € H are recognized by n and w; € H; for every
Jj < n, this yields WJ’. € Hj for every j < n. Therefore, we get
w’ € Hya1H; -+ - anHy, C L as desired.

It remains to prove that P C Poa(, k, w). Since a : A* — M isa
UPol(€)-morphism and k = |M|, Lemma 3.8 yields Poa(at, 1, w) C
Poa(n, k, w). We prove that P C Poo(a, 1, w). We fix a position i € P
for the proof. By definition of P, there exists j < n such that the
position i is the one labeled by the highlighted letter a; in w =
woaiwy - - - dpwp. We let u = woaiwy - - - wj-1 € Hoa1Hy - - Hj—1.
Moreover, we let v = wj - --apwp € Hj - - - anHy. Clearly, we have
w = uajv. Since Hya1Hy - - - anHy, is mixed deterministic, we know
that the marked concatenation (HoaiHy - - - Hj-1)a;j(H; - - - anHp)
is either left deterministic or right deterministic. By symmetry,
we only treat the former case and prove that i € Py (a,1,w) C
Poa(a, 1, w) (in the latter case, one proves that i € P4(e, 1, w)). Thus,
we assume that (HoaiHy - - - Hj—1)aj(Hj - - - anHp) is left determin-
istic. Recall that i is the position carrying the highlighted letter a;
in the decomposition w = uajo of w. Hence, we have to prove that
a(uaj) <g a(u). This will imply i € Pi. (e, 1, w) as desired. By con-
tradiction, assume that a(ua;) & a(u). This yields x € A* such that
a(uajx) = a(u). By definition of u, we have u € Hya1Hy - - - Hj—;.
Moreover, since the whole product Hya1H;j - - - apHy, is mixed de-
terministic, one may verify that Hya;H; - - - Hj— is unambiguous
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which means that it is recognized by « (it is a unambiguous marked
product of j < n < mlanguages in H). Hence, since a(uajx) = a(u),
we obtain that ua;jx € HoaiH; --- Hj1. Since it is also clear that
uajx € Hoa1H;---Hj_1ajA*, we obtain a contradiction to the
hypothesis that (Hoa1Hy - - - Hj—1)a;j(H; - - - anHp) is left determin-
istic. This concludes the proof for the left to right implication in
Proposition 3.13.

We turn to the converse implication. We fix a €-morphism
n: A" — Nandk € N. We prove that every v, y-class is de-
fined by a mixed deterministic marked product of languages in
€. Since equivalence classes are pairwise disjoint and »<, ; has
finite index, this implies that every union of >, ;. -classes belongs to
MPol(%) as desired. We fix w € A* and consider its <, -class. We
define oy (w, Poa(n, k, w)) = (s0,a1,51, - - ., an, Sn). Moreover, we let
Ly = 57 (sp) for every h < n. We have Ly, € € since 7 is a G-
morphism. Let L = LoaiL; - - - anLy. We know from Lemma 3.10
that LoaiL; - - - an Ly, is mixed deterministic. Hence, L € MPol(%).
We show that L is the »<, ¢ -class of w, completing the proof. Let
w’ € A*. We prove that w s, w’ if and only if w’ € L. If
w’ bay i w, then oy (w', Poa(n, k, w')) = 0y (W, Poa(, k, w)). Hence,
on(w’, Pua(, k,w")) = (50,a1,51, ..., an, Sn) which yields w’ € L
by definition of n-snapshots. Assume now that w’ € L. By defi-
nition of L, we have w’ = wjajw; - - - apwy, with (x(w}’l) = sy, for
every h < n. Let P’ C P.(w’) be the set containing all positions
carrying the highlighted letters ay, ..., an. Clearly, oy (w’,P’) =
(0, 1,51, - - -, an, sp). Therefore, oy (w, Poa(n, k, w)) = oy(w’, P’).
It then follows from Lemma 3.9 that P’ = Poo(n, k, w’). Altogether,
we get w b<y . W’ as desired. m]

Finally, we prove Corollary 3.14.

COROLLARY 3.14. Let € be a prevariety and Ly, ..., Ly, finitely
many languages in LPol(€) (resp. RPol(€), MPol(€)). There is a
€ -morphismn : A* — N andk € N such that Ly, ..., Ly, are unions
of >y -classes (resp. <iy g -classes, p<y, . -classes).

ProOF. In this case as well, we only consider MPol(%) (the
other cases are similar and left to the reader). Hence, we assume
that Ly, ..., Ly € MPol(€). For every i < m, it follows from Propo-
sition 3.13 that there exist a €-morphism ; : A* — N; and k; € N
such that L; is a union OfM']i,ki -classes. Let M = N1 X- - -XNp, be the
monoid equipped with the componentwise multiplication and « :
A* — M be the morphism defined by a(w) = (71(w), ..., nm(w))
for every w € A*. We let n : A* — N as the surjection induced
by a. One may verify that 1 is a €-morphism since & is closed
under intersection and ; : A* — N; was a €-morphism for every
i < m. Finally, let k = max(ky, ..., k). One may now verify from
the definitions that >« is finer than >, ;. for every i < m. Hence,
Ly,..., Ly are unions of Mq,k—classes as desired. [m]

B.2 Proof of Proposition 3.11

We start with preliminary results that we require to prove the
proposition. Let @ : A* — M be a morphism. An a¢-monomial is a
marked product of the form a1 (so)ajaa (s1) - - - aga™! (s4) where
$1,...5q € M. The number d is called the degree of this @-monomial.
Moreover, an a-polynomial is a finite union of @-monomials. Its
degree is the maximum among the degrees of all -monomials in
the finite union. We have the following simple lemma.
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LEMMA B.2. Let a be a morphism and K, L which are defined by
a-polynomials of degrees m,n € N. Then K N L is defined by an
a-polynomial of degree at most m + n.

ProOF. Since intersection distributes over union, we may as-
sume without loss of generality that K, L are defined by a-monomials
of degrees m,n € N. Moreover, since there are finitely many a-
monomials of degree at most m + n, it suffices to prove that for
every w € K N L, there exists H C A" which is defined by an
a-monomial of degree at most m + n and such that w e H C KN L.
The finite union of all these languages H will then define KN L. We
fixweKnNL.

By hypothesis, K = a~!(so)ara™'(s1) - - - ama™(s;) and L =
a L(to)bra 1 (t) - - - bma ' (tm). Hence, since we have w e KN L,
there are P, Q C P(w) such that o4 (w, P) = (s0, a1, 1, - - -» Am» Sm)
and o (w, Q) = (to, b1, 11, ..., b, tn). We define R = P U Q. Clearly,
¢ =|R| < |P|+|Q| = m+n.Let (qo,c1,91, - - -, e, q¢) = 0o (W, R). We
let H as the language defined by a~!(go)c1a ' (q1) - - - coa™1(ge) of
degree £ < m + n. One may now verify thatw € H C KN L. O

We complete the definition with two lemmas for a-polynomials.
They are designed to exploit our hypothesis on the class € in
Proposition 3.11 (i.e. € € {€, €*} for a group prevariety ¥).

LeEmMA B.3. Let @ : A* — G be a morphism into a group and
x,y,w € A* such that a(xw) = a(w) and a(wy) = a(w). For every
a-polynomial H C A*, we havew € H = xwy € H.

Proor. Assume that w € H. Since G is a group our hypotheses
on x and y imply that a(x) = a(y) = 1G. Moreover, if w € H,
there exists an a-monomial K in the union defining H such that
w € K. One may now verify that K = = (15)Ka~!(1g). Hence,
xwy € K C H as desired. O

We now consider the morphisms « : A* — M such that a(A™)
is a group.

LEMMA B.4. Let @ : A* — M be a morphism, u,o € A* and
n € N such that G = a(A*) is a group and |u| = |o| = n. Let
x,y,w € A* such that a(xw) = a(w), a(wy) = a(w), w € uA*v
and xwy € uA*v. For every a-polynomial H C A* of degree at most
n, we havew € H = xwy € H.

Proor. When n = 0, the lemma is trivial. The a-polynomials of
degree 0 are exactly the languages recognized by a. Thus, since our
hypotheses yields a(xwy) = a(w), we get that w € H = xwy € H
for every a-polynomial H of degree 0.

Assume that n > 1 and w € H. We get an a-monomial K
in the union defining H such that w € K. We write d < n for
the degree of K. By definition, we know that K is of the form
K = a (so)ara(s1) - - - aga™!(s4). Consequently, we have w =
woaiwi - - - agwg where a(w;) = s; for every i < d. Since w € uA*v
and |u| = |v| = n, we know that |w| > 2n. Thus, since d < n, there
exists i < dsuchthatw; # e&. Weleth < dand ¢ < d as the least and
the greatest such i respectively, u’ = woay - - - wp_qap, = a1 - - - ap, (if
h=0,thenu’ =¢)and v’ = apy1Wes1 - - agwyg = apy1 -+ - ag (if £ =
d, theno’ = 0). By definition, we have y = u’wpap . wpy1 - - - apweo’
and wy, wy € A*. By definition, |[u’| < d < nand |0'| < d < n.
Thus, since y € uA*v and |u| = |o| = n, it follows that u’ is a prefix
of u and v’ is a suffix of v. Since we also know that xwz € uA*v,
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this yields z € A* such that xwy = u’zov’. By hypothesis on w, we
also know that xwy = xu’wpap Wyt - - - apweo’y. Thus, we get
x’,y’ € A* such that u’x” = xu’ and y’v’ = v’y. Altogether, it fol-
lows that xwy = u'x"wpap 1 Whye - - - arwey’v’. We now prove that
a(x’wy) = sp and a(wey’) = sp. By symmetry, we only detail the
former. This is trivial if x” = e. Thus, we assume that x’ € A*. Since
u’x’ = xu’, we have x € A™ as well. Hence, since a(xw) = a(w),
w € A* and G = a(A") is a group, we get a(x) = 1. Thus, since
uw'x’ = xu’ and u’ € AT, we get a(u’x’) = a(u’). It follows that
a(x’) = 1¢. Finally, since wy, € A", we have a(wy) € G and it
follows that a(x’wy) = a(wy) = s,. We may now complete the
proof that xwy € H. We obtain,

-1 -1 -1
X' Wpapyy - agwey’ € o7 (sp)ap @ (Spe) - aea” (se).

By definition, we know that u’ € a~!(so)a; - -- @ ' (sp_1)a and
v’ € apa~(ag) - - - aga~!(s4). Consequently, we obtain that xwy =
w'x'whap Whet - apwey’v’ € K C H. O

We may now prove Proposition 3.11. We first recall the statement.

PROPOSITION 3.11. Let & be a group prevariety and € € {Z, %"}
Ifn : A* — N is a BPol(€)-morphism and k € N, there exists a
BPol(€)-morphism,y : A* — Q such that Py (n,k,w) C Pp(y, 1, w)
andP4(n,k,w) C Pa(y, 1, w).

ProoF. Let us first define y. By hypothesis, n is a BPol(€)-
morphism. Hence, there exists a finite set L of languages in &
such that all languages recognized by n are Boolean combinations
of marked products of languages in L. Proposition 2.3 yields a €-
morphism « : A* — M recognizing every L € L. Therefore, since
union distributes over marked concatenation, every language recog-
nized by 7 is a Boolean combination of a-monomials. These Boolean
combinations can be put into disjunctive normal form. Moreover,
intersection of @-monomials are finite unions of €-monomials by
Lemma B.2. Consequently, there exists a number n € N such that
every language recognized by 7 is a finite union of languages of
the form L \ H where L is an a-monomial of degree at most n
and H is a finite union of @#-monomials of degree at most n (i.e.,
an a-polynomial of degree at most n). Clearly, there are finitely
many a-polynomials of degree at most (3n+ 1) X k and since a is a
@-morphism, they all belong to Pol(%) C BPol(€). Hence, Propo-
sition 2.3 yields a BPol(%)-morphism y : A* — Q recognizing
every a-polynomial of degree at most (3n+ 1) X k.

It remains to prove the inclusions Py (1, k, w) € Pi(y, 1, w) and
P4(n,k,w) C P4(y,1,w) for every w € A*. By symmetry, we only
prove the former. We fix w € A* for the proof. The hypothesis that
€ € {¢,Z*} implies the following lemma.

LEmMA B.5. Let h such that 1 < h < k, i € Po(n,h,w) and
a € A the label of i. There exists an a-monomial K of degree at most
(3n+1)h — 1 such that w(0,i) € K and w(0,i) ¢ KaA*.

Let us first apply Lemma B.5 to complete the main argument.
Leti € P (1, k, w). We show that i € P (y, 1, w). Let a be the label
of i. By definition, we have to prove that y(w(0,i)a) <g y(w(0,i)).
Since y is surjective (recall that it is a BPol(®)-morphism), this boils
down to proving that y(w(0,i)) # y(w(0,i)au) for every u € A*.
We fix u for the proof. Lemma B.5 yields an a-monomial K of degree
at most (3n + 1)k — 1 such that w(0,i) € K and w(0,i) ¢ KaA".
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Clearly, KaA™* is defined by an a-polynomial of degree at most
(3n+1)k. Hence, KaA* is recognized by y. Since we have w(0, i)au €
KaA* and w(0,i) ¢ KaA*, we obtain y(w(0,i)) # y(w(0,i)au)
which completes the proof.

It remains to prove Lemma B.5. We consider a number h such
that1 < h < k,i € Po(n, h,w) and a € A the label of i. We have to
construct an ¢-monomial K of degree at most (3n + 1)h — 1 such
that w(0,i) € K and w(0,i) ¢ KaA*. We proceed by induction on
h. By definition, there exists j € Ps(n,h — 1,w) U {0} such that
n(w(j,i)a) <g n(w(j,i)). We first prove an important result about
the word w(jj, i). Recall that by hypothesis, we have € € {€,&*}.
Hence, @ : A* — M is a ' morphism and since ¥ is a group
prevariety, Lemma E.1 implies that G = a(A™") is a group. We prove
that there exists an a-monomial V of degree at most 3n which
satisfies the following property:

w(j,i) e Vand w(j,i) ¢ ({e}Ua 1 (15))VaA*. 6)

Let t = n(w(i, j)). By construction, since w(i, j) € n~1(t), there
exist an @-monomial L and an a@-polynomial H, both of degree at
most n and such that w(i, j) € L\ H C n7(t). There are two cases
depending on a.

Construction of V, first case. We assume that 1y € G, i.e. a(A*) =G
and 1y = 1g. We let V. = L which is an a-monomial of de-
gree at most n < 3n. We already know that w(i,j) € L. We
show that w(j,i) ¢ ({e} U a~!(1g))LaA*. We proceed by con-
tradiction. Assume that w(j,i) = xyaz with a(x) = 1g (since
1pm = 1g, this covers the case when x = ¢), y € L and z € A™.
We show that n(xy) = n(w(j,i)) = t. Since w(j,i) = xyaz, this
yields n(w(j,i)) = n(w(j, i)az), contradicting the hypothesis that
n(w(j,)a) <g n(w(j,i)).Since L\ H C n71(¢), it suffices to prove
that xy € L \ H. Since a(x) = 1g = 11, we have a(xy) = a(y). We
also have y € L which is an a-monomial. Thus, since a(A*) = G is
a group, Lemma B.3 yields xy € L. It remains to prove xy ¢ H. By
contradiction, we assume that xy € H. Since xy € L and w(j,i) € L,
one may verify from the definition of ¢-monomials that a(xy) =
a(w(j,i)). Since w(j, i) = xyaz, we obtain a(xy) = a(xyaz). More-
over, H is an a-polynomial by definition. Thus, since a(A*) = Gisa
group, Lemma B.3 yields w(j, i) = xyaz € H. This is a contradiction
since w(j, i) € L \ H by hypothesis.

Construction of V, second case. We assume that 1)y ¢ G. Since
a(A*) = G, it follows that a~1(1y) = {¢}. We consider two sub-
cases. First, assume that |w(j,i)| < 3n. In this case, we let V =
{w(j,1)}. Since a~!(1n) = {e}, this is an a-monomial of degree
|w(j,1)| < 3n.Since w(j,i) € Vandw(j,i) ¢ ({e}Ua"1(1g))VaA*,
(6) is proved.

We now consider the sub-case when |w(}j, )| > 3n. This hypoth-
esis yields u,v € A" such that |u| = |[o| = n and w(j,i) € uA*o.
Since a~1(1y) = {e}, it is immediate that uA*v is defined by an a-
polynomial of degree 2n. Since L is an ¢-monomial of degree at most
n, Lemma B.2 yields that L NuA*v is defined by an a-polynomial of
degree at most 3n. Since w(j, i) € L NuA*v, we get an a-monomial
V of degree at most 3n such that w(j,i) € V € L NuA*v. It re-
mains to prove that w(j,i) ¢ ({e} U a~!(1g))VaA*. By contra-
diction, we assume that w(j, i) = xyaz with x = ¢ or a(x) = 1,
y € V and z € A*. We prove that n(xy) = n(w(j,i)) = t. Since
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w(j,i) = xyaz, this implies that n(w(j,i)) = n(w(j,i)az), con-
tradicting the hypothesis that n(w(j,i)a) <g n(w(Jj,i)). Since
L\ H C n7(¢), it suffices to prove that xy € L\ H. By hypoth-
esis on V, we have y € L N uA*v. Thus, xy € A*uA*v and since
w(j,i) = xyaz € uA*v, it follows that xy € uA*v. Since y € A*
(which means that a(y) € G) and either x = ¢ or a(x) = 1g, we
also have a(xy) = a(y). Hence, since L is an a-monomial of degree
at most n and a(A*) = G is a group, it follows from Lemma B.4
that xy € L. It remains to show that xy ¢ H. By contradiction, we
assume that xy € H. Since w(j, i) = xyaz and xy both belong to
L which is an a-monomial, we have a(xy) = a(xyaz). Moreover,
xy € uA*v and xyaz = w(i,j) € uA*v. Hence, since H is an a-
polynomial of degree at most n by definition and a(A*) = G isa
group, Lemma B.4 yields w(j, i) = xyaz € H. This is a contradiction
since w(j, i) € L\ H by hypothesis. This completes the construction
of V.

Construction of K. With our a-monomial V of degree at most 3n in
hand, we may build K. There are two cases depending on whether
Jj =0orj > 1. Assume first that j = 0. In that case, we choose
K = V which has degree 3n < (3n + 1)h — 1. By (6), we have
w(0,i) € K and w(0,i) ¢ KaA™ as desired.

Assume now that 1 < j < i. Since j € Py (1, h — 1, w), it follows
that h — 1 > 1. Let b be the label of j. Induction on 4 in Lemma B.5
yields an a-monomial U with degree at most (3n+ 1)(h—1) — 1
such that w(0, j) € U and w(0, j) ¢ UbA*. We define K = UbV. By
hypothesis on U and V, we know that K is an a-monomial of degree
atmost (3n+1)(h—1)—1+1+3n = (3n+1)h — 1. Moreover, we
have w(0, i) = w(0, j)bw(j,i) € UbV = K. It remains to prove that
w(0,i) ¢ KaA*. We use contradiction. We assume that w(0,i) €
KaA* = UbVaA*. We get x € U,y € V and z € A* such that
w(0, i) = xbyaz. Moreover, we know that w(0, i) = w(0, j)bw(J, i)
and since w(0, j) ¢ UbA*, the word xb € Ub cannot be a prefix
w(0, j). Hence, we have x’ € A* such that xb = w(0, j)bx’ and
x"yaz = w(j, i). Since U is an a-monomial and x, w(0, j) € U, we
have a(x) = a(w(0, j)). Hence, a(xb) = a(w(0, j)b) and since xb =
w(0, j)bx’, it follows that either x” = £ or a(x”) = 1. We conclude
that w(j,1) = x’yaz € ({e} Ua~'(1g))VaA*. This contradicts (6)
in the definition of V' which concludes the proof. O

C APPENDIX TO SECTION 3

In this appendix, we prove Theorem 4.1 and the present the missing
proof for Lemma 4.5 (which is used to prove Theorem 4.3 in the
main text). We omit the proof of Theorem 4.2 since the argument is
symmetrical to the one for Theorem 4.1. Additionally, we present
a simple lemma which reformulates the characterizations of LPol
and RPol. We shall use it multiple times in the sequel.

C.1 Characterization proofs
We start with the proof of Theorem 4.1.

THEOREM 4.1. Let € be a prevariety and a : A* — M a surjective
morphism. The following properties are equivalent:

a) a is an LPol(€)-morphism.
b) s“* = 5@t for all €-pairs (s, t) € M2,
¢) s®1 =59t for alls,t € M such thats ~g t.
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ProoF. We first prove that a) = b). We assume « is an LPol(%)-
morphism and prove that b) holds. Consider a @-pair (s, t) € M2.
We show that s**! = s?t. Corollary 3.14 yields a €-morphism
n: A* — N and k € N such that for every language recognized
by @ is a union of >, r-classes. Since (s,?) is a €-pair and 7 is
a @-morphism, one may verify that there exist u,o € A* such
that n(u) = n(v), a(u) = s and a(v) = t. Let p = w(M) X o(N),
w = uP*y and w’ = uP*v. We have the following lemma.

LemMA C.1. Foreveryi € Py (n,k, w), we havei < [uPk|.

Proor. We use induction on h to show that for every h < k and
every i € P.(n, h,w), we have i < [uP"|. The lemma follows from
the case h = k. We write w = aj - - - ay for the proof. Let h < k.
By contradiction, assume that there exists i € Py (5, h, w) such
that i > |uPh). By definition, there exists j € P (7, h — 1, w) U {0}
such that j < i and the strict inequality n(w(j, i)a;) <g n(w(J,i))
holds. By induction, we have j < [u?("~1| Hence, since i > |[uP"|
and w = uPXy, the infix w(}, i) must contain an infix u?: we have
x,y € A" and n € N such that w(j,i) = xuy and w(j, |w| + 1) =
xu™. Let h € N such that n + h is a multiple of p. By definition
of p, n(uP) is an idempotent of N. Hence, n(w(j, |w| + 1)uhy) =
n(xufy) = n(w(j,i)). Since w(j,i)a; is a prefix of w(j, |w| + 1),
it follows that n(w(J, 1)) <% n(w(j,i)a;). This is a contradiction
since n(w(j,i)a;) <g n(w(j,i)) by hypothesis. O

We may now prove that s+1

= s“t. By Lemma C.1, every po-
sition in Py (77, k, w) belong to the prefix uP* of w = uP*u. There-
fore, since uP¥ is also a prefix of w” = ubky, Po(n,k,w) C Pe(w).
Since n(u) = n(v), we get o (w, P (1, k, w)) = oy (w’, Ps (1, k, w)).
Hence, Lemma 3.9 yields P (5, k, w) = Pi. (17, k, w”). Altogether, we
getw >, . w’ and it follows that a(w) = a(w’) since the languages

recognized by « are unions of i, x-classes. By definition of w, w’

w+1

and since p is a multiple of w (M), this yields s®** = st as desired.

We turn to the implication b) = ¢). We assume that b) holds
and consider s, € M such that s ~¢ t. We show that s©*1 = s©¢.
By Lemma 2.5, there exist rg,...,r, € M such thatrg =e,rp, =t
and (rj, riz1) is a €-pair for all i < n. We use induction on i to
show that s“*! = s®r; for every i < n. The case i = n yields the
desired result as t = r,. When i = 0, the result is immediate as
ro = s. Assume now that i > 1. Since (rj—1,r;) is a €-pair, one
may verify that (s“rj_1,s®r;) is a €-pair as well. Therefore, we
get from b) that (s©r;_1)®*! = (s®r;—1)“s®r;. Finally, induction
yields s“*1 = s“r;_;. Combined with the previous equality, this
yields s®*! = (s@t1) @+l = (@O @ p = sOp; a5 desired.

It remains to prove ¢) = a). We assume that c) holds and show
that « is an LPol(%)-morphism. Let N = M/~¢ and recall that
N is a monoid since ~¢ is a congruence by Lemma 2.6. We write
n=[]lgoa: A" — N which is a €-morphism by Lemma 2.7. We
let k = |M| and consider the equivalence &,  on A*. We prove the
following property:

for every w,w’ € A%, wp,w' = a(w) =a(w). (7)

This implies that every language recognized by « is a union of
>y, k-classes. Together with Proposition 3.13 this yields that ev-
ery language recognized by « belongs to LPol(%) since 1 is a -
morphism. We now concentrate on 7. Let w,w’ € A" such that

Thomas Place

w >, w’. We show that a(w) = a(w’). For the proof, we write
P =Py (a, 1, w). We use the hypothesis that w >, ; w’ to prove the
following lemma.

LemMA C.2. There is P’ C Po(w’) s.t. oy(w, P) = ay(w’, P’).

ProOF. Since c) holds, we know that for all s,t € M such that
s ~g t, we have s®*1 = s“t. We may multiply by s on the right
to get s@tl = @@ Hence, it follows from Theorem 3.7 that « is a
UPol(®)-morphism. Since k = |M], it follows from Lemma 3.8 that
P =Py (a,1,w) C Po(n,k, w). Finally, since w >k w’, we have
on(w,Pu(n,k, w)) = op(w’,Pe(n,k, w’)). Thus, Fact B.1 yields a
set P C oy (w’,Pu (1, k, w")) such that oy (w,P) = oy(w’, P’) as
desired. O

Consider the a-snapshots (s, a1, 51, . - ., an, Sn) = 0 (w, P) and
(to, b1, t1, ... b, tm) = 0g(w’, P’). Lemma C.2 yields o) (w, P) =
oy(w’,P’) .Wegetn=manda; =b;for1 <i<nands; ~g t;
for 0 < i < n by definition of 5. Thus a(w) = spais1 - ansn
and a(w’) = fyaity - - - anty by definition of a-snapshots. It now
remains to prove that soaysy - - - aps, = toaity - - - apty. We let g, =
soaisi - -ay and ry = toajt; ---ap for 0 < h < n (in particular,
qo = ro = 1p1). We use induction on h to show that qysp = rpty, for
0 < h < n. Clearly, the case h = n yields the desired result.

We fix h < n. Since P = Pi.(a, 1, w), one may verify from the
definitions that gps, X qp for 0 < h < n. We get x € M such
that g5, = qpspx. Since s, ~g t and ~¢ is a congruence, we have
xsp, ~g xt. Hence, it follows from c) that (xsp)®*! = (xsp,)“xty,.
We may now multiply on the left by s;, to obtain (spx)“*s, =
(spx)“*1t,. We combine this with qj, = g,spx to obtain qps, =
qnty- This concludes the proof when h = 0: this merely states that
so = to. Finally,if h > 1, induction yields qj,_15p—1 = rp—1tp—1. Since
qn = qu_1ap and ry, = rp_;ap, by definition, it follows that g, = t,.
Altogether, we get qp,sp, = rpty, which completes the proof. O

We turn to the proof of Lemma 4.5 which is part of the larger
proof argument for Theorem 4.3. Recall that a €-morphism 7 :
A* — N and k € N are fixed. Moreover, we have p > 1 whichis a
multiple of v (N) and four words u, v, x, y € A* such that n(u = n(v).
Finally, we defined w = (ux)?Xu(yu)P* and w’ = (ux)Pko(yu)Pk.

LEMMA 4.5. For every i € Pui(n, k,w), either i < |(ux)P¥| or
i> |(ux)Pkyl.

ProoF. Since Poo(n, k, w) = P (5, k, w) UP4(n, k, w), there are
two cases depending on whether i € Pi. (5, k, w) or i € P4(n, k, w).
IBy symmetry, we only treat the former case. Given a position
i € Po(y,k, w), we show that either i < |(ux)P¥| ori > |(ux)Pkul.
We write w = aj - - - ap for the proof. We consider a slightly stronger
property. Let h < k. Using induction on h, we show that for every
i € Po(n, hw), either i < |(ux)P| or i > |(ux)Pkul. By contra-
diction, assume that there exists some position i € Py (1, h,w)
such that |(ux)?"| < i < |(ux)PXu|. This yields j € Py (n,h —
1,w) U {0} such that j < i and n(w(j,i)a;) <g n(w(j,i)). By
induction, we have j < |(ux)? (h=1) |. Therefore, since we have
[(ux)P| < i < |(ux)P*u| and w = (ux)P*u(yu)P*, the infix w(j, i)
must contain an infix (ux)?: we have z,z’ € A* and n € N such
that w(j,i) = z(ux)Pz’ and w(j, |(ux)P*u| + 1) = z(ux)"u. Let
m € N be a number such that n + 1 + m is a multiple of p. By
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definition of p, n(u?) is an idempotent of N. Therefore, we have
n(w(j, |(ux)Pkul+1)x(ux)"2’) = n(z(ux)Pz’) = n(w(j.i)). By def-
inition, w(j, i)a; is a prefix of n(w(j, |(ux)Pku| + 1). Consequently,
it follows that n(w(j,i)) <g n(w(j,i)a;). This is a contradiction
since n(w(j,i)a;) <g n(w(Jj,i)) by hypothesis. O

C.2 Additional lemma

We present a corollary of Theorems 4.1 and 4.2. We shall use it
multiple times in the sequel. Given two prevarieties € and & such
that € € @ C UPol(%), we present a property of the LPol(D)-
and RPol(2)-morphisms. Recall that when € is a prevariety and
a : A* — M is a surjective morphism, the equivalence ~% on M
is a congruence by Lemma 2.6. We consider the Green relations of
the quotient M/~¢.

LeEmMA C.3. Let €, D be prevarieties such that € € D and D C
UPol(¥) and a : A* — M a morphism. Let e,q,r € M such that
e is an idempotent and q ~g r. If o is an LPol(2)-morphism and
lele <% [qlw. then eq = er. Moreover, if a is a RPol(D)-morphism
and [elg <z [qlw, then qe =re.

Proor. By symmetry, we only consider the case when « is an
LPol(D)-morphism. Thus, we assume that [e]g <% [gqlg and
prove eq = er. By hypothesis, we get s € M such that [e]¢ = [gs] %,
ie.e ~z gs. Since € € @ C UPol(%), we have LPol(D) C
UPol(€) and «a is a UPol(%)-morphism. Therefore, since e ~¢
gs and e is an idempotent, Theorem 3.7 yields e = eqse. Hence,
eq = eqseq = eq(seq)®*!. Moreover, since ¢ ~g r and ~g is a
congruence we have seq ~g ser. Hence, since « is an LPol(9)-
morphism, it follows from Theorem 4.1 that (seq)®*! = (seq)®ser.
Since we already know that eq = eq(seq)*!, we obtain eq =
eq(seq)®ser. This exactly says that eq = (egse)“™r and since
e = egse is an idempotent, we obtain eq = er as desired. O

D APPENDIX TO SECTION 5

We prove the statements presented in Section 5. Let us start with
Lemma 5.4.

LEMMA 5.4. Let € be a prevariety. For every n > 1, we have
LPp4+1(€)=MPol(RP,(€)) and RPy41(€)=MPol(LPn(%)).

Proor. We prove that LPy4+1(%) = MPol(RP, (%)) (the other
property is symmetrical). Since LPp41 (%) = LPol(RP, (%)) by def-
inition, the left to right inclusion is immediate. We concentrate
on the converse one. We write & = LP,_1(%) for the proof. By
definition, we need to prove that,

MPol(RPol(D)) C LPol(RPol(9D)).

Every language in MPol(RPol(9)) is a finite disjoint union of
mixed deterministic marked products of languages in RPol(9D).
Hence, since LPol(RPol(29)) is closed under union, it suffices to
prove that if L = LoajL; - - - ai Ly is a mixed deterministic marked
product such that Ly, ..., Ly € RPol(9D), then L € LPol(RPol(9D)).
We proceed by induction on k. If k = 0, then L = Ly € RPol(9) C
LPol(RPol(2)) and we are finished. Assume now that k > 1.
Since LoajL; - - - ag Ly is mixed deterministic, we know that the

LICS °22, August 2-5, 2022, Haifa, Israel

marked concatenation (LoaiL; - - - Lg_1)ar (Ly) is either left deter-
ministic or right deterministic. We handle these two cases sep-
arately. Assume first that (LoaiL; - - - ap_1Lr_1)ar(Lg) is left de-
terministic. One may verify that the product of k — 1 languages
LoaiL - - - ag_1Lg_1 remains a mixed deterministic product. Hence,
LoaiLy - --agp_1Lx_; € LPol(RPol(2)) by induction. Moreover,
since Ly € RPol(2) C LPol(RPol(2)) and the marked concate-
nation (LoaiLq - - ap_1Lg_1)ar(Ly) is left deterministic, we ob-
tain LoajL; - - - ag Ly € LPol(RPol(9)) from Lemma 3.4. Assume
now that (Loai L1 - - - ag_1Lg_1)ar (Ly) is right deterministic. Hence,
Ly_yai Ly is right deterministic. Thus, since Ly_q, Ly € RPol(9),
we obtain from Lemma 3.4 that Ly _;ai Ly € RPol(9). One may now
verify that the product of k—1languages Loa1L1 - - - ag_q (Lp_1axLg)
is mixed deterministic. Thus, we obtain from induction on k that L =
LoaiLy - - - agpLg € LPol(RPol(2)) This completes the proof. O

We turn to Theorem 5.5. We start with a preliminary lemma
concerning classes of the form € N 9 that we shall need for the
proof.

LEMMA D.1. Let €, be a prevarieties and & = € N D. Let
a: A* — M be a surjective morphism. The equivalence ~¢ on M is
the least one containing both ~¢ and ~g.

Proor. We write = for the least equivalence of M containing
both ~¢ and ~g. We have to prove that ==~g. It is clear that
=C~g since ~g contains both ~¢ and ~g (this is immediate by
definition as € and 9 both contain &).

Conversely, consider s,t € M such that s ~¢ t. We show that
s = t. Let F € M be the =-class of s. We have to show that t € F.
By definition of =, F is simultaneously a union of ~g-classes and
~g-classes. Thus, Lemma 2.7 yields that a~!(F) belongs to % and
D. In other words, we have a~!(F) € &. Since s € F and s ~g t,
we get t € F by definition of ~%. This concludes the proof. O

We are ready to prove Theorem 5.5.

THEOREM 5.5. Let € be a prevariety. For every n > 1, we have
LPp4+1(®) N RPp11(€) = MPol(LP,(€) N RP,(6)).

ProoF. We start with right to left inclusion. It is immediate that
MPol(LP,(€) N RP,(¥)) is included in both MPol(LP, (%)) and
MPol(RP,,(€)). Moreover, these two classes are equal to RPy,1 (%)
and LPp4+1(%) respectively as shown in Lemma 5.4. Altogether, we
obtain MPol(LP,(€) N RP(€)) C LPp41(¥) N RPp41(6).

We turn to the converse inclusion. For the sake of avoiding clut-
ter, we write 9 for the class LP,(€) N RP,(®). Consider L €
LPp+1(€) N RPy41(F). We show that L € MPol(2). By The-
orem 3.15, 2 and MPol(D) are prevarieties. Hence, by Propo-
sition 2.2, it suffices to verify that the syntactic morphism « :
A* — M of L satisfies the characterization of MPol(D) presented
in Theorem 4.3. Let g,r,s,t € M such that s ~g t. We prove
that (sq)?s(rs)® = (sq)®t(rs)®. Since @ = LP,(€) N RP,(¥),
Lemma D.1 yields po,...,pr € M such that pg = s, py = t and
fori < ¢, either p; ~pp, (%) Pi+1 O pi ~gp, (%) Pi+1- We prove
that for every i < ¢, we have (sq)?p;(rs)® = (sq)®pi-1(rs)®. By
transitivity, this implies that (sq)“s(rs)® = (sq)“t(rs)® as de-
sired. We fix i < ¢ for the proof. We only treat the case when
Pi-1 ~Lp, (%) Pi (the case when pi_1 ~gp, (%) pi is symmetrical
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and left to the reader). With this hypothesis in hand, we prove that
pi(rs)® = pi—1(rs)® which implies the desired result.

We have L € RPol(LP,(%)) by hypothesis. Consequently, its
syntactic morphism « is a RPol(LP,(%))-morphism by Proposi-
tion 2.2. It is also clear that € C LP,(%) C UPol(%¥). Moreover,
by hypothesis, we have p;—1 ~1p, (%) pi and (rs)® is an idempo-
tent. Finally, since % is included in both LP, (%) and RP, (%), the
equivalences ~1 p (%) and ~gp, (%) are included in ~%. Hence, we
have s ~¢ p; by definition which implies that [(rs)“]¢ <z [pile-
Altogether, it follows from Lemma C.3 that p;(rs)® = p;—1(rs)® as
desired. O

E APPENDIX TO SECTION 6

In this appendix we present the missing proofs of Section 6. First,
we prove Lemma 6.2. Then, we introduce definitions and results
concerning the quantifier-alternation hierarchy of two-variable
first-order logic that we shall need in the proof of Theorem 6.4. The
last part of the appendix is devoted to Theorem 6.4 itself.

E.1 Proof of Lemma 6.2

We first present a useful preliminary statement about &- and £*-
morphisms when & is a group prevariety.

LEmMMA E.1. Let & be a group prevariety andn : A* — N a
morphism. If n is a €-morphism, then n(A*) is a group. Moreover, if
n is €t -morphism, then n(A%) is a group.

Proor. We treat the case when 7 is €*-morphism. The other
one is handled with a similar argument which is left to the reader.
Let G = a(A*). We show that G is a group. By definition of groups,
it suffices to prove that there is only one idempotent in G. Hence,
we consider two idempotents e, f € G and show that e = f. Let
u,v € A such that n(u) = e and 5(v) = f. By hypothesis we have
n~'(e) € €*. This yields L € & such that either n71(e) = L U {&}
orn~1(e) = LN A*. Since L is group language, we have a morphism
B : A* — H into a group H recognizing L. Let p = w(H). Since e
is idempotent, we have a(u”) = e and since u? € A, this yields
uP € L. Moreover, since H is a group, we have f(uP) = 1 = S(oP).
Hence, o € L since f§ recognizes L. Since v? € A*, it follows that
n(vP) = e. Finally, since n(v) = f which is an idempotent, we also
have n(v”) = f and we get e = f as desired. ]

We turn to Lemma 6.2.

LEMMA 6.2. If G is a group prevariety and & is a fragment of FO,
then F (Ig) = F(<,Pg) and F (Ig+) = F(<,+1,Pg).

Proor. We first handle the inclusions F(<,Pg) C F(Ig) and
F(<,+1,Pg) € F(Ig+). It suffices to prove that we may express
all atomic formulas of F(<,Pg) and F (<, +1,Pg) using atomic
formulas of # (Ig) and F (Ig+) respectively. The linear order x < y
is expressed by I4«(x,y). For every L € &, Pr(x) is expressed by
I (min, x). Finally, x + 1 = y is expressed I} (x,y) (note that I}
is a predicate of Ig+ but not of Iy). We get the desired inclusions.

We now prove that # (Ig) € & (<,Pg). By definition of frag-
ments, it suffices to prove that for every L € &, the atomic for-
mula I7 (x, y) is equivalent to a quantifier-free formula of # (<, Pg).
Proposition 2.3 yields a €-morphism n : A* — G recognizing L.
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Since @ is a group prevariety, G is a group by Lemma E.1. For ev-
ery g € G, the language o' (g) belongs to &, whence P, 1 (g) isa
predicate in Py. Let F C G be the set such that a~!(F) = L. Since G
is a group, we have a(v) = (a(ua)) 'a(uav) for all u,0 € A* and
a € A WedefineT = {(g,a,h) € GXAXG | (ga(a))"'h € F}.
Consider the following quantifier-free formula of # (<,Pg):

\/  (Pai() @) Aalx) APy (y))).

(g.a,h)eT

o(x.y) = (x <y A

One may verify that It (x, y) is equivalent to the following quantifier-
free formula of F (<, Pg):

(x =min APL(y)) V ¢(x,y).

This concludes the proof for # (Ig) € F (<, Pg).

Finally, we prove that # (Ig+) € F(<,+1,Pg). By definition,
it suffices to show that for every language K € ©*, the atomic
formula I (x, y) is equivalent to a quantifier-free formula of F (<
,+1,P¢). By definition of €*, there exists L € ¥ such that either
L ={e} UK or L = A* N K. Consequently, Ix(x,y) is equivalent
to either I,y (x,y) V IL(x,y) or Ia+(x,y) A IL(x,y). Since, L € &,
we already proved above that Ir (x, y) is equivalent to a quantifier-
free formula of (<, Py) C F(<,+1,Pg). Moreover, I} (x, y) is
equivalent to x+1 = y and I4+ is equivalent tox < y A= (x+1=1y).
This concludes the proof. O

E.2 Preorders associated to FO?

We define preorders that we use to characterize the quantifier alter-
nation hierarchy of FO?(Ig) for some prevariety €. The definitions
are based on standard constructions in finite model theory. We then
prove properties of these preorders that we shall need in the proof
of Theorem 6.4.

Relations. We start with two preliminary definitions. We use the
standard notion of quantifier rank. The quantifier rank (or simply
rank) of an FO? formula ¢ is the maximal nesting depth of quanti-
fiers in ¢. Moreover, for every morphism n : A* — N, we associate
a set Il; of predicates. For every language L C A* which is recog-
nized by 1, the set I;) contains the binary predicate I;. Recall that
forw € A" and i, j € P(w), we have w |= I (i, j) ifand only if i < j
and w(i, j) € L. Note that I; is a finite set of predicates.

Letn : A* — N be a morphism, k € N and n > 1. We associate
a preorder <, , which compares pairs (w, i) where w € A and
i € P(w). Consider w,w’ € A*,i € P(w) and i’ € P(w’). We let
w,i <y, w',i’ if and only if for every formula ¢(x) of 2%(]1,7)
with quantifier rank at most k and at most one free variable “x” the
following implication holds:

w o) =w Ee).

It is immediate by definition that <, s ,, is a preorder and it has
finitely many upper sets (there are finitely many non-equivalent
formulas ¢(x) of Z%(]I,]) with quantifier-rank at most k since I is
finite). One may verify the following fact.

FacTE.2. Letn: A* — N be a morphism,k e N,n > 1, w € A*
and i € P(w). There exists a formula ¢(x) on%(I[,?) with quantifier
rank at most k such that for allw’ € A* and i’ € P(w’), we have
w’ [ (i) if and only if w,i <k, W', i’
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We restrict the preorders <, ;. , to single words in A*. Let w, w’ €
A" Welet w <, w’ if and only if w,0 <, i , w’, 0. This is a pre-
order on A*. Finally, we write =, ; , for the equivalence associated
to <pin W Zpp, wifand only if w <, w'and w’ <, w.
Clearly, this equivalence has finite index. We use it to characterize
the classes #>2 (Ig).

LEMMA E.3. Let € be a prevariety,n > 1 and L C A*. We have
L € B32(1g) if and only if there exists a € -morphismn : A* — N
and k € N such that L is a union of =y ,-classes..

Proo¥. For the “only if” direction, assume that L € &2 (Ig)
and let ¢ be the sentence of %% (Ig) which defines L. Let k € N
be the rank of ¢. Proposition 2.3 yields a €-morphism n : A* — N
such that ¢ € &2 (I). One may verify that L is a union of =,y -
classes. For the “if” direction, consider a €-morphism n : A* — N
and k € N. We prove that every union of =,y ,,-classes belongs
to BY2(Ig). As =, k,n has finite index, it suffices to show that all
=, k,n-classes belong to B2 (Ig). For every u € A*, Fact E.2 yields
a formula ¢, (x) of 22 (Ig) of rank at most k such that for every
v € A"and j € P(v), we have v = 4, (j) ifand only if u,0 <, ¢ , 0, j.
Let w € A*. We define,

¢w = Yw(min) A /\ =, (min) |.

W=y kot and u#, g nw

Note the conjunction boils down to a finite one since there finitely
many non-equivalent ¥2(Ig) of rank at most k. One may now
verify that ¢, defines the = ; ,,-class of w which concludes the
proof since it a B3 (Ig) sentence. O

We complete the definitions with a useful proposition. It provides
an alternate definition of the preorders <, ; ,. Intuitively, it boils
down Ehrenfeucht-Fraissé games. Yet, formulating it as an inductive
definition rather than a game is more convenient. We start with a
preliminary notion. Let 5 : A* — N be a morphism, w, w’ € A*,
i € P(w) and i’ € P(w). We say that (w,i) and (w’,i’) are -
equivalent if and only if one of the three following conditions
holds:

e i=i’"=0,and n(w) = n(w’) or,

e i=|w|+1,i" =|w|+1and g(w) = n(w’) or,

e i € P.(w), i’ € P.(w), the positions i and i’ have the same
label, n(w(i, |w| + 1)) = n(w’ (@', |w’| + 1)) and n(w(0,i)) =
n(w’ (0,1%)).

We may now present the proposition.

ProposITION E4. Letn : A* — N be a morphism, k e N, n > 1,
w,w’ € A*,i € P(w) andi’ € P(w’). Then, we havew, i <pkn w’, i’
if and only if the following properties hold:
(1) (w,i) and (w’,i’) are n-equivalent.
(2) Ifn > 2, thenw',i’ <, 1 w,i.
(3) If k = 1, then for all j € P(w) such that i < j, we have
j' € P(w’) such thati’ < j’, n(w(i, j)) = n(w’(i’, ")) and
w, J 5r],kfl,n w’, j’.

(4) If k > 1, then for all j € P(w) such that j < i, we have
j' € P(w’) such that j’ < i’, n(w(j,i)) = n(w’(j’,i’)) and
W, j <pk-1,n w,j.
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Proor. We start with the “only if” implication. Assume that
w,i <1 W, 1’. We show that the four conditions in the lemma are
satisfied. The first one is immediate as one may check -equivalence
using quantifier-free formulas in Z%,(]I,,). We turn to Condition 2.
Assume that n > 2. We prove w’, i’ =pkn-1 W, i. Given a formula
@(x) of Zi_l (I;) with rank at most k, we show that w” |z ¢(i") =
w = ¢(i). By definition, —¢(x) € Z%(I[q) and it has rank at most k.
Hence, since w, i <, » w’,i’, we have w | =¢(i) = w’ E = (i’).
The contrapositive is exactly the desired implication. It remains to
handle Conditions 3 and 4. By symmetry, we only detail the former.
Assume that k > 1 and let j € P(w) such that i < j. We have to
exhibit j* € P(w’) such that i’ < j/, n(w(i, j)) = n(w’(i’, j')) and
W, j <y k-1,n W', j’. Fact E.2 yields a formula ¢(x) of »2 (I;) with
rank at most k — 1 such that forallu € A* and h € P(u), u E ¢(h) if
and only if w, j <, r 1, u, h. Moreover, we let s = n(w(i, j)) € N
(recall that i < j) and L = 5!(s). Consider the following formula:

Y(x) =3y (IL(x. y) A e(y)).

Clearly, ¢(x) € Zfl (Iy) and it has rank at most k. Moreover, it is
clear that w | /(i) (one may use j as the position quantified by
y). Hence, since w, i <nkn w’,i’, it follows that w” |= ¢(i’). This
yields j* € P(w’) such that i’ < j/, w'(i’, j’) € L and w’ £ ¢(j’).
By definition of L, the fact that w’(i’, j’) € L yields n(w(i’, j')) =
s = n(w(i,j)) . Finally, since w’ | ¢(j’), we obtain w, j <, x 1,
w’, j’ by definition of ¢. This concludes the proof for the “only if”
direction.

We turn to the “if” implication. Assume that the four conditions
are satisfied. We show that w, i < , w’,i’. We have to prove that

given a 2%(][,7) formula ¢(x) with rank at most k, the implication
w E ¢(i) = w’ E ¢(i’) holds. First, we put ¢(x) into normal form.
The following lemma can be verified from the definition of ¥2 and
DeMorgan’s laws.

LemMA E.5. The formula ¢(x) is equivalent to another formula
of rank at most k which belongs to the least set of expressions closed
under disjunction, conjunction and existential quantification, and
containing atomic formulas as well as their negations and, ifn > 2,
the negations ofEi_l (Iy) formulas.

We assume that ¢(x) is of the form described in Lemma E.5 and
prove that w | ¢(i) = w’ | ¢(i’) by structural induction on ¢. If
¢(x) is an atomic formula of its negation, the implication can be
verified from Condition 1. We turn to the case when ¢(x) = —/(x)
where ¥/(x) is a 2’21_1(]1,7) formula (this may only happen when
n > 2). Clearly, ¥/(x) has rank at most k by hypothesis on ¢(x).
Since w’,i" <, ;. n—1 W, i by Condition 2, w’ |= ¢/(i") = w k= ¢(i).
The contrapositive yields w | ¢(i) = w’ [ ¢(i’). We turn to
conjunction and disjunction. If ¢ = ;1 X y» for X € {V, A}, we
get w E ¢y (i) = w’ = Y5 (i) for h = 1, 2 by structural induction.
Hence, w | ¢(i) = w’ | ¢(i’) as desired.

It remains to handle existential quantification. Assume that
¢(x) = Ty ¥(x,y) (since variables can be renamed, we may as-
sume that y # x). By hypothesis on ¢, we know that { has rank
at most k — 1. Assume that w | ¢(i). We show that w | ¢(i’). By
hypothesis on ¢, we get j € P(w) such that w | ¢/(i, j). We use it
define j’ € P(w’). There are several cases depending on whether
Jj =1,i < jorj < i By symmetry, we only treat the case when
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i < j. In this case, Condition 3 yields j* € P(w’) such that i’ < j/,
W, j Zpk-1n W, Jj" and n(w(i j)) = n(w(i’,j’)). We use a sub-
induction on the structure of ¥/(x, y) to show that w’ E ¢/(i’, j*)
which implies that w’, i’ £ ¢(i’) as desired. If x is the only free
variable in i, then our hypothesis states that w |= /(i) and the
main induction yields w’ £ §/(i’) as desired. If y is the only free
variable in i, then our hypothesis states that w |= /(j). Hence,
since w, j <, 1, W',j" and ¢ has rank at most k — 1, we ob-
tain w’ |= ¥/(j’) has desired. If {/(x, y) is an atomic formula or its
negation involving both x and y (i.e. x = y, =(x = y), IL (x,y) or
=Iy (x,y) with L recognized by ), since w | ¥/(i, j), i < j, i’ < j’
and n(w(i, j)) = n(w(i’, j’)), one may verify that w E ¢(i’, j/).
Finally, disjunction and conjunction are handled by sub-induction
as in the main induction. This concludes the proof. O

Properties. We now present important properties of the preorders
=p.k.n- We start with a simple preliminary lemma which can be
verified from Proposition E.4.

LEMMA E.6. Letn: A* — N be a morphism, k € Nandn > 1. Let
X1, %2, Y1, Y2 € A* and a € A such that x; <nkn Y1 and x; <nkn Y2
Moreover, leti = |x1| + 1 and j = |y1| + 1. Then, x1x <pkn Y192
and x1ax2,1 <p g » Y1ay2, i’

We turn to the property that we shall use in the proof of Theo-
rem 6.4. They are specific to morphisms 7 : A* — N such that the
set n(A%) is a finite group. This reflects the fact that Theorem 6.4
only applies to group prevarieties & and their well-suited exten-
sions . We first present two preliminary results for the preorders
<pk,1- The first one considers the case when 7 is a morphism into
a group.

LEMMAE.7. Consider a morphismn : A* — G into agroup andp a
multiple of 0(G). Letu,0,x,y € A* and ¢ € N such that n(u) = n(v).
Then, v <p¢1 u(yo)? andv <1 (vx)Pu.

PROOF. By symmetry, we only prove that v <p ;1 u(yo)?. Since
G is a group, we have n((vy)?) = 1. Since n(u) = (v), this yields
n(uy(oy)?~!) = 15. Thus, one may verify from Proposition E.4
that & <01 uy(vy)?~!. Hence, Lemma E.6 yields v <71 u(yo)?
as desired. ]

We now consider the case of morphisms 7 : A* — N such that
n(A%) is a group. We prove a slightly weaker result.

LemMa E.8. Consider a morphismn : A* — N such that G =
a(A*) is group, ¢ € N and p a multiple of @(G). We consider
u,0,w,x € A" such that |w| > £ and n(u) = (v). We have wo <y,¢1
wu(xwo)P andow <501 (owx)Puw.

ProoF. By symmetry, we only prove that wo < ¢1 wu(xwo)?.
We consider a slightly more general property that we prove by in-
duction. We let z = wo and z’ = wu(xwo)?. Let m = |wu(xwo)Px]|.
Clearly, if i € P(z), then m + i is the corresponding position in the
suffix z = wo of z’ = wu(xwo)P. We prove that the two following
properties are satisfied for every h < ¢:

e ifi <f—h thenzi=yy, z’,i.

e ifi>¢—h thenzix,p, zZ, m+i.
In the case h = £, we may apply the first assertion for i = 0 which
yields wo <y 71 wu(xwo)P as desired.
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We now prove that the two above properties hold for every
i € P(wo) and h < £. We proceed by induction on h. By symmetry,
we only consider the first property and leave the other to the reader.
Thus, we assume that i < ¢ — h and show that z, i bl z’,i.
We use Proposition E.4. There are only three conditions to verify:
Condition 2 is trivial since we are in the case n = 1. Moreover, it
is straightforward to verify Condition 1 from our hypotheses. We
turn to Conditions 3 and 4. By symmetry, we only detail the former.
Assume that h > 1 and let j € P(v) such that i < j, we show that
there exists j° € P(w) such that i < j’, n(z(i, j)) = n(z’(i, "))
and z,j <pp-11 z, j'. There are two sub-cases depending on j.
First, assume that j < ¢ — (h — 1). In this case, we let j* = j.
Clearly, we have n(z(i, j)) = n(z’(i, j)) since z(i, j) = 2’ (i, j) (this
is because w is a common prefix of z and z’, and |w| > ¢). Since
j<t-(h-1),wegeto,j <,p 11 w,jby induction on h. We turn
to the second sub-case. Assume that £ — (h — 1) < j. We define
j' = m+ j. Clearly, i < j’ since we have i < j. Moreover, since
j>¢-(h-1)and " =m+j, induction on h yields z,j <, 1
Z’, j’. We show that n(z(i, j)) = n(z’(i,j’)). By definition j’ is
the position corresponding to j € P(z) in the suffix z = wo of 2’.
Hence, there exists y € A* such that z(i, |z| + 1) = z(i, j)y and
Z'(i, 2’| + 1) = Z/(i, j’)y. Moreover, by definition of z’, we have
Z'(i,|2’| + 1) = z(i,|z| + 1)(xwo)P. Since p is a multiple of w(G)
and xwo € A* (we have |w| > ¢), we get n(xwo) = 1. Moreover,
z(i,|z] + 1) € A* since we have i < £ — hand h > 1. Altogether,
it follows that n(z(i, j)y) = n(z’(i,j")y). If y = ¢, this concludes
the proof. Otherwise, y € A" and since we have i < £ = h and
¢t — (h—1) < j, we also know that z(i, j),z’(i, j’) € A*. Since
G = a(A%) isa group, we get n(z(i, j)) = n(z’(i, j’)) as desired. O

We are ready to present the main property. We state it in the
following proposition.

ProrosiTION E.9. Consider a morphismn : A* — N such that
G = a(A") is a group. For allk € N, we have p > 1 such that ifn > 1
and u,v,x,y,z € A* satisfy u Snkn © Spkl %

(2P u(y2)? < g nr (26)F0(y2)?.

Proor. We fix k € N. Let us first define p > 1. By Lemma E.6
the equivalence =, 1 ; is a congruence of finite index. Hence, the
quotient set A* /= 1 ; is a finite monoid. We now define p = »(G) x
w(A* /=y i 1)- By definition, we have the following key property of
p:

for every ¢ < k and w € A", w? = ;1 wP. 8)
Letn > 1 and x,y,z € A*. Moreover we write w; = (zx)P and
wy = (yz)P. We prove a more general property.

LEMMA E.10. Let £ < k, 1 < m < n and u,v € A* such that
u <pe1zando <yp1 z. Letw = wiuwy and w’ = wiowy. The three
following properties hold:
(1) if0 < i <|wil| andu <y em v, then w,i <y pm+1 W', 1.
(2) if1 <i<|wo|+1andu <y¢mo, then
w, [wiu| +1 Zpeme1 W', [wio] + 0.
(3) ifi € Pe(u) and i’ € P.(v) satisfy u,i <ppm v,i’, then
w, [wil +1 Z<peme1 W', [wi] + i’

Let us first apply the lemma to compete the main argument.
Consider u,v € A* such that u <, ;. ,, 0 <, & ; 2. The first assertion
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in Lemma E.10 yields wiuwsz, 0 <, x n41 w1owz, 0. This exactly says
that wiuwy =p t n41 wW10wz by definition and Proposition E.9 is
proved. It remains to prove Lemma E.10.

We fix £ < k,1 < m < nandu,0 € A" such that u =<y,
zand v <pp1 z. We write w = wijuws and w’ = wiowz. We
use induction on ¢ and m (in any order) to prove that the three
properties in the lemma hold. Since the three of them are handled
using similar arguments, we only detail the third one and leave
the other two to the reader. Hence, we consider i € P.(u) and i’ €
P (v) such that u,i <y ¢m v,i’. We show that w, |wi| + i < ¢m+1
w’, |w1| +i’. The argument is based on Proposition E.4. There are
four conditions to verify. For Condition 1, that (w, |w1| + i) and
(w’, |w1| + 1) are n-equivalent can be verified from u, i <y ¢m v, 1’
which implies that (u, i) and (v,i’) are n-equivalent. We turn to
Condition 2. we have to prove that w’, [wi| + i’ <y ¢m w, |[wi| +i.
There are two sub-cases depending on m. First, assume that m > 2.
Since u,i =y,¢m v,i’, Proposition E.4 implies that v,i" <y ¢m-1
u, i. Hence, by induction on m, the third assertion in Lemma E.10
yields w’, [wi| + i <y ¢m w, |w1| + i as desired. We now assume that
m = 1: we prove that w’, [wi| +i’ <y »1 W, |[w1| +i. Consider the
decompositions u = ujaup and v = vjavy where the positions
carrying the highlighted letters “a” are i and i’. We prove that
w101 Spe1 Wikl and vawy p.L1 Uawa, Since w = wiujausws
and w/ = wiviavawsy, it will then follow from Lemma E.6 that
w’, |lwi| + i’ =561 w,|wi| +i as desired. By symmetry, we only
prove that vawy <y 1 upwa. If up = vy, this is trivial. Hence, we
assume that uy # 0. Since u, i <p.e1 0, i’, one may verify from
Proposition E.4 that (u2) = n(vz). We prove that vy <y 1 up(yo)?.
Let us first explain why this implies the desired result. By (8), we
have (yv)?? <ne1 (yo)P. Together, with vz <y¢1 uz2(yv)P and
Lemma E.6, this implies v (y0)? <p1 up (yo)?P <p.e1 uz(yo)? as
desired. It remains to prove that vz <;¢1 u2(yv)?. Let y’ = yoia.
Clearly, we have yo = y’vz. Thus, we have to show that vy el
uz(y’v2)P. There are two cases depending on 7. If 5(A*) = G, the
result is immediate from Lemma E.7 since n(u2) = n(v2) and p is a
multiple of w(G). Assume now that n(A*) # G. Since n(A™) = G, it
follows that r]_l (1n) = {€}. Hence, since u, i <10, i’ and us # vy,
one may verify from Proposition E.4 that |uz| > ¢, |vz] > ¢ and
u(0,£+1) = v2(0, £+1). Hence, we may apply Lemma E.8 to obtain
U2 <pe1 U2 (y’v2)? since p is a multiple of w(G). This completes
the proof for Condition 2.

It remains to handle Conditions 3 and 4. Since those are sym-
metrical, we only present an argument for the former. Let j €
P(w) such that |wi| +i < j. We have to exhibit j* € P(w’) such
that [wi| +i" < j/, n(w’(lwil + i, j)) = n(w(lwi| + i, j)) and
w,j Spe-1,m+1 W', j’. We distinguish two sub-cases depending
on j. First, assume that |wi| +i < j < |wju|. In this case, there
exists a position h € P.(u) such that j = |wy| + h. In particular,
we have i < h. Hence, since u, i <nem Vs i’, Proposition E.4 yields
h’ € P (v) such that n(u(i, h)) = n(v(i’,h")) and u, h <y 1m v, h'.
We now define j’ = |wq| + h’. Clearly, w’/(|w1| + 1, j’) = 0(i’, h’)
and w(|w1|+1i, j) = u(i, h). Hence, it is immediate that n(w’(|w1| +
i’,j")) = n(w(lwi| + i, j)). Moreover, since u,h =<y 1m 0k,
it follows from induction on ¢ that we may apply the third as-
sertion in Lemma E.10 to get w,j <y /—1,m+1 w’, j’. We turn to
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the second sub-case: j > |wju|. In this case, there exists a po-
sition 1 < h < |wz| + 1 of wp such that j = |wiu| + h. We let
j’ = |wio| + h. Clearly, we have |wq| + i’ < j’. It is also immediate
that w’(Jwi1| +i’,j) = o(i’, 0| + Dw2(0,h) and w(|w1| +i,j) =
u(i, [u] + 1)w2(0, h). Additionally, since u,i <y ¢m 0v,i’, one may
verify from Proposition E.4 that n(u(i, [u| + 1)) = n(o(i’, |o| + 1)).
Hence, we get n(w’(|w1| +i’,j’)) = n(w(|wi| + i, j)). Finally, it
follows from induction on ¢ that we may apply the second assertion
in Lemma E.10 to get w, j <p¢-1,m+1 W', j’. This completes the
proof of Lemma E.10. O

Finally, we complete Proposition E.9 with a useful corollary. In
fact, this is the result that we shall actually need.

CoroLLARY E.11. Consider a morphismn : A* — N such that
G = a(A") is a group. For allk € N, we have p > 1 such that for
n>1andu,0,x,y € A* satisfyingu =y k.n U, we have,

()P u(yo)? = j i1 (0x)P0(yo)?.

Proor. We fix k € N and define p > 1 as the number given by
Proposition E.9. Since u <, , v <, 0, the case z = v in the
proposition yields,

()P u(yo)? < g ne1 ()P 0(yo)?.

Moreover, we also have v <, u <, 0. Therefore, we may
apply Proposition E.9 in the case when v and v have been swapped
and z = v. This yields,

)P 0(yo)? <y ki1 (@) u(yo)?.

We get (0x)Pu(yo)f =p i ny1 (vx)Po(yo)P as desired. m]

E.3 Proof of Theorem 6.4

We now concentrate on proving Theorem 6.4. Let us first recall the
statement.

THEOREM 6.4. If¥ is a group prevariety and € € {€, &%}, then
‘%Ziﬂ(]@) = MPol(B%2(Ig)) foralln > 1.

ProoF. For all n > 1, we write @, = %&>2(Ig). We use in-
duction on n to prove that 9,41 = MPol(D,) for all n > 1. Fix
n > 1 for the proof. we already proved the inclusion MPol(92,) C
Dn+1 in the main text. Here, we concentrate on the converse one:
Dn+1 € MPol(Dp). The argument is based on Corollary E.11.
Let L € Dpy1. Since D, is a prevariety, it follows from Propo-
sition 2.2 that it suffices to prove that the syntactic morphism
a : A* — M of L is an MPol(D,)-morphism. We use Theo-
rem 4.3: for every gq,r,s,t € M such that (s,t) € M? is a D,-
pair, we prove that (sq)“s(rs)® = (sq)“t(rs)®. By definition of
Dn+1, we have L € 93231“ (Ig). Therefore, Lemma E.3 yields a
@-morphism  : A* — N and k € N such that L is a union of
=), k.n+1-classes. Let K be the union of all =, ,-classes which
intersect @ 1(s). Lemma E.3 yields K € B2 (Ig) = Dp. More-
over, a~1(s) C K by hypothesis. Since (s, t) € M? is a Dy,-pair, it
follows that K N a~'(t) # 0. Hence, we get u,u € A* such that
a(v) =s,a(u) =tandu =, , 0. We also let x, y € A* such that
a(x) = qand a(y) = r.Since € € {€, %"} andp: A* > Nisa
%-morphism, Lemma E.1 implies that G = n(A") is a group. Hence,
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s}ilnce u =p 1 0, Corollary E.11 and Lemma E.6 yields p > 1 such
that,

w(ox)Pu(yo)Pw’ =y kn w(ox)Po(yo)Pw’ for all w,w’ € A*.

By definition of the syntactic morphism, it follows that the words
(vx)Pu(yo)? and (vx)Pu(yv)? have the same image under . We
get (sq)Ps(rs)P = (sq)Pt(rs)?. It now suffices to multiply by the
right amount of copies of tq on the left and of rt on the right to
obtain (tq)“s(rt)® = (st)“t(rt)®. This completes the proof of
Dn+1 € MPol(Dy,). m|

F APPENDIX TO SECTION 7

This appendix contains the proofs of all statements in Section 7. Its
organization mimics the one of Section 7.

F.1 Preliminary statements
We start with the proof of Fact 7.2

FAcT 7.2. Let € be a finite prevariety. Given as input two regular
languages Ly and L1, one may compute a € -compatible morphism
recognizing both Ly and L;.

PRrOOF. Proposition 2.3 yields a €-morphism n : A* — N rec-
ognizing all languages in € since € is finite. Moreover, since L
and L; are regular, one may compute morphism o : A* — My and
a1 : A* — M; which recognize Ly and L; respectively. We consider
the monoid My x M; X N equipped with the componentwise multi-
plication. Moreover, we let & : A* — My X M; X N as the morphism
defined by a(w) = (ap(w), a1 (w), n(w)) for every w € A*. One
may now verify that the surjective restriction of & is €-compatible
and recognizes both Ly and L;. o

We complete Fact 7.2 with a useful result on €-compatible mor-
phisms.

FacTF.1. Let G bea finite prevariety, a : A* — M a€-compatible
morphism and n : A* — N an arbitrary morphism. For every

u,0 € A", ifa(u) ~¢ a(v), then n(u) ~ n(v).

PrOOF. Let u,0 € A* such that a(u) ~¢ a(v). We show that
n(u) ~g n(v). Given F C N such that y71(F) € %, we have
to prove that n(u) € F & 5(v) € F. By hypothesis, p71(F) is
recognized by a. We get P C M such that 7}(F) = a”}(P). In
particular, a=1(P) € % and since a(u) ~¢ a(v), we get a(u) €
P & a(v) € P. Therefore, u € a ' (P) & v € a~(P) and since
7Y (F) = a”1(P), we get n(u) € F & 5(v) € F, completing the
proof. O

We now prove Lemma 7.3.

LEMMA 7.3. Let D be a prevariety, a : A* — M a morphism and
Fo, F1 C M. In this case, a ' (Fy) is D-separable from a~' (Fy) if and
only if (Fo X F1) N NSg[a] = 0.

PROOF. Assume first that =1 (Fp) is D-separable from o~ (F;)
and let L € D be a separator. Clearly, for every Hy C a~!(Fy) and
every H; C a_l(Fl), L separates Hy from Hj. Hence, for every
(s0,51) € Fy x Fy, the language L € 9 separates a~!(sp) from
a~1(sy). It follows that (s, s1) ¢ 1S8g[a]. Therefore, (Fy X F;) N

NSy |a] = 0 as desired.
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We now assume that (Fy X F1) N NSg[a] = 0. Consider a
pair (so,s1) € Fo X F1. By hypothesis a~!(sp) is @-separable from
a~1(sp). We let Lg)s, € D as a separator. We now define,

L= UL () s

so€Fy \s1€F;

Clearly, L € 9 since 9 is a prevariety. One may verify that L
separates a~ ! (Fy) from &~ (F}), completing the proof. m]

We complete the presentation with a lemma which connects
the set S8y [n, a] to D-morphisms. It will be useful in proofs
arguments.

LEmMA F.2. Let be 9 is a prevariety, and a : A* — M be a

morphism. The following properties hold:
(1) For all (s,s") € NSg|al, ify : A* — N is a D-morphism,
there exist u,u’ € A* such that a(u) = s, a(u’) = s’ and
n(u) =n(u’).
(2) There exists a D-morphism n : A* — N such that for all
u,u’ € A%, ifn(u) = n(’), then (a(u), a(u’)) € NS [a].

Proor. For the first assertion, consider (s,s”) € NSg[a] and
some P-morphism 5 : A* — N. By hypothesis a~!(s) is not @-
separable from a~1(s’). In particular, these two languages cannot
be separated by a language recognized by 7. Hence, there exists
some g € N such that n71(g) intersects both a~'(s) and & (s’).
This yields u,u” € A* such that a(u) = s, a(u’) = s’ and n(u) =
n(w') =gq.

We turn to the second assertion. Let § = M? \ 18y [a]. By
definition, for every pair (s,s”) € S, there exists a language Ls ¢ €
D which separates a~!(s) from a~1(s’). Proposition 2.3 yields a
Z-morphism n : A* — N recognizing all languages L; ¢ € 9 for
(s,s’) € S. We now consider u,u’ € A* such that n(u) = n(v’)
and show that (a(u),a(u’)) € NSg[a]. Since n(u) = n(u’), no
language recognized by 7 can separate &~ (a(u)) from a~!(a(u’)).
Hence, (a(u), a(u’)) ¢ S by definition of . This exactly says that
(a(u), a(u’)) € NSy [«a] as desired. O

We now turn to the proof of Lemma 7.4.

LEMMA 7.4. Let D be a prevariety and o : A* — M a morphism.
Then, NSg [a] is saturated for a.

Proor. First, it is clear that (a(w), a(w)) € N1Sg[a] for every
w € A*. Indeed, a ' (a(w)) is not D-separable from a~!(a(w))
since these two languages intersect (w is in the intersection). We
prove closure under multiplication. For i = 1,2, we let (s;, si’) €
NS8g[a] and prove that (s1s2,57s5) € 1Sy [a]. Lemma 7.4 yields
a Y-morphism n : A* — N such that for every w,w’ € A*, if
n(w) = n(w’), then (a(w),a(w’)) € NSg[a]. Since (s;,s]) €
NSgla] for i = 1,2, Lemma 7.4 yields u;, ul’ € A" such that
a(u;) = si, a(u]) = s{ and n(u;) = n(u;). Therefore, a(ujuz) = s1s2,
a(ujuy) = sysy, n(uruz) = n(ujuy). By definition of #, it follows
that (s1s2,57s3) € N1Sg[a] as desired. O

We now consider Lemma 7.5

LEMMA 7.5. The following equalities hold: UPol(AT) = UPol(PT),
LPol(AT) = LPol(PT) and RPol(AT) = RPol(PT).
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ProoF. Since it is clear that AT C PT the left to right inclu-
sions are immediate. We prove that LPol(PT) C LPol(AT) and
UPol(PT) C UPol(AT) (the case of RPol is symmetrical and left
to the reader). We prove that PT C LPol(AT). This will imply
that LPol(PT) C LPol(LPol(AT)) = LPol(AT) and UPol(PT) C
UPol(LPol(AT)) = UPol(AT) as desired. Every language in PT is a
Boolean combination of marked products A*a;A* - - - a,A*. There-
fore, since LPol(AT) is a prevariety by Theorem 3.15, it suffices to
prove that every such marked product belongs to LPol(AT). Ob-
serve that A*a1A* - - - ap A is also defined by the marked product
(A\{a1})*a1(A\ {az})"az--- (A\ {an})"anA". One may verify
that this a left deterministic marked product of languages in AT.
Thus, A*a1A* - - - apA* € LPol(AT) which concludes the proof. O

Finally, we shall need the following standard lemma about the
Green relations of finite monoids.

LemmA E.3. Let M be a finite monoid and s,t € M. If s <g t and
t <g s, thens R t. Symmetrically, ifs <@ t andt <7 s, thens £ t.

Proor. By symmetry, we only prove the first property. Assume
thats <g t and t <y s. We show that s & t. Since we already
know that t <g s, this amounts to proving that s <g t. Since
t <g s, we have x € M such that sx = t. Since s <y b, we have
y,z € M such that ytz = s. This yields,

s =ysxz = y?s(x2)” = y“s(x2)? (x2)“ = s(x2)®.

Therefore, s = sx(zx)“"'z = t(zx)®~1z and we get s <g ¢, com-
pleting the proof. O

F.2 Left/right polynomial closure

This part of the appendix is devoted to the proof of Theorem 7.7.
Let us first recall the statement.

THEOREM 7.7. Let € be a finite prevariety and D a prevariety such
that € € 2 C UPol(¥). Leta : A* — M be a €-compatible mor-
phism and P = 11Sg [a]. Then, 1181 poy () [@] is the least (LPol, P)-
saturated subset of M? and NSkrpoi(z)a] is the least (RPol, P)-
saturated subset of M? for a.

By symmetry, we only prove that 11S7po () [a] is the least
(LPol, P)-saturated subset of M?2. The proof involves two indepen-
dent arguments. First, we show that 1187 po(g)[@] is (LPol, P)-
saturated. Then, we show it includes all (LPol, P)-saturated subsets.
We start with the former.

Soundness. We prove that 7187 p,j(g) [@] is (LPol, P)-saturated.
We write S = 118 po(9) [@] for the proof. We already know from
Lemma 7.4 that it is saturated since LPol(9) is a prevariety by
Theorem 3.15. Hence, we focus on (3). Let (e, e”) € S be a pair of
idempotents and (s,s”) € P such that [e]g <g [s]g. We show that
(es,e’s’) € S. By Lemma F.2, there exists an LPol(9)-morphism
n : A* — N such that for every pair u,u’ € A*, such that n(u) =
n(u’), we have (a(u), a(u’)) € S.

Since (e,e’) € S, S = NSrpoyp)la] and n is an LPol(D)-
morphism, Lemma F.2 yields two words x,x” € A* such that
n(x) = n(x’), a(x) = e and a(x’) = e’. We shall write t =
n(x) = n(x’). Moreover, since (s,s’) € P, P = NSg[a] and
[l on: A" - N/~g is a D-morphism by Lemma 2.7, we get
from Lemma F.2 that there exist y,y’ € A* such that n(y) ~g
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1), a(y) = s and a(y’) = s’. We write p = n(y) and p’ =
n(y’): we have p ~g p’. Finally, since [e]g <% [s]g, we have
[a(x)]le <z la(y)]g- Since a is €-compatible, Fact F.1 yields
[n(x)]e <z [n(y)]e, ie [tle <z [ple. Clearly, this implies that
[t“]% <% [ple. By hypothesis, € € & C UPol(¥) and  is an
LPol(2)-morphism. Hence, since t is an idempotent of N and
we have p ~g p’, Lemma C.3 yields t®p = t®p’. Let n = w(N).
Since we have t = n(x) = n(x’), p = n(y) and p’ = n(y’), we
just proved that n(x"y) = n((x")"y’). As e and e’ are idempo-
tents, we have a(x"y) = es and a((x")"y’) = e’s’. We obtain
(es,e’s”) € NS poi(a) [a] = S by definition of .

Completeness. Consider an arbitrary (LPol, P)-saturated set S C
M?. We prove that NS1poi(z)[a] € S. Since we have P = 118g[a],
it follows from Lemma F.2 that there exists a Z-morphism 7 : A* —
N such that for every u,u’ € A* which satisfy n(u) = n(u’), we
have (a(u), a(u’)) € P. Moreover, we define two notions that we
shall use as induction parameters. In the definition we consider the
Green relations < g of M/~ and <g of S (note that S C M?isa
monoid since it is saturated for «):

(1) The #-rank r(w) € N of a word w € A* is the number of
elements g € M/~g such that [a(w)]g <z q.

(2) The %-index d(t,t’) € N of a pair (£,t’) € S is the number
of pairs (p, p’) € S such that (p, p’) <g (¢, t').

Let m = |M?|. We prove the following lemma by induction.

LEMMA F4. Letd,r € Nand k > mr +d, For all (t,t') € S
such that d(t,t') < d and all w,w’ € A* such thatr(w) < r and
w B, W, we have (ta(w), ta(w’)) € S.

We first use Lemma F.4 to prove that 118y poy(g) [@] C S. Let
(s,5") € NSrpoi(o)la]. We show that (s,s") € S. We let k =
m X |M/~g| + m and consider the equivalence >, ;. By Proposi-
tion 3.13 every union of >, r-class belongs to LPol(2) since 7 is a
P-morphism. Therefore, we obtain w, w’ € A* such that a(w) =,
a(w’) =" and w >, ;. w’ (otherwise, a~1(s) would be separated
from a~1(s’) by a union of >y, k-classes, which contradicts the hy-
pothesis that (s,s") € NS poy(g)la]). Clearly, we have r(w) <
[M/~g|. Moreover, (1p1, 1p1) € S since S is saturated and it is clear
that d(1y7, 1p) < |M?| = m. Hence, since k = m X [M/~¢| +m and
w B w', Lemma F.4 yields (a(w), a(w’)) €S, ie, (s,5) € Sas
desired.

We now prove Lemma F.4. We fix d,r € N and k > mr + d for
the proof. We let (¢,t’) € S such that d(t,t') < d and w,w’ €
A* such that r(w) < rand w >, w’. We need to prove that
(ta(w), ta(w’)) € S. We proceed by induction on r and d (in that
order of importance). There are two cases.

Base case: we have (s,s’) € S such that [slg X [a(w)]g and
(ts,ts") R (t,t'). By hypothesis, we get (q,q") € S such that
(tsq,t’s’q’) = (t,t"). Let (e, e’) = ((sq)®, (s’q")?). Clearly, this is
a pair of idempotents in M, (te, t’e’) = (t,t’) and (e, e”) € S since
S is saturated. Since [s]lg % [a(w)]g, it is clear that [e]lg <o
[a(w)]g. Finally, since w >, . w’, we have n(w) = n(w’) which
yields (a(w), a(w’)) € P by definition of ;5. Altogether, since S is
(LPol, P)-saturated, it follows from (3) that (ea(w), e’a(w’)) € S.
By closure under multiplication, we get (tea(w),t’e’a(w’)) € S
which exactly says that (ta(w), ’a(w’)) € S as desired.
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Inductive case: for every (s,s’) € S such that [slg % [a(w)]g, we
have (ts,t’s’) <g (t,t"). Let x € A* be the least prefix of w such
that [a(x)]g £ [a(w)]g. Observe that x is nonempty. Indeed, if
x = ¢ then (131, 1) = (a(e), a(e)) € S since S is saturated and
we have [1y]lg # [a(w)]g. This contradicts our hypothesis as
(t1pn t'1p) = (L) R (1, 1).

Since x € A we getu € A* and a € A such that x = ua.
We let v € A* as the suffix such w = uao. By definition of x as
the least prefix of w such that [a(x)]g % [a(w)]g, we have
[a(w)]g £ [a(ua)lg <z [a(u)]g. Using this property and the
hypothesis that w >, ;. w’, we prove the following fact.

Fact F.5. We have u’,0” € A* such that w' = v'av’, u >y v’
ando >y g1 0.

Proor. We first show that (ua) <g n(u). By contradiction
assume that there exists y € A* such that n(uay) = n(u). By def-
inition of 7, it follows that (a(uay), a(ua)) € NSg[a] and since
€ C 2, we get (a(uay), a(ua)) € NSg[a]. One may verify that
this implies a(uay) ~¢ a(ua), contradicting the hypothesis that
[a(ua)lg <z [a(w)]e.

We may now prove the fact. Let i € P.(w) be the position car-
rying the highlighted letter “a” in w = uav. Since n(ua) <g n(u),
it follows that i € Pi(n, 1, w). We define X =P (5, k,u) and Y =
Po(n,k — 1,0). Since i € Py (n,1,w), we have X U {i} U {i +j |
j € Y} C Pu(n,k,w) by definition. Moreover, since we have
W Bpk w’, we know that oy (w, Pi. (1, k, w)) = o (w’, Pi (1, k, w)).
Thus, one may verify that there exist i’ € P.(w’), X’ C P.(u’) for
u’ =w’(0,i’) and Y’ C P.(v”) for o’ = w’(i’, |w’| + 1) such that i’
has label a, oy (u, X) = oy (u’,X") and 6 (v, Y) = oy (v, Y’). By con-
struction, we have w’ = u’ao’. Moreover, since we have oy (u, X) =
oy(u’,X") and X = Pp. (1, k, u), Lemma 3.9 yields X’ = Py (1, k, u’).
Hence, we get u >, u’. Finally, since ay(v,Y) = oy(0”,Y’) and
Y =Py (n,k — 1,0), Lemma 3.9 yields Y’ = P, (1, k — 1,0”). Hence,
vbpko1 0 ]

Since k > mr + d, we have k > m(r — 1) + m. By definition,
[a(w)lg <z [a(u)]lg which yields [a(w)]g <z [a(u)]lg by
Lemma F.3. Hence, r(u) < r(w) and since r(w) < r, we get
r(u) < r — 1. Recall that d(1p7,1p) < m = |M?|. Hence, since
u >y ', it follows by induction on r in Lemma F.4 (our most im-
portant parameter) that (a(u), a(u’)) € S. Moreover, we know
that («(a),a(a)) € S since S is saturated. Thus closure under
multiplication yields that (a(ua), a(u’a)) € S. We let (s,s") =
(a(ua), a(u’a)). Since s = a(ua), we have [a(w)]g # [s]g by
definition of u and a. Hence, our hypothesis in the inductive case
yields (ts,t’s’) <g (t,t’). It follows that d(ts,t’s’) < d(t,t")
which yields d(ts,t’s’) < d — 1. Moreover, since w = uav, we
have [a(w)]z <y [a(0)]g. Thus, r(v) < r(w) < r. Finally, since
k > mr+d, we have k — 1 > mr+ (d — 1). Hence, since v >p k-1 v/,
induction on d in Lemma F.4 yields (tsa(v), ts’a(v”)) € S. By defini-
tion of (s, s”), this exactly says that (ta(w), ta(w’)) € S as desired.

F.3 Mixed polynomial closure

This final part of the appendix is devoted to the proof of Theo-
rem 7.10. Let us first recall the statement.
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THEOREM 7.10. Let € be a finite prevariety and D a prevariety
such that € € @ C UPol(¥). Moreover, let a : A* — M be a
€ -compatible morphism and let P = NSg[a], P1 = NS1poi (o) [@]
and Py = NlSppoy(a) [@]. Then, the set NNSypoi (o) L] is the least
(MPol, Py, P, Py)-saturated subset ofM2 fora.

The proof involves two independent arguments. First, we show
that 11Sy1poi () [@] is (MPol, Py, P, P;)-saturated. Then, we show
it includes all (MPol, Py, P, P;)-saturated subsets.

Soundness. We write S = 11Sy1po1 () [a]. We have to prove that
S is (MPol, Py, P, P;)-saturated. We already know from Lemma 7.4
that it is saturated since MPol(9) is a prevariety by Theorem 3.15.
Hence, we focus on (5). By Lemma F.2, there exists an MPol(9D)-
morphism 17 : A* — N such that for every pair u, u” € A* satisfying
n(u) = n(u’), we have (a(u), a(u’)) € S. We start with a prelimi-
nary lemma.

LEMMAF.6. Let(s,s”) € M? bea (Py, P, Py)-block. We haveu,u’ €
A* such that a(u) = s, a(u’) = s’ and n(u) = n(u’). Moreover,
there exists an infix v of u such that n(v) is an idempotent of N and
[a(0)]lg S [sle-

Proor. We have (s1,s7), (e1,e;) € Py, (s2,55), (e2,s;) € P2 and
(33,s§) € P such that ey, e{, es, eé € M are idempotents satisfying
lei]lg JF [e2lw 7 [sie1s3e2s2]% and,

(s,s") = (s1e153€252, s7€155€557).

We have P = 118g | «a]. Hence since [-]g o 1 is a D-morphism by
Lemma 2.7 and (33,s§) € P, Lemma F.2 yields x3,x§ € A* such
that a(x3) = s3, a(x;) = s§ and n(x3) ~g n(x;). Since P; =
NSy poi(z)le] and (s1,57), (e1, e]) € P1, a similar argument yields
xl,x{,yl,y{ € A* such that a(x1) = s, a(x{) = s{, a(y) = e,
a(yy) = ef,n(x1) ~Lpoi(z) 1(x7) and n(y1) ~Lpoi(z) 1(y;). More-
over, since Py = NSppoi(9) [a] and (sz,sé), (e2, eé) € Py, we also
get x2, X5, 2, y5 € A which satisfy a(x2) = sz, a(x}) = 55, a(y2) =
ez, a(yy) = e, n(x2) ~rpor() N(x3) and n(y2) ~rpoi(w) 1(Y;)-
Finally, we let n = w(M) X w(N). We now define u = x1y]x3y5 X2,
u' = x{(y))"xj(y;)"x; and v = y7. Since ey, ez, €], e are idem-
potents, it is immediate by definition that a(u) = s and a(u’) =
s’. Moreover, v is an infix of M and «(v) = e;. Hence, we have
[a(v)]e F [s]le by hypothesis on e;.

It remains to prove that n(u) = n(u’). We write q1 = n(x1),
fi = 0y, @3 = n(x3), fo = 1(y?) and gz = n(xs). Clearly, n(u) =
91f193f2q2. Moreover, we define q7, f/, ¢5, f,, q; analogously such
that n(u") = q|f/q;f;q;- We have to prove that q1fig3faqz =
GG As lale 7 lels 7 [meses]e we get from
Lemma F.3 that [e1]g <g [e1s3e2s2]% and [e2]y <z [sie1s3e2]e.
Since « is €-compatible, one may verify from the definitions and
Fact F.1 that this implies [filg <% [fig3f2q92]l¢ and [f2lg <&
[q1figzfole-

Fact F7. We have g3 f2 ~rpol(2) 9313 -

ProoF. We first define 8 : N — N/~pp,(9) as the morphism
q = [qlrpoi(2) and y = Bon : A" — N/~ppoi(m)- It follows
from Lemma 2.7 that y is an RPol(2)-morphism. We know that
€ C D C UPol(€) by hypothesis. Moreover, S(f2) is an idempo-
tent of N/~ppo(2) and since g3 ~g g5 which yields g3 f2 ~ q; f2,
one may verify f(q3f2) ~g P(qg;fa). Moreover, since [f2]lg <z
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[91f193f2]%, one may verify that [f(f2)le <z [f(gsfo)le. Al-
together, Lemma C.3 yields B(q3/2)(f2) = B(q;f2)B(f2)- Since
we have fo ~ppoi(9) f; by definition, B(fz) = B(f;). We get
Blasf2) = P(gsf,) which exactly says that q3f2 ~rpoi(2) 95f5
as desired. O

We now prove that q1fiq3f2q2 = q1f/45f, ;- There are two
steps: one proves independently that g1 figs 22 = q1 f195f, 95 and
that q1fiq5f, 95 = 41, 45f, 45 As the arguments are symmetri-
cal, we only prove the former. Since « is an MPol(2)-morphism,
Lemma 5.4 implies that it is an LPol(RPol(<9))-morphism. More-
over, we have € C RPol(9) C UPol(®) by hypothesis on 9. By
Fact F.7, we have q3 f2 ~rpo1(2) 45, and since g2 ~rpor(9) 95 by
definition of gz, g3, we have fiq3f2q2 ~rpo1(2) f195f; 45- We have
Lfile <2z [fig3f2q92]%- Altogether, Lemma C.3 yields fi figzfaqz =

flflqéfz’qé. We get q1fiq3292 = qlflqgﬁz’qé since fi is idempo-
tent. ]

We prove that S satisfies (5). Let n € Nand (so,sp), . - -, (sn, $5,) €
M? be (Py, P, Py)-blocks. Moreover, let (#1, t),..., (tn, t;,) € P such
that [si—1tile JF [si-1]le and [t;sile F [silg for1 < i < n. We
have to prove that,

(Sot151 - - - InSp, SQE;S1 * + - thsp) € S. 9)

For 0 < i < n, Lemma F.6 yields ui,ulf, v; € A" such that we
have a(ui) = si, a(uj) = s/, n(w;) = n(u;), v; is an infix of u;,
n(v;) is an idempotent of N and [a(v;)]e F [si]g. Moreover,
recall that [-]g o 1 is a @-morphism by Lemma 2.7. Hence, as
(ti,t]) € Pand P = NSg[a], Lemma F.2 yields w;, w] € A* such
that a(w;) = t;, a(w)) = t] and n(w;) ~g n(w]) for 1 < i < n We
may now define w = ugwiuy - - - wpuy and w’ = ugwiug - - - wyuy,.
We show that n(w) = n(w’). By definition #, this will imply that
(a(w), a(w")) € S. Moreover, by definition of w and w’, this exactly
says that (9) holds, concluding the proof.

We prove that n7(w) = n(w’). Let w"’ = ugwjuy - - - wjup. Since
n(u;) = n(u)) for 0 < i < n, we have n(w’) = n(w”’). Hence, we
have to prove that n(w) = n(w’’). By definition of w, it suffices to
prove that n(uj—1wiu;) = r](ui_lwlfui) for 1 < i < n. By transitivity,
it will follow that n(w) = (w’’). We fix i such that 1 < i < n for
the proof. Let g; = n(w;) and ¢; = n(w]). We have the following
lemma

LeEMmMmA F.8. There exist two elements ri—1,r; € N such that we
have n(ui-1) = n(ui-1)(qiri-1) and n(u;) = (riqi)“n(u;).

ProoF. By symmetry, we only prove the existence of r;. Recall
that by hypothesis, we have an infix v; of u; such that n(u;) is
idempotent and [a(vi)]e F [sile. We get x,y € A* such that
u;j = xv;y. Moreover, [t;silg F [silg. Since s; = a(u;) and
ti = a(w;). We get [a(wixviy)]le F [sile F [a(vi)]g. It fol-
lows that [a(v;)]g <g [a(wixv;)]g. Moreover, since it is clear
that we have [a(wixv;)]g <z [a(vi)]g, we get [a(wixvi)]e £
[a(vi)]g from Lemma F.3. We get z € A* such that a(zw;xv;) ~¢
a(v;). Since « is €-compatible, it then follows from Lemma F.1
that n(zw;ixv;) ~g n(v;). Since n is an MPol(2)-morphism and
2 C UPol(¥), we know that 1 is UPol(€)-morphism. Hence,
since 1(v;) is an idempotent of N, Theorem 3.7 yields n(v;) =
n(vizwixv;). Hence, n(xv;) = n(xvizwixv;) = (n(xvizw;))“n(xv;).
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Let r; = n(xv;z). Since u; = xv;y and q; = 1(w;), we obtain that
n(ui) = (riqi)®n(u;) as desired. o

Recall that by definition, n(w;) ~g n(w]), i.e. g; ~g q;. Hence,
since 7 is an MPol(2)-morphism by definition, it follows from
Theorem 4.3 that,

(qiri-1)“qi(rigi) = (qiri-1)“q; (riqi)®.
We may now multiply by n(u;—1) on the left and by n(u;) on the
right. Since g; = n(w;) and q; = n(w]), in view of Lemma F.8, this
yields n(uj—1wiu;) = r](u,-_lwlfui) which completes the soundness
proof.

Completeness. We now prove that for every set S € M? which is
(MPol, Py, P, P;)-saturated for a, we have Sypor(g) (@] C S. We
fix S for the proof. First, we use the sets P, P; and P, to construct a
Z-morphism 7 : A* — N. Since 9 is a prevariety, Theorem 3.15
implies that LPol(2) and RPol(D) are prevarieties as well. Since
P =1S8g|a], Lemma F.2 yields a @-morphism 53 : A* — N3 such
that for every u,u’ € A*, if n3(u) = n3(u), the (a(u), a(u’)) € P.
Similarly, since Pl = ’)”ZSLPOI(@) [0(] and Pz = nSRPOl(g) [0[],
we get an LPol(D)-morphism y; : A* — Q; and an RPol(9D)-
morphism y; : A* — Q3 such that for every u,u’ € A* and
i € {1,2}, if yi(u) = yi(u’), then (a(u),a(u’)) € P;. Moreover,
Proposition 3.13 yields two @-morphisms 77 : A* — Nj and
N2 : A* — Ny and kq, k2 € N such that all languages recognized by
y1 are unions of >, -classes and all languages recognized by y,
are unions of <, x,-classes. Since € € 9 is finite, Proposition 2.3
yields a @-morphism 5 : A* — N recognizing all languages which
are in &, or which are recognized by 11, 12 or 3. In particular, note
that n is €-compatible. We have the following fact.

Fact F9. Letu,u’ € A* and k € N. The following hold:
o Ifn(w) = n(u"), then (a(w), a(u’)) € P.
o Ifk >k andu >, v, then (a(u), a(u’)) € P1.
o Ifk >k andu < v, then (a(u), a(u’)) € P;.

Proor. By definition, if () = n(u’), then n3(u) = n3(u’). This
yields (a(u), a(u’)) € P by definition of 13. We prove the second
assertion (the third one is symmetrical and left to the reader). As-
sume that k > kj and u >, . u’. By definition of 7 and since k > ki,
one may verify that u >, . u’. Hence, since the languages recog-
nized by y1 are unions of >, -classes, we have y1(u) = y1(u’).
By definition of y1, this yields (a(u), a(u”)) € P; as desired. O

We let m = max(ky,kz) and p = |M|%. Moreover, we define
k = (2p +2)N| + p + m. The argument is based on the following
key proposition.

ProrosiTION F.10. For allw,w’ € A* such that w vy w’, we
have (a(w), a(w’)) € S.

We first use Proposition F.10 to prove 11Sypor(g) [a] € S. Let
(s,5") € NNSppo1(2) Lal. By Proposition 3.13 every union of »<y i~
classes belongs to MPol(9D) since n is a Z-morphism. Hence, we
obtain w, w’ € A* such that a(w) = s, a(w’) =s’ and w >y k w’
(otherwise, @~!(s) would be separated from a~!(s’) by a union
of v, r-classes, which contradicts the hypothesis that (s,s”) €
NSumpoi(2) [@]). Thus, Proposition F.10 yields (s, s”) € S as desired.
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We turn to the proof of Proposition F.10. We start with a prelimi-
nary statement. Consider a word w € A* and n € N. We say that w
is an n-iteration if it admits a decomposition w = xwy - - - wpy with
X, Y, W1, ..., wp € A* such that n(w;) £ n(w) for every i < n. We
have the following lemma.

LEmMA F.11. Let w,w’ € A* such that w »<y prm W’ and w is a
2p-iteration. Then, (a(w), a(w’)) is a (P1, P, P)-block.

Proor. We first consider the case when n(w) 7 n(e). Since
W >ty prm W', we have (w) = n(w’). In view of Fact F.9, this
yields (a(w), a(w”)) € P. Moreover, it is clear that (1, 1p1) € P4
and (1p1,1p1) € P2 by Lemma 7.4. Finally, since n(w) £ n(e),
we have [n(w)]g F [n(e)]lg and since 5 is €-compatible, we
get [a(w)]lg F [a(e)]lg by Fact F.1. In other words [a(w)]e 7
[1m]e. By definition, it follows that the pair (a(w),a(w’)) =
(Ippipra(wW)Iprdpg, Iyplpra(w’)1a11p) is a (P, P, Py)-block as de-
sired.

We now assume that 77(w) < ¢ 1(¢) (which implies that if n(u) #
n(w), then u is nonempty). One may verify from the definition of
2p-iterations that there exist 2p positions iy, ...,ip € Pe (1, p, w)
and Jiseoojp € P4(n, p,w) such that we have 0 = ip < i1 <

c<lp < jp <o < j1 < jo=|w+1land for1l < h < p,
if we define up, = w(ip_q,ip + 1) and vy = w(jp — 1, jp_1), then
n(w) J n(up) 7 n(ovp). Finally, we let x = w(ip, jp). By definition,
W= Up-- - UpX0p - -+ 0.

Consequently, since w »<; p+m W', one may verify that w’ admits
a decomposition w’ = u] - - upx"vj, - - - v] such that n(x) = n(x’),
up Bpm uy and v < vp for 1 < h < p. We define (s,5) =
(a(x),a(x")). We have (s,s”) € P by Fact F.9. Also, for 1 < h <
p. we let (ah q7) = (a(wy), a(u}) and (1, 17) = (o), a(o})).
Since m = max(ky, kz), Fact F.9 yields (qh,q;l) € P1 and (ry, r;l) €
P,. By definition,

(a(w),a(w’)) = (q1---qps3rp - T1.q] -~ qpssry - 11).
Recall that p = |M|2. Thus, the pigeon-hole principle yields h, h’
suchthat 0 < h <h’ <p,qi--qy =qi---qpandq;-q) =
q; - -q;, Wealsoget £,¢" suchthat ¢ < ¢’ <p,re---ri=rp---r
andrp---ry =rp---r;. We let,

(s1,80) = (q1" " qn.q7 -~ q3)

(61,8,{) = ((qpe1- - qn) . (qp, - 'ICI;,,)“’) o
(53,55) = (quar = QpSTp =+ Tea1sQpyy 4pS T Tppy)
(ez,ep) = ((rr -+ -res)?, (rpp o1, D)

(s2.89) = (rg---ry,rp---ry)

By Lemma 7.4, P, P1 and P; are closed under multiplication. Hence,
we get (s1,57), (e1,e]) € Py and (s2,s}), (e2,e;) € P1. Moreover,
since 9 is included in LPol(2) and RPol(D), we have P; C P
and P, C P. Hence, (s3, sé) € P. It is also immediate by definition
that ey, e], e, e are idempotents of M. Thus, as (a(w), a(w’)) =
(s1e153€252, s7e1s5es7) by construction, it remains to prove that
[eilg F le2le F [a(w)]g to conclude that (a(w),a(w’)) is
a (P, P, Py)-block. By symmetry, we only show that [e;]¢ 7
[a(w)]g. Clearly, we have [a(w)]& <7 [e1]®. Moreover, by defi-
nition of e, we have [e1]g <z [qn]% = [a(up)]%. By definition,
we know that n(w) # n(uy,) which yields [n(w)]lg £ [n(up)]e-
As n is €-compatible, it follows that [a(w)]¢ F [a(up)]e by

Thomas Place

Fact F.1. Altogether, we get [e1]g <g [a(w)]g, completing the
proof. O

We now introduce a technique for decomposing an arbitrary
word into factors that are n-iterations. Consider a n € N. Let
w € A*. An n-template for w consists in a sequence of positions
i0, jos - - - » its je € P(w) within w which satisfy the three following
conditions:

e ig=0and j, = |w|+1,

e for 0 < h < ¢, we have i}, < j, and the factor w(iy, jj) is an
n-iteration.

e for1 < h < ¢,wehave j,_; < i,. Moreover, we have the rela-
tions a(w(ip—1, ja-1)) X a(w(ip-1,ip)) and a(w(ip, jn)) £
a(w(jp-1.Jn))-

We prove for all w € A* there exists a particular n-template.

LeEMMA F.12. Letn € Nand k’ = (n + 2)|N|. For every word
w € A¥, there exists an n-template ig, jo, ..., i, je for w such that
i1,...,in € Pu(n, k", w) and jo, ..., jn-1 € Pa(n, k', w).

ProOF. We proceed in three steps. The first two steps consist in
proving that every word w € A* admits a decomposition satisfying
specific properties. Let w € A* and ¢ > 1. A good decomposition of
length ¢ for w is a decomposition w = wiaj - - - we—1ap—1we such
that every factor w; € A* is a (n+ 2)-iteration and ay, ..., ar—1 € A.
We first prove that every word w € A* admits a good decomposi-
tion of length at most k” = (n + 2) INI_ Given w € A*, we define the
7 -depth of w denoted by d(w) € N as number of elements ¢ € N
satisfying n(w) <z gq. Clearly, d(w) < [N| — 1 for every w € A*.
Hence, it suffices to prove that every w € A* admits a good decom-
position of length at most (n + 2)d(w) we proceed by induction on
d(w). If d(w) = 0, then n(w) # 1y which implies that w = £™+?w
isaan (n+2)-iteration. In particular, w admits a good decomposition
whose lengthis 1 = (n+2)°. Assume now that d(w) > 1.In that case,
we have a(w) <g 1p. Hence, there exists £ > 1, wy,...,wp € A*
and ay,...,ar € A such that w = wia; - - - wparwey and for every
i < n,wehave a(w) 7 a(wia;) <g a(w;) and a(w) <z a(wpi1).
We consider two independent cases depending on ¢. First, assume
that £ > n+ 2. In that case, since a(w;a;) £ a(w) for every i < ¢, it
is immediate that w is an (n + 2)-iteration. In particular, w admits a
good decomposition of length 1 < (n +2)?(*) and we are finished.
Conversely, assume that £ < n + 2. Since a(w) < gz a(w;) for every
i < ¢, we have d(w;) < d(w) — 1 by definition. Hence, induction
yields that each word w; admits a good decomposition of length
at most (p +2)4(W)=1 Consequently, since £ + 1 < n + 2, the word
w = widg - - - Wpagwpy1 admits a good decomposition of length at
most (n+2) X (n+2)4 =1 = (n+2)4(W)_ This concludes the first
step.

We turn to the second step. Let w € A* and a good decomposition
w = widaj - - - we—1dp—1we of w. We say that this good decomposi-
tion is irreducible to indicate that for every i suchthat1 < i < ¢-1,
we have a(wiaiwir1) <g a(w;) and a(wigiwit1) <g a(wit).
In view of the first step, it is simple to verify that every word
w € A* admits a irreducible good decomposition of length at most
k' = (n+2)IN! Indeed, we already know that it admits an arbitrary
good decomposition of length at most k. If it is not irreducible, it
is possible to make it smaller by merging the consecutive factors
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which do not satisfy the condition in the definition (clearly, the
merging remains an n + 2-iteration. One may then iterate the pro-
cess to get a irreducible good decomposition of w whose length is
at most k’.

We complete the proof. Let w € A*. The second step yields
a irreducible good decomposition w = wiaj - - - weapwps; where
£+ 1 < k’. Let us define our n-template iy, jo, - . ., ip, je. We start
with iy, ..., ig. We let ip = 0. Then, for 1 < h < ¢, we define ip
as a particular position of the factor apwei1 of w. By definition of
irreducible good decompositions, we know that a(wpapwpy1) <2
a(wy). We let iy, as the least position within apwy,; where this
change in %#-class happens. One may verify from the definition
that for 1 < h < ¢, we have a(w(ip_1,ip + 1)) <g a(w(ip_1,ip))-
Hence, we have iy, ..., i € Pp (5, k’, w). Let us now define jo, . . ., je.
First, we let jo = |w| + 1. Then, for 0 < h < £ — 1, we define jj,
as a position of the factor wyuy, of w. By definition of irreducible
good decompositions, we know that a(wpapwpy1) <@ a(Wpet)-
We let jj, as the greatest position in wyay, at which this change
in Z-class happens. One may verify from the definition that for
0 <h<¢-1aw(n—1jm)) <z a(W(h jn1)). Hence,
Jos - - > je—1 € P«(n, k’, w). One may now verify from the definitions
that io, jo, . . ., i¢, je is an n-template for w. O

We are now ready to prove Proposition F.10. Recall that we
have k = (2p + 2)INl + p + m and consider w, w’ € A* such that
w by w'. We need to prove that (a(w),a(w’)) € S. Let kK’ =
(2p + 2)IVI: we have k = k’ + p + m. Lemma F.12 yields a 2p-
template io, jo, - . ., i, je for w such that iy, ..., iy € Ps(n, k’, w) and
Jos- > je—1 € Pa(n, k', w). By definition, we have 0 = iy < jo <
i1 <j1 < <ip < je=|w|+1 Since w bay ;. W’ and k = k’+m+p,
one may verify that there exist positions ig, ji, ..., i, j; € P(w)
such that:

e 0=ij < ji<if<ji<--<ip<jp=|wl[+1
jn and j; have the same label “b;” for 0 <h < n-—1.
i, and i;l have the same label “c;,” for 1 < h < n.
w(ip, jn) >y, ptm w’(i;l,j;l) for0 <h<n.
Jho1 < ip © jp_1 <ipfor1 < i < hand in that case, we
have n(w(jp-1.1p)) = n(w’(jy_. ip))-
For h,g such that 0 < h < g < ¢, we write wy 3 = w(ip, jg) and
w;l,g = w/(i}, jg). In particular, we write wj, and w; for wy,j, and

W;z,h' We prove that (a(wp,g), a(w;l’g)) € S for all h, g such that
0 < h < g < ¢. By definition, the case h = 0 and g = ¢ yields
(a(w), a(w")) € S as desired. We fix h, g for the proof and proceed
by induction on the number g — h € N. There are two cases.

First, assume that there exists n such that h < n < g and
Jn—1 = in. We handle this case by induction. Since j,—1 = i,, we also
have j,'l_1 = iy, and ip, i}, both have label by,. Hence, it is immediate
by definition that wp 4 = W, ,_1bnWn g and w}'l’g = W}/l,nqbnwr/l,g' It
is immediate from induction that (a(wp, 1), a(w,’i,n_l)) € S and
(a(wnyg), a(w,’w)) € S. We have (a(by), a(by)) € S since S is satu-
rated. By closure under multiplication, we get (a(wp,g), a(wé’g)) €
S.

We now assume that for every n such that h < n < g, we have
Jjn-1 < in. By definition, we get j, _, < i;, as well. For all n such that
h < n < g, we may define v, = W(jn-1,in) and v, = w'(j;_,, ip).
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By hypothesis, we have n(v,) = n(v;,) and Fact F.9 implies that
(ar(vp), a(vp,)) € P. We also define up, = wpbpyg and uy = wy by,
Un = cnWnbnst and u), = cpwpbpiy forh+1 < n < g—1and
ug = cqwg and uy = cgwy. By hypothesis and since ><y.p, is a
congruence, we have up ap1m uy, forh < n < g. Moreover, one may
verify from the properties of 2p-templates that up, ..., u4 are 2p-
iterations. Hence, it follows from Lemma F.11 that (a(un), a(u;,))
is a (P1, P, Pz)-block for h < n < g. Finally, by definition of 2p-
templates, we have n(un—10n) £ 1n(un-1) and n(opun) F n(un)
for h+1 < n < g. Since 7 is €-compatible, we get [a(up—10n)]w F
[a(un—1)]g and [a(vpun)le £ [@(un)]g. It now follows from (5)
in the definition of (MPol, P;, P, Py)-saturated sets that,

(a(upOpsrUpsr - OglUg), a(up oy up -+ OgUg)) € S.
This exactly says that (a(wp,g), a(w,’lg)) € S by definition which
completes the proof.
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