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ABSTRACT
Polynomial closure is a standard operator which is applied to a class

of regular languages. In this paper, we investigate three restrictions

called left (𝐿𝑃𝑜𝑙 ), right (𝑅𝑃𝑜𝑙 ) and mixed polynomial closure (𝑀𝑃𝑜𝑙 ).

The first two were known while𝑀𝑃𝑜𝑙 is new. We look at two deci-

sion problems that are defined for every class𝒞. Membership takes

a regular language as input and asks if it belongs to 𝒞. Separation

takes two regular languages as input and asks if there exists a third

language in 𝒞 including the first one and disjoint from the second.

We prove that 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and 𝑀𝑃𝑜𝑙 preserve the decidability of

membership under mild hypotheses on the input class, and the

decidability of separation under much stronger hypotheses. We

apply these results to natural hierarchies.

First, we look at several language theoretic hierarchies that are

built by applying 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and𝑀𝑃𝑜𝑙 recursively to a single input

class. We prove that these hierarchies can actually be defined using

almost exclusively𝑀𝑃𝑜𝑙 . We also consider quantifier alternation

hierarchies for two-variable first-order logic (FO2
) and prove that

one can climb them using𝑀𝑃𝑜𝑙 . The result is generic in the sense

that it holds for most standard choices of signatures. We use it to

prove that for most of these choices, membership is decidable for all

levels in the hierarchy. Finally, we prove that separation is decidable

for the hierarchy of two-variable first-order logic equipped with

only the linear order (FO
2 (<)).
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1 INTRODUCTION
This paper is part of a research program whose aim is to investigate

natural subclasses of the regular languages of finite words. We

are interested in the classes associated to a piece of syntax which

is used to define their languages (such as regular expressions or

logic) . For each class𝒞, we look at two decision problems. First,𝒞-

membership takes a regular language 𝐿 as input and asks if 𝐿 ∈ 𝒞.

Also, 𝒞-separation takes two regular languages 𝐻, 𝐿 as input and

asks if there exists 𝐾 ∈ 𝒞 such that 𝐻 ⊆ 𝐾 and 𝐾 ∩ 𝐿 = ∅. In
practice, getting algorithms for these problems requires techniques

that cannot be developed without a solid understanding of 𝒞.

We consider generic families of classes. Let us use logic to clarify.

Each logical fragment is associated to several classes defined by

choosing a signature (i.e., a set of predicates one may use in formu-

las). For instance, in the literature, several classes are associated to

first-order logic (FO) by considering natural predicates such as the

linear order “<” [19, 32], successor “+1” [4] or modular predicates

“𝑀𝑂𝐷” [3]. Hence, a generic approach is desirable. This typically

involves two independent steps. The first one consists in character-

izing a particular fragment by an operator on classes. For example,

first-order logic corresponds to star-free closure: which builds the

least class SF(𝒞) containing an input class 𝒞 and closed under

union, complement and concatenation. It was shown [19, 27, 36]

that if 𝒞 is a Boolean algebra closed under quotients (we call this
a prevariety), there exists a signature I𝒞 such that SF(𝒞) corre-
sponds to FO(I𝒞). This captures most of the natural signature

choices. The second step consists in proving that the operator pre-

serves the decidability of membership/separation. It was proved

that SF [28] preserves the decidability of separation when applied

to a prevariety containing only group languages. These are the lan-
guages recognized by a finite group, or equivalently by a permuta-

tion automaton (i.e., a complete, deterministic and co-deterministic

automaton). This implies that separation is decidable for variants

of FO such as FO(<) or FO(<,MOD).
We investigate restrictions of a well-known operator: polynomial

closure. For an input class 𝒞, it builds the least class 𝑃𝑜𝑙 (𝒞) con-
taining all finite unions of marked products 𝐾0𝑎1𝐾1 · · ·𝑎𝑛𝐾𝑛 with

𝑎1, . . . , 𝑎𝑛 letters and 𝐾0, . . . , 𝐾𝑛 ∈ 𝒞. We look at variants obtained

by imposing semantic restrictions on the products. A marked prod-

uct 𝐾0𝑎1𝐾1 · · ·𝑎𝑛𝐾𝑛 is unambiguous if for all𝑤 ∈ 𝐾0𝑎1𝐾1 · · ·𝑎𝑛𝐾𝑛 ,
the decomposition of 𝑤 witnessing this membership is unique.
This defines unambiguous polynomial closure (𝑈𝑃𝑜𝑙 ) which is well-

understood [20, 22, 26]. We look at stronger restrictions. For a
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marked product 𝐾0𝑎1𝐾1 · · ·𝑎𝑛𝐾𝑛 , we let 𝐿𝑖 = 𝐾0𝑎1𝐾1 . . . 𝑎𝑖−1𝐾𝑖−1

and 𝑅𝑖 = 𝐾𝑖𝑎𝑖+1 · · ·𝐾𝑛−1𝑎𝑛𝐾𝑛 for all 𝑖 ≤ 𝑛. The whole marked

product is left (resp. right) deterministic if for all 𝑖 ≤ 𝑛, 𝐿𝑖𝑎𝑖𝐴
∗

(resp. 𝐴∗𝑎𝑖𝑅𝑖 ) is unambiguous. It is mixed deterministic if for all
𝑖 ≤ 𝑛, either 𝐿𝑖𝑎𝑖𝐴∗

or 𝐴∗𝑎𝑖𝑅𝑖 is unambiguous. This leads to three

operators: left, right and mixed polynomial closure (𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and
𝑀𝑃𝑜𝑙 ). Historically, 𝐿𝑃𝑜𝑙 and 𝑅𝑃𝑜𝑙 are well-known. They were first

investigated by Schützenberger [33] and Pin [20, 21]. On the other

hand,𝑀𝑃𝑜𝑙 is new. We first prove that these operators have robust

properties which are similar to those proved for𝑈𝑃𝑜𝑙 in [26]. First,

they preserve the closure properties of input classes: if𝒞 is a preva-

riety, then so are 𝐿𝑃𝑜𝑙 (𝒞), 𝑅𝑃𝑜𝑙 (𝒞) and𝑀𝑃𝑜𝑙 (𝒞). Moreover, we

prove that if𝒞 has decidable membership, then this is also the case

for 𝐿𝑃𝑜𝑙 (𝒞), 𝑅𝑃𝑜𝑙 (𝒞) and𝑀𝑃𝑜𝑙 (𝒞).
We look at hierarchies that are built with these operators. In gen-

eral, 𝐿𝑃𝑜𝑙 (𝒞) and 𝑅𝑃𝑜𝑙 (𝒞) are incomparable. Thus, given an input

class 𝒞, two hierarchies can be built. The first levels are 𝐿𝑃𝑜𝑙 (𝒞)
and 𝑅𝑃𝑜𝑙 (𝒞), then for all 𝑛 > 1, the levels 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞) are
defined as 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑛−1 (𝒞)) and 𝑅𝑃𝑜𝑙 (𝐿𝑃𝑛−1 (𝒞)). One may also

define combined levels 𝐿𝑃𝑛 (𝒞) ∩𝑅𝑃𝑛 (𝒞) (the languages belonging
to both classes) and 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞) (the least Boolean algebra

containing both classes). It follows from results of [26] that the

union of all levels is𝑈𝑃𝑜𝑙 (𝒞). In the literature, this construction

is well-known for a specific input class: the piecewise testable lan-

guages PT [34] (i.e., the Boolean combinations of marked products

𝐴∗𝑎1𝐴
∗ · · ·𝑎𝑛𝐴∗

). This hierarchy is strict and has characterizations

based on algebra [15, 37] and logic [16, 17]. By definition, each hier-

archy contains four distinct kinds of levels. Yet, we prove that their

construction process can be unified: all four kinds can be climbed

from the first level by using only𝑀𝑃𝑜𝑙 . For example, we show that

for every 𝑛 > 1,𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛−1 (𝒞)∨𝑅𝑃𝑛−1 (𝒞)) = 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞).
This makes the investigation of such hierarchies easier.

In the second part of the paper, we investigate the quantifier

alternation hierarchies of two-variable first-order logic (FO2
). The

fragment FO
2
contains the first-order formulas using at most two

distinct reusable variables. For all 𝑛 ≥ 1, we letℬΣ2

𝑛 as the set of

all FO
2
formulas such that each branch in their parse trees con-

tains at most 𝑛 blocks of alternating quantifiers “∃” and “∀”. There
are important classes associated to these fragments and several

of them are prominent in the literature. Historically, the full logic

FO
2
was first considered. It is known that membership is decidable

for the variants FO
2 (<) and FO

2 (<, +1) equipped with the linear

order and successor [35], as well as for FO
2 (<,MOD) equipped

with modular predicates [6]. For quantifier alternation, it is known

that membership is decidable for all levels ℬΣ2

𝑛 (<) [11, 16, 17]
and ℬΣ2

𝑛 (<, +1) [14]. Note that while the arguments are related

these results involve tailored proofs for each particular choice of

signature. In this paper, we develop a generic approach based on

𝑀𝑃𝑜𝑙 and look at a family of signatures. Given a prevariety 𝒢

containing only group languages, we associate a generic set of

predicates P𝒢 . For every 𝐿 ∈ 𝒢, it contains a unary predicate

𝑃𝐿 (𝑥): it checks if the prefix preceding a given position belongs

to 𝐿. We consider all signatures of the form {<, P𝒢} or {<, +1, P𝒢}.
This captures most of the natural examples such as {<}, {<, +1},
{<, 𝑀𝑂𝐷}, or {<, +1, 𝑀𝑂𝐷} (we present other examples in this

paper). We prove that if S is one of the two above kinds of signa-

tures, one may climb the quantifier alternation hierarchy of FO
2 (S)

using 𝑀𝑃𝑜𝑙 : ℬΣ2

𝑛+1
(S) = 𝑀𝑃𝑜𝑙 (ℬΣ2

𝑛 (S)) for all 𝑛 ≥ 1. This also

implies that FO
2 (S) = 𝑈𝑃𝑜𝑙 (ℬΣ2

1
(S)). Hence, we obtain a generic

language theoretic characterization of FO
2
and its quantifier alter-

nation hierarchy which holds for many natural signature choices.

Moreover, 𝑀𝑃𝑜𝑙 and 𝑈𝑃𝑜𝑙 preserve the decidability of member-

ship and independent results [31] state that if S is a signature built
from a group prevariety𝒢 as above, then membership for ℬΣ2

1
(S)

boils down to separation for𝒢 (these results exploit the fact that

ℬΣ2

1
(S) = ℬΣ1 (S), the level one in the hierarchy of full first-order

logic). Altogether, it follows that membership is decidable for all

classes captured by our results as soon as separation is decidable for
the input group prevariety 𝒢. This reproves the aforementioned

results and yields new ones.

In the last part of the paper, we come back to 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and

𝑀𝑃𝑜𝑙 . We look at separation and prove that if 𝒞 is a finite preva-
riety and 𝒟 is a prevariety with decidable separation such that

𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞), then separation is decidable for 𝐿𝑃𝑜𝑙 (𝒟),
𝑅𝑃𝑜𝑙 (𝒟) and𝑀𝑃𝑜𝑙 (𝒟). This is weaker than what we have for mem-

bership since 𝒞 must be finite. Yet, we detail a key application: the

prevariety PT of piecewise testable languages. While PT is infinite,

it is known and simple to verify that AT ⊆ PT ⊆ 𝑈𝑃𝑜𝑙 (AT) where
AT is the finite prevariety of alphabet testable languages (i.e., the
Boolean combinations of languages 𝐴∗𝑎𝐴∗

). Since PT-separation

is decidable [5, 24], a simple induction yields the decidability of

separation for all classes that can be built recursively from PT by

applying 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and 𝑀𝑃𝑜𝑙 . This includes all levels 𝐿𝑃𝑛 (PT)
and 𝑅𝑃𝑛 (PT). Moreover, since PT = ℬΣ2

1
(<), this can be combined

with our generic language theoretic characterization of quantifier

alternation for FO
2
to prove that ℬΣ2

𝑛 (<)-separation is decidable

for every 𝑛 ≥ 1.

In Section 2, we introduce the definitions and standard tools that

we shall need. In Section 3, we present 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and 𝑀𝑃𝑜𝑙 and

their properties. In Section 4, we present algebraic characterizations

of these operators which imply that they preserve the decidability

of membership. We discuss the language theoretic hierarchies that

can be built with our operators in Section 5. We turn to logic in

Section 6 and use𝑀𝑃𝑜𝑙 to characterize the quantifier alternation

hierarchies of two-variable first-order logic. Finally, Section 7 is

devoted to the separation problem. Due to space limitations, several

proofs are postponed to the full version of the paper.

2 PRELIMINARIES
We present terminology that we use throughout the paper. The

statements are proved in the full version of the paper.

2.1 Finite words and classes of languages
We fix an arbitrary finite alphabet 𝐴 for the whole paper. As usual,

𝐴∗
denotes the set of all words over 𝐴, including the empty word 𝜀.

We let 𝐴+ = 𝐴∗ \ {𝜀}. For 𝑢, 𝑣 ∈ 𝐴∗
, we write 𝑢𝑣 the word obtained

by concatenating 𝑢 and 𝑣 . Also, if 𝑤 ∈ 𝐴∗
, we write |𝑤 | ∈ N for

its length. We also consider positions. A word𝑤 = 𝑎1 · · ·𝑎 |𝑤 | ∈ 𝐴∗

is viewed as an ordered set P(𝑤) = {0, 1, . . . , |𝑤 |, |𝑤 | + 1} of |𝑤 | + 2

positions. A position 𝑖 such that 1 ≤ 𝑖 ≤ |𝑤 | carries the label 𝑎𝑖 ∈ 𝐴.
We write Pc (𝑤) = {1, . . . , |𝑤 |} for this set of labeled positions. On
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the other hand, the positions 0 and |𝑤 | + 1 are artificial leftmost

and rightmost positions which carry no label. Finally, given a word

𝑤 = 𝑎1 · · ·𝑎 |𝑤 | ∈ 𝐴∗
and 𝑖, 𝑗 ∈ P(𝑤) such that 𝑖 < 𝑗 , we write

𝑤 (𝑖, 𝑗) = 𝑎𝑖+1 · · ·𝑎 𝑗−1 ∈ 𝐴∗
(i.e., the infix obtained by keeping the

letters carried by the positions that are strictly between 𝑖 and 𝑗 ).

Note that𝑤 (0, |𝑤 | + 1) = 𝑤 .

A language is a subset of 𝐴∗
. We lift concatenation to languages:

for 𝐾, 𝐿 ⊆ 𝐴∗
, 𝐾𝐿 = {𝑢𝑣 | 𝑢 ∈ 𝐾 and 𝑣 ∈ 𝐿}.

Regular languages and morphisms. All languages that we con-
sider in this paper are regular. These are the languages which can

be defined by a finite automaton or a morphism into a finite monoid.

We work with the latter definition which we recall now. A semi-
group is a pair (𝑆, ·) where 𝑆 is a set and “·” is an associative binary

operation on 𝑆 (often called multiplication). It is standard to abuse

terminology and make the binary operation implicit: one simply

says that “𝑆 is a semigroup”. A monoid 𝑀 is a semigroup whose

multiplication has a neutral element denoted by “1𝑀 ”. Recall that

an idempotent of a semigroup 𝑆 is an element 𝑒 ∈ 𝑆 such that 𝑒𝑒 = 𝑒 .
A standard result in semigroup theory states that when 𝑆 is finite,
there exists 𝜔 (𝑆) ∈ N (written 𝜔 when 𝑆 is understood) such that

𝑠𝜔 is idempotent for every 𝑠 ∈ 𝑆 .
Clearly, 𝐴∗

is a monoid whose multiplication is concatenation (𝜀

is the neutral element). Thus, given a monoid𝑀 , we may consider

morphisms 𝛼 : 𝐴∗ → 𝑀 . A language 𝐿 ⊆ 𝐴∗
is recognized by such

a morphism 𝛼 when there exists 𝐹 ⊆ 𝑀 such that 𝐿 = 𝛼−1 (𝐹 ). It
is well-known that the regular languages are exactly those which

can be recognized by a morphism 𝛼 : 𝐴∗ → 𝑀 where𝑀 is a finite
monoid.

Remark 2.1. Since the only infinite monoid that we consider is 𝐴∗,
we implicitly assume that every arbitrary monoid𝑀, 𝑁, . . . that we
consider is finite from now on.

We shall also consider the standard Green relations that one may

associate to every monoid 𝑀 . Given 𝑠, 𝑡 ∈ 𝑀 , we write 𝑠 ⩽ℛ 𝑡 if

there exists 𝑟 ∈ 𝑀 such that 𝑠 = 𝑡𝑟 . Moreover, 𝑠 ⩽ℒ 𝑡 if there exists

𝑞 ∈ 𝑀 such that 𝑠 = 𝑞𝑡 . Finally, 𝑠 ⩽𝒥 𝑡 if there exist 𝑞, 𝑟 ∈ 𝑀 such

that 𝑠 = 𝑞𝑡𝑟 . One may verify that these are preorders. We write ℛ,

ℒ and 𝒥 for the equivalences associated to ⩽ℛ, ⩽ℒ and ⩽𝒥 (for

example, 𝑠 ℛ 𝑡 when 𝑠 ⩽ℛ 𝑡 and 𝑡 ⩽ℛ 𝑠). Finally, we write <ℛ,

<ℒ and <𝒥 for the strict variants of these preorders (for example,

𝑠 <ℛ 𝑡 when 𝑠 ⩽ℛ 𝑡 and 𝑠 ≠ 𝑡 ).

Classes and decision problems. A class of languages 𝒞 is a set

of languages. A lattice is a class which is closed under both union

and intersection, and containing the languages ∅ and𝐴∗
. Moreover,

a Boolean algebra is a lattice closed under complement. Finally, a

class 𝒞 is quotient-closed when for all 𝐿 ∈ 𝒞 and all 𝑢, 𝑣 ∈ 𝐴∗
,

the language {𝑤 ∈ 𝐴∗ | 𝑢𝑤𝑣 ∈ 𝐿} belongs to 𝐿. Finally, we say that

a class 𝒞 is a prevariety to indicate that it is a quotient-closed

Boolean algebra containing only regular languages . In this paper,

we investigate specific prevarieties. For this purpose, we rely on

two decision problems that one may associate to a fixed class 𝒞.

The key idea is that finding an algorithm for each of these problems

provides a solid understanding of 𝒞.

Themost simple problem,𝒞-membership, takes as input a regular
language 𝐿 and asks whether 𝐿 ∈ 𝒞. We turn to the second problem.

Given two languages 𝐿0 and 𝐿1, we say that 𝐿0 is 𝒞-separable

from 𝐿1 if there exists 𝐾 ∈ 𝒞 such that 𝐿0 ⊆ 𝐾 and 𝐿1 ∩ 𝐾 = ∅.
The 𝒞-separation problem takes as input two regular languages

𝐿0 and 𝐿1 and asks whether 𝐿0 is 𝒞-separable from 𝐿1. Note that

𝒞-membership can be reduced to 𝒞-separation: clearly, 𝐿 ∈ 𝒞 if

and only if 𝐿 is 𝒞-separable from 𝐴∗ \ 𝐿 (here, we use the fact that

the regular languages are closed under complement).

Group languages. When applying our results to logic, we shall

consider a particular kind of class. A group is a monoid𝐺 such that

each 𝑔 ∈ 𝐺 has an inverse 𝑔−1 ∈ 𝐺 , i.e., 𝑔𝑔−1 = 𝑔−1𝑔 = 1𝐺 . A “group
language” is a language which is recognized by a morphism into a

finite group. In Section 6, we shall consider classes𝒢 that are group
prevarieties (i.e., containing group languages only).

Additionally, we shall consider “extensions” of the group preva-

rieties. One may verify from the definition that {𝜀} and 𝐴+
are not

group languages. This motivates the following notion: for a class

𝒞, the well-suited extension of 𝒞, denoted by 𝒞
+
, consists of all

languages of the form 𝐿 ∩ 𝐴+
or 𝐿 ∪ {𝜀} where 𝐿 ∈ 𝒞. One may

verify that when 𝒞 is a prevariety, 𝒞
+
is a prevariety as well.

2.2 𝒞-morphisms
Let 𝒞 be a prevariety. A 𝒞-morphism is a surjective morphism

𝜂 : 𝐴∗ → 𝑁 such that every language recognized by 𝜂 belongs to

𝒞. This notion serves as a key mathematical tool in this paper. First,

we use it for the membership problem.

Given a regular language 𝐿, one may associate a canonical mor-

phism recognizing𝐿. Let us briefly recall the definition.We associate

a relation ≡𝐿 on 𝐴∗
to 𝐿. Given 𝑢, 𝑣 ∈ 𝐴∗

, we have 𝑢 ≡𝐿 𝑣 if and
only if 𝑥𝑢𝑦 ∈ 𝐿 ⇔ 𝑥𝑣𝑦 ∈ 𝐿 for every 𝑥,𝑦 ∈ 𝐴∗

. It can be verified

that ≡𝐿 is a congruence of 𝐴∗
and, since 𝐿 is regular, that it has

finite index. Therefore, the map 𝛼 : 𝐴∗ → 𝐴∗/≡𝐿 which associates

its ≡𝐿-class to each word is a morphism into a finite monoid. It is

called the syntactic morphism of 𝐿 and it can be computed from any

representation of 𝐿. We have the following standard result which

connects it to 𝒞-membership.

Proposition 2.2. Let 𝒞 be a prevariety. A regular language be-
longs to 𝒞 iff its syntactic morphism is a 𝒞-morphism.

By Proposition 2.2, getting an algorithm for𝒞-membership boils

down to finding a procedure which decides if some input morphism

𝛼 : 𝐴∗ → 𝑀 is a 𝒞-morphism. This is how we approach the ques-

tion in this paper. We shall also use 𝒞-morphisms as mathematical

tools in proof arguments. In this context, we shall use the following

statement which is a simple corollary of Proposition 2.2.

Proposition 2.3. Let𝒞 be a prevariety and consider finitely many
languages 𝐿1, . . . , 𝐿𝑘 ∈ 𝒞. There exists a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁

such that 𝐿1, . . . , 𝐿𝑘 are recognized by 𝜂.

2.3 Canonical relations
Given a prevariety 𝒞 and a morphism 𝛼 : 𝐴∗ → 𝑀 , we associate

two relations on 𝑀 . The definitions are adapted from notions in-

troduced in [26, 27]. For the first one, we say that (𝑠, 𝑡) is a 𝒞-pair
(for 𝛼) if and only if 𝛼−1 (𝑠) is not 𝒞-separable from 𝛼−1 (𝑡). The
𝒞-pair relation is not very robust. It is symmetric (this is tied to

closure under complement for 𝒞) and reflexive (if 𝛼 is surjective).

However, it is not transitive in general.
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We turn to the second relation. Let 𝑠, 𝑡 ∈ 𝑀 . We write 𝑠 ∼𝒞,𝛼 𝑡

if and only if 𝑠 ∈ 𝐹 ⇔ 𝑡 ∈ 𝐹 for all 𝐹 ⊆ 𝑀 such that 𝛼−1 (𝐹 ) ∈ 𝒞.

It is immediate by definition that ∼𝒞,𝛼 is an equivalence. For the

sake of avoiding clutter, we shall abuse terminology when the

morphism 𝛼 is understood and write ∼𝒞 for ∼𝒞,𝛼 . Additionally,

for every element 𝑠 ∈ 𝑀 , we write [𝑠]𝒞 ∈ 𝑀/∼𝒞 for the ∼𝒞-

class of 𝑠 . Observe that by definition, computing ∼𝒞,𝛼 boils down

to computing the sets 𝐹 ⊆ 𝑀 such that 𝛼−1 (𝐹 ) ∈ 𝒞, i.e. to 𝒞-

membership.

Fact 2.4. Let𝒞 be a prevariety with decidable membership. Given
as input a morphism 𝛼 : 𝐴∗ → 𝑀 , one may compute the equivalence
∼𝒞,𝛼 on𝑀 .

We now connect our two relations in the following lemma.

Lemma 2.5. Let𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 be a morphism.
The equivalence ∼𝒞,𝛼 on𝑀 is the reflexive transitive closure of the
𝒞-pair relation associated to 𝛼 .

It can be verified than when the morphism 𝛼 is surjective, the
equivalence ∼𝒞,𝛼 is a congruence of the monoid𝑀 .

Lemma 2.6. Let𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 be a surjective
morphism. Then, ∼𝒞,𝛼 is a congruence of𝑀 .

In view of Lemma 2.6, when 𝛼 : 𝐴∗ → 𝑀 is surjective, the

map [·]𝒞 : 𝑀 → 𝑀/∼𝒞 which associates its ∼𝒞-class to every

element in𝑀 is a morphism. A key property is that the composition

[·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑀/∼𝒞 is a 𝒞-morphism.

Lemma 2.7. Let𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 be a surjective
morphism. The languages recognized by [·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑀/∼𝒞 are
exactly those which are simultaneously in 𝒞 and recognized by 𝛼 .

3 OPERATORS
We introduce the operators that we investigate in this paper. We

first recall the definition of standard polynomial closure. Then, we

define four semantic restrictions

3.1 Polynomial closure
Given finitely many languages 𝐿0, . . . , 𝐿𝑛 ⊆ 𝐴∗

, a marked prod-
uct of 𝐿0, . . . , 𝐿𝑛 is a product of the form 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 where

𝑎1, . . . , 𝑎𝑛 ∈ 𝐴. Note that a single language 𝐿0 is a marked prod-

uct (this is the case 𝑛 = 0). In the case 𝑛 = 1 (i.e., there are two
languages), we speak of marked concatenations.

The polynomial closure of a class 𝒞, denoted by 𝑃𝑜𝑙 (𝒞), is the
class containing all finite unions ofmarked products 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛
such that 𝐿0, . . . , 𝐿𝑛 ∈ 𝒞. If 𝒞 is a prevariety, 𝑃𝑜𝑙 (𝒞) is a quotient-
closed lattice (this is due to Arfi [2], see also [21, 27] for recent

proofs). On the other hand, 𝑃𝑜𝑙 (𝒞) need not be closed under com-

plement. Hence, it is natural to combine 𝑃𝑜𝑙 with another opera-

tor. The Boolean closure of a class𝒟, denoted by 𝐵𝑜𝑜𝑙 (𝒟), is the
least Boolean algebra containing 𝒟. Finally, we write 𝐵𝑃𝑜𝑙 (𝒞) for
𝐵𝑜𝑜𝑙 (𝑃𝑜𝑙 (𝒞)). The following proposition is standard (see [27] for

example).

Proposition 3.1. If 𝒞 is a prevariety, then so is 𝐵𝑃𝑜𝑙 (𝒞).

We do not investigate 𝐵𝑃𝑜𝑙 itself. Yet, we use the classes 𝐵𝑃𝑜𝑙 (𝒞)
as inputs for the operators that we do investigate.

3.2 Deterministic restrictions
We define weaker operators from 𝑃𝑜𝑙 by restricting the marked

products to those satisfying specific semantic conditions and the

finite unions to disjoint ones.
Consider a marked product 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 . For 1 ≤ 𝑖 ≤ 𝑛,

we define 𝐿′
𝑖
= 𝐿0𝑎1𝐿1 · · ·𝑎𝑖−1𝐿𝑖−1 (in particular, 𝐿′

1
= 𝐿0) and

𝐿′′
𝑖
= 𝐿𝑖𝑎𝑖+1𝐿𝑖+1 · · ·𝑎𝑛𝐿𝑛 (in particular, 𝐿′′𝑛 = 𝐿𝑛). We say that,

• 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is left deterministic if and only if for all 𝑖 such
that 1 ≤ 𝑖 ≤ 𝑛, we have 𝐿′

𝑖
∩ 𝐿′

𝑖
𝑎𝑖𝐴

∗ = ∅.
• 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is right deterministic if and only if for all 𝑖

such that 1 ≤ 𝑖 ≤ 𝑛, we have 𝐿′′
𝑖
∩𝐴∗𝑎𝑖𝐿′′𝑖 = ∅.

• 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is mixed deterministic if and only if for all 𝑖

such that 1 ≤ 𝑖 ≤ 𝑛, either 𝐿′
𝑖
∩𝐿′

𝑖
𝑎𝑖𝐴

∗=∅ or 𝐿′′
𝑖
∩𝐴∗𝑎𝑖𝐿′′𝑖 =∅.

• 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is unambiguous if and only if for every word
𝑤 ∈ 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 , there exists a unique decomposition

𝑤 = 𝑤0𝑎1𝑤1 · · ·𝑎𝑛𝑤𝑛 with𝑤𝑖 ∈ 𝐿𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
These notions depend on the product itself and not only on the

resulting language. For example, the marked concatenations𝐴∗𝑎𝐴∗

(which is not unambiguous) and (𝐴 \ {𝑎})∗𝑎𝐴∗
(which is left de-

terministic) evaluate to the same language. By definition, a left or

right deterministic marked product is also mixed deterministic. It

is also simple to verify that mixed deterministic marked products

are unambiguous.

Remark 3.2. Amixed deterministic product need not be left or right
deterministic. For example, let 𝐿1 = (𝑎𝑏)+, 𝐿2 = 𝑐+ and 𝐿3 = (𝑏𝑎)+.
The product 𝐿1𝑐𝐿2𝑐𝐿3 is mixed deterministic since 𝐿1 ∩ 𝐿1𝑐𝐴

∗ = ∅
and 𝐿3 ∩𝐴∗𝑐𝐿3 = ∅. However, it is neither left deterministic nor right
deterministic. Similarly, a unambiguous product need not be mixed
deterministic. If 𝐿4 = (𝑐𝑎)+, the product 𝐿1𝑎𝐿4 is unambiguous but it
neither left nor right deterministic.

The left polynomial closure of a class 𝒞, written 𝐿𝑃𝑜𝑙 (𝒞), con-
tains the finite disjoint unions of left deterministic marked products
𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 such that 𝐿0, . . . , 𝐿𝑛 ∈ 𝒞 (by “disjoint” we mean

that the languages in the union must be pairwise disjoint). The

right polynomial closure of 𝒞 (𝑅𝑃𝑜𝑙 (𝒞)), the mixed polynomial clo-
sure of 𝒞 (𝑀𝑃𝑜𝑙 (𝒞)) and the unambiguous polynomial closure of
𝒞 (𝑈𝑃𝑜𝑙 (𝒞)) are defined analogously by replacing the “left deter-

ministic” requirement on marked products by the appropriate one.

The following lemma can be verified from the definition.

Lemma 3.3. Let𝒞 be a class. Then, we have 𝐿𝑃𝑜𝑙 (𝒞) ⊆ 𝑀𝑃𝑜𝑙 (𝒞),
𝑅𝑃𝑜𝑙 (𝒞) ⊆ 𝑀𝑃𝑜𝑙 (𝒞) and𝑀𝑃𝑜𝑙 (𝒞) ⊆ 𝑈𝑃𝑜𝑙 (𝒞) ⊆ 𝑃𝑜𝑙 (𝒞).

The operators 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and𝑈𝑃𝑜𝑙 are fairly standard. See for

example [20, 22, 33]. In particular, they admit the following standard

alternate definition (see [21] for a proof).

Lemma 3.4. Let 𝒞 be a class. Then, 𝐿𝑃𝑜𝑙 (𝒞) (resp. 𝑅𝑃𝑜𝑙 (𝒞),
𝑈𝑃𝑜𝑙 (𝒞)) is the least class containing𝒞 which is closed under disjoint
union and left deterministic (resp. right deterministic, unambiguous)
marked concatenation.

On the other hand, 𝑀𝑃𝑜𝑙 is new. It is arguably the key notion

of the paper. In particular, the application to two-variable first-

order logic is based on it (see Section 6). Unfortunately, it is less

robust than the other operators: there is no equivalent to Lemma 3.4

for 𝑀𝑃𝑜𝑙 . In particular, it is not idempotent: in general 𝑀𝑃𝑜𝑙 (𝒞)
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is strictly included in 𝑀𝑃𝑜𝑙 (𝑀𝑃𝑜𝑙 (𝒞)). This is because a mixed

product of mixed products is not a mixed product itself in general.

Example 3.5. Consider the alphabet 𝐴 = {𝑎, 𝑏, 𝑐}. We let 𝐿0 = 𝑏+,
𝐿1 = 𝑎+ and 𝐾 = (𝑎 + 𝑏 + 𝑐)+. Clearly, 𝐿0𝑏𝐿1 and 𝐾 are defined by

mixed deterministic products. Moreover, if 𝐿 = 𝐿0𝑏𝐿1, then 𝐿𝑐𝐾 is

mixed deterministic. However, the combined product 𝐿0𝑏𝐿1𝑐𝐾 is

not mixed deterministic itself. Indeed, the marked concatenation

(𝐿0)𝑏 (𝐿1𝑐𝐾) is neither left deterministic nor right deterministic.

Note that 𝑈𝑃𝑜𝑙 is well-understood. In particular, we shall use

two key results from [26]. First, while this is not apparent on the

definition,𝑈𝑃𝑜𝑙 (𝒞) has robust properties.

Theorem 3.6 ([26]). If 𝒞 is a prevariety, then so is𝑈𝑃𝑜𝑙 (𝒞).

Moreover, we have the following generic characterization of the

𝑈𝑃𝑜𝑙 (𝒞)-morphisms.

Theorem 3.7 ([26]). Let 𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a
surjective morphism. The following are equivalent:

a) 𝛼 is a𝑈𝑃𝑜𝑙 (𝒞)-morphism.
b) 𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔 for all 𝒞-pairs (𝑠, 𝑡) ∈ 𝑀2.
c) 𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔 for all 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒞 𝑡 .

By Fact 2.4, the equivalence ∼𝒞 can be computed from 𝛼 as soon

as 𝒞-membership is decidable. Hence, in view of Proposition 2.2,

Theorem 3.7 implies that when𝒞-membership is decidable, then so

is 𝑈𝑃𝑜𝑙 (𝒞)-membership. We prove similar results for 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙

and𝑀𝑃𝑜𝑙 in Section 4.

3.3 Framework
We present a general framework and use it to characterize the

languages in 𝐿𝑃𝑜𝑙 (𝒞), 𝑅𝑃𝑜𝑙 (𝒞) and𝑀𝑃𝑜𝑙 (𝒞) for a prevariety 𝒞

(the statements are proved in the full version of the paper). We rely

on it whenever we manipulate these classes in proof arguments.

In particular, we apply it at the end of the section to generalize

Theorem 3.6 to 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and𝑀𝑃𝑜𝑙 .

Sets of positions associated to a morphism. Given an arbitrary

surjective morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N, we use the Green

relations of 𝑁 to associate three sets of positions to every𝑤 ∈ 𝐴∗
.

Let 𝑤 = 𝑎1 · · ·𝑎ℓ ∈ 𝐴∗
. We define two sets P▷ (𝜂, 𝑘,𝑤) ⊆ Pc (𝑤)

and P◁ (𝜂, 𝑘,𝑤) ⊆ Pc (𝑤) by induction on 𝑘 . When 𝑘 = 0, we define

P▷ (𝜂, 0,𝑤) = P◁ (𝜂, 0,𝑤) = ∅. Assume now that 𝑘 ≥ 1 and let

𝑖 ∈ Pc (𝑤). We let,

• 𝑖 ∈ P▷ (𝜂, 𝑘,𝑤) if there is 𝑗 ∈ P▷ (𝜂, 𝑘 − 1,𝑤) ∪ {0} such that

𝑗 < 𝑖 and 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)).
• 𝑖 ∈ P◁ (𝜂, 𝑘,𝑤) if there is 𝑗 ∈ P◁ (𝜂, 𝑘 − 1,𝑤) ∪ {|𝑤 | + 1} such
that 𝑖 < 𝑗 and 𝜂 (𝑎𝑖𝑤 (𝑖, 𝑗)) <ℒ 𝜂 (𝑤 (𝑖, 𝑗)).

Finally, we let P⊲⊳ (𝜂, 𝑘,𝑤) = P▷ (𝜂, 𝑘,𝑤) ∪ P◁ (𝜂, 𝑘,𝑤) for every
𝑘 ∈ N.We turn to an important lemmawhichwe shall usewhen con-

sidering𝑈𝑃𝑜𝑙 (𝒞)-morphisms. The proof is based on Theorem 3.7.

Lemma 3.8. Let 𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a 𝑈𝑃𝑜𝑙 (𝒞)-
morphism. For every ℎ ∈ N and every word 𝑤 ∈ 𝐴∗, P▷ (𝛼,ℎ,𝑤) ⊆
P▷ ( [·]𝒞 ◦ 𝛼,ℎ |𝑀 |,𝑤) and P◁ (𝛼,ℎ,𝑤) ⊆ P◁ ( [·]𝒞 ◦ 𝛼,ℎ |𝑀 |,𝑤).

We turn to an independent definition that we shall use conjointly

with the first one. Consider a surjective morphism 𝜂 : 𝐴∗ → 𝑁 .

Given a word𝑤 = 𝑎1 · · ·𝑎ℓ ∈ 𝐴∗
and a set 𝑃 ⊆ Pc (𝑤), we use 𝜂 to

associate a tuple in 𝑁 × (𝐴 × 𝑁 ) |𝑃 | that we call the 𝜂-snapshot of
(𝑤, 𝑃). For the definition, we write 𝑘 = |𝑃 | and let 𝑖1 < · · · < 𝑖𝑘 be

the positions such that 𝑃 = {𝑖1, . . . , 𝑖𝑘 }. Finally, we let 𝑖0 = 0 and

𝑖𝑘+1
= |𝑤 | + 1. For 0 ≤ ℎ ≤ 𝑘 , we let 𝑠ℎ = 𝜂 (𝑤 (𝑖ℎ, 𝑖ℎ+1

))) ∈ 𝑁 . The

𝜂-snapshot of (𝑤, 𝑃), denoted by 𝜎𝜂 (𝑤, 𝑃), is the following tuple:

𝜎𝜂 (𝑤, 𝑃) = (𝑠0, 𝑎𝑖1 , 𝑠1, . . . , 𝑎𝑖𝑘 , 𝑠𝑘 ) ∈ 𝑁 × (𝐴 × 𝑁 )𝑘 .

We connect the two notions with the following key lemma.

Lemma 3.9. Let 𝜂 : 𝐴∗ → 𝑁 be a surjective morphism, 𝑘 ∈ N and
x ∈ {▷,◁, ⊲⊳}. Consider two words 𝑤,𝑤 ′ ∈ 𝐴∗ and 𝑃 ′ ⊆ Pc (𝑤 ′). If
𝜎𝜂 (𝑤, Px (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, 𝑃 ′), then 𝑃 ′ = Px (𝜂, 𝑘,𝑤 ′).

We may now connect these notions to our three operators 𝐿𝑃𝑜𝑙 ,

𝑅𝑃𝑜𝑙 and𝑀𝑃𝑜𝑙 .

Lemma 3.10. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism, 𝑤 ∈ 𝐴∗ and
𝑘 ∈ N. Let 𝑃 be the set P▷ (𝜂, 𝑘,𝑤) (resp. P◁ (𝜂, 𝑘,𝑤), P⊲⊳ (𝜂, 𝑘,𝑤))
and (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) = 𝜎𝜂 (𝑤, 𝑃). Then, the marked product
𝜂−1 (𝑠0)𝑎1𝜂

−1 (𝑠1) · · ·𝑎𝑛𝜂−1 (𝑠𝑛) is left (resp. right, mixed) determin-
istic.

Finally, we present an important property of these sets which

is specific to the case when 𝜂 : 𝐴∗ → 𝑁 is either a 𝐵𝑃𝑜𝑙 (𝒢)- or a
𝐵𝑃𝑜𝑙 (𝒢+)-morphism for some group prevariety𝒢. We prove that

for such morphisms, we may restrict ourselves to the special case

when 𝑘 = 1. This property will be crucial in Section 6 in order to

prove the characterization of quantifier alternation for two-variable

first-order logic with mixed polynomial closure.

Proposition 3.11. Let𝒢 be a group prevariety and𝒞 ∈ {𝒢,𝒢+}.
If 𝜂 : 𝐴∗ → 𝑁 is a 𝐵𝑃𝑜𝑙 (𝒞)-morphism and 𝑘 ∈ N, there exists a
𝐵𝑃𝑜𝑙 (𝒞)-morphism,𝛾 : 𝐴∗ → 𝑄 such that P▷ (𝜂, 𝑘,𝑤) ⊆ P▷ (𝛾, 1,𝑤)
and P◁ (𝜂, 𝑘,𝑤) ⊆ P◁ (𝛾, 1,𝑤).

Equivalence relations.We define equivalences and use them to

characterize the classes built with 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and𝑀𝑃𝑜𝑙 . Consider

a surjective morphism 𝜂 : 𝐴∗ → 𝑁 . For every 𝑘 ∈ N, we associate
three equivalence relations ▷𝜂,𝑘 , ◁𝜂,𝑘 and ⊲⊳𝜂,𝑘 on 𝐴∗

. Consider

𝑢, 𝑣 ∈ 𝐴∗
. We define,

• 𝑢 ▷𝜂,𝑘 𝑣 if 𝜎𝜂 (𝑢, P▷ (𝜂, 𝑘,𝑢)) = 𝜎𝜂 (𝑣, P▷ (𝜂, 𝑘, 𝑣)).
• 𝑢 ◁𝜂,𝑘 𝑣 if 𝜎𝜂 (𝑢, P◁ (𝜂, 𝑘,𝑢)) = 𝜎𝜂 (𝑣, P◁ (𝜂, 𝑘, 𝑣)).
• 𝑢 ⊲⊳𝜂,𝑘 𝑣 if 𝜎𝜂 (𝑢, P⊲⊳ (𝜂, 𝑘,𝑢)) = 𝜎𝜂 (𝑣, P⊲⊳ (𝜂, 𝑘, 𝑣)).

It is immediate by definition that ▷𝜂,𝑘 , ◁𝜂,𝑘 and ⊲⊳𝜂,𝑘 are equiva-

lence relations. It turns out that they are actually congruences of
finite index.

Lemma 3.12. If 𝜂 : 𝐴∗ → 𝑁 is a surjective morphism and 𝑘 ∈ N,
then ▷𝜂,𝑘 , ◁𝜂,𝑘 and ⊲⊳𝜂,𝑘 are congruences of finite index.

We are ready to characterize the classes built with 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙

and𝑀𝑃𝑜𝑙 with these three equivalences.

Proposition 3.13. Let 𝒞 be a prevariety and 𝐿 ⊆ 𝐴∗. Then,
𝐿 ∈ 𝐿𝑃𝑜𝑙 (𝒞) (resp. 𝐿 ∈ 𝑅𝑃𝑜𝑙 (𝒞), 𝐿 ∈ 𝑀𝑃𝑜𝑙 (𝒞)) if and only if there
exist a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that 𝐿 is a union of
▷𝜂,𝑘 -classes (resp. ◁𝜂,𝑘 -classes, ⊲⊳𝜂,𝑘 -classes).

We complete the statement with a useful corollary. It strengthens

the “only if ” implication in Proposition 3.13.
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Corollary 3.14. Let 𝒞 be a prevariety and 𝐿1, . . . , 𝐿𝑚 finitely
many languages in 𝐿𝑃𝑜𝑙 (𝒞) (resp. 𝑅𝑃𝑜𝑙 (𝒞), 𝑀𝑃𝑜𝑙 (𝒞)). There is a
𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that 𝐿1, . . . , 𝐿𝑚 are unions
of ▷𝜂,𝑘 -classes (resp. ◁𝜂,𝑘 -classes, ⊲⊳𝜂,𝑘 -classes).

Let us present a first application. We use Proposition 3.13 to

investigate closure properties.

Theorem 3.15. Let𝒞 a be a prevariety. Then, 𝐿𝑃𝑜𝑙 (𝒞), 𝑅𝑃𝑜𝑙 (𝒞)
and𝑀𝑃𝑜𝑙 (𝒞) are prevarieties as well.

Proof. We present a proof for𝑀𝑃𝑜𝑙 (the argument is symmetri-

cal for 𝐿𝑃𝑜𝑙 and 𝑅𝑃𝑜𝑙 ). Let 𝐾, 𝐿 ∈ 𝑀𝑃𝑜𝑙 (𝒞) and𝑢, 𝑣 ∈ 𝐴∗
. We show

that 𝐾 ∪ 𝐿, 𝐴∗ \ 𝐿 and 𝐻 = {𝑤 | 𝑢𝑤𝑣 ∈ 𝐿} belong to 𝑀𝑃𝑜𝑙 (𝒞).
By Corollary 3.14, there exist a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and

𝑘 ∈ N such that 𝐾 and 𝐿 are unions of ⊲⊳𝜂,𝑘 -classes. We show that

𝐾 ∪𝐿,𝐴∗ \𝐿 and𝐻 are also unions of ⊲⊳𝜂,𝑘 -classes which completes

the proof by Proposition 3.13. This is immediate for 𝐾 ∪ 𝐿 and

𝐴∗ \ 𝐿. Hence, we concentrate on 𝐻 . Given 𝑤,𝑤 ′ ∈ 𝐴∗
such that

𝑤 ⊲⊳𝜂,𝑘 𝑤
′
, we have to show that 𝑤 ∈ 𝐻 ⇔ 𝑤 ′ ∈ 𝐻 . Since ⊲⊳𝜂,𝑘

is a congruence by Lemma 3.12, we have 𝑢𝑤𝑣 ⊲⊳𝜂,𝑘 𝑢𝑤
′𝑣 . Since 𝐿

is a union of ⊲⊳𝜂,𝑘 -classes, this implies that 𝑢𝑤𝑣 ∈ 𝐿 ⇔ 𝑢𝑤 ′𝑣 ∈ 𝐿.
Therefore, we get 𝑤 ∈ 𝐻 ⇔ 𝑤 ′ ∈ 𝐻 by definition of 𝐻 which

completes the proof. □

4 ALGEBRAIC CHARACTERIZATIONS
For every prevariety 𝒞, we present generic algebraic characteriza-

tions for 𝐿𝑃𝑜𝑙 (𝒞), 𝑅𝑃𝑜𝑙 (𝒞) and𝑀𝑃𝑜𝑙 (𝒞). The statements are sim-

ilar to the characterization of𝑈𝑃𝑜𝑙 (𝒞) presented in Theorem 3.7.

First, we present symmetrical statements for 𝐿𝑃𝑜𝑙 and 𝑅𝑃𝑜𝑙 .

Theorem 4.1. Let 𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a surjective
morphism. The following properties are equivalent:

a) 𝛼 is an 𝐿𝑃𝑜𝑙 (𝒞)-morphism.
b) 𝑠𝜔+1 = 𝑠𝜔𝑡 for all 𝒞-pairs (𝑠, 𝑡) ∈ 𝑀2.
c) 𝑠𝜔+1 = 𝑠𝜔𝑡 for all 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒞 𝑡 .

Theorem 4.2. Let 𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a surjective
morphism. The following properties are equivalent:

a) 𝛼 is an 𝑅𝑃𝑜𝑙 (𝒞)-morphism.
b) 𝑠𝜔+1 = 𝑡𝑠𝜔 for all 𝒞-pairs (𝑠, 𝑡) ∈ 𝑀2.
c) 𝑠𝜔+1 = 𝑡𝑠𝜔 for all 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒞 𝑡 .

Theorem 4.1 and Theorem 4.2 are proved in the full version of

the paper. We concentrate on the more involved characterization

of𝑀𝑃𝑜𝑙 (𝒞) which is as follows.

Theorem 4.3. Let 𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a surjective
morphism. The following properties are equivalent:

a) 𝛼 is an𝑀𝑃𝑜𝑙 (𝒞)-morphism.
b) (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 for all 𝒞-pairs (𝑠, 𝑡) ∈ 𝑀2 and

all 𝑞, 𝑟 ∈ 𝑀 .
c) (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 for all 𝑞, 𝑟, 𝑠, 𝑡 ∈ 𝑀 such that
𝑠 ∼𝒞 𝑡 .

By Fact 2.4, one may compute the equivalence ∼𝒞 associated

to a morphism provided that 𝒞-membership is decidable. Hence,

in view of Proposition 2.2, we obtain the following corollary of

Theorems 4.1, 4.2 and 4.3.

Corollary 4.4. Let 𝒞 be a prevariety. If 𝒞-membership is decid-
able, then so are 𝐿𝑃𝑜𝑙 (𝒞)-, 𝑅𝑃𝑜𝑙 (𝒞)- and𝑀𝑃𝑜𝑙 (𝒞)-membership.

Proof of Theorem 4.3. We fix a prevariety 𝒞 and a surjective

morphism 𝛼 : 𝐴∗ → 𝑀 . We start with 𝑎) ⇒ 𝑏). Assume that

𝛼 is an 𝑀𝑃𝑜𝑙 (𝒞)-morphism. Let 𝑞, 𝑟, 𝑠, 𝑡 ∈ 𝑀 such that (𝑠, 𝑡) is a
𝒞-pair. We show that (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 . Corollary 3.14

yields a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that every

language recognized by 𝛼 is a union of ⊲⊳𝜂,𝑘 -classes. Since (𝑠, 𝑡) is
a 𝒞-pair and 𝜂 is a 𝒞-morphism, one may verify that there exist

𝑢, 𝑣 ∈ 𝐴∗
such that𝜂 (𝑢) = 𝜂 (𝑣), 𝛼 (𝑢) = 𝑠 and 𝛼 (𝑣) = 𝑡 . Let 𝑥,𝑦 ∈ 𝐴∗

such that 𝛼 (𝑥) = 𝑞 and 𝛼 (𝑦) = 𝑟 . We define 𝑝 = 𝜔 (𝑀) · 𝜔 (𝑁 ).
Let 𝑤 = (𝑢𝑥)𝑝𝑘𝑢 (𝑦𝑢)𝑝𝑘 and 𝑤 ′ = (𝑢𝑥)𝑝𝑘𝑣 (𝑦𝑢)𝑝𝑘 . The following
lemma can be verified from the definition of P⊲⊳ (𝜂, 𝑘,𝑤) and the

fact that (𝜂 (𝑢𝑥))𝑝 and (𝜂 (𝑦𝑢))𝑝 are idempotents of 𝑁 .

Lemma 4.5. For every 𝑖 ∈ P⊲⊳ (𝜂, 𝑘,𝑤), either 𝑖 ≤ |(𝑢𝑥)𝑝𝑘 | or
𝑖 > | (𝑢𝑥)𝑝𝑘𝑢 |.

Lemma 4.5 states that all positions in P⊲⊳ (𝜂, 𝑘,𝑤) belong either
to the prefix (𝑢𝑥)𝑝𝑘 or to the suffix (𝑦𝑢)𝑝𝑘 . We consider the set 𝑃 ′

made of the corresponding positions in Pc (𝑤 ′):
𝑃 ′ = {𝑖 | 𝑖 ∈ P⊲⊳ (𝜂, 𝑘,𝑤) and 𝑖 ≤ |(𝑢𝑥)𝑝𝑘 |} ∪

{𝑖 − |𝑢 | + |𝑣 | | 𝑖 ∈ P⊲⊳ (𝜂, 𝑘,𝑤) and 𝑖 > | (𝑢𝑥)𝑝𝑘𝑢 |}.
Since 𝜂 (𝑢) = 𝜂 (𝑣), one may verify from the definition that we

have 𝜎𝜂 (𝑤, P▷ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, 𝑃 ′). Thus, 𝑃 ′ = P▷ (𝜂, 𝑘,𝑤 ′) by
Lemma 3.9 and we get𝑤 ⊲⊳𝜂,𝑘 𝑤

′
. Since the languages recognized

by 𝛼 are unions of ⊲⊳𝜂,𝑘 -classes, we get 𝛼 (𝑤)=𝛼 (𝑤 ′). By definition,
this yields (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 .

We turn to the implication 𝑏) ⇒ 𝑐). Assume that b) holds and

consider𝑞, 𝑟, 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒞 𝑡 . We show that (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 =

(𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 . We start with a preliminary remark. By hypothesis,

the second assertion in Theorem 3.7 holds (this is the special case

of b) when 𝑞 = 𝑟 = 1𝑀 ). Thus, Theorem 3.7 yields the following

property:

𝑥𝜔+1 = 𝑥𝜔𝑦𝑥𝜔 for all 𝑥,𝑦 ∈ 𝑀 such that 𝑥 ∼𝒞 𝑦. (1)

Since 𝑠 ∼𝒞 𝑡 , Lemma 2.5 yields 𝑠0, . . . , 𝑠𝑛 ∈ 𝑀 such that 𝑠0 = 𝑠 ,

𝑠𝑛 = 𝑡 and (𝑠𝑖 , 𝑠𝑖+1) is a 𝒞-pair for all 𝑖 < 𝑛. We now prove that

(𝑠𝑞)𝜔𝑠𝑖 (𝑟𝑡)𝜔 = (𝑠𝑞)𝜔𝑠𝑖+1 (𝑟𝑡)𝜔 for every 𝑖 < 𝑛. Since 𝑠 = 𝑠0 and

𝑡 = 𝑠𝑛 , this yields the desired result by transitivity. We fix 𝑖 < 𝑛.

By definition, 𝑠 ∼𝒞 𝑡 ∼𝒞 𝑠𝑖 . Hence, since ∼𝒞 is a congruence,

we get 𝑠𝑞 ∼𝒞 𝑠𝑖𝑞 and 𝑟𝑡 ∼𝒞 𝑟𝑠𝑖 . It then follows from (1) that

(𝑠𝑞)𝜔+1 = (𝑠𝑞)𝜔𝑠𝑖𝑞(𝑠𝑞)𝜔 and (𝑟𝑠)𝜔 = (𝑟𝑠)𝜔𝑟𝑠𝑖 (𝑟𝑠)𝜔 . Thus,
(𝑠𝑞)𝜔 = ((𝑠𝑞)𝜔𝑠𝑖𝑞(𝑠𝑞)𝜔 )𝜔 = (𝑠𝑞)𝜔 (𝑠𝑖𝑞(𝑠𝑞)𝜔 )𝜔 .
(𝑟𝑠)𝜔 = ((𝑟𝑠)𝜔𝑟𝑠𝑖 (𝑟𝑠)𝜔 )𝜔 = ((𝑟𝑠)𝜔𝑟𝑠𝑖 )𝜔 (𝑟𝑠)𝜔 .

Moreover, since (𝑠𝑖 , 𝑠𝑖+1) is a 𝒞-pair and b) holds, we know that

(𝑠𝑖𝑞(𝑠𝑞)𝜔 )𝜔𝑠𝑖 ((𝑟𝑠)𝜔𝑟𝑠𝑖 )𝜔 = (𝑠𝑖𝑞(𝑠𝑞)𝜔 )𝜔𝑠𝑖+1 ((𝑟𝑠)𝜔𝑟𝑠𝑖 )𝜔 . Hence,
(𝑠𝑞)𝜔𝑠𝑖 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔 (𝑠𝑖𝑞(𝑠𝑞)𝜔 )𝜔𝑠𝑖 ((𝑟𝑠)𝜔𝑟𝑠𝑖 )𝜔 (𝑟𝑠)𝜔

= (𝑠𝑞)𝜔 (𝑠𝑖𝑞(𝑠𝑞)𝜔 )𝜔𝑠𝑖+1 ((𝑟𝑠)𝜔𝑟𝑠𝑖 )𝜔 (𝑟𝑠)𝜔
= (𝑠𝑞)𝜔𝑠𝑖+1 (𝑟𝑠)𝜔 .

This concludes the proof for the implication 𝑏) ⇒ 𝑐).
It remains to prove 𝑐) ⇒ 𝑎). We assume that c) holds and show

that 𝛼 is an 𝑀𝑃𝑜𝑙 (𝒞)-morphism. Let 𝑁 = 𝑀/∼𝒞 and recall that

𝑁 is a monoid since ∼𝒞 is a congruence by Lemma 2.6. We write

𝜂 = [·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑁 which is a 𝒞-morphism by Lemma 2.7. We
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let 𝑘 = |𝑀 | and consider the equivalence ⊲⊳𝜂,𝑘 on 𝐴∗
. We prove the

following property:

for every𝑤,𝑤 ′ ∈ 𝐴∗
, 𝑤 ⊲⊳𝜂,𝑘 𝑤

′ ⇒ 𝛼 (𝑤) = 𝛼 (𝑤 ′) . (2)

This implies that every language recognized by 𝛼 is a union of

⊲⊳𝜂,𝑘 -classes. Together with Proposition 3.13 this yields that ev-

ery language recognized by 𝛼 belongs to 𝑀𝑃𝑜𝑙 (𝒞) since 𝜂 is a

𝒞-morphism. We now concentrate on (2). Let 𝑤,𝑤 ′ ∈ 𝐴∗
such

that 𝑤 ⊲⊳𝜂,𝑘 𝑤 ′
. We show that 𝛼 (𝑤) = 𝛼 (𝑤 ′). We first use our

hypothesis to prove the following lemma.

Lemma 4.6. There exist 𝑃 ⊆ Pc (𝑤) and 𝑃 ′ ⊆ Pc (𝑤 ′) which satisfy
P▷ (𝛼, 1,𝑤) ⊆ 𝑃 , P◁ (𝛼, 1,𝑤 ′) ⊆ 𝑃 ′ and 𝜎𝜂 (𝑤, 𝑃) = 𝜎𝜂 (𝑤 ′, 𝑃 ′).

Proof. We write 𝑄 = P⊲⊳ (𝜂, 𝑘,𝑤) and 𝑄 ′ = P⊲⊳ (𝜂, 𝑘,𝑤 ′). Since
𝑤 ⊲⊳𝜂,𝑘 𝑤

′
, we have 𝜎𝜂 (𝑤,𝑄) = 𝜎𝜂 (𝑤 ′, 𝑄 ′). In particular, we have

|𝑄 | = |𝑄 ′ | and there is a unique increasing bijection 𝑓 : 𝑄 → 𝑄 ′
.

Since 𝛼 satisfies c), one may verify from Theorem 3.7 that it is

a 𝑈𝑃𝑜𝑙 (𝒞)-morphism. Thus, since 𝑘 = |𝑀 |, Lemma 3.8 yields

P▷ (𝛼, 1,𝑤) ⊆ P▷ (𝜂, 𝑘,𝑤) ⊆𝑄 and P◁ (𝛼, 1,𝑤 ′) ⊆ P◁ (𝜂, 𝑘,𝑤 ′) ⊆𝑄 ′
.

Therefore, the set 𝑓 (P▷ (𝛼, 1,𝑤)) ⊆ 𝑄 ′
is well-defined. We define

𝑃 ′ = 𝑓 (P▷ (𝛼, 1,𝑤)) ∪P◁ (𝛼, 1,𝑤 ′) ⊆ 𝑄 ′
and 𝑃 = 𝑓 −1 (𝑃 ′). It is clear

from the definition that P▷ (𝛼, 1,𝑤) ⊆ 𝑃 and P◁ (𝛼, 1,𝑤 ′) ⊆ 𝑃 ′.
Moreover, since 𝜎𝜂 (𝑤,𝑄) = 𝜎𝜂 (𝑤 ′, 𝑄 ′), it is immediate from the

definition that 𝜎𝜂 (𝑤, 𝑃) = 𝜎𝜂 (𝑤 ′, 𝑃 ′) as well. □

Consider the 𝛼-snapshots (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) = 𝜎𝛼 (𝑤, 𝑃) and
(𝑡0, 𝑏1, 𝑡1, . . . , 𝑏𝑚, 𝑡𝑚) = 𝜎𝛼 (𝑤 ′, 𝑃 ′). Since 𝜎𝜂 (𝑤, 𝑃) = 𝜎𝜂 (𝑤 ′, 𝑃 ′),
we get 𝑛 = 𝑚, 𝑎𝑖 = 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑠𝑖 ∼𝒞 𝑡𝑖 for 0 ≤ 𝑖 ≤ 𝑛

by definition of 𝜂. Therefore, we have 𝛼 (𝑤) = 𝑠0𝑎1𝑠1 · · ·𝑎𝑛𝑠𝑛 and

𝛼 (𝑤 ′) = 𝑡0𝑎1𝑡1 · · ·𝑎𝑛𝑡𝑛 by definition of 𝛼-snapshots (for the sake of

avoiding clutter, we abuse terminology and write 𝑎𝑖 for 𝛼 (𝑎𝑖 )). We

now prove that 𝑠0𝑎1𝑠1 · · ·𝑎𝑛𝑠𝑛 = 𝑡0𝑎1𝑡1 · · ·𝑎𝑛𝑡𝑛 . For all ℎ such that

0 ≤ ℎ ≤ 𝑛, we write 𝑞ℎ = 𝑠0𝑎1 · · · 𝑠ℎ−1
𝑎ℎ and 𝑟ℎ = 𝑎ℎ+1

𝑡ℎ+1
· · ·𝑎𝑛𝑡𝑛

(𝑞0 = 1𝑀 and 𝑟𝑛 = 1𝑀 ). Since P▷ (𝛼, 1,𝑤) ⊆ 𝑃 and P◁ (𝛼, 1,𝑤 ′) ⊆ 𝑃 ′,
one may verify from the definitions that 𝑞ℎ𝑠ℎ ℛ 𝑞ℎ and 𝑡ℎ𝑟ℎ ℒ 𝑟ℎ
for 0 ≤ ℎ ≤ 𝑛. We prove that 𝑞ℎ𝑠ℎ𝑟ℎ = 𝑞ℎ𝑡ℎ𝑟ℎ for 0 ≤ ℎ ≤ 𝑛.

Let us first explain why this implies 𝛼 (𝑤) = 𝛼 (𝑤 ′). One may

verify from the definition that 𝑞ℎ𝑠ℎ𝑟ℎ = 𝑞ℎ+1
𝑡ℎ+1

𝑟ℎ+1
for 0 ≤ ℎ < 𝑛.

Together with 𝑞ℎ𝑠ℎ𝑟ℎ = 𝑞ℎ𝑡ℎ𝑟ℎ , this yields 𝑞ℎ𝑡ℎ𝑟ℎ = 𝑞ℎ+1
𝑡ℎ+1

𝑟ℎ+1
.

By transitivity, we get 𝑞0𝑡0𝑟0 = 𝑞𝑛𝑡𝑛𝑟𝑛 . Together with the fact

that 𝑞0𝑠0𝑟0 = 𝑞0𝑡0𝑟0, this yields 𝑞0𝑠0𝑟0 = 𝑞𝑛𝑡𝑛𝑟𝑛 . By definition,

this states that 𝑠0𝑎1𝑠1 · · ·𝑎𝑛𝑠𝑛 = 𝑡0𝑎1𝑡1 · · ·𝑎𝑛𝑡𝑛 , i.e. we obtain that

𝛼 (𝑤) = 𝛼 (𝑤 ′) as desired.
We now fix an index ℎ such that 0 ≤ ℎ ≤ 𝑛 and show that

𝑞ℎ𝑠ℎ𝑟ℎ = 𝑞ℎ𝑡ℎ𝑟ℎ . Recall that 𝑞ℎ𝑠ℎ ℛ 𝑞ℎ and 𝑡ℎ𝑟ℎ ℒ 𝑟ℎ . Hence, we

get two elements 𝑥,𝑦 ∈ 𝑀 such that 𝑞ℎ = 𝑞ℎ𝑠ℎ𝑥 = 𝑞ℎ (𝑠ℎ𝑥)𝜔 and

𝑟ℎ = 𝑦𝑡ℎ𝑟ℎ = (𝑦𝑡ℎ)𝜔𝑟ℎ . Since 𝑠ℎ ∼𝒞 𝑡ℎ and ∼𝒞 is a congruence we

have 𝑦𝑠ℎ ∼𝒞 𝑦𝑡ℎ . By c), this yields (𝑦𝑡ℎ)𝜔+1 = (𝑦𝑡ℎ)𝜔𝑦𝑠ℎ (𝑦𝑡ℎ)𝜔 .
Therefore, (𝑦𝑡ℎ)𝜔 = ((𝑦𝑡ℎ)𝜔𝑦𝑠ℎ (𝑦𝑡ℎ)𝜔 )𝜔 = ((𝑦𝑡ℎ)𝜔𝑦𝑠ℎ)𝜔 (𝑦𝑡ℎ)𝜔 .
Moreover, since 𝑠ℎ ∼𝒞 𝑡ℎ and 𝛼 satisfies c), we have,

(𝑠ℎ𝑥)𝜔𝑠ℎ ((𝑦𝑡ℎ)𝜔𝑦𝑠ℎ)𝜔 = (𝑠ℎ𝑥)𝜔𝑡ℎ ((𝑦𝑡ℎ)𝜔𝑦𝑠ℎ)𝜔 .

We now multiply by (𝑦𝑡ℎ)𝜔 on the right. As shown above, this

yields (𝑠ℎ𝑥)𝜔𝑠ℎ (𝑦𝑡ℎ)𝜔 = (𝑠ℎ𝑥)𝜔𝑡ℎ (𝑦𝑡ℎ)𝜔 . Hence, since we have

𝑞ℎ = 𝑞ℎ (𝑠ℎ𝑥)𝜔 and 𝑟ℎ = (𝑦𝑡ℎ)𝜔𝑟ℎ , it follows that 𝑞ℎ𝑠ℎ𝑟ℎ = 𝑞ℎ𝑡ℎ𝑟ℎ
as desired which completes the proof. □

5 DETERMINISTIC HIERARCHIES
We present a construction process which take a single input class

𝒞 and uses 𝐿𝑃𝑜𝑙 and 𝑅𝑃𝑜𝑙 to build a hierarchy which classifies

the languages in 𝑈𝑃𝑜𝑙 (𝒞). Then, we prove the mixed polynomial

closure is a key ingredient for investigating these hierarchies.

5.1 Definition
The definition is motivated by a result of [26]. Let𝒞 be a prevariety.

We define the alternating polynomial closure of𝒞 (𝐴𝑃𝑜𝑙 (𝒞)) as the
least class containing 𝒞 and closed under both left deterministic

and right deterministic marked products and under disjoint union.

The following theorem is proved in [26].

Theorem 5.1. If 𝒞 is a prevariety, then𝑈𝑃𝑜𝑙 (𝒞) = 𝐴𝑃𝑜𝑙 (𝒞).

Hence, for a prevariety 𝒞, applying 𝐿𝑃𝑜𝑙 and 𝑅𝑃𝑜𝑙 in alterna-

tion builds a classification of 𝑈𝑃𝑜𝑙 (𝒞). For all 𝑛 ∈ N, there are

two levels 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞). We let 𝐿𝑃0 (𝒞) = 𝑅𝑃0 (𝒞) = 𝒞.

Then, for every 𝑛 ≥ 1, we define 𝐿𝑃𝑛 (𝒞) = 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑛−1 (𝒞))
and 𝑅𝑃𝑛 (𝒞) = 𝑅𝑃𝑜𝑙 (𝐿𝑃𝑛−1 (𝒞)). Clearly, the union of all levels

𝐿𝑃𝑛 (𝒞) (or 𝑅𝑃𝑛 (𝒞)) is exactly the class 𝐴𝑃𝑜𝑙 (𝒞), i.e.𝑈𝑃𝑜𝑙 (𝒞) by
Theorem 5.1. In general these are strict hierarchies (we discuss a

well-known example below) and the levels 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞) are
incomparable for every 𝑛 ≥ 1. This motivates the introduction of

additional intermediary levels “combining” 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞).
Consider two classes 𝒟1 and 𝒟2. We write 𝒟1 ∩ 𝒟2 for the

class made of all languages which belong simultaneously to 𝒟1

and 𝒟2. Moreover, we write 𝒟1 ∨𝒟2 for the least Boolean alge-

bra containing both 𝒟1 and 𝒟2. We consider the additional levels

𝐿𝑃𝑛 (𝒞) ∩𝑅𝑃𝑛 (𝒞) and 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞). The following statement

can be verified from Theorem 3.15.

Corollary 5.2. Let 𝒞 be a prevariety. For every 𝑛 ∈ N, 𝐿𝑃𝑛 (𝒞),
𝑅𝑃𝑛 (𝒞), 𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞) and 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞) are prevarieties.

A specific hierarchy of this kind is well-known. Its input𝒞 is the

class PT of piecewise testable languages: the class 𝐵𝑃𝑜𝑙 (ST) with
ST = {∅, 𝐴∗} as the trivial prevariety. This hierarchy is known to

be strict and has many characterizations based on algebra [15, 37]

or logic [16, 17] (we come back ot the second point in Section 6). It

is known [15] that membership is decidable for 𝐿𝑃𝑛 (PT), 𝑅𝑃𝑛 (PT)
and 𝐿𝑃𝑛 (PT) ∩ 𝑅𝑃𝑛 (PT) for every 𝑛 ∈ N. This can be reproved

using Corollary 4.4 and the decidability of PT-membership [34].

It is also know [1, 12, 13] that for every 𝑛 ∈ N, membership is

decidable for 𝐿𝑃𝑛 (PT) ∨𝑅𝑃𝑛 (PT). We explain below that part of

these results can be reproved using Corollary 5.2.

We complete the definition of determinsitic hierarchies with a

useful result. We prove that when applying 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 or𝑀𝑃𝑜𝑙 to

some level in a deterministic hierarchy, one may strengthen the

requirements on marked products. Let 𝒞 be a prevariety. We say

that a marked product 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is left (resp. right, mixed) 𝒞-
deterministic when there exist𝐻0, . . . , 𝐻𝑛 ∈ 𝒞 such that 𝐿𝑖 ⊆ 𝐻𝑖 for

each 𝑖 ≤ 𝑛 and𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 is left (resp. right, mixed) determin-

istic. In other words, 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 can be “over-approximated”

by a left (resp. right, mixed) deterministic marked product of lan-

guages in 𝒞. We use Lemma 3.8 and Proposition 3.13 to prove the

following result.
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Proposition 5.3. Let 𝒞,𝒟 be two prevarieties such that 𝒞 ⊆ 𝒟

and 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Moreover, consider a language 𝐿 in 𝐿𝑃𝑜𝑙 (𝒟)
(resp. 𝑅𝑃𝑜𝑙 (𝒟), 𝑀𝑃𝑜𝑙 (𝒟)). Then, 𝐿 is a finite union of left (resp.
right, mixed) 𝒞-deterministic marked products of languages in𝒟.

Proof. We present a proof for the case when 𝐿 ∈ 𝑀𝑃𝑜𝑙 (𝒟)
(the two other cases are symmetrical). Proposition 3.13 yields a

𝒟-morphism 𝛼 : 𝐴∗ → 𝑀 and 𝑘 ∈ N such that 𝐿 is a union of ⊲⊳𝛼,𝑘 -

classes. Thus, it suffices to prove that each ⊲⊳𝛼,𝑘 -class is a finite

union of mixed 𝒞-deterministic marked products of languages

in 𝒟. Let 𝑤 ∈ 𝐴∗
and 𝐾 ⊆ 𝐴∗

its ⊲⊳𝛼,𝑘 -class. For every 𝑢 ∈ 𝐴∗

such that 𝑢 ⊲⊳𝛼,𝑘 𝑤 , we build a language 𝐻𝑢 ⊆ 𝐴∗
defined by a

mixed𝒞-deterministic marked product of languages in𝒟 and such

that 𝑢 ∈ 𝐻𝑢 ⊆ 𝐿. Moreover, we show that while there might be

infinitely many words 𝑢 ∈ 𝐴∗
such that 𝑢 ⊲⊳𝛼,𝑘 𝑤 , there are only

finitely many distinct languages 𝐻𝑢 . Altogether, it will follow that

𝐾 is equal to the finite union of all languages 𝐻𝑢 for 𝑢 ∈ 𝐴∗
such

that 𝑢 ⊲⊳𝛼,𝑘 𝑤 which completes the proof. For the construction, we

consider the canonical equivalence ∼𝒞 on𝑀 and write 𝑁 = 𝑀/∼𝒞 .

We also define 𝜂 as the morphism 𝜂 = [·]𝒞 ◦𝛼 : 𝐴∗ → 𝑁 . We know

from Lemma 2.7 that 𝜂 is a 𝒞-morphism.

We now consider 𝑢 ∈ 𝐴∗
such that 𝑢 ⊲⊳𝛼,𝑘 𝑤 and build 𝐻𝑢 .

We write 𝑃𝑢 = P⊲⊳ (𝜂, 𝑘 |𝑀 |, 𝑢). One may verify from the definition

that |𝑃𝑢 | ≤ 2|𝑁 |𝑘 |𝑀 |
(the key point is that this bound is inde-

pendent from 𝑢). We let (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) = 𝜎𝛼 (𝑢, 𝑃𝑢 ) and de-

fine 𝐻𝑢 = 𝛼−1 (𝑠0)𝑎1𝛼
−1 (𝑠1) · · ·𝑎𝑛𝛼−1 (𝑠𝑛). Since |𝑃𝑢 | ≤ 2|𝑁 |𝑘 |𝑀 |

,

we know that 𝐻𝑢 is the marked product of at most 2|𝑁 |𝑘 |𝑀 | + 1

languages recognized by 𝛼 . Hence, there are only finitely many

languages 𝐻𝑢 for 𝑢 ∈ 𝐴∗
such that 𝑢 ⊲⊳𝛼,𝑘 𝑤 . Moreover, the

languages in the product defining 𝐻𝑢 belong to 𝒟 by hypothe-

sis on 𝛼 . We now prove that this marked product is mixed 𝒞-

deterministic. Let (𝑡0, 𝑎1, 𝑡1, . . . , 𝑎𝑛, 𝑡𝑛) = 𝜎𝜂 (𝑢, 𝑃𝑢 ). Since we have
𝑃𝑢 = P⊲⊳ (𝜂, 𝑘 |𝑀 |, 𝑢) and 𝜂 is a𝒞-morphism, Lemma 3.8 implies that

𝜂−1 (𝑡0)𝑎1𝜂
−1 (𝑡1) · · ·𝑎𝑛𝜂−1 (𝑡𝑛) is a mixed deterministic marked

product of languages in 𝒞. Moreover, since 𝜂 = [·]𝒞 ◦ 𝛼 , we
have 𝛼−1 (𝑠𝑖 ) ⊆ 𝜂−1 (𝑡𝑖 ) for every 𝑖 ≤ 𝑛. Therefore, the marked

product 𝛼−1 (𝑠0)𝑎1𝛼
−1 (𝑠1) · · ·𝑎𝑛𝛼−1 (𝑠𝑛) which defines𝐻𝑢 is mixed

𝒞-deterministic as desired.

It remains to prove that 𝑢 ∈ 𝐻𝑢 ⊆ 𝐿. That 𝑢 ∈ 𝐻𝑢 is immediate

by definition since (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) = 𝜎𝛼 (𝑢, 𝑃𝑢 ). Hence, we let
𝑣 ∈ 𝐻𝑢 and prove that 𝑣 ∈ 𝐿, i.e. 𝑣 ⊲⊳𝛼,𝑘 𝑢. By definition of 𝐻𝑢 ,

we know that there exists a set 𝑄 ⊆ P(𝑤) such that 𝜎𝛼 (𝑣,𝑄) =

(𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) = 𝜎𝛼 (𝑢, 𝑃𝑢 ). Moreover, since 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞)
by hypothesis, we know 𝛼 is a 𝑈𝑃𝑜𝑙 (𝒞)-morphism. Therefore,

P⊲⊳ (𝛼, 𝑘,𝑤) ⊆ P⊲⊳ (𝜂, 𝑘 |𝑀 |, 𝑢) = 𝑃𝑢 by Lemma 3.8. Hence, since

𝜎𝛼 (𝑣,𝑄) = 𝜎𝛼 (𝑢, 𝑃𝑢 ), one may verify that there exists𝑄 ′ ⊆ 𝑄 such

that 𝜎𝛼 (𝑣,𝑄 ′) = 𝜎𝛼 (𝑢, P⊲⊳ (𝛼, 𝑘,𝑢)). Finally, Lemma 3.9 implies that

𝑄 ′ = P⊲⊳ (𝛼, 𝑘,𝑢) and we obtain 𝑣 ⊲⊳𝛼,𝑘 𝑢 as desired. □

5.2 Connection with mixed polynomial closure
The definition associates four closely related hierarchies to ev-

ery prevariety 𝒞. Their construction processes can be unified us-

ing 𝑀𝑃𝑜𝑙 . As seen in Section 3, 𝑀𝑃𝑜𝑙 is not idempotent: given a

prevariety𝒟, it may happen that𝑀𝑃𝑜𝑙 (𝒟) is strictly included in

𝑀𝑃𝑜𝑙 (𝑀𝑃𝑜𝑙 (𝒟)). Hence, a hierarchy is obtained by applying𝑀𝑃𝑜𝑙
iteratively to 𝒟. It turns out that all levels in the above hierarchies

can be built in this way. First, the levels 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞) can

be built from 𝐿𝑃𝑜𝑙 (𝒞) and 𝑅𝑃𝑜𝑙 (𝒞) using only𝑀𝑃𝑜𝑙 (this can be

verified from the definition).

Lemma 5.4. Let 𝒞 be a prevariety. For every 𝑛 ≥ 1, we have
𝐿𝑃𝑛+1 (𝒞)=𝑀𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)) and 𝑅𝑃𝑛+1 (𝒞)=𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)).

Moreover, the levels 𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞) can all be built from

𝐿𝑃𝑜𝑙 (𝒞) ∩ 𝑅𝑃𝑜𝑙 (𝒞) using only 𝑀𝑃𝑜𝑙 (the proof is based on the

algebraic characterizations of 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and𝑀𝑃𝑜𝑙 ).

Theorem 5.5. Let 𝒞 be a prevariety. For every 𝑛 ≥ 1, we have
𝐿𝑃𝑛+1 (𝒞) ∩ 𝑅𝑃𝑛+1 (𝒞) = 𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞)).

A similar result holds for the levels 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞): they can

all be built from 𝐿𝑃𝑜𝑙 (𝒞) ∨ 𝑅𝑃𝑜𝑙 (𝒞) using only𝑀𝑃𝑜𝑙 . We present

the proof below.

Theorem 5.6. Let 𝒞 be a prevariety. For every 𝑛 ≥ 1, we have
𝐿𝑃𝑛+1 (𝒞)∨𝑅𝑃𝑛+1 (𝒞) = 𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞)).

Theorem 5.6 has an interesting application. Since𝑀𝑃𝑜𝑙 preserves

the decidability of membership by Corollary 4.4, we get that for all

prevarieties 𝒞, if membership is decidable for 𝐿𝑃𝑜𝑙 (𝒞)∨𝑅𝑃𝑜𝑙 (𝒞),
then this is also the case for all levels 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞). This can
be applied for 𝒞 = PT. It is known that membership is decidable

for 𝐿𝑃𝑜𝑙 (PT)∨𝑅𝑃𝑜𝑙 (PT) [1, 13]. Thus, we lift this result to every

level 𝐿𝑃𝑛 (PT)∨𝑅𝑃𝑛 (PT) “for free”. This reproves a result of [12].

Proof of Theorem 5.6. We fix a prevariety 𝒞 and 𝑛 ≥ 1. Let

us start with 𝐿𝑃𝑛+1 (𝒞) ∨𝑅𝑃𝑛+1 (𝒞) ⊆ 𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞) ∨𝑅𝑃𝑛 (𝒞)).
By Theorem 3.15,𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞)) is a prevariety. Hence,
it suffices to prove that 𝐿𝑃𝑛+1 (𝒞) and 𝑅𝑃𝑛+1 (𝒞) are included in

𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞)). By symmetry, we only prove the former.

By definition, we have 𝐿𝑃𝑛+1 (𝒞) = 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)) which yields

𝐿𝑃𝑛+1 (𝒞) ⊆ 𝑀𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)). Finally, since it is immediate by defi-

nition that 𝑅𝑃𝑛 (𝒞) ⊆ 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞), we obtain the inclusion

𝐿𝑃𝑛+1 (𝒞) ⊆𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞)) as desired which completes

the proof for the left to right inclusion.

We now prove that the class𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞)) is included
in 𝐿𝑃𝑛+1 (𝒞)∨𝑅𝑃𝑛+1 (𝒞). We write𝒟 = 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞) for the
proof. Corollary 5.2 implies that 𝒟 is a prevariety. Moreover, it

is immediate that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞) (𝑈𝑃𝑜𝑙 (𝒞) is a prevariety

by Theorem 3.6 and it contains both 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞)). Hence,
Proposition 5.3 implies that every language in𝑀𝑃𝑜𝑙 (𝒟) is a disjoint
union of mixed 𝒞-deterministic marked products of languages in

𝒟. It now remains to prove that for every mixed 𝒞-deterministic

marked product 𝐿 = 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 such that 𝐿0, . . . , 𝐿𝑛 ∈ 𝒟,

we have 𝐿 ∈ 𝐿𝑃𝑛+1 (𝒞)∨𝑅𝑃𝑛+1 (𝒞). The definition yields 𝐻𝑖 ∈ 𝒞

for each 𝑖 ≤ 𝑛 such that 𝐿𝑖 ⊆ 𝐻𝑖 and 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 is mixed

deterministic.

Consider 𝑖 ≤ 𝑛. We have 𝐿𝑖 ∈ 𝒟 and 𝒟 = 𝐿𝑃𝑛 (𝒞) ∨𝑅𝑃𝑛 (𝒞).
Hence, by definition 𝐿𝑖 is a Boolean combination of languages

in 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞). We can put the Boolean combination in

disjunctive normal form. Moreover, since 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞) are
prevarieties by Corollary 5.2, each disjunct is the intersection of

a single language in 𝐿𝑃𝑛 (𝒞) with a single language in 𝑅𝑃𝑛 (𝒞).
Altogether, it follows that 𝐿𝑖 is a finite union of languages 𝑃𝑖 ∩𝑄𝑖
with 𝑃𝑖 ∈ 𝐿𝑃𝑛 (𝒞) and 𝑄𝑖 ∈ 𝑅𝑃𝑛 (𝒞). Moreover, since 𝐿𝑖 ⊆ 𝐻𝑖 ∈ 𝒞,

we may assume without loss of generality that all languages 𝑃𝑖 and

𝑄𝑖 are included in 𝐻𝑖 as well (otherwise we may replace them by



The amazing mixed polynomial closure and its applications to two-variable first-order logic LICS ’22, August 2–5, 2022, Haifa, Israel

𝑃𝑖 ∩ 𝐻𝑖 and 𝑄𝑖 ∩ 𝐻𝑖 ). Consequently, since marked concatenation

distributes over union, we obtain that 𝐿 = 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is a

finite union of products (𝑃0 ∩𝑄0)𝑎1 (𝑃1 ∩𝑄1) · · ·𝑎𝑛 (𝑃𝑛 ∩𝑄𝑛) such
that 𝑃𝑖 ∈ 𝐿𝑃𝑛 (𝒞) and 𝑄𝑖 ∈ 𝑅𝑃𝑛 (𝒞) are included in 𝐻𝑖 for every

𝑖 ≤ 𝑛. It now suffices to prove that every such marked product

belongs to 𝐿𝑃𝑛+1 (𝒞)∨𝑅𝑃𝑛+1 (𝒞). Since 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 is mixed

deterministic, it is also unambiguous. Hence, since 𝑃𝑖 and 𝑄𝑖 are

included in 𝐻𝑖 for every 𝑖 ≤ 𝑛, one may verify that the language

(𝑃0 ∩𝑄0)𝑎1 (𝑃1 ∩𝑄1) · · ·𝑎𝑛 (𝑃𝑛 ∩𝑄𝑛) is equal to the intersection,

(𝑃0𝑎1𝑃1 · · ·𝑎𝑛𝑃𝑛) ∩ (𝑄0𝑎1𝑄1 · · ·𝑎𝑛𝑄𝑛) .
Finally, it is clear that 𝑃0𝑎1𝑃1 · · ·𝑎𝑛𝑃𝑛 and 𝑄0𝑎1𝑄1 · · ·𝑎𝑛𝑄𝑛 are

mixed deterministic marked products since this is the case for

𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 . By definition, it follows that they both belong to

𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)) and𝑀𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)) respectively. Thus, we obtain
𝑃0𝑎1𝑃1 · · ·𝑎𝑛𝑃𝑛 ∈ 𝑅𝑃𝑛+1 (𝒞) and 𝑄0𝑎1𝑄1 · · ·𝑎𝑛𝑄𝑛 ∈ 𝐿𝑃𝑛+1 (𝒞) by
Lemma 5.4. Hence, the intersection of these two languages belongs

to 𝐿𝑃𝑛+1 (𝒞)∨𝑅𝑃𝑛+1 (𝒞) which completes the proof. □

6 TWO-VARIABLE FIRST-ORDER LOGIC
We look at quantifier alternation hierarchies for two-variable first-

order logic over words (FO
2
). We characterize several hierarchies

of this kind with mixed polynomial closure.

6.1 Definitions
We first recall the definition of first-order logic over words. We

view a word 𝑤 ∈ 𝐴∗
as a logical structure. Its domain is the set

P(𝑤) = {0, . . . , |𝑤 | + 1} of positions in 𝑤 . A position 𝑖 such that

1 ≤ 𝑖 ≤ |𝑤 | carries a label in 𝐴. On the other hand, 0 and |𝑤 | + 1

are artificial unlabeled positions. We use first-order logic (FO) to

express properties of words 𝑤 : a formula can quantify over the

positions in 𝑤 and use a predetermined set of predicates to test

properties of these positions. We also allow two constants “𝑚𝑖𝑛”

and “𝑚𝑎𝑥” interpreted as the artificial unlabeled positions 0 and

|𝑤 | +1. Given a formula 𝜑 (𝑥1, . . . , 𝑥𝑛) with free variables 𝑥1, . . . , 𝑥𝑛 ,

𝑤 ∈ 𝐴∗
and 𝑖1, . . . , 𝑖𝑛 ∈ P(𝑤), we write𝑤 |= 𝜑 (𝑖1, . . . , 𝑖𝑛) to indicate

that𝑤 satisfies 𝜑 when 𝑥1, . . . , 𝑥𝑛 are interpreted as the positions

𝑖1, . . . , 𝑖𝑛 . As usual, a sentence 𝜑 is a formula without free variables.

It defines the language 𝐿(𝜑) = {𝑤 ∈ 𝐴∗ | 𝑤 |= 𝜑}. We use standard

predicates. For each 𝑎 ∈ 𝐴, we use a unary predicate (also denoted

by 𝑎) selecting all positions labeled by “𝑎”. We also use three bi-

nary predicates: equality “=”, the (strict) linear order “<” and the

successor “+1”.

Example 6.1. The language 𝐴∗𝑎𝐴∗𝑏𝐴∗𝑐 is defined by the FO

sentence (∃𝑥∃𝑦 (𝑥 < 𝑦) ∧𝑎(𝑥) ∧𝑏 (𝑦)) ∧ (∃𝑥 𝑐 (𝑥) ∧ (𝑥 +1 =𝑚𝑎𝑥)).

A fragment of first-order logic consists in the specification of a

(possibly finite) set𝑉 of variables and a setℱ of FO formulas using

only the variables in 𝑉 which contains all quantifier-free formulas

and is closed under disjunction, conjunction and quantifier-free sub-

stitution (if 𝜑 ∈ ℱ, a quantifier-free sub-formula can be replaced by

another quantifier-free formula inℱ). If S is a set of predicates and
ℱ is a fragment, we let ℱ(S) be the class containing all languages

𝐿(𝜑) where 𝜑 is a sentence of ℱ using only the predicates in S,
equality and the label predicates.

In this paper, we use generic sets of predicates which are built

from an arbitrary input class 𝒞. There are two of them. The first

one, written I𝒞 , contains a binary “infix” predicate 𝐼𝐿 (𝑥,𝑦) for
every 𝐿 ∈ 𝒞. Given𝑤 ∈ 𝐴∗

and two positions 𝑖, 𝑗 ∈ P(𝑤), we have
𝑤 |= 𝐼𝐿 (𝑖, 𝑗) if and only if 𝑖 < 𝑗 and 𝑤 (𝑖, 𝑗) ∈ 𝐿. The second set,

written P𝒞 , contains a unary “prefix” predicate 𝑃𝐿 (𝑥) for every
𝐿 ∈ 𝒞. Given𝑤 ∈ 𝐴∗

and a position 𝑖 ∈ P(𝑤), we have𝑤 |= 𝑃𝐿 (𝑖)
if and only if 0 < 𝑖 and 𝑤 (0, 𝑖) ∈ 𝐿. The predicates in P𝒞 are

easily expressed from those in I𝒞 : clearly, 𝑃𝐿 (𝑥) is equivalent to
𝐼𝐿 (𝑚𝑖𝑛, 𝑥). In practice, we only consider the sets P𝒞 and I𝒞 when

𝒞 is either a group prevariety 𝒢 or its well-suited extension 𝒢
+
.

This is motivated by the following lemma.

Lemma 6.2. If𝒢 is a group prevariety and ℱ is a fragment of FO,
then ℱ(I𝒢) = ℱ(<, P𝒢) andℱ(I𝒢+ ) = ℱ(<, +1, P𝒢).

Lemma 6.2 covers many important sets of predicates. We present

three important cases. If 𝒢 is the trivial prevariety ST = {∅, 𝐴∗},
all predicates in PST are trivial. Hence, we get the classes ℱ(<)
and ℱ(<, +1). We also look at the class MOD of modulo languages:
the Boolean combination of languages {𝑤 ∈ 𝐴∗ | |𝑤 | ≡ 𝑘 mod𝑚}
with 𝑘,𝑚 ∈ N such that 𝑘 < 𝑚. One may verify that in this case, we

obtain the classes ℱ(<, 𝑀𝑂𝐷) and ℱ(<, +1, 𝑀𝑂𝐷) where “𝑀𝑂𝐷”
is the set of modular predicates (for all 𝑘,𝑚 ∈ N such that 𝑘 < 𝑚,

it contains a unary predicate 𝑀𝑘,𝑚 selecting the positions 𝑖 such

that 𝑖 ≡ 𝑘 mod𝑚). Finally, we consider the class AMT of alphabet
modulo testable languages. If𝑤 ∈ 𝐴∗

and 𝑎 ∈ 𝐴, we let #𝑎 (𝑤) ∈ N be

the number of occurrences of “𝑎” in𝑤 . AMT contains the Boolean

combinations of languages {𝑤 ∈ 𝐴∗ | #𝑎 (𝑤) ≡ 𝑘 mod𝑚} where
𝑎 ∈ 𝐴 and 𝑘,𝑚 ∈ N such that 𝑘 < 𝑚 (these are the languages

recognized by commutative groups). In this case, we get the classes

ℱ(<, 𝐴𝑀𝑂𝐷) andℱ(<, +1, 𝐴𝑀𝑂𝐷) where “𝐴𝑀𝑂𝐷” is the set of
alphabetic modular predicates (for all 𝑎 ∈ 𝐴 and 𝑘,𝑚 ∈ N such that

𝑘 < 𝑚, it contains a unary predicate𝑀𝑎
𝑘,𝑚

selecting the positions 𝑖

such #𝑎 (𝑤 (0, 𝑖)) ≡ 𝑘 mod𝑚).

Quantifier alternation in FO2.We may now present the partic-

ular fragments that we shall consider. First, we write FO
2
for the

fragment made of all first-order formulas which use at most two
distinct variables (which can be reused). In the formal definition

of fragments, this boils down to picking a set 𝑉 of variables which

has size two. We do not look at FO
2
directly. Instead, we consider

its quantifier-alternation hierarchy. Let us first present the one of

full first-order logic.

For every 𝑛 ∈ N, we associate two fragments Σ𝑛 andℬΣ𝑛 of FO.

We present the definition by induction on 𝑛 ∈ N. When 𝑛 = 0, we

let Σ0 = ℬΣ0 as the fragment containing exactly the quantifier-free

formulas of FO. Assume now that 𝑛 ≥ 1. We let Σ𝑛 as the least set

of expressions which contains theℬΣ𝑛−1 formulas and is closed

under disjunction (∨), conjunction (∧) and existential quantification
(∃). Moreover, we letℬΣ𝑛 as the set of all Boolean combinations

of Σ𝑛 formulas, i.e. the least one containing Σ𝑛 and closed under

disjunction (∨), conjunction (∧) and negation (¬).
For every 𝑛 ∈ N, we define Σ2

𝑛 (resp. ℬΣ2

𝑛) as the fragment

containing all formulas which belong simultaneously to FO
2
and Σ𝑛

(resp.ℬΣ𝑛). In this paper, we look at classes of the formℬΣ2

𝑛 (I𝒞)
where 𝒞 is a prevariety. Our results only apply in the case when

𝒞 is either a group prevariety 𝒢 or its well-suited extension 𝒢
+

(in which case Lemma 6.2 applies). However, we shall need the

following general result which is specific to the classesℬΣ2

1
(I𝒞).
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Theorem 6.3. Consider a prevariety 𝒞. We have the following
correspondences ℬΣ2

1
(I𝒞) = ℬΣ1 (I𝒞) = 𝐵𝑃𝑜𝑙 (𝒞).

Proof. That ℬΣ1 (I𝒞) = 𝐵𝑃𝑜𝑙 (𝒞) is proved in [27]. This is a

specific case of the generic correspondence between the quantifier

alternation hierarchies of FO and concatenation hierarchies (which

are built with 𝑃𝑜𝑙 and 𝐵𝑜𝑜𝑙). The inclusionℬΣ2

1
(I𝒞) ⊆ ℬΣ1 (I𝒞)

is trivial. Hence, it suffices to show that 𝐵𝑃𝑜𝑙 (𝒞) ⊆ ℬΣ2

1
(I𝒞). By

definition, 𝐵𝑃𝑜𝑙 (𝒞) contains all Boolean combinations of marked

products 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 with 𝐿0, . . . , 𝐿𝑛 ∈ 𝒞. Since ℬΣ2

1
(I𝒞) is

closed under Boolean operations, it suffices to prove that all marked

products of this kind belong to Σ2

1
(I𝒞). We use induction to build

a formula 𝜑𝑘 (𝑥) of Σ2

1
(I𝒞) for each 𝑘 ≤ 𝑛 which has one free

variable 𝑥 and such that for all 𝑤 ∈ 𝐴∗
and 𝑖 ∈ P(𝑤), we have

𝑤 |= 𝜑𝑘 (𝑖) if and only if 0 < 𝑖 and 𝑤 (0, 𝑖) ∈ 𝐿0𝑎1𝐿1 · · ·𝑎𝑘𝐿𝑘 . It
will then follow that 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is defined by the sentence

𝜑𝑛 (𝑚𝑎𝑥) of Σ2

1
(I𝒞), completing the proof. If 𝑘 = 0, it suffices to

define 𝜑0 (𝑥) := 𝐼𝐿0
(𝑚𝑖𝑛, 𝑥). Assume now that 𝑘 ≥ 1. It suffices to

define 𝜑𝑘 (𝑥) := ∃𝑦 (𝜑𝑘−1
(𝑦) ∧ 𝑎𝑘 (𝑦) ∧ 𝐼𝐿𝑘 (𝑦, 𝑥)) (the definition

involves implicit renaming of the variables in 𝜑𝑘−1
, this is standard

in FO
2
). By definition, 𝜑𝑘 (𝑥) is a formula of Σ2

1
(I𝒞) as desired. □

6.2 Connection with mixed polynomial closure
We prove that when using the predicates I𝒢 and I𝒢+ for a group

prevariety𝒢, one may “climb” the quantifier alternation hierarchy

of FO
2
using mixed polynomial closure.

Theorem 6.4. If𝒢 is a group prevariety and 𝒞 ∈ {𝒢,𝒢+}, then
ℬΣ2

𝑛+1
(I𝒞) = 𝑀𝑃𝑜𝑙 (ℬΣ2

𝑛 (I𝒞)) for all 𝑛 ≥ 1.

Theorem 6.3 and Theorem 6.4 imply that for every group prevari-

ety𝒢, if𝒞 ∈ {𝒢,𝒢+}, then all levelsℬΣ2

𝑛 (I𝒞) are built iteratively

from 𝐵𝑃𝑜𝑙 (𝒞) by applying𝑀𝑃𝑜𝑙 . By Proposition 3.1, 𝐵𝑃𝑜𝑙 (𝒞) is a
prevariety. Moreover, Theorem 3.15 and Corollary 4.4 imply that

when𝑀𝑃𝑜𝑙 is applied to a prevariety, it outputs a prevariety and

preserves the decidability of membership. It follows that when

membership is decidable for 𝐵𝑃𝑜𝑙 (𝒞), this is also the case for

all levels ℬΣ2

𝑛 (I𝒞). Since 𝒞 ∈ {𝒢,𝒢+}, it is known [31] that

membership is decidable for 𝐵𝑃𝑜𝑙 (𝒞) when separation is decid-

able for 𝒢 (this is based on independent techniques). Finally, we

have ℬΣ2

𝑛 (I𝒢) = ℬΣ2

𝑛 (<, P𝒢) and ℬΣ2

𝑛 (I𝒢+ ) = ℬΣ2

𝑛 (<, +1, P𝒢)
by Lemma 6.2. Altogether, we obtain the following corollary.

Corollary 6.5. Let𝒢 be a group prevariety with decidable sep-
aration. For every 𝑛 ≥ 1, membership is decidable for ℬΣ2

𝑛 (<, P𝒢)
and ℬΣ2

𝑛 (<, +1, P𝒢).
Corollary 6.5 reproves earlier results. Separation is clearly de-

cidable for ST = {∅, 𝐴∗}. Hence, ℬΣ2

𝑛 (<) and ℬΣ2

𝑛 (<, +1) have
decidable membership for all 𝑛 ≥ 1. For ℬΣ2

𝑛 (<), this was first
proved independently by Kufleitner and Weil [17] and Krebs and

Straubing [11]. ForℬΣ2

𝑛 (<, +1), this was first proved by Kufleitner

and Lauser [14].

Remark 6.6. In [17], it is also shown that for every 𝑛 ≥ 1, we
have ℬΣ2

𝑛 (<) = 𝐿𝑃𝑛 (PT) ∩ 𝑅𝑃𝑛 (PT) (with PT = 𝐵𝑃𝑜𝑙 (ST)). This
can be reproved using Theorem 5.5, Theorem 6.4 and the fact that
PT = 𝐿𝑃𝑜𝑙 (PT) ∩ 𝑅𝑃𝑜𝑙 (PT). This is specific to ℬΣ2

𝑛 (<): this fails in
general. This is because the equality PT = 𝐿𝑃𝑜𝑙 (PT) ∩ 𝑅𝑃𝑜𝑙 (PT) is
specific to PT = 𝐵𝑃𝑜𝑙 (ST).

Additionally, it is known that separation is decidable for the

group prevarietiesMOD andAMT. This is straightforward forMOD

and proved in [8] for AMT. Hence, we also obtain the decidability of

membership for all levels ℬΣ2

𝑛 (<, 𝑀𝑂𝐷) and ℬΣ2

𝑛 (<, +1, 𝑀𝑂𝐷),
as well as all levelsℬΣ2

𝑛 (<, 𝐴𝑀𝑂𝐷) andℬΣ2

𝑛 (<, +1, 𝐴𝑀𝑂𝐷). Note
that for the levelsℬΣ2

𝑛 (<, +1, 𝑀𝑂𝐷) was already known. This was
proved in [7] using a reduction to the levelsℬΣ2

𝑛 (<, +1).
Theorem 6.4 also yields characterizations of FO

2
. Indeed, one

may verify from Theorem 5.1 that given a prevariety 𝒟, the union

of all classes built from𝒟 by iteratively applying𝑀𝑃𝑜𝑙 is𝑈𝑃𝑜𝑙 (𝒟).
Hence, we obtain the following corollary.

Corollary 6.7. If 𝒢 is a group prevariety, then FO
2 (<, P𝒢) =

𝑈𝑃𝑜𝑙 (𝐵𝑃𝑜𝑙 (𝒢)) and FO2 (<, +1, P𝒢) = 𝑈𝑃𝑜𝑙 (𝐵𝑃𝑜𝑙 (𝒢+)).

Since 𝑈𝑃𝑜𝑙 preserves the decidability of membership by Theo-

rem 3.7, the above argument also implies that for all group prevari-

eties𝒢 with decidable separation, FO
2 (<, P𝒢) and FO

2 (<, +1, P𝒢)
have decidable membership. This yields known results [6, 35] in

the cases𝒢 = ST and𝒢 = MOD.

Remark 6.8. Corollary 6.7 can be used to prove specialized charac-
terizations for FO2 (<, P𝒢) and FO2 (<, +1, P𝒢). Yet, this involves the
characterizations of 𝐵𝑃𝑜𝑙 (𝒢) and 𝐵𝑃𝑜𝑙 (𝒢+) presented in [31], which
is outside of the scope of this paper.

Proof of Theorem 6.4. Wefix a group prevariety𝒢 and let𝒞 ∈
{𝒢,𝒢+}. For all 𝑛 ≥ 1, we write𝒟𝑛 = ℬΣ2

𝑛 (I𝒞). We use induction

to prove that 𝒟𝑛+1 = 𝑀𝑃𝑜𝑙 (𝒟𝑛) for all 𝑛 ≥ 1. The inclusion

𝒟𝑛+1 ⊆ 𝑀𝑃𝑜𝑙 (𝒟𝑛) is based on the algebraic characterization of

𝑀𝑃𝑜𝑙 (i.e., Theorem 4.3) and arguments analogous to Ehrenfeucht-

Fraïssé games and the hypothesis 𝒞 ∈ {𝒢,𝒢+}. It is proved in the

full version of the paper.

We focus on the inclusion𝑀𝑃𝑜𝑙 (𝒟𝑛) ⊆ 𝒟𝑛+1. It is based on a key

property of𝑀𝑃𝑜𝑙 . We say that a marked product 𝐿0𝑎1𝐿1 · · ·𝑎𝑚𝐿𝑚
is 𝒞-pointed if for all 1 ≤ 𝑖 ≤ 𝑚, there are 𝐾𝑖 , 𝐾

′
𝑖
∈ 𝐵𝑃𝑜𝑙 (𝒞)

such that 𝐾𝑖𝑎𝑖𝐾
′
𝑖
is unambiguous, 𝐿0𝑎1𝐿1 · · ·𝑎𝑖−1𝐿𝑖−1 ⊆ 𝐾𝑖 and

𝐿𝑖𝑎𝑖+1𝐿𝑖+1 · · ·𝑎𝑚𝐿𝑚 ⊆ 𝐾 ′
𝑖
. We now use Proposition 3.11 to prove

the following lemma (we need the hypothesis that 𝒞 ∈ {𝒢,𝒢+}).

Lemma 6.9. Every language in 𝑀𝑃𝑜𝑙 (𝒟𝑛) is a finite union of
𝒞-pointed marked products of languages in𝒟𝑛

Proof. We fix 𝐿 ∈ 𝑀𝑃𝑜𝑙 (𝒟𝑛) for the proof. Proposition 3.13

yields a𝒟𝑛-morphism 𝛼 : 𝐴∗ → 𝑀 and 𝑘 ∈ N such that 𝐿 is a finite

union of ⊲⊳𝛼,𝑘 -classes. Hence, it suffices to prove that every ⊲⊳𝛼,𝑘 -

class is a finite union of 𝒞-pointed marked products of languages

in𝒟𝑛 . First, we associate a language𝑈𝑤 to every word𝑤 ∈ 𝐴∗
.

Let 𝜂 be the morphism 𝜂 : [·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑀/∼𝐵𝑃𝑜𝑙 (𝒞) . We

know that 𝜂 is a 𝐵𝑃𝑜𝑙 (𝒞)-morphism by Lemma 2.7. Moreover,

observe that 𝐵𝑃𝑜𝑙 (𝒞) ⊆ 𝒟𝑛 ⊆ 𝑈𝑃𝑜𝑙 (𝐵𝑃𝑜𝑙 (𝒞)). Indeed, we know
that𝒟1 = 𝐵𝑃𝑜𝑙 (𝒞) by Theorem 6.3 and induction in Theorem 6.4

implies that 𝒟𝑛 is built from 𝒟1 by applying 𝑀𝑃𝑜𝑙 iteratively.

Therefore, Lemma 3.8 implies that P⊲⊳ (𝛼, 𝑘,𝑤) ⊆ P⊲⊳ (𝜂, 𝑘 |𝑀 |,𝑤).
Finally, since 𝒞 ∈ {𝒢,𝒢+} and𝒢 is a group prevariety, it follows

from Proposition 3.11 that there exists another 𝐵𝑃𝑜𝑙 (𝒞)-morphism,

𝛾 : 𝐴∗ → 𝑄 such that P⊲⊳ (𝜂, 𝑘 |𝑀 |,𝑤) ⊆ P⊲⊳ (𝛾, 1,𝑤). We define,

(𝑠0, 𝑎1, 𝑠1, . . . , 𝑎ℎ, 𝑠ℎ) = 𝜎𝛼 (𝑤, P⊲⊳ (𝛼, 𝑘,𝑤)).
(𝑞0, 𝑎1, 𝑞1, . . . , 𝑎ℎ, 𝑞ℎ) = 𝜎𝛾 (𝑤, P⊲⊳ (𝛼, 𝑘,𝑤)).
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For all 𝑖 ≤ ℎ, we let 𝑉𝑖 = 𝛼−1 (𝑠𝑖 ) ∩ 𝛾−1 (𝑞𝑖 ). Finally, we define

𝑈𝑤 = 𝑉0𝑎1𝑉1 · · ·𝑎ℎ𝑉ℎ . By definition, ℎ = |P⊲⊳ (𝛼, 𝑘,𝑤) | ≤ 2|𝑀 |𝑘 .
Thus, there are finitely many languages 𝑈𝑤 even though there

infinitely many 𝑤 ∈ 𝐴∗
. Moreover, it is clear that 𝑤 ∈ 𝑈𝑤 . We

now prove that 𝑈𝑤 is included in the ⊲⊳𝛼,𝑘 -class of 𝑤 and that

𝑉0𝑎1𝑉1 · · ·𝑎ℎ𝑉ℎ is a𝒞-pointed marked product of languages in𝒟𝑛 .

It will then follow that each ⊲⊳𝛼,𝑘 -class is the finite union of all

languages𝑈𝑤 for the words𝑤 in the ⊲⊳𝛼,𝑘 -class, i.e. a finite union
of 𝒞-pointed marked product of languages in𝒟𝑛 as desired.

We first show that if𝑢 ∈ 𝑈𝑤 , then𝑢 ⊲⊳𝛼,𝑘 𝑤 . By definition of𝑈𝑤 ,

there exists 𝑃 ⊆ P(𝑢) such that 𝜎𝛼 (𝑢, 𝑃) = (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎ℎ, 𝑠ℎ) =
𝜎𝛼 (𝑤, P⊲⊳ (𝛼, 𝑘,𝑤)). Hence, Lemma 3.9 yields 𝑃 = P⊲⊳ (𝛼, 𝑘,𝑢) and
we obtain 𝑢 ⊲⊳𝛼,𝑘 𝑤 as desired.

It remains to show that 𝑉0𝑎1𝑉1 · · ·𝑎ℎ𝑉ℎ is a 𝒞-pointed marked

product of languages in𝒟𝑛 . As 𝛼 is a𝒟𝑛-morphism,𝛾 is a 𝐵𝑃𝑜𝑙 (𝒞)-
morphism and 𝐵𝑃𝑜𝑙 (𝒞) ⊆ 𝒟𝑛 , it is immediate by definition that

𝑉𝑖 ∈ 𝒟𝑛 for all 𝑖 ≤ ℎ. We prove that 𝑉0𝑎1𝑉1 · · ·𝑎ℎ𝑉ℎ is 𝒞-pointed.

We fix 𝑖 ≤ ℎ for the proof. Let 𝑟𝑖 = 𝑞0𝛾 (𝑎1)𝑞1 · · ·𝛾 (𝑎𝑖−1)𝑞𝑖−1 and

𝐾𝑖 = 𝛾
−1 (𝑟𝑖 ). Moreover, we let 𝑟 ′

𝑖
= 𝑞𝑖𝛾 (𝑎𝑖+1)𝑞𝑖+1 · · ·𝛾 (𝑎ℎ)𝑞ℎ and

𝐾 ′
𝑖
= 𝛾−1 (𝑟 ′

𝑖
). One may verify that 𝑉0𝑎1𝑉1 · · ·𝑎𝑖−1𝑉𝑖−1 ⊆ 𝐾𝑖 and

𝑉𝑖𝑎𝑖+1𝑉𝑖+1 · · ·𝑎ℎ𝑉ℎ ⊆ 𝐾 ′
𝑖
. Hence, we have to prove that 𝐾𝑖𝑎𝑖𝐾

′
𝑖
is

unambiguous. We have P⊲⊳ (𝛼, 𝑘,𝑤) ⊆ P⊲⊳ (𝛾, 1,𝑤) by construction

of 𝛾 . Therefore, all letters in the 𝛾-snapshot 𝜎𝛾 (𝑤, P⊲⊳ (𝛼, 𝑘,𝑤)) =
(𝑞0, 𝑎1, 𝑞1, . . . , 𝑎ℎ, 𝑞ℎ) correspond to positions in P⊲⊳ (𝛾, 1,𝑤). By
definition, this implies that either 𝑟𝑖𝛾 (𝑎𝑖 ) <ℛ 𝑟𝑖 or 𝛾 (𝑎𝑖 )𝑟 ′𝑖 <ℒ 𝑟 ′

𝑖
.

By symmetry, we assume that the former holds and prove that

𝐾𝑖𝑎𝑖𝐾
′
𝑖
is left deterministic. By contradiction, assume that there

exists some word 𝑥 ∈ 𝐾𝑖 ∩ 𝐾𝑖𝑎𝑖𝐴∗
. Since 𝐾𝑖 = 𝛾

−1 (𝑟𝑖 ), this yields
𝑦 ∈ 𝐴∗

such that 𝑟𝑖 = 𝑟𝑖𝛾 (𝑎𝑖 )𝛾 (𝑢), contradicting the hypothesis

that 𝑟𝛾 (𝑎𝑖 ) <ℛ 𝑟 and concluding the proof. □

We now prove that 𝑀𝑃𝑜𝑙 (𝒟𝑛) ⊆ 𝒟𝑛+1. In view of Lemma 6.9

and since𝒟𝑛+1 = ℬΣ2

𝑛+1
(I𝒞) is closed under union, it suffices to

show that if 𝐿0, . . . , 𝐿𝑚 ∈ 𝒟𝑛 and 𝐿0𝑎1𝐿1 · · ·𝑎𝑚𝐿𝑚 is a 𝒞-pointed

marked product, then 𝐿0𝑎1𝐿1 · · ·𝑎𝑚𝐿𝑚 ∈ 𝒟𝑛+1. We do so by build-

ing a ℬΣ2

𝑛+1
(I𝒞) sentence defining 𝐿0𝑎1𝐿1 · · ·𝑎𝑚𝐿𝑚 . We have

𝐾ℎ, 𝐾
′
ℎ
∈ 𝐵𝑃𝑜𝑙 (𝒞) for every ℎ ≤ 𝑚 such that 𝐾ℎ𝑎ℎ𝐾

′
ℎ
is unambigu-

ous, 𝐿0𝑎1𝐿1 · · ·𝑎ℎ−1
𝐿ℎ−1

⊆ 𝐾ℎ and 𝐿ℎ𝑎ℎ+1
𝐿ℎ+1

· · ·𝑎𝑚𝐿𝑚 ⊆ 𝐾 ′
ℎ
. It

follows that for all 𝑤 ∈ 𝐴∗
, we have 𝑤 ∈ 𝐿0𝑎1𝐿1 · · ·𝑎𝑚𝐿𝑚 , if and

only if the two following properties are satisfied:

a) There are positions 𝑖0, 𝑖1, . . . , 𝑖𝑚, 𝑖𝑚+1 ∈ P(𝑤) which satisfy

0 = 𝑖0 < 𝑖1 < · · · < 𝑖𝑚 < 𝑖𝑚+1 = |𝑤 | + 1 and such that for

all ℎ such that 1 ≤ ℎ ≤ 𝑚, 𝑖ℎ has label 𝑎ℎ ,𝑤 (0, 𝑖ℎ) ∈ 𝐾ℎ and

𝑤 (𝑖ℎ, |𝑤 | + 1) ∈ 𝐾 ′
ℎ
. Observe that these positions must be

unique since 𝐾ℎ𝑎ℎ𝐾 ′
ℎ
is unambiguous.

b) For 0 ≤ ℎ ≤ 𝑚, we have𝑤 (𝑖ℎ, 𝑖ℎ+1
) ∈ 𝐿ℎ .

We show that both properties can be expressed inℬΣ2

𝑛+1
(I𝒞). First,

we buildℬΣ2

1
(I𝒞) formulas with the following lemma.

Lemma 6.10. For 1 ≤ ℎ ≤ 𝑚, there exists a formula 𝜓ℎ (𝑥) of
ℬΣ2

1
(I𝒞) with one free variable 𝑥 such that for every 𝑤 ∈ 𝐴∗ and

𝑖 ∈ P(𝑤), we have𝑤 |= 𝜓ℎ (𝑖) if and only if 𝑖 has label𝑎ℎ ,𝑤 (0, 𝑖) ∈ 𝐾ℎ
and𝑤 (𝑖, |𝑤 | + 1) ∈ 𝐾 ′

ℎ
.

Lemma 6.10 holds since 𝐾ℎ, 𝐾
′
ℎ
∈ 𝐵𝑃𝑜𝑙 (𝒞) (the proof is iden-

tical to that of 𝐵𝑃𝑜𝑙 (𝒞) ⊆ ℬΣ2

1
(I𝒞) in Theorem 6.3). We fix the

ℬΣ2

1
(I𝒞) formulas𝜓1, . . . ,𝜓𝑚 for the proof. We use them to define

new formulas Γℎ (𝑥) for 1 ≤ ℎ ≤ 𝑚. We let Γ1 (𝑥) := 𝜓1 (𝑥). Addi-
tionally, for ℎ > 1, we define Γℎ (𝑥) := 𝜓ℎ (𝑥) ∧∃𝑦 (𝑦 < 𝑥 ∧Γℎ−1

(𝑦))
(the definition involves implicit variable renaming, this is standard

in FO
2
). Finally, we let Γ := ∃𝑥 Γ𝑚 (𝑥). By definition, Γ is a sentence

ofℬΣ2

2
(I𝒞) ⊆ ℬΣ2

𝑛+1
(I𝒞) and it expresses Condition a).

We turn to Condition b). We define 𝜓0 (𝑥) := (𝑥 = 𝑚𝑖𝑛) and
𝜓𝑚+1 (𝑥) := (𝑥 =𝑚𝑎𝑥) for the construction. For every ℎ such that

0 ≤ ℎ ≤ 𝑚, we construct a ℬΣ2

𝑛+1
(I𝒞) sentence 𝜑ℎ which satisfies

the following property: for every word 𝑤 ∈ 𝐴∗
such that 𝑤 |= Γ

(which yields unique positions 𝑖ℎ, 𝑖ℎ+1
∈ P(𝑤) such that𝑤 |= 𝜓ℎ (𝑖ℎ)

and𝑤 |= 𝜓ℎ+1
(𝑖ℎ+1

)), we have𝑤 |= 𝜑ℎ if and only𝑤 (𝑖ℎ, 𝑖ℎ+1
) ∈ 𝐿ℎ .

It will then be immediate that 𝐿0𝑎1𝐿1 · · ·𝑎𝑚𝐿𝑚 is defined by the

sentence 𝜑 := Γ∧∧
0≤ℎ≤𝑚 𝜑ℎ ofℬΣ2

𝑛+1
(I𝒞), completing the proof.

We now fix ℎ such that 0 ≤ ℎ ≤ 𝑚 and construct 𝜑ℎ . By hypoth-

esis, we have 𝐿ℎ ∈ 𝒟𝑛 = ℬΣ2

𝑛 (I𝒞). Hence, we get a sentence 𝛿ℎ of

ℬΣ2

𝑛 (I𝒞) defining 𝐿ℎ . We build 𝜑ℎ from 𝛿ℎ by applying two kinds

of modifications. First, we restrict the quantifications in 𝛿ℎ to the

positions that are in-between the two unique ones satisfying 𝜓ℎ
and𝜓ℎ+1

. We recursively replace each sub-formula of the form ∃𝑥 𝜁
by the following (we write “𝑥 ≤ 𝑦” for the formula “𝑥 < 𝑦 ∨𝑥 = 𝑦”):

∃𝑥 (𝜁 ∧ (∃𝑦 (𝜓ℎ (𝑦) ∧ 𝑦 ≤ 𝑥)) ∧ (∃𝑦 (𝜓ℎ+1
(𝑦) ∧ 𝑥 ≤ 𝑦))) .

Intuitively, we are using the unique positions satisfying𝜓ℎ and𝜓ℎ+1

as substitutes for the two artificial unlabeled positions. Hence, we

also need to tweak the atomic sub-formulas in 𝛿ℎ . First, we replace

all atomic sub-formulas 𝑏 (𝑥) with 𝑏 ∈ 𝐴 by,

𝑏 (𝑥) ∧ (∃𝑦 (𝜓ℎ (𝑦) ∧ 𝑦 < 𝑥)) ∧ (∃𝑦 (𝜓ℎ+1
(𝑦) ∧ 𝑥 < 𝑦).

We also need to modify the atomic sub-formulas involving the con-

stants𝑚𝑖𝑛 and𝑚𝑎𝑥 . All sub-formulas 𝑃 (𝑚𝑖𝑛, 𝑥) with 𝑃 (𝑚𝑖𝑛, 𝑥) :=

(𝑚𝑖𝑛 = 𝑥) or 𝑃 (𝑚𝑖𝑛, 𝑥) := 𝐼𝐿 (𝑚𝑖𝑛, 𝑥) where 𝐿 ∈ 𝒞 are replaced

by ∃𝑦 (𝜓ℎ (𝑦) ∧ 𝑃 (𝑦, 𝑥)). Symmetrically, all sub-formulas 𝑃 (𝑥,𝑚𝑎𝑥)
with 𝑃 (𝑥,𝑚𝑎𝑥) := (𝑥 = 𝑚𝑎𝑥) or 𝑃 (𝑥,𝑚𝑎𝑥) := 𝐼𝐿 (𝑥,𝑚𝑎𝑥) where
𝐿 ∈ 𝒞 are replaced by ∃𝑦 (𝜓ℎ+1

(𝑦) ∧ 𝑃 (𝑥,𝑦)). Finally, all sub-
formulas 𝐼𝐿 (𝑚𝑖𝑛,𝑚𝑎𝑥) for 𝐿 ∈ 𝒞 are replaced by the formula

∃𝑥∃𝑦 (𝜓ℎ (𝑥) ∧𝜓ℎ+1
(𝑦) ∧ 𝐼𝐿 (𝑥,𝑦)). There can be other atomic sub-

formulas involving𝑚𝑖𝑛 and𝑚𝑎𝑥 such as 𝑏 (𝑚𝑖𝑛), (𝑚𝑖𝑛 = 𝑚𝑎𝑥) or

𝐼𝐿 (𝑚𝑎𝑥, 𝑥). We do not modify them since they are equivalent to ⊥
(i.e., false).

By definition, 𝜑ℎ is built by nesting the ℬΣ2

1
(I𝒞) formulas 𝜓ℎ

and𝜓ℎ+1
under the sentence 𝛿ℎ ofℬΣ2

𝑛 (I𝒞). Thus, one may verify

that 𝜑ℎ is a sentence ofℬΣ2

𝑛+1
(I𝒞) as desired. One may also verify

that 𝜑ℎ satisfies the desired property: for every word𝑤 ∈ 𝐴∗
such

that 𝑤 |= Γ (we get unique positions 𝑖ℎ, 𝑖ℎ+1
∈ P(𝑤) such that

𝑤 |= 𝜓ℎ (𝑖ℎ) and 𝑤 |= 𝜓ℎ+1
(𝑖ℎ+1

)), we know that 𝑤 |= 𝜑ℎ if and

only if 𝑤 (𝑖ℎ, 𝑖ℎ+1
) |= 𝛿ℎ (i.e., 𝑤 (𝑖ℎ, 𝑖ℎ+1

) ∈ 𝐿ℎ). This concludes the
proof. □

7 SEPARATION
We prove that if 𝒞 is a finite prevariety with decidable separation

and𝒟 is a prevariety which satisfy𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞), separation
is decidable for the classes 𝐿𝑃𝑜𝑙 (𝒟), 𝑅𝑃𝑜𝑙 (𝒟) and𝑀𝑃𝑜𝑙 (𝒟). This
result is designed to handle the hierarchies of Section 5 associated

to an input class 𝒞 which is a finite prevariety. Using Theorem 6.4,

we also get the decidability of separation for all levels ℬΣ2

𝑛 (<) in
the quantifier-alternation hierarchy of FO

2 (<).
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Remark 7.1. Separation is often considered alongside a more gen-
eral problem called covering (see [25]). We do not discuss it since this
involves too much machinery. However, the results of this section can
be generalized to this problem.

7.1 Preliminaries
We present notions that we use in our separation algorithms. First,

we explain how finite prevarieties are handled.
𝒞-compatible morphisms. Let 𝒞 be a finite prevariety. A mor-

phism 𝛼 : 𝐴∗ → 𝑀 is 𝒞-compatible if and only if it is surjective

and recognizes all languages in 𝒞.

Fact 7.2. Let 𝒞 be a finite prevariety. Given as input two regular
languages 𝐿0 and 𝐿1, one may compute a 𝒞-compatible morphism
recognizing both 𝐿0 and 𝐿1.

Non-separable pairs. Let 𝛼 : 𝐴∗ → 𝑀 be a morphism and 𝒟 a

prevariety. We let NS𝒟 [𝛼] ⊆ 𝑀2
as the set of all 𝒟-pairs for 𝛼 ,

i.e. (𝑠, 𝑠 ′) ∈ NS𝒟 [𝛼] if and only if 𝛼−1 (𝑠) is not 𝒟-separable from

𝛼−1 (𝑠 ′). Clearly, NS𝒟 [𝛼] can be computed from 𝛼 if𝒟-separation

is decidable. We have the converse.

Lemma 7.3. Let 𝒟 be a prevariety, 𝛼 : 𝐴∗ → 𝑀 a morphism and
𝐹0, 𝐹1 ⊆ 𝑀 . In this case, 𝛼−1 (𝐹0) is𝒟-separable from 𝛼−1 (𝐹1) if and
only if (𝐹0 × 𝐹1) ∩ NS𝒟 [𝛼] = ∅.

For a fixed finite prevariety 𝒞, Fact 7.2 implies that given as

input two regular languages 𝐿0 and 𝐿1, one may compute a single

𝒞-compatible morphism 𝛼 : 𝐴∗ → 𝑀 recognizing both 𝐿0 and 𝐿1.

Thus, by Lemma 7.3, finding a 𝒟-separation algorithm boils down

to exhibiting an algorithm for computing NS𝒟 [𝛼] from an input

𝒞-compatible morphism 𝛼 : 𝐴∗ → 𝑀 . We use this approach below.

We complete the definition with a useful property of the sets

NS𝒟 [𝛼]. A set 𝑆 ⊆ 𝑀2
is saturated (for 𝛼) if (𝛼 (𝑤), 𝛼 (𝑤)) ∈ 𝑆 for

every𝑤 ∈ 𝐴∗
and 𝑆 is closed under multiplication: if (𝑠𝑖 , 𝑠 ′𝑖 ) ∈ 𝑆 for

𝑖 = 1, 2, then (𝑠1𝑠2, 𝑠 ′
1
𝑠 ′
2
) ∈ 𝑆 .

Lemma 7.4. Let𝒟 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a morphism.
Then, NS𝒟 [𝛼] is saturated for 𝛼 .
Alphabet testable languages. The key applications of our sepa-

ration results consider a particular finite prevariety 𝒞. Let AT be

the class containing the Boolean combinations of languages 𝐴∗𝑎𝐴∗

where 𝑎 ∈ 𝐴. One may verify that AT is a finite prevariety. This

class is connected to the class PT = 𝐵𝑃𝑜𝑙 (ST) of piecewise testable
languages.

Lemma 7.5. The following equalities hold:𝑈𝑃𝑜𝑙 (AT) = 𝑈𝑃𝑜𝑙 (PT),
𝐿𝑃𝑜𝑙 (AT) = 𝐿𝑃𝑜𝑙 (PT) and 𝑅𝑃𝑜𝑙 (AT) = 𝑅𝑃𝑜𝑙 (PT).

Remark 7.6. This fails for𝑀𝑃𝑜𝑙 :𝑀𝑃𝑜𝑙 (AT) ⊊ 𝑀𝑃𝑜𝑙 (PT).

7.2 Left/right polynomial closure
Given a finite prevariety 𝒞 and a prevariety 𝒟 which satisfy the

inclusions 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞), we characterize NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼]
and NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼] for an arbitrary 𝒞-compatible morphism 𝛼 . If

𝒟-separation is decidable, this yields procedures for computing

both sets. By Lemma 7.3, it follows that separation is decidable for

𝐿𝑃𝑜𝑙 (𝒟) and 𝑅𝑃𝑜𝑙 (𝒟).
We first present the characterization. Let 𝛼 : 𝐴∗ → 𝑀 be a sur-

jective morphism. Recall that by Lemma 2.7, the quotient𝑀/∼𝒞 is a

monoid. We use the Green relations ⩽ℛ and ⩽ℒ defined on𝑀/∼𝒞 .

Let 𝑃 ⊆ 𝑀2
. We say that another set 𝑆 ⊆ 𝑀2

is (𝐿𝑃𝑜𝑙, 𝑃)-saturated
(for 𝛼) when it is saturated (for 𝛼), and satisfies the following addi-

tional property:

if (𝑒, 𝑒 ′) ∈ 𝑆 is a pair of idempotents and (𝑠, 𝑠 ′) ∈ 𝑃
satisfies [𝑒]𝒞 ⩽ℛ [𝑠]𝒞 , then (𝑒𝑠, 𝑒 ′𝑠 ′) ∈ 𝑆 . (3)

Symmetrically, 𝑆 is (𝑅𝑃𝑜𝑙, 𝑃)-saturated when it is saturated (for 𝛼),

and satisfies the following additional property:

if (𝑒, 𝑒 ′) ∈ 𝑆 is a pair of idempotents and (𝑠, 𝑠 ′) ∈ 𝑃
satisfies [𝑒]𝒞 ⩽ℒ [𝑠]𝒞 , then (𝑠𝑒, 𝑠 ′𝑒 ′) ∈ 𝑆 . (4)

We are ready to state the characterization.

Theorem 7.7. Let𝒞 be a finite prevariety and𝒟 a prevariety such
that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Let 𝛼 : 𝐴∗ → 𝑀 be a 𝒞-compatible mor-
phism and 𝑃 = NS𝒟 [𝛼]. Then, NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] is the least (𝐿𝑃𝑜𝑙, 𝑃)-
saturated subset of 𝑀2 and NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼] is the least (𝑅𝑃𝑜𝑙, 𝑃)-
saturated subset of𝑀2 for 𝛼 .

In view of Theorem 7.7, once we have 𝑃 = NS𝒟 [𝛼] in hand (this

boils down to𝒟-separation by definition), it is possible to compute

NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] and NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼] from 𝛼 using least fixpoint pro-

cedures. Therefore, we obtain the following corollary from Fact 7.2

and Lemma 7.3.

Corollary 7.8. Let 𝒞 be a finite prevariety and𝒟 a prevariety
with decidable separation such that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Then
separation is decidable for 𝐿𝑃𝑜𝑙 (𝒟) and 𝑅𝑃𝑜𝑙 (𝒟).

A key application is the case 𝒞 = AT. Since AT is finite, AT-

separation is decidable (there are finitely many separator candidates

and we may test them all). Therefore, we may apply Corollary 7.8

recursively to obtain that for every 𝑛 ∈ N, 𝐿𝑃𝑛 (AT) and 𝑅𝑃𝑛 (AT)
are both decidable. By Lemma 7.5, these are also the classes 𝐿𝑃𝑛 (PT)
and 𝑅𝑃𝑛 (PT).

Corollary 7.9. For every 𝑛 ∈ N, separation is decidable for
𝐿𝑃𝑛 (PT) and 𝑅𝑃𝑛 (PT).

7.3 Mixed polynomial closure
Given a finite prevariety 𝒞 and a prevariety 𝒟 which satisfy the

inclusions𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞), we characterize NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼] for
an arbitrary 𝒞-compatible morphism 𝛼 . If𝒟-separation is decid-

able, this yields an algorithm for computing this set. By Lemma 7.3,

we get that separation is decidable for𝑀𝑃𝑜𝑙 (𝒟).
We first present the characterization. Let 𝛼 : 𝐴∗ → 𝑀 be

a surjective morphism. By Lemma 2.7, the quotient 𝑀/∼𝒞 is a

monoid. We use the Green relation𝒥 on𝑀/∼𝒞 . Let 𝑃, 𝑃1, 𝑃2 ⊆ 𝑀2
.

We start with a preliminary notion. A (𝑃1, 𝑃, 𝑃2)-block is a pair

(𝑠1𝑒1𝑠3𝑒2𝑠2, 𝑠
′
1
𝑒 ′

1
𝑠 ′
3
𝑒 ′

2
𝑠 ′
2
) ∈ 𝑀2

which satisfies (𝑠1, 𝑠 ′
1
), (𝑒1, 𝑒

′
1
) ∈ 𝑃1,

(𝑠2, 𝑠 ′
2
), (𝑒2, 𝑒

′
2
) ∈ 𝑃2 and (𝑠3, 𝑠 ′

3
) ∈ 𝑃 . Moreover, 𝑒1, 𝑒

′
1
, 𝑒2, 𝑒

′
2
must be

idempotents of 𝑀 such that [𝑒1]𝒞 𝒥 [𝑒2]𝒞 𝒥 [𝑠1𝑒1𝑠3𝑒2𝑠2]𝒞 . We

consider a set 𝑆 ⊆ 𝑀2
. We say that 𝑆 is (𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated

(for 𝛼) when it is saturated (for 𝛼), and satisfies the following addi-

tional property for every 𝑛 ∈ N:
if (𝑠0, 𝑠 ′

0
), . . . , (𝑠𝑛, 𝑠 ′𝑛) ∈𝑀2

are (𝑃1, 𝑃, 𝑃2)-blocks and
(𝑡1, 𝑡 ′

1
), . . . , (𝑡𝑛, 𝑡 ′𝑛) ∈ 𝑃 satisfy [𝑠𝑖−1𝑡𝑖 ]𝒞 𝒥 [𝑠𝑖−1]𝒞

and [𝑡𝑖𝑠𝑖 ]𝒞 𝒥 [𝑠𝑖 ]𝒞 for 1 ≤ 𝑖 ≤ 𝑛,
then (𝑠0𝑡1𝑠1 · · · 𝑡𝑛𝑠𝑛, 𝑠 ′

0
𝑡 ′
1
𝑠 ′
1
· · · 𝑡 ′𝑛𝑠 ′𝑛) ∈ 𝑆 .

(5)
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When 𝑛 = 0, (5) states that if (𝑠0, 𝑠 ′
0
) is a (𝑃1, 𝑃, 𝑃2)-block, then

(𝑠0, 𝑠 ′
0
) ∈ 𝑆 . We may now present the characterization.

Theorem 7.10. Let 𝒞 be a finite prevariety and 𝒟 a prevariety
such that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Moreover, let 𝛼 : 𝐴∗ → 𝑀 be a
𝒞-compatible morphism and let 𝑃 = NS𝒟 [𝛼], 𝑃1 = NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼]
and 𝑃2 = NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼]. Then, the set NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼] is the least
(𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated subset of𝑀2 for 𝛼 .

By Theorem 7.10, once we have the three sets 𝑃 = NS𝒟 [𝛼],
𝑃1 = NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] and 𝑃2 = NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼] in hand, we may

computeNS𝑀𝑃𝑜𝑙 (𝒟) [𝛼] from and𝛼 using a least fixpoint algorithm

(note that while (5) must hold for every 𝑛 ∈ N, one may verify

using a pumping argument that this is equivalent to (5) holding for

𝑛 ≤ |𝑀 |3). Computing 𝑃 boils down to𝒟-separation by definition.

It is also possible to compute 𝑃1 and 𝑃2 when 𝒟-separation is

decidable by Theorem 7.7. Thus, we get the following corollary

from Lemma 7.3.

Corollary 7.11. Let 𝒞 be a finite prevariety and 𝒟 a prevariety
with decidable separation such that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Then
separation is decidable for𝑀𝑃𝑜𝑙 (𝒟).

Corollary 7.11 applies to the quantifier alternation hierarchy of

FO
2 (<). Indeed, it follows from Theorem 6.3 and Lemma 6.2 that

ℬΣ2

1
(<) = 𝐵𝑃𝑜𝑙 (ST) = PT. Moreover, the class PT of piecewise

testable languages is known to have decidable separation (see [5,

24]). Additionally, we have AT ⊆ PT ⊆ 𝑈𝑃𝑜𝑙 (AT) by Lemma 7.5

and AT is a finite prevariety. Finally, Theorem 6.4 implies that

the levels ℬΣ2

𝑛 (<) are built from PT by applying𝑀𝑃𝑜𝑙 iteratively.

We obtain the following result from Corollary 7.11 and a simple

induction.

Corollary 7.12. For all 𝑛 ∈ N, separation is decidable for the
level ℬΣ2

𝑛 (<).

Let us point out that Corollary 7.12 was proved independently

in [9] using distinct techniques.

Remark 7.13. Using independent techniques, one may lift Corol-
lary 7.12 to the levels ℬΣ2

𝑛 (<, +1) and ℬΣ2

𝑛 (<, +1, 𝑀𝑂𝐷) in the
hierarchies of FO2 (<, +1) and FO

2 (<, +1,MOD). It turns out that
ℬΣ2

𝑛 (<), ℬΣ2

𝑛 (<, +1) and ℬΣ2

𝑛 (<, +1, 𝑀𝑂𝐷) are connected by an-
other operator called “enrichment” or “wreath product” which is used
to combine two classes into a larger one. First, we haveℬΣ2

𝑛 (<, +1) =
ℬΣ2

𝑛 (<) ◦ SU with SU as the class of “suffix languages” (the Boolean
combinations of languages 𝐴∗𝑤 with 𝑤 ∈ 𝐴∗). A proof is available
in [18]. Moreover, ℬΣ2

𝑛 (<, +1, 𝑀𝑂𝐷) = ℬΣ2

𝑛 (<, +1) ◦MOD (this is
a standard property which holds for many fragments of first-order
logic, see [23] for example). Finally, it is known that the operators
𝒞 ↦→ 𝒞 ◦ SU and 𝒞 ↦→ 𝒞 ◦ SU ◦ MOD preserve the decidabil-
ity of separation [23, 30]. Therefore, Corollary 7.12 also implies that
for every 𝑛 ∈ N, separation is decidable for both ℬΣ2

𝑛 (<, +1) and
ℬΣ2

𝑛 (<, +1, 𝑀𝑂𝐷).

8 CONCLUSION
We investigated the operators 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and𝑀𝑃𝑜𝑙 , and the associ-

ated deterministic hierarchies. We proved that these three operators

preserve the decidability of membership. Moreover, we used𝑀𝑃𝑜𝑙

to characterize the quantifier alternation hierarchies of the variants

FO
2 (<, P𝒢) and FO

2 (<, +1, P𝒢) of FO2
for a group prevariety 𝒢.

They imply the decidability of membership for all levels when sep-
aration is decidable for𝒢. Finally, we looked at separation for our

operators and used the results to show that all levels in the quanti-

fier alternation hierarchy of FO
2 (<) have decidable separation. In

particular,𝑀𝑃𝑜𝑙 is the linchpin upon which most of our results are

based.

There are several follow-up questions. A first point concerns

membership for the levels 𝐿𝑃𝑛 (𝒞)∨𝑅𝑃𝑛 (𝒞) of the hierarchies intro-
duced in Section 5. These are the only levels which we are not able

to handle in a generic manner. Indeed, it follows from Theorems 4.3

and 5.6 that membership is decidable for all these levels as soon as

this is the case for the first one: 𝐿𝑃𝑜𝑙 (𝒞)∨𝑅𝑃𝑜𝑙 (𝒞). Yet, we do not

have a generic result for handling this initial level. Another ques-

tion is whether our separation results for the levelsℬΣ2

𝑛 (<) can be

generalized to the variants ℬΣ2

𝑛 (<, P𝒢) and ℬΣ2

𝑛 (<, +1, P𝒢) for
arbitrary group prevarieties𝒢. Such a result is proved in [29] for the

first level: if𝒢 has decidable separation, then so does ℬΣ2

1
(<, P𝒢)

(the proof considers 𝐵𝑃𝑜𝑙 (𝒢) which characterizes ℬΣ2

1
(<, P𝒢) by

Theorem 6.3) Finally, one may also look at the other variants of

FO
2
: the classes FO

2 (I𝒞) for an arbitrary prevariety 𝒞. Unfortu-

nately, our results fail in the general case. An example is considered

in [10]: FO
2
with “between relations”. It is simple to verify from

the definition that this class corresponds to FO
2 (IAT). The results

of [10] imply that FO
2 (IAT) is distinct from𝑈𝑃𝑜𝑙 (𝐵𝑃𝑜𝑙 (AT)) which

means that Corollary 6.7 fails in this case.
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A APPENDIX TO SECTION 2
We provide proof for the statements presented in Section 2. We

start with those concerning 𝒞-morphisms. First, we consider the

following proposition.

Proposition 2.2. Let 𝒞 be a prevariety. A regular language be-
longs to 𝒞 iff its syntactic morphism is a 𝒞-morphism.

Proof. We fix a regular language 𝐿 for the proof. Moreover, we

let 𝛼𝐿 : 𝐴∗ → 𝑀𝐿 as its syntactic morphism. Since 𝐿 is recognized

by 𝛼𝐿 , it is immediate that if 𝛼𝐿 is a 𝒞-morphism, then 𝐿 ∈ 𝒞.

We prove the converse implication. Assume that 𝐿 ∈ 𝒞. We show

that 𝛼−1 (𝐹 ) ∈ 𝒞 for every 𝐹 ⊆ 𝑀 . Since 𝒞 is closed under union,

it suffices to consider the case when 𝐹 = {𝑠} for some 𝑠 ∈ 𝑀 .

By definition of the syntactic morphism, 𝛼−1 (𝑠) is an equivalence

class of ≡𝐿 . Moreover, since ≡𝐿 has finite index, it is immediate by

definition that it is a finite Boolean combination of languages of

the form {𝑤 | 𝑥𝑤𝑦 ∈ 𝐿} for𝑤,𝑦 ∈ 𝐴∗
. Since 𝐿 ∈ 𝒞 and𝒞 is closed

under quotients, all languages {𝑤 | 𝑥𝑤𝑦 ∈ 𝐿} belong to 𝒞. Hence,

since 𝒞 is a Boolean algebra, we get 𝛼−1 (𝑠) ∈ 𝒞 which completes

the proof. □

We turn to the proposition used to construct 𝒞-morphisms.

Proposition 2.3. Let𝒞 be a prevariety and consider finitely many
languages 𝐿1, . . . , 𝐿𝑘 ∈ 𝒞. There exists a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁

such that 𝐿1, . . . , 𝐿𝑘 are recognized by 𝜂.

Proof. For every 𝑖 ≤ 𝑘 , we let 𝛼𝑖 : 𝐴∗ → 𝑀𝑖 as the syntactic

morphism of 𝐿𝑖 . We know from Proposition 2.2 that 𝛼𝑖 is a 𝒞-

morphism. Let 𝑀 = 𝑀1 × · · · ×𝑀𝑛 be the monoid equipped with

the componentwise multiplication and 𝛼 : 𝐴∗ → 𝑀 the morphism

defined by 𝛼 (𝑤) = (𝛼1 (𝑤), . . . , 𝛼𝑛 (𝑤)) for every 𝑤 ∈ 𝐴∗
. Clearly,

the languages 𝐿1, . . . , 𝐿𝑛 are all recognized by 𝛼 . Moreover, for

every 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝑀 , it is immediate that 𝛼−1 (𝑠) = 𝛼−1

1
(𝑠1) ∩

· · · ∩ 𝛼−1

𝑛 (𝑠𝑛). Hence, 𝛼−1 (𝑠) ∈ 𝒞 by closure under intersection. It

follows that every language recognized by 𝛼 belongs to 𝒞. Hence,

it suffices to define 𝜂 as the surjective restriction of 𝛼 to get the

desired 𝒞-morphism. □

We turn to the statements concerning the canonical equivalence

∼𝒞 associated to every morphism.

Lemma 2.5. Let𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 be a morphism.
The equivalence ∼𝒞,𝛼 on𝑀 is the reflexive transitive closure of the
𝒞-pair relation associated to 𝛼 .

Proof. We write � for the reflexive transitive closure of the 𝒞-

pair relation. We show that �=∼𝒞,𝛼 . We start with the left to right

inclusion. Since ∼𝒞,𝛼 is an equivalence by definition, it suffices that

for every 𝒞-pair (𝑠, 𝑡) ∈ 𝑀2
, we have 𝑠 ∼𝒞,𝛼 𝑡 . Given 𝐹 ⊆ 𝑀 such

that 𝛼−1 (𝐹 ) ∈ 𝒞, we have to show that 𝑠 ∈ 𝐹 ⇔ 𝑡 ∈ 𝐹 . We first

prove that 𝑠 ∈ 𝐹 ⇒ 𝑡 ∈ 𝐹 . If 𝑠 ∈ 𝐹 , then 𝛼−1 (𝑠) ⊆ 𝛼−1 (𝐹 ). Hence,
since 𝛼−1 (𝐹 ) ∈ 𝒞 and (𝑠, 𝑡) is a𝒞-pair (which means that 𝛼−1 (𝑠) is
not𝒞-separable from 𝛼−1 (𝑡)), we have 𝛼−1 (𝐹 ) ∩𝛼−1 (𝑡) ≠ ∅. Thus,
we get 𝑡 ∈ 𝐹 as desired. The implication 𝑡 ∈ 𝐹 ⇒ 𝑠 ∈ 𝐹 is proved

symmetrically since (𝑡, 𝑠) is also a 𝒞-pair (this is immediate from

the definition as 𝒞 is closed under complement).

We now prove that ∼𝒞,𝛼⊆�. Let 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒞,𝛼 𝑡 .

We show that 𝑠 � 𝑡 . Let 𝐹 = {𝑞 ∈ 𝑀 | 𝑠 � 𝑞}. We prove that

𝛼−1 (𝐹 ) ∈ 𝒞. Since 𝑠 ∼𝒞,𝛼 𝑡 , it will follow that 𝑡 ∈ 𝐹 by definition,

i.e. that 𝑠 � 𝑡 as desired. Let 𝑞 ∈ 𝐹 and 𝑟 ∉ 𝐹 . By definition of �, it is
immediate that (𝑞, 𝑟 ) is not a 𝒞-pair. Hence, there exists 𝐻𝑞,𝑟 ∈ 𝒞

such that 𝛼−1 (𝑞) ⊆ 𝐻𝑞,𝑟 and 𝛼
−1 (𝑟 ) ∩ 𝐻𝑞,𝑟 = ∅. For every 𝑞 ∈ 𝐹 ,

we define,

𝐻𝑞 =
⋂
𝑟∉𝐹

𝐻𝑞,𝑟 .

https://arxiv.org/abs/2201.06826
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Clearly 𝐻𝑞 ∈ 𝒞 since 𝒞 is a lattice. Moreover, 𝛼−1 (𝑞) ⊆ 𝐻𝑞 and

𝛼−1 (𝑟 ) ∩ 𝐻𝑟 = ∅ for every 𝑟 ∉ 𝐹 . This yields,

𝛼−1 (𝐹 ) =
⋃
𝑞∈𝐹

𝐻𝑞 .

Therefore, 𝛼−1 (𝐹 ) ∈ 𝒞 since 𝒞 is a lattice. □

We turn to Lemma 2.6.

Lemma 2.6. Let𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 be a surjective
morphism. Then, ∼𝒞,𝛼 is a congruence of𝑀 .

Proof. We fix 𝑠1, 𝑡1, 𝑠2, 𝑡2 ∈ 𝑀 such that 𝑠1 ∼𝒞 𝑡1 and 𝑠2 ∼𝒞 𝑡2.

We prove that 𝑠1𝑠2 ∼𝒞 𝑡1𝑡2. Let 𝐹 ⊆ 𝑀 such that 𝛼−1 (𝐹 ) ∈ 𝒞.

We show that 𝑠1𝑠2 ∈ 𝐹 ⇔ 𝑡1𝑡2 ∈ 𝐹 . By symmetry, we only prove

the left to tight implication. Hence, we assume that 𝑠1𝑠2 ∈ 𝐹 . Let
𝑢, 𝑣 ∈ 𝐴∗

such that 𝛼 (𝑢) = 𝑠1 and 𝛼 (𝑣) = 𝑡2 (this is where we use

the hypothesis that 𝛼 is surjective). Let 𝑋 = {𝑞 ∈ 𝑀 | 𝑠1𝑞 ∈ 𝐹 }.
We have 𝑠2 ∈ 𝑋 and 𝛼−1 (𝑋 ) = {𝑤 ∈ 𝐴∗ | 𝑢𝑤 ∈ 𝛼−1 (𝐹 )} which
belongs to 𝒞 by closure under quotients. Hence, since 𝑠2 ∼𝒞 𝑡2,

we get 𝑡2 ∈ 𝑋 which yields 𝑠1𝑡2 ∈ 𝐹 . Let 𝑌 = {𝑟 ∈ 𝑀 | 𝑟𝑡2 ∈ 𝐹 }.
We know that 𝑠1 ∈ 𝑌 since 𝑠1𝑡2 ∈ 𝐹 . Moreover, we know that

𝛼−1 (𝑌 ) = {𝑤 ∈ 𝐴∗ | 𝑤𝑣 ∈ 𝛼−1 (𝐹 )} which belongs to 𝒞 by closure

under quotients. Hence, since 𝑠1 ∼𝒞 𝑡1, we get 𝑡1 ∈ 𝑌 which yields

𝑡1𝑡2 ∈ 𝐹 as desired. □

It remains to prove Lemma 2.7.

Lemma 2.7. Let𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 be a surjective
morphism. The languages recognized by [·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑀/∼𝒞 are
exactly those which are simultaneously in 𝒞 and recognized by 𝛼 .

Proof. By definition, the languages recognized by [·]𝒞 ◦ 𝛼 are

those of the form 𝛼−1 (𝐹 ) where 𝐹 is a ∼𝒞-class. Hence, it suffices

to prove that for every 𝐹 ⊆ 𝑀 , we have 𝛼−1 (𝐹 ) ∈ 𝒞 if and only

if 𝐹 is a ∼𝒞-class. We fix 𝐹 ⊆ 𝑀 for the proof. Assume first that

𝛼−1 (𝐹 ) ∈ 𝒞 we prove that 𝐹 is a ∼𝒞-class. Let 𝑠 ∈ 𝐹 and 𝑡 ∈ 𝑀
such that 𝑠 ∼𝒞 𝑡 . By definition of ∼𝒞 and since 𝛼−1 (𝐹 ) ∈ 𝒞, we

have 𝑡 ∈ 𝐹 . Hence 𝐹 is a ∼𝒞-class as desired. Conversely, assume

that 𝐹 is a ∼𝒞-class. We prove that 𝛼−1 (𝐹 ) ∈ 𝒞. Consider 𝑠 ∈ 𝐹 . By
definition, we know that for every element 𝑟 ∉ 𝐹 , we have 𝑠 ̸∼𝒞 𝑟 .

Hence, there exists a set 𝐹𝑠,𝑟 ⊆ 𝑀 such that 𝛼−1 (𝐹𝑠,𝑟 ) ∈ 𝒞, 𝑠 ∈ 𝐹𝑠,𝑟
and 𝑟 ∉ 𝐹𝑠,𝑟 . It is now immediate that,

𝐹 =
⋃
𝑠∈𝐹

(⋂
𝑟∉𝐹

𝐹𝑠,𝑟

)
.

Hence, since inverse image commutes with Boolean operation, we

obtain,

𝛼−1 (𝐹 ) =
⋃
𝑠∈𝐹

(⋂
𝑟∉𝐹

𝛼−1 (𝐹𝑠,𝑟 )
)
.

This yields 𝛼−1 (𝐹 ) ∈ 𝒞 since 𝒞 is a Boolean algebra. □

B APPENDIX TO SECTION 3
In this appendix, we prove the statements involved in the frame-

work that we use for handling 𝐿𝑃𝑜𝑙 , 𝑅𝑃𝑜𝑙 and𝑀𝑃𝑜𝑙 . We separate

Proposition 3.11 from the rest as it requires quite a bit of work.

B.1 Statements involved in the definition
We start with Lemma 3.8.

Lemma 3.8. Let 𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a 𝑈𝑃𝑜𝑙 (𝒞)-
morphism. For every ℎ ∈ N and every word 𝑤 ∈ 𝐴∗, P▷ (𝛼,ℎ,𝑤) ⊆
P▷ ( [·]𝒞 ◦ 𝛼,ℎ |𝑀 |,𝑤) and P◁ (𝛼,ℎ,𝑤) ⊆ P◁ ( [·]𝒞 ◦ 𝛼,ℎ |𝑀 |,𝑤).

Proof. We write 𝑁 = 𝑀/∼𝒞 and 𝜂 = [·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑁

for the proof. We show that P▷ (𝛼,ℎ,𝑤) ⊆ P▷ (𝜂,ℎ |𝑀 |,𝑤) for all
𝑤 ∈ 𝐴∗

and ℎ ∈ N. The other inclusion is symmetrical and left to

the reader. Let 𝑎1, . . . , 𝑎ℓ ∈ 𝐴 be the letters such that𝑤 = 𝑎1 · · ·𝑎ℓ .
We use induction on ℎ. If ℎ = 0, then P▷ (𝛼, 0,𝑤) = P▷ (𝜂, 0,𝑤) = ∅.
Assume now that ℎ ≥ 1 and let 𝑖 ∈ P▷ (𝛼,ℎ,𝑤). We show that

𝑖 ∈ P▷ (𝜂,ℎ |𝑀 |,𝑤). By definition, there is 𝑗 ∈ P▷ (𝛼,ℎ − 1,𝑤) ∪ {0}
such that 𝑗 < 𝑖 and 𝛼 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ) <ℛ 𝛼 (𝑤 ( 𝑗, 𝑖)). By induction,

we get 𝑗 ∈ P▷ (𝜂, (ℎ − 1) |𝑀 |,𝑤) ∪ {0}. Let 𝑖1, . . . , 𝑖𝑛 ∈ Pc (𝑤)
be all the positions in 𝑤 which satisfy 𝑗 < 𝑖1 < · · · < 𝑖𝑛 and

𝛼 (𝑤 ( 𝑗, 𝑖ℓ )𝑎𝑖ℓ ) <ℛ 𝛼 (𝑤 ( 𝑗, 𝑖ℓ )) for 1 ≤ ℓ ≤ 𝑛. Note that 𝑛 ≤ |𝑀 |
by definition. Since 𝑖 ∈ {𝑖1, . . . , 𝑖𝑛} by hypothesis, it now suffices

to prove that 𝑖1, . . . , 𝑖𝑛 ∈ P▷ (𝜂,ℎ |𝑀 |,𝑤). We write 𝑖0 = 𝑗 . For ev-

ery ℓ such that 1 ≤ ℓ ≤ 𝑛, we prove that 𝜂 (𝑤 (𝑖ℓ−1, 𝑖ℓ )𝑎𝑖ℓ ) <ℛ

𝜂 (𝑤 (𝑖ℓ−1, 𝑖ℓ )). Since we have 𝑖0 = 𝑗 ∈ P▷ (𝜂,ℎ |𝑀 | − |𝑀 |,𝑤) ∪ {0}
and 𝑛 ≤ |𝑀 |, this implies that 𝑖1, . . . , 𝑖𝑛 ∈ P▷ (𝜂,ℎ |𝑀 |,𝑤) by defini-

tion.

We proceed by contradiction. Assume that there exists an in-

dex 1 ≤ ℓ ≤ 𝑛 such that 𝜂 (𝑤 (𝑖ℓ−1, 𝑖ℓ )𝑎𝑖ℓ ) ℛ 𝜂 (𝑤 (𝑖ℓ−1, 𝑖ℓ )). We

write 𝑢 = 𝑤 ( 𝑗, 𝑖ℓ−1)𝑎𝑖ℓ−1
, 𝑣 = 𝑤 (𝑖ℓ−1, 𝑖ℓ ). Our contradiction hy-

pothesis states that 𝜂 (𝑣𝑎𝑖ℓ ) ℛ 𝜂 (𝑣). This yields 𝑦 ∈ 𝐴∗
such

that 𝜂 (𝑣𝑎𝑖ℓ𝑦) = 𝜂 (𝑣). Moreover, 𝛼 (𝑢𝑣𝑎𝑖ℓ ) <ℛ 𝛼 (𝑢𝑣) ℛ 𝛼 (𝑢) by
definition of 𝑖1, . . . , 𝑖𝑛 . Hence, we get a word 𝑧 ∈ 𝐴∗

such that

𝛼 (𝑢𝑣𝑧) = 𝛼 (𝑢). Since 𝜂 (𝑣𝑎𝑖ℓ𝑦) = 𝜂 (𝑣), we have 𝜂 (𝑣𝑎𝑖ℓ𝑦𝑧) = 𝜂 (𝑣𝑧),
i.e. 𝛼 (𝑣𝑎𝑖ℓ𝑦𝑧) ∼𝒞 𝛼 (𝑣𝑧) by definition of 𝜂. Therefore, since 𝛼 is a

𝑈𝑃𝑜𝑙 (𝒞)-morphism, it follows fromTheorem 3.7 that (𝛼 (𝑣𝑧))𝜔+1 =

(𝛼 (𝑣𝑧))𝜔𝛼 (𝑣𝑎𝑖ℓ𝑦𝑧) (𝛼 (𝑣𝑧))𝜔 . We multiply on the left by 𝛼 (𝑢). Since
𝛼 (𝑢𝑣𝑧) = 𝛼 (𝑢), we get 𝛼 (𝑢) = 𝛼 (𝑢)𝛼 (𝑣𝑎𝑖ℓ𝑦𝑧) (𝛼 (𝑣𝑧))𝜔 . Hence,
we obtain 𝛼 (𝑢𝑣) ⩽ℛ 𝛼 (𝑢𝑣𝑎𝑖ℓ ), contradicting the hypothesis that

𝛼 (𝑢𝑣𝑎𝑖ℓ ) <ℛ 𝛼 (𝑢𝑣). This concludes the proof. □

We now prove Lemma 3.9. We first present a preliminary result

that we shall reuse to prove other statements.

Fact B.1. Let 𝜂 : 𝐴∗ → 𝑁 be a surjective morphism and consider
𝑤,𝑤 ′ ∈ 𝐴∗, 𝑃 ⊆ Pc (𝑤) and 𝑃 ′ ⊆ Pc (𝑤 ′). Assume that 𝜎𝜂 (𝑤, 𝑃) =
𝜎𝜂 (𝑤 ′, 𝑃 ′) and let 𝑃1, 𝑃2 ⊆ 𝑃 such that 𝑃1 ∪ 𝑃2 = 𝑃 . There exist
𝑃 ′

1
, 𝑃 ′

2
⊆ 𝑃 ′ such that 𝑃 ′

1
∪ 𝑃 ′

2
= 𝑃 ′, 𝜎𝜂 (𝑤, 𝑃1) = 𝜎𝜂 (𝑤 ′, 𝑃 ′

1
) and

𝜎𝜂 (𝑤, 𝑃2) = 𝜎𝜂 (𝑤 ′, 𝑃 ′
2
).

Proof. Since 𝜎𝜂 (𝑤, 𝑃) = 𝜎𝜂 (𝑤 ′, 𝑃 ′), we have |𝑃 | = |𝑃 ′ |. Hence,
there exists a unique increasing bijection 𝑓 : 𝑃 → 𝑃 ′ (by “increas-

ing”, we mean that 𝑖 < 𝑗 ⇒ 𝑓 (𝑖) < 𝑓 ( 𝑗) for every 𝑖, 𝑗 ∈ 𝑃 ). We

let 𝑃 ′
1
= 𝑓 (𝑃1) and 𝑃 ′

2
= 𝑓 (𝑃2). Clearly, we have 𝑃 ′

1
∪ 𝑃 ′

2
= 𝑃 ′

since 𝑃1 ∪ 𝑃2 = 𝑃 . One may then verify using our hypothesis on

(𝑤, 𝑃) and (𝑤 ′, 𝑃 ′) that 𝜎𝜂 (𝑤, 𝑃1) = 𝜎𝜂 (𝑤 ′, 𝑃 ′
1
) and 𝜎𝜂 (𝑤, 𝑃2) =

𝜎𝜂 (𝑤 ′, 𝑃 ′
2
). □

We now turn to Lemma 3.9 itself.

Lemma 3.9. Let 𝜂 : 𝐴∗ → 𝑁 be a surjective morphism, 𝑘 ∈ N and
x ∈ {▷,◁, ⊲⊳}. Consider two words 𝑤,𝑤 ′ ∈ 𝐴∗ and 𝑃 ′ ⊆ Pc (𝑤 ′). If
𝜎𝜂 (𝑤, Px (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, 𝑃 ′), then 𝑃 ′ = Px (𝜂, 𝑘,𝑤 ′).
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Proof. First, note that the case x = ⊲⊳ is a corollary of the

other two. Indeed, assume for now that they hold and that we

have 𝜎𝜂 (𝑤, P⊲⊳ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, 𝑃 ′). By definition, we know that

P⊲⊳ (𝜂, 𝑘,𝑤) = P▷ (𝜂, 𝑘,𝑤) ∪ P◁ (𝜂, 𝑘,𝑤). Consequently, Fact B.1
yields 𝑃 ′

1
, 𝑃 ′

2
⊆ 𝑃 ′ which satisfy 𝑃 ′ = 𝑃 ′

1
∪ 𝑃 ′

2
, 𝜎𝜂 (𝑤, P▷ (𝜂, 𝑘,𝑤)) =

𝜎𝜂 (𝑤 ′, 𝑃 ′
1
) and 𝜎𝜂 (𝑤, P◁ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, 𝑃 ′

2
). Hence, the cases

when x ∈ {▷,◁} yield 𝑃 ′
1
= P▷ (𝜂, 𝑘,𝑤 ′) and 𝑃 ′

2
= P◁ (𝜂, 𝑘,𝑤 ′). We

get 𝑃 ′ = P▷ (𝜂, 𝑘,𝑤 ′) ∪ P◁ (𝜂, 𝑘,𝑤 ′) = P⊲⊳ (𝜂, 𝑘,𝑤 ′) as desired.
We turn to the case x = ▷ (the case x = ◁ is symmetrical and

left to the reader). Let𝑤 = 𝑎1 · · ·𝑎𝑚 ∈ 𝐴∗
and𝑤 ′ = 𝑏1 · · ·𝑏𝑛 ∈ 𝐴∗

.

Additionally, we assume that 𝜎𝜂 (𝑤, P▷ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, 𝑃 ′). We

prove 𝑃 ′ = P▷ (𝜂, 𝑘,𝑤 ′). We have |P▷ (𝜂, 𝑘,𝑤) | = |𝑃 ′ | by hypothesis.
Consider the unique increasing bijection 𝑓 : P▷ (𝜂, 𝑘,𝑤) → 𝑃 ′

(by “increasing”, we mean that 𝑖 < 𝑗 ⇒ 𝑓 (𝑖) < 𝑓 ( 𝑗) for all 𝑖, 𝑗 ).
We extend it to the unlabeled positions 0 and |𝑤 | + 1 by defining

𝑓 (0) = 0 and 𝑓 ( |𝑤 | + 1) = |𝑤 ′ | + 1. One may now verify that our

hypothesis implies the following two properties:

(1) for all 𝑖 ∈ P▷ (𝜂, 𝑘,𝑤), we have 𝑎𝑖 = 𝑏 𝑓 (𝑖) (𝑖 and 𝑓 (𝑖) have
the same label), and,

(2) for all 𝑖, 𝑗 ∈ P▷ (𝜂, 𝑘,𝑤) ∪ {0, |𝑤 | + 1}, if 𝑖 < 𝑗 , then we have

𝜂 (𝑤 (𝑖, 𝑗)) = 𝜂 (𝑤 ′(𝑓 (𝑖), 𝑓 ( 𝑗))).
First, we show that 𝑃 ′ ⊆ P▷ (𝜂, 𝑘,𝑤 ′). Let ℎ ≤ 𝑘 . Using induc-

tion on ℎ, we prove that 𝑓 (𝑖) ∈ P▷ (𝜂,ℎ,𝑤 ′) for all 𝑖 ∈ P▷ (𝜂,ℎ,𝑤).
Since 𝑓 is surjective, the case ℎ = 𝑘 yields 𝑃 ′ ⊆ P▷ (𝜂, 𝑘,𝑤 ′). We

consider 𝑖 ∈ P▷ (𝜂, ℎ,𝑤). By definition, ℎ ≥ 1 and there exists

𝑗 ∈ P▷ (𝜂,ℎ − 1,𝑤) ∪ {0} such that 𝑗 < 𝑖 and we have the inequality
𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)). We have 𝑓 ( 𝑗) < 𝑓 (𝑖) since 𝑓 is increas-
ing. Moreover we know that 𝑓 ( 𝑗) ∈ P▷ (𝜂, ℎ− 1,𝑤 ′) ∪ {0} by induc-
tion. We know that 𝑎𝑖 = 𝑏 𝑓 (𝑖) and 𝜂 (𝑤 ( 𝑗, 𝑖)) = 𝜂 (𝑤 ′(𝑓 ( 𝑗), 𝑓 (𝑖))).
Thus, we get 𝜂 (𝑤 ′(𝑓 ( 𝑗), 𝑓 (𝑖))𝑏 𝑓 (𝑖) ) <ℛ 𝜂 (𝑤 ′(𝑓 ( 𝑗), 𝑓 (𝑖))) and we

conclude that 𝑓 (𝑖) ∈ P▷ (𝜂,ℎ,𝑤 ′) as desired.
We now prove that P▷ (𝜂, 𝑘,𝑤 ′) ⊆ 𝑃 ′. Let ℎ ≤ 𝑘 . Using induction

on ℎ, we prove that for all 𝑖 ′ ∈ P▷ (𝜂, ℎ,𝑤 ′), there is 𝑖 ∈ P▷ (𝜂,ℎ,𝑤)
such that 𝑖 ′ = 𝑓 (𝑖). This implies P▷ (𝜂, 𝑘,𝑤 ′) ⊆ 𝑃 ′ as desired.

We fix 𝑖 ′ ∈ P▷ (𝜂, ℎ,𝑤 ′). By definition, ℎ ≥ 1, and there exists

𝑗 ′ ∈ P▷ (𝜂, ℎ−1,𝑤 ′) ∪ {0} such that 𝑗 ′ < 𝑖 ′ and 𝜂 (𝑤 ′( 𝑗 ′, 𝑖 ′)𝑏𝑖′) <ℛ

𝜂 (𝑤 ′( 𝑗 ′, 𝑖 ′)). Induction yields a position 𝑗 ∈ P▷ (𝜂, ℎ − 1,𝑤) ∪ {0}
such that 𝑗 ′ = 𝑓 ( 𝑗). Let 𝑖1, . . . , 𝑖𝑝 be all positions of𝑤 such that 𝑗 <

𝑖1 < · · · < 𝑖𝑝 and𝜂 (𝑤 ( 𝑗, 𝑖ℓ )𝑎𝑖ℓ ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖ℓ )) for 1 ≤ ℓ ≤ 𝑛. Since
we have 𝑗 ∈ P▷ (𝜂, ℎ − 1,𝑤) ∪ {0}, we get 𝑖1, . . . , 𝑖𝑛 ∈ P▷ (𝜂, ℎ,𝑤).
Thus, it suffices to prove that 𝑖 ′ = 𝑓 (𝑖ℓ ) for some ℓ ≤ 𝑝 . We proceed

by contradiction. Assume that 𝑖 ′ ≠ 𝑓 (𝑖ℓ ) for 1 ≤ ℓ ≤ 𝑝 . For the

proof, we write 𝑖0 = 𝑗 and 𝑖𝑝+1 = |𝑤 | + 1. Clearly, we have 𝑖0 <

𝑖1 < · · · < 𝑖𝑝+1 which implies that 𝑓 (𝑖0) < 𝑓 (𝑖1) < · · · < 𝑓 (𝑖𝑝+1).
Hence, by hypothesis on 𝑖 ′ and since 𝑓 (𝑖0) = 𝑗 ′ < 𝑖 ′, there exists
ℓ such that 0 ≤ ℓ ≤ 𝑛 and 𝑓 (𝑖ℓ ) < 𝑖 ′ < 𝑓 (𝑖ℓ+1). By definition of

𝑖1, . . . , 𝑖𝑝 , we have 𝜂 (𝑤 ( 𝑗, 𝑖ℓ )𝑎𝑖ℓ ) ℛ 𝜂 (𝑤 ( 𝑗, 𝑖ℓ+1)). Since 𝑗 ′ = 𝑓 ( 𝑗),
we get 𝜂 (𝑤 ′( 𝑗 ′, 𝑓 (𝑖ℓ ))𝑏 𝑓 (𝑖ℓ ) ) ℛ 𝜂 (𝑤 ( 𝑗 ′, 𝑓 (𝑖ℓ+1))). Therefore, since
𝑓 (𝑖ℓ ) < 𝑖 ′ < 𝑓 (𝑖ℓ+1), we get 𝜂 (𝑤 ′( 𝑗 ′, 𝑖 ′)) ℛ 𝜂 (𝑤 ( 𝑗 ′, 𝑖 ′)𝑏𝑖′). This is
a contradiction since 𝜂 (𝑤 ′( 𝑗 ′, 𝑖 ′)𝑏𝑖′) <ℛ 𝜂 (𝑤 ′( 𝑗 ′, 𝑖 ′)) by hypothe-

sis. □

We turn to Lemma 3.10.

Lemma 3.10. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism, 𝑤 ∈ 𝐴∗ and
𝑘 ∈ N. Let 𝑃 be the set P▷ (𝜂, 𝑘,𝑤) (resp. P◁ (𝜂, 𝑘,𝑤), P⊲⊳ (𝜂, 𝑘,𝑤))
and (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) = 𝜎𝜂 (𝑤, 𝑃). Then, the marked product

𝜂−1 (𝑠0)𝑎1𝜂
−1 (𝑠1) · · ·𝑎𝑛𝜂−1 (𝑠𝑛) is left (resp. right, mixed) determin-

istic.

Proof. We treat the case when 𝑃 = P⊲⊳ (𝜂, 𝑘,𝑤) (the other cases
are similar and left to the reader). For all ℎ such that 1 ≤ ℎ ≤ 𝑛,

we define 𝑈ℎ = 𝜂−1 (𝑠0)𝑎1𝜂
−1 (𝑠1) · · ·𝑎ℎ−1

𝜂−1 (𝑠ℎ−1
) and we de-

fine 𝑉ℎ = 𝜂−1 (𝑠ℎ)𝑎ℎ+1
· · ·𝜂−1 (𝑠𝑛−1)𝑎𝑛𝜂−1 (𝑠𝑛). We show that ei-

ther 𝑈ℎ ∩ 𝑈ℎ𝑎ℎ𝐴
∗ = ∅ or 𝑉ℎ ∩ 𝐴∗𝑎ℎ𝑉ℎ = ∅. Let 𝑖1 < · · · < 𝑖𝑛

such that P⊲⊳ (𝜂, 𝑘,𝑤) = {𝑖1, . . . , 𝑖𝑛} (𝑖ℎ has label 𝑎ℎ). By defini-

tion of P⊲⊳ (𝜂, 𝑘,𝑤), we know that either 𝑖ℎ ∈ P▷ (𝜂, 𝑘,𝑤) or 𝑖ℎ ∈
P◁ (𝜂, 𝑘,𝑤) for 1 ≤ ℎ ≤ 𝑛. In the former case, one may prove

that 𝑈ℎ ∩𝑈ℎ𝑎ℎ𝐴∗ = ∅ and in the latter case, one may prove that

𝑉ℎ ∩𝐴∗𝑎ℎ𝑉ℎ = ∅. By symmetry, we only prove the former property.

Let ℎ such that 1 ≤ ℎ ≤ 𝑛 and assume that 𝑖ℎ ∈ P▷ (𝜂, 𝑘,𝑤). We

use induction on the least number𝑚 such that 𝑖ℎ ∈ P▷ (𝜂,𝑚,𝑤) to
show that𝑈ℎ ∩𝑈ℎ𝑎ℎ𝐴∗ = ∅.

By definition, we get a position 𝑗 ∈ P▷ (𝜂,𝑚 − 1,𝑤) ∪ {0} such
that 𝜂 (𝑤 ( 𝑗, 𝑖ℎ)𝑎ℎ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖ℎ)). Let 𝑞 = 𝜂 (𝑤 ( 𝑗, 𝑖ℎ)). Observe
that 𝜂−1 (𝑞)𝑎ℎ𝐴∗ ∩ 𝜂−1 (𝑞) = ∅. Indeed, otherwise we get 𝑥 ∈ 𝐴∗

such that 𝑞 = 𝑞𝜂 (𝑎ℎ)𝜂 (𝑥) which contradicts 𝑞𝜂 (𝑎ℎ) <ℛ 𝑞. This

concludes the proof when 𝑗 = 0. Since 𝑞 = 𝜂 (𝑤 (0, 𝑖ℎ)) in this case,

one may verify that 𝑈ℎ ⊆ 𝜂−1 (𝑞). Hence, we get 𝑈ℎ ∩𝑈ℎ𝑎ℎ𝐴∗ = ∅.
Assume now that 𝑗 ≠ 0. Hence, 𝑗 ∈ P▷ (𝜂,𝑚 − 1,𝑤) which implies

that 𝑗 = 𝑖𝑔 for some 𝑔 ≤ ℎ. By induction, 𝑈𝑔 ∩𝑈𝑔𝑎𝑔𝐴∗ = ∅. We use

contradiction to prove that 𝑈ℎ ∩𝑈ℎ𝑎ℎ𝐴∗ = ∅. Assume that there

exists 𝑢 ∈ 𝑈ℎ ∩𝑈ℎ𝑎ℎ𝐴∗
. Since 𝑞 = 𝜂 (𝑤 (𝑖𝑔, 𝑖ℎ)), one may verify that

𝑈ℎ ⊆ 𝑈𝑔𝑎𝑔𝜂−1 (𝑞). Hence, we get 𝑥, 𝑥 ′ ∈ 𝑈𝑔 , 𝑦,𝑦′ ∈ 𝜂−1 (𝑞) and 𝑧 ∈
𝐴∗

such that𝑢 = 𝑥𝑎𝑔𝑦𝑎ℎ𝑧 = 𝑥
′𝑎𝑔𝑦′. Since we have𝑈𝑔∩𝑈𝑔𝑎𝑔𝐴∗ = ∅,

this yields 𝑥 = 𝑥 ′. Thus, 𝑦𝑎ℎ𝑧 = 𝑦′. This is a contradiction since

𝜂−1 (𝑞)𝑎ℎ𝐴∗ ∩ 𝜂−1 (𝑞) = ∅. □

We now prove Lemma 3.12.

Lemma 3.12. If 𝜂 : 𝐴∗ → 𝑁 is a surjective morphism and 𝑘 ∈ N,
then ▷𝜂,𝑘 , ◁𝜂,𝑘 and ⊲⊳𝜂,𝑘 are congruences of finite index.

Proof. We present a proof for ⊲⊳𝜂,𝑘 . It is immediate from the

definition that ⊲⊳𝜂,𝑘 is an equivalence. Moreover, it has finite index.

Indeed, one may verify using induction on 𝑘 that for every𝑤 ∈ 𝐴∗
,

we have |P⊲⊳ (𝜂, 𝑘,𝑤) | ≤ 2|𝑁 |𝑘 (the key point being that this bound

does not depend on 𝑤 ). Hence, there are only finite possible 𝜂-

snapshots 𝜎𝜂 (𝑤, P⊲⊳ (𝜂, 𝑘,𝑤)) for 𝑤 ∈ 𝐴∗
. It follows that ⊲⊳𝜂,𝑘 has

finite index. It remains to prove that ⊲⊳𝜂,𝑘 is a congruence. Let

𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝐴∗
such that 𝑢ℎ ⊲⊳𝜂,𝑘 𝑣ℎ for ℎ = 1, 2. We prove that

𝑢1𝑢2 ⊲⊳𝜂,𝑘 𝑣1𝑣2. We let 𝑃 as the set of all positions 𝑖 ∈ Pc (𝑢1𝑢2) such
that either 𝑖 ∈ P⊲⊳ (𝜂, 𝑘,𝑢1) or 𝑖 − |𝑢1 | ∈ P⊲⊳ (𝜂, 𝑘,𝑢2). Symmetrically,

we let 𝑄 as the set of all positions 𝑖 ∈ Pc (𝑣1𝑣2) such that either

𝑖 ∈ P⊲⊳ (𝜂, 𝑘, 𝑣1) or 𝑖 − |𝑣1 | ∈ P⊲⊳ (𝜂, 𝑘, 𝑣2).
By hypothesis, 𝜎𝜂 (𝑢ℎ, P⊲⊳ (𝜂, 𝑘,𝑢ℎ)) = 𝜎𝜂 (𝑣ℎ, P⊲⊳ (𝜂, 𝑘, 𝑣ℎ)) for

ℎ = 1, 2. This yields 𝜎𝜂 (𝑢1𝑢2, 𝑃) = 𝜎𝜂 (𝑣1𝑣2, 𝑄) by definition. More-

over, one may verify from the definitions that P⊲⊳ (𝜂, 𝑘,𝑢1𝑢2) ⊆ 𝑃 .

Hence, Fact B.1 yields 𝑄 ′ ⊆ 𝑄 such that 𝜎𝜂 (𝑢1𝑢2, P⊲⊳ (𝜂, 𝑘,𝑢1𝑢2)) =
𝜎𝜂 (𝑣1𝑣2, 𝑄

′). Therefore, 𝑄 ′ = P⊲⊳ (𝜂, 𝑘, 𝑣1𝑣2) by Lemma 3.9. Alto-

gether, this yields 𝑢1𝑢2 ⊲⊳𝜂,𝑘 𝑣1𝑣2, completing the proof. □

We turn to the proof of Proposition 3.13.

Proposition 3.13. Let 𝒞 be a prevariety and 𝐿 ⊆ 𝐴∗. Then,
𝐿 ∈ 𝐿𝑃𝑜𝑙 (𝒞) (resp. 𝐿 ∈ 𝑅𝑃𝑜𝑙 (𝒞), 𝐿 ∈ 𝑀𝑃𝑜𝑙 (𝒞)) if and only if there
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exist a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that 𝐿 is a union of
▷𝜂,𝑘 -classes (resp. ◁𝜂,𝑘 -classes, ⊲⊳𝜂,𝑘 -classes).

Proof. We present a proof argument for 𝑀𝑃𝑜𝑙 (𝒞) (the other
cases are similar and left to the reader). Assume first that 𝐿 ∈
𝑀𝑃𝑜𝑙 (𝒞). We exhibit a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such

that 𝐿 is a union of ⊲⊳𝜂,𝑘 -classes. By definition of𝑀𝑃𝑜𝑙 (𝒞), there
exists a finite set H of languages in 𝒞 and𝑚 ≥ 1 such that 𝐿 is a

finite disjoint union of mixed deterministic marked products of at

most𝑚 languages in H. By definition, every unambiguous product

of languages in H belongs to 𝑈𝑃𝑜𝑙 (𝒞). Hence, since 𝑈𝑃𝑜𝑙 (𝒞) is
a prevariety by Theorem 3.6, Proposition 2.3 yields a 𝑈𝑃𝑜𝑙 (𝒞)-
morphism 𝛼 : 𝐴∗ → 𝑀 recognizing every unambiguous marked

product of at most𝑚 languages in H. Consider the congruence ∼𝒞

on 𝑀 . We let 𝑁 = 𝑀/∼𝒞 and 𝜂 = [·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑁 and 𝑘 = |𝑀 |.
Lemma 2.7 implies that 𝜂 is a 𝒞-morphism. Moreover, since all

𝐻 ∈ H belong to 𝒞 and are recognized by 𝛼 (by definition), the

lemma also implies that 𝜂 recognizes every 𝐻 ∈ H. It remains to

prove that 𝐿 is a union of ⊲⊳𝜂,𝑘 -classes. For all𝑤,𝑤
′ ∈ 𝐴∗

such that

𝑤 ⊲⊳𝜂,𝑘 𝑤
′
, we prove that𝑤 ∈ 𝐿 ⇔ 𝑤 ′ ∈ 𝐿. By symmetry, we only

prove the left to right implication. Thus, we assume that𝑤 ∈ 𝐿 and

prove that𝑤 ′ ∈ 𝐿.
Since𝑤 ∈ 𝐿, it follows from the definition of H and𝑚 that there

exist 𝐻0, . . . , 𝐻𝑛 ∈ H and 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 such that 𝑛 + 1 ≤ 𝑚, 𝑤 ∈
𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 ⊆ 𝐿 and 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 is mixed deterministic.

Consequently, it suffices to prove 𝑤 ′ ∈ 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 . Since
𝑤 ∈ 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 , we get 𝑤 𝑗 ∈ 𝐻 𝑗 for 0 ≤ 𝑗 ≤ 𝑛 such that

𝑤 = 𝑤0𝑎1𝑤1 · · ·𝑎𝑛𝑤𝑛 . Let 𝑃 ⊆ Pc (𝑤) be the set of all positions

carrying the letters 𝑎1, . . . , 𝑎𝑛 . We prove that 𝑃 ⊆ P⊲⊳ (𝜂, 𝑘,𝑤). Let
us first explain why this implies 𝑤 ′ ∈ 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 . Assume

for now that 𝑃 ⊆ P⊲⊳ (𝜂, 𝑘,𝑤). Since we have 𝑤 ⊲⊳𝜂,𝑘 𝑤
′
, Fact B.1

yields a set 𝑃 ′ ⊆ P⊲⊳ (𝜂, 𝑘,𝑤 ′) such that 𝜎𝜂 (𝑤, 𝑃) = 𝜎𝜂 (𝑤 ′, 𝑃 ′). By
definition of 𝑃 , this exactly says that 𝑤 ′

admits a decomposition

𝑤 ′ = 𝑤 ′
0
𝑎1𝑤

′
1
· · ·𝑎𝑛𝑤 ′

𝑛 such that 𝜂 (𝑤 ′
𝑗
) = 𝜂 (𝑤 𝑗 ) for every 𝑗 ≤ 𝑛.

Since 𝐻0, . . . , 𝐻𝑛 ∈ H are recognized by 𝜂 and 𝑤 𝑗 ∈ 𝐻 𝑗 for every
𝑗 ≤ 𝑛, this yields 𝑤 ′

𝑗
∈ 𝐻 𝑗 for every 𝑗 ≤ 𝑛. Therefore, we get

𝑤 ′ ∈ 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 ⊆ 𝐿 as desired.

It remains to prove that 𝑃 ⊆ P⊲⊳ (𝜂, 𝑘,𝑤). Since 𝛼 : 𝐴∗ → 𝑀 is a

𝑈𝑃𝑜𝑙 (𝒞)-morphism and 𝑘 = |𝑀 |, Lemma 3.8 yields P⊲⊳ (𝛼, 1,𝑤) ⊆
P⊲⊳ (𝜂, 𝑘,𝑤). We prove that 𝑃 ⊆ P⊲⊳ (𝛼, 1,𝑤). We fix a position 𝑖 ∈ 𝑃
for the proof. By definition of 𝑃 , there exists 𝑗 ≤ 𝑛 such that the

position 𝑖 is the one labeled by the highlighted letter 𝑎 𝑗 in 𝑤 =

𝑤0𝑎1𝑤1 · · ·𝑎𝑛𝑤𝑛 . We let 𝑢 = 𝑤0𝑎1𝑤1 · · ·𝑤 𝑗−1 ∈ 𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1.

Moreover, we let 𝑣 = 𝑤 𝑗 · · ·𝑎𝑛𝑤𝑛 ∈ 𝐻 𝑗 · · ·𝑎𝑛𝐻𝑛 . Clearly, we have
𝑤 = 𝑢𝑎 𝑗𝑣 . Since 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 is mixed deterministic, we know

that the marked concatenation (𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1)𝑎 𝑗 (𝐻 𝑗 · · ·𝑎𝑛𝐻𝑛)
is either left deterministic or right deterministic. By symmetry,

we only treat the former case and prove that 𝑖 ∈ P▷ (𝛼, 1,𝑤) ⊆
P⊲⊳ (𝛼, 1,𝑤) (in the latter case, one proves that 𝑖 ∈ P◁ (𝛼, 1,𝑤)). Thus,
we assume that (𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1)𝑎 𝑗 (𝐻 𝑗 · · ·𝑎𝑛𝐻𝑛) is left determin-

istic. Recall that 𝑖 is the position carrying the highlighted letter 𝑎 𝑗
in the decomposition𝑤 = 𝑢𝑎 𝑗𝑣 of𝑤 . Hence, we have to prove that

𝛼 (𝑢𝑎 𝑗 ) <ℛ 𝛼 (𝑢). This will imply 𝑖 ∈ P▷ (𝛼, 1,𝑤) as desired. By con-
tradiction, assume that𝛼 (𝑢𝑎 𝑗 ) ℛ 𝛼 (𝑢). This yields𝑥 ∈ 𝐴∗

such that

𝛼 (𝑢𝑎 𝑗𝑥) = 𝛼 (𝑢). By definition of 𝑢, we have 𝑢 ∈ 𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1.

Moreover, since the whole product 𝐻0𝑎1𝐻1 · · ·𝑎𝑛𝐻𝑛 is mixed de-

terministic, one may verify that 𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1 is unambiguous

which means that it is recognized by 𝛼 (it is a unambiguous marked

product of 𝑗 ≤ 𝑛 ≤ 𝑚 languages inH). Hence, since𝛼 (𝑢𝑎 𝑗𝑥) = 𝛼 (𝑢),
we obtain that 𝑢𝑎 𝑗𝑥 ∈ 𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1. Since it is also clear that

𝑢𝑎 𝑗𝑥 ∈ 𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1𝑎 𝑗𝐴
∗
, we obtain a contradiction to the

hypothesis that (𝐻0𝑎1𝐻1 · · ·𝐻 𝑗−1)𝑎 𝑗 (𝐻 𝑗 · · ·𝑎𝑛𝐻𝑛) is left determin-

istic. This concludes the proof for the left to right implication in

Proposition 3.13.

We turn to the converse implication. We fix a 𝒞-morphism

𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N. We prove that every ⊲⊳𝜂,𝑘 -class is de-

fined by a mixed deterministic marked product of languages in

𝒞. Since equivalence classes are pairwise disjoint and ⊲⊳𝜂,𝑘 has

finite index, this implies that every union of ⊲⊳𝜂,𝑘 -classes belongs to

𝑀𝑃𝑜𝑙 (𝒞) as desired. We fix𝑤 ∈ 𝐴∗
and consider its ⊲⊳𝜂,𝑘 -class. We

define 𝜎𝜂 (𝑤, P⊲⊳ (𝜂, 𝑘,𝑤)) = (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛). Moreover, we let

𝐿ℎ = 𝜂−1 (𝑠ℎ) for every ℎ ≤ 𝑛. We have 𝐿ℎ ∈ 𝒞 since 𝜂 is a 𝒞-

morphism. Let 𝐿 = 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 . We know from Lemma 3.10

that 𝐿0𝑎1𝐿1 · · ·𝑎𝑛𝐿𝑛 is mixed deterministic. Hence, 𝐿 ∈ 𝑀𝑃𝑜𝑙 (𝒞).
We show that 𝐿 is the ⊲⊳𝜂,𝑘 -class of 𝑤 , completing the proof. Let

𝑤 ′ ∈ 𝐴∗
. We prove that 𝑤 ⊲⊳𝜂,𝑘 𝑤 ′

if and only if 𝑤 ′ ∈ 𝐿. If

𝑤 ′ ⊲⊳𝜂,𝑘 𝑤 , then 𝜎𝜂 (𝑤 ′, P⊲⊳ (𝜂, 𝑘,𝑤 ′)) = 𝜎𝜂 (𝑤, P⊲⊳ (𝜂, 𝑘,𝑤)). Hence,
𝜎𝜂 (𝑤 ′, P⊲⊳ (𝜂, 𝑘,𝑤 ′)) = (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) which yields 𝑤 ′ ∈ 𝐿

by definition of 𝜂-snapshots. Assume now that 𝑤 ′ ∈ 𝐿. By defi-

nition of 𝐿, we have 𝑤 ′ = 𝑤 ′
0
𝑎1𝑤

′
1
· · ·𝑎𝑛𝑤 ′

𝑛 with 𝛼 (𝑤 ′
ℎ
) = 𝑠ℎ for

every ℎ ≤ 𝑛. Let 𝑃 ′ ⊆ Pc (𝑤 ′) be the set containing all positions

carrying the highlighted letters 𝑎1, . . . , 𝑎𝑛 . Clearly, 𝜎𝜂 (𝑤 ′, 𝑃 ′) =

(𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛). Therefore, 𝜎𝜂 (𝑤, P⊲⊳ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, 𝑃 ′).
It then follows from Lemma 3.9 that 𝑃 ′ = P⊲⊳ (𝜂, 𝑘,𝑤 ′). Altogether,
we get𝑤 ⊲⊳𝜂,𝑘 𝑤

′
as desired. □

Finally, we prove Corollary 3.14.

Corollary 3.14. Let 𝒞 be a prevariety and 𝐿1, . . . , 𝐿𝑚 finitely
many languages in 𝐿𝑃𝑜𝑙 (𝒞) (resp. 𝑅𝑃𝑜𝑙 (𝒞), 𝑀𝑃𝑜𝑙 (𝒞)). There is a
𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that 𝐿1, . . . , 𝐿𝑚 are unions
of ▷𝜂,𝑘 -classes (resp. ◁𝜂,𝑘 -classes, ⊲⊳𝜂,𝑘 -classes).

Proof. In this case as well, we only consider 𝑀𝑃𝑜𝑙 (𝒞) (the
other cases are similar and left to the reader). Hence, we assume

that 𝐿1, . . . , 𝐿𝑚 ∈ 𝑀𝑃𝑜𝑙 (𝒞). For every 𝑖 ≤ 𝑚, it follows from Propo-

sition 3.13 that there exist a 𝒞-morphism 𝜂𝑖 : 𝐴∗ → 𝑁𝑖 and 𝑘𝑖 ∈ N
such that 𝐿𝑖 is a union of ⊲⊳𝜂𝑖 ,𝑘𝑖 -classes. Let𝑀 = 𝑁1×· · ·×𝑁𝑚 be the

monoid equipped with the componentwise multiplication and 𝛼 :

𝐴∗ → 𝑀 be the morphism defined by 𝛼 (𝑤) = (𝜂1 (𝑤), . . . , 𝜂𝑚 (𝑤))
for every 𝑤 ∈ 𝐴∗

. We let 𝜂 : 𝐴∗ → 𝑁 as the surjection induced

by 𝛼 . One may verify that 𝜂 is a 𝒞-morphism since 𝒞 is closed

under intersection and 𝜂𝑖 : 𝐴∗ → 𝑁𝑖 was a 𝒞-morphism for every

𝑖 ≤ 𝑚. Finally, let 𝑘 =𝑚𝑎𝑥 (𝑘1, . . . , 𝑘𝑚). One may now verify from

the definitions that ⊲⊳𝜂,𝑘 is finer than ⊲⊳𝜂𝑖 ,𝑘𝑖 for every 𝑖 ≤ 𝑚. Hence,

𝐿1, . . . , 𝐿𝑚 are unions of ⊲⊳𝜂,𝑘 -classes as desired. □

B.2 Proof of Proposition 3.11
We start with preliminary results that we require to prove the

proposition. Let 𝛼 : 𝐴∗ → 𝑀 be a morphism. An 𝛼-monomial is a
marked product of the form 𝛼−1 (𝑠0)𝑎1𝛼

−1 (𝑠1) · · ·𝑎𝑑𝛼−1 (𝑠𝑑 ) where
𝑠1, . . . 𝑠𝑑 ∈ 𝑀 . The number𝑑 is called the degree of this 𝛼-monomial.

Moreover, an 𝛼-polynomial is a finite union of 𝛼-monomials. Its

degree is the maximum among the degrees of all 𝛼-monomials in

the finite union. We have the following simple lemma.
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Lemma B.2. Let 𝛼 be a morphism and 𝐾, 𝐿 which are defined by
𝛼-polynomials of degrees 𝑚,𝑛 ∈ N. Then 𝐾 ∩ 𝐿 is defined by an
𝛼-polynomial of degree at most𝑚 + 𝑛.

Proof. Since intersection distributes over union, we may as-

sumewithout loss of generality that𝐾, 𝐿 are defined by𝛼-monomials
of degrees 𝑚,𝑛 ∈ N. Moreover, since there are finitely many 𝛼-

monomials of degree at most 𝑚 + 𝑛, it suffices to prove that for

every 𝑤 ∈ 𝐾 ∩ 𝐿, there exists 𝐻 ⊆ 𝐴∗
which is defined by an

𝛼-monomial of degree at most𝑚 + 𝑛 and such that𝑤 ∈ 𝐻 ⊆ 𝐾 ∩ 𝐿.
The finite union of all these languages 𝐻 will then define 𝐾 ∩𝐿. We

fix𝑤 ∈ 𝐾 ∩ 𝐿 .

By hypothesis, 𝐾 = 𝛼−1 (𝑠0)𝑎1𝛼
−1 (𝑠1) · · ·𝑎𝑚𝛼−1 (𝑠𝑚) and 𝐿 =

𝛼−1 (𝑡0)𝑏1𝛼
−1 (𝑡1) · · ·𝑏𝑚𝛼−1 (𝑡𝑚). Hence, since we have𝑤 ∈ 𝐾 ∩ 𝐿,

there are 𝑃,𝑄 ⊆ P(𝑤) such that 𝜎𝛼 (𝑤, 𝑃) = (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑚, 𝑠𝑚)
and 𝜎𝛼 (𝑤,𝑄) = (𝑡0, 𝑏1, 𝑡1, . . . , 𝑏𝑛, 𝑡𝑛). We define 𝑅 = 𝑃 ∪𝑄 . Clearly,
ℓ = |𝑅 | ≤ |𝑃 | + |𝑄 | =𝑚+𝑛. Let (𝑞0, 𝑐1, 𝑞1, . . . , 𝑐ℓ , 𝑞ℓ ) = 𝜎𝛼 (𝑤, 𝑅). We

let𝐻 as the language defined by 𝛼−1 (𝑞0)𝑐1𝛼
−1 (𝑞1) · · · 𝑐ℓ𝛼−1 (𝑞ℓ ) of

degree ℓ ≤ 𝑚 + 𝑛. One may now verify that𝑤 ∈ 𝐻 ⊆ 𝐾 ∩ 𝐿. □

We complete the definition with two lemmas for 𝛼-polynomials.

They are designed to exploit our hypothesis on the class 𝒞 in

Proposition 3.11 (i.e. 𝒞 ∈ {𝒢,𝒢+} for a group prevariety𝒢).

Lemma B.3. Let 𝛼 : 𝐴∗ → 𝐺 be a morphism into a group and
𝑥,𝑦,𝑤 ∈ 𝐴∗ such that 𝛼 (𝑥𝑤) = 𝛼 (𝑤) and 𝛼 (𝑤𝑦) = 𝛼 (𝑤). For every
𝛼-polynomial 𝐻 ⊆ 𝐴∗, we have𝑤 ∈ 𝐻 ⇒ 𝑥𝑤𝑦 ∈ 𝐻 .

Proof. Assume that𝑤 ∈ 𝐻 . Since 𝐺 is a group our hypotheses

on 𝑥 and 𝑦 imply that 𝛼 (𝑥) = 𝛼 (𝑦) = 1𝐺 . Moreover, if 𝑤 ∈ 𝐻 ,

there exists an 𝛼-monomial 𝐾 in the union defining 𝐻 such that

𝑤 ∈ 𝐾 . One may now verify that 𝐾 = 𝛼−1 (1𝐺 )𝐾𝛼−1 (1𝐺 ). Hence,
𝑥𝑤𝑦 ∈ 𝐾 ⊆ 𝐻 as desired. □

We now consider the morphisms 𝛼 : 𝐴∗ → 𝑀 such that 𝛼 (𝐴+)
is a group.

Lemma B.4. Let 𝛼 : 𝐴∗ → 𝑀 be a morphism, 𝑢, 𝑣 ∈ 𝐴∗ and
𝑛 ∈ N such that 𝐺 = 𝛼 (𝐴+) is a group and |𝑢 | = |𝑣 | = 𝑛. Let
𝑥,𝑦,𝑤 ∈ 𝐴∗ such that 𝛼 (𝑥𝑤) = 𝛼 (𝑤), 𝛼 (𝑤𝑦) = 𝛼 (𝑤), 𝑤 ∈ 𝑢𝐴∗𝑣
and 𝑥𝑤𝑦 ∈ 𝑢𝐴∗𝑣 . For every 𝛼-polynomial 𝐻 ⊆ 𝐴∗ of degree at most
𝑛, we have𝑤 ∈ 𝐻 ⇒ 𝑥𝑤𝑦 ∈ 𝐻 .

Proof. When 𝑛 = 0, the lemma is trivial. The 𝛼-polynomials of

degree 0 are exactly the languages recognized by 𝛼 . Thus, since our

hypotheses yields 𝛼 (𝑥𝑤𝑦) = 𝛼 (𝑤), we get that𝑤 ∈ 𝐻 ⇒ 𝑥𝑤𝑦 ∈ 𝐻
for every 𝛼-polynomial 𝐻 of degree 0.

Assume that 𝑛 ≥ 1 and 𝑤 ∈ 𝐻 . We get an 𝛼-monomial 𝐾

in the union defining 𝐻 such that 𝑤 ∈ 𝐾 . We write 𝑑 ≤ 𝑛 for

the degree of 𝐾 . By definition, we know that 𝐾 is of the form

𝐾 = 𝛼−1 (𝑠0)𝑎1𝛼
−1 (𝑠1) · · ·𝑎𝑑𝛼−1 (𝑠𝑑 ). Consequently, we have 𝑤 =

𝑤0𝑎1𝑤1 · · ·𝑎𝑑𝑤𝑑 where 𝛼 (𝑤𝑖 ) = 𝑠𝑖 for every 𝑖 ≤ 𝑑 . Since𝑤 ∈ 𝑢𝐴∗𝑣
and |𝑢 | = |𝑣 | = 𝑛, we know that |𝑤 | ≥ 2𝑛. Thus, since 𝑑 ≤ 𝑛, there
exists 𝑖 ≤ 𝑑 such that𝑤𝑖 ≠ 𝜀. We letℎ ≤ 𝑑 and ℓ ≤ 𝑑 as the least and
the greatest such 𝑖 respectively,𝑢 ′ = 𝑤0𝑎1 · · ·𝑤ℎ−1

𝑎ℎ = 𝑎1 · · ·𝑎ℎ (if
ℎ = 0, then 𝑢 ′ = 𝜀) and 𝑣 ′ = 𝑎ℓ+1𝑤ℓ+1 · · ·𝑎𝑑𝑤𝑑 = 𝑎ℓ+1 · · ·𝑎𝑑 (if ℓ =

𝑑 , then 𝑣 ′ = 0). By definition, we have𝑦 = 𝑢 ′𝑤ℎ𝑎ℎ+1
𝑤ℎ+1

· · ·𝑎ℓ𝑤ℓ𝑣 ′
and 𝑤ℎ,𝑤ℓ ∈ 𝐴+

. By definition, |𝑢 ′ | ≤ 𝑑 ≤ 𝑛 and |𝑣 ′ | ≤ 𝑑 ≤ 𝑛.

Thus, since 𝑦 ∈ 𝑢𝐴∗𝑣 and |𝑢 | = |𝑣 | = 𝑛, it follows that 𝑢 ′ is a prefix
of 𝑢 and 𝑣 ′ is a suffix of 𝑣 . Since we also know that 𝑥𝑤𝑧 ∈ 𝑢𝐴∗𝑣 ,

this yields 𝑧 ∈ 𝐴∗
such that 𝑥𝑤𝑦 = 𝑢 ′𝑧𝑣 ′. By hypothesis on𝑤 , we

also know that 𝑥𝑤𝑦 = 𝑥𝑢 ′𝑤ℎ𝑎ℎ+1
𝑤ℎ+1

· · ·𝑎ℓ𝑤ℓ𝑣 ′𝑦. Thus, we get
𝑥 ′, 𝑦′ ∈ 𝐴∗

such that 𝑢 ′𝑥 ′ = 𝑥𝑢 ′ and 𝑦′𝑣 ′ = 𝑣 ′𝑦. Altogether, it fol-
lows that 𝑥𝑤𝑦 = 𝑢 ′𝑥 ′𝑤ℎ𝑎ℎ+1

𝑤ℎ+1
· · ·𝑎ℓ𝑤ℓ𝑦′𝑣 ′. We now prove that

𝛼 (𝑥 ′𝑤ℎ) = 𝑠ℎ and 𝛼 (𝑤ℓ𝑦′) = 𝑠ℓ . By symmetry, we only detail the

former. This is trivial if 𝑥 ′ = 𝜀. Thus, we assume that 𝑥 ′ ∈ 𝐴+
. Since

𝑢 ′𝑥 ′ = 𝑥𝑢 ′, we have 𝑥 ∈ 𝐴+
as well. Hence, since 𝛼 (𝑥𝑤) = 𝛼 (𝑤),

𝑤 ∈ 𝐴+
and 𝐺 = 𝛼 (𝐴+) is a group, we get 𝛼 (𝑥) = 1𝐺 . Thus, since

𝑢 ′𝑥 ′ = 𝑥𝑢 ′ and 𝑢 ′ ∈ 𝐴+
, we get 𝛼 (𝑢 ′𝑥 ′) = 𝛼 (𝑢 ′). It follows that

𝛼 (𝑥 ′) = 1𝐺 . Finally, since 𝑤ℎ ∈ 𝐴+
, we have 𝛼 (𝑤ℎ) ∈ 𝐺 and it

follows that 𝛼 (𝑥 ′𝑤ℎ) = 𝛼 (𝑤ℎ) = 𝑠ℎ . We may now complete the

proof that 𝑥𝑤𝑦 ∈ 𝐻 . We obtain,

𝑥 ′𝑤ℎ𝑎ℎ+1
· · ·𝑎ℓ𝑤ℓ𝑦′ ∈ 𝛼−1 (𝑠ℎ)𝑎ℎ+1

𝛼−1 (𝑠ℎ+1
) · · ·𝑎ℓ𝛼−1 (𝑠ℓ ) .

By definition, we know that 𝑢 ′ ∈ 𝛼−1 (𝑠0)𝑎1 · · ·𝛼−1 (𝑠ℎ−1
)𝑎ℎ and

𝑣 ′ ∈ 𝑎ℓ𝛼−1 (𝑎ℓ ) · · ·𝑎𝑑𝛼−1 (𝑠𝑑 ). Consequently, we obtain that 𝑥𝑤𝑦 =

𝑢 ′𝑥 ′𝑤ℎ𝑎ℎ+1
𝑤ℎ+1

· · ·𝑎ℓ𝑤ℓ𝑦′𝑣 ′ ∈ 𝐾 ⊆ 𝐻 . □

Wemay now prove Proposition 3.11.We first recall the statement.

Proposition 3.11. Let𝒢 be a group prevariety and𝒞 ∈ {𝒢,𝒢+}.
If 𝜂 : 𝐴∗ → 𝑁 is a 𝐵𝑃𝑜𝑙 (𝒞)-morphism and 𝑘 ∈ N, there exists a
𝐵𝑃𝑜𝑙 (𝒞)-morphism,𝛾 : 𝐴∗ → 𝑄 such that P▷ (𝜂, 𝑘,𝑤) ⊆ P▷ (𝛾, 1,𝑤)
and P◁ (𝜂, 𝑘,𝑤) ⊆ P◁ (𝛾, 1,𝑤).

Proof. Let us first define 𝛾 . By hypothesis, 𝜂 is a 𝐵𝑃𝑜𝑙 (𝒞)-
morphism. Hence, there exists a finite set L of languages in 𝒞

such that all languages recognized by 𝜂 are Boolean combinations

of marked products of languages in L. Proposition 2.3 yields a 𝒞-

morphism 𝛼 : 𝐴∗ → 𝑀 recognizing every 𝐿 ∈ L. Therefore, since
union distributes over marked concatenation, every language recog-

nized by𝜂 is a Boolean combination of 𝛼-monomials. These Boolean

combinations can be put into disjunctive normal form. Moreover,

intersection of 𝛼-monomials are finite unions of 𝒞-monomials by

Lemma B.2. Consequently, there exists a number 𝑛 ∈ N such that

every language recognized by 𝜂 is a finite union of languages of

the form 𝐿 \ 𝐻 where 𝐿 is an 𝛼-monomial of degree at most 𝑛

and 𝐻 is a finite union of 𝛼-monomials of degree at most 𝑛 (i.e.,
an 𝛼-polynomial of degree at most 𝑛). Clearly, there are finitely

many 𝛼-polynomials of degree at most (3𝑛 + 1) × 𝑘 and since 𝛼 is a

𝒞-morphism, they all belong to 𝑃𝑜𝑙 (𝒞) ⊆ 𝐵𝑃𝑜𝑙 (𝒞). Hence, Propo-
sition 2.3 yields a 𝐵𝑃𝑜𝑙 (𝒞)-morphism 𝛾 : 𝐴∗ → 𝑄 recognizing

every 𝛼-polynomial of degree at most (3𝑛 + 1) × 𝑘 .
It remains to prove the inclusions P▷ (𝜂, 𝑘,𝑤) ⊆ P▷ (𝛾, 1,𝑤) and

P◁ (𝜂, 𝑘,𝑤) ⊆ P◁ (𝛾, 1,𝑤) for every𝑤 ∈ 𝐴∗
. By symmetry, we only

prove the former. We fix𝑤 ∈ 𝐴∗
for the proof. The hypothesis that

𝒞 ∈ {𝒢,𝒢+} implies the following lemma.

Lemma B.5. Let ℎ such that 1 ≤ ℎ ≤ 𝑘 , 𝑖 ∈ P▷ (𝜂,ℎ,𝑤) and
𝑎 ∈ 𝐴 the label of 𝑖 . There exists an 𝛼-monomial 𝐾 of degree at most
(3𝑛 + 1)ℎ − 1 such that𝑤 (0, 𝑖) ∈ 𝐾 and𝑤 (0, 𝑖) ∉ 𝐾𝑎𝐴∗.

Let us first apply Lemma B.5 to complete the main argument.

Let 𝑖 ∈ P▷ (𝜂, 𝑘,𝑤). We show that 𝑖 ∈ P▷ (𝛾, 1,𝑤). Let 𝑎 be the label
of 𝑖 . By definition, we have to prove that 𝛾 (𝑤 (0, 𝑖)𝑎) <ℛ 𝛾 (𝑤 (0, 𝑖)).
Since𝛾 is surjective (recall that it is a 𝐵𝑃𝑜𝑙 (𝒞)-morphism), this boils

down to proving that 𝛾 (𝑤 (0, 𝑖)) ≠ 𝛾 (𝑤 (0, 𝑖)𝑎𝑢) for every 𝑢 ∈ 𝐴∗
.

We fix𝑢 for the proof. Lemma B.5 yields an 𝛼-monomial𝐾 of degree

at most (3𝑛 + 1)𝑘 − 1 such that 𝑤 (0, 𝑖) ∈ 𝐾 and 𝑤 (0, 𝑖) ∉ 𝐾𝑎𝐴∗
.
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Clearly, 𝐾𝑎𝐴∗
is defined by an 𝛼-polynomial of degree at most

(3𝑛+1)𝑘 . Hence,𝐾𝑎𝐴∗
is recognized by𝛾 . Since we have𝑤 (0, 𝑖)𝑎𝑢 ∈

𝐾𝑎𝐴∗
and 𝑤 (0, 𝑖) ∉ 𝐾𝑎𝐴∗

, we obtain 𝛾 (𝑤 (0, 𝑖)) ≠ 𝛾 (𝑤 (0, 𝑖)𝑎𝑢)
which completes the proof.

It remains to prove Lemma B.5. We consider a number ℎ such

that 1 ≤ ℎ ≤ 𝑘 , 𝑖 ∈ P▷ (𝜂,ℎ,𝑤) and 𝑎 ∈ 𝐴 the label of 𝑖 . We have to

construct an 𝛼-monomial 𝐾 of degree at most (3𝑛 + 1)ℎ − 1 such

that𝑤 (0, 𝑖) ∈ 𝐾 and𝑤 (0, 𝑖) ∉ 𝐾𝑎𝐴∗
. We proceed by induction on

ℎ. By definition, there exists 𝑗 ∈ P▷ (𝜂,ℎ − 1,𝑤) ∪ {0} such that

𝜂 (𝑤 ( 𝑗, 𝑖)𝑎) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)). We first prove an important result about

the word𝑤 ( 𝑗, 𝑖). Recall that by hypothesis, we have 𝒞 ∈ {𝒢,𝒢+}.
Hence, 𝛼 : 𝐴∗ → 𝑀 is a 𝒢

+
morphism and since 𝒢 is a group

prevariety, Lemma E.1 implies that𝐺 = 𝛼 (𝐴+) is a group. We prove

that there exists an 𝛼-monomial 𝑉 of degree at most 3𝑛 which

satisfies the following property:

𝑤 ( 𝑗, 𝑖) ∈ 𝑉 and𝑤 ( 𝑗, 𝑖) ∉ ({𝜀} ∪ 𝛼−1 (1𝐺 ))𝑉𝑎𝐴∗ . (6)

Let 𝑡 = 𝜂 (𝑤 (𝑖, 𝑗)). By construction, since 𝑤 (𝑖, 𝑗) ∈ 𝜂−1 (𝑡), there
exist an 𝛼-monomial 𝐿 and an 𝛼-polynomial 𝐻 , both of degree at

most 𝑛 and such that𝑤 (𝑖, 𝑗) ∈ 𝐿 \𝐻 ⊆ 𝜂−1 (𝑡). There are two cases
depending on 𝛼 .

Construction of𝑉 , first case.We assume that 1𝑀 ∈ 𝐺 , i.e. 𝛼 (𝐴∗) = 𝐺
and 1𝑀 = 1𝐺 . We let 𝑉 = 𝐿 which is an 𝛼-monomial of de-

gree at most 𝑛 ≤ 3𝑛. We already know that 𝑤 (𝑖, 𝑗) ∈ 𝐿. We

show that 𝑤 ( 𝑗, 𝑖) ∉ ({𝜀} ∪ 𝛼−1 (1𝐺 ))𝐿𝑎𝐴∗
. We proceed by con-

tradiction. Assume that 𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧 with 𝛼 (𝑥) = 1𝐺 (since

1𝑀 = 1𝐺 , this covers the case when 𝑥 = 𝜀), 𝑦 ∈ 𝐿 and 𝑧 ∈ 𝐴∗
.

We show that 𝜂 (𝑥𝑦) = 𝜂 (𝑤 ( 𝑗, 𝑖)) = 𝑡 . Since 𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧, this

yields 𝜂 (𝑤 ( 𝑗, 𝑖)) = 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑧), contradicting the hypothesis that
𝜂 (𝑤 ( 𝑗, 𝑖)𝑎) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)). Since 𝐿 \𝐻 ⊆ 𝜂−1 (𝑡), it suffices to prove

that 𝑥𝑦 ∈ 𝐿 \𝐻 . Since 𝛼 (𝑥) = 1𝐺 = 1𝑀 , we have 𝛼 (𝑥𝑦) = 𝛼 (𝑦). We

also have 𝑦 ∈ 𝐿 which is an 𝛼-monomial. Thus, since 𝛼 (𝐴∗) = 𝐺 is

a group, Lemma B.3 yields 𝑥𝑦 ∈ 𝐿. It remains to prove 𝑥𝑦 ∉ 𝐻 . By

contradiction, we assume that 𝑥𝑦 ∈ 𝐻 . Since 𝑥𝑦 ∈ 𝐿 and𝑤 ( 𝑗, 𝑖) ∈ 𝐿,
one may verify from the definition of 𝛼-monomials that 𝛼 (𝑥𝑦) =
𝛼 (𝑤 ( 𝑗, 𝑖)). Since𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧, we obtain 𝛼 (𝑥𝑦) = 𝛼 (𝑥𝑦𝑎𝑧). More-

over,𝐻 is an 𝛼-polynomial by definition. Thus, since 𝛼 (𝐴∗) = 𝐺 is a

group, Lemma B.3 yields𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧 ∈ 𝐻 . This is a contradiction

since𝑤 ( 𝑗, 𝑖) ∈ 𝐿 \ 𝐻 by hypothesis.

Construction of 𝑉 , second case. We assume that 1𝑀 ∉ 𝐺 . Since

𝛼 (𝐴+) = 𝐺 , it follows that 𝛼−1 (1𝑁 ) = {𝜀}. We consider two sub-

cases. First, assume that |𝑤 ( 𝑗, 𝑖) | ≤ 3𝑛. In this case, we let 𝑉 =

{𝑤 ( 𝑗, 𝑖)}. Since 𝛼−1 (1𝑁 ) = {𝜀}, this is an 𝛼-monomial of degree

|𝑤 ( 𝑗, 𝑖) | ≤ 3𝑛. Since𝑤 ( 𝑗, 𝑖) ∈ 𝑉 and𝑤 ( 𝑗, 𝑖) ∉ ({𝜀}∪𝛼−1 (1𝐺 ))𝑉𝑎𝐴∗
,

(6) is proved.

We now consider the sub-case when |𝑤 ( 𝑗, 𝑖) | > 3𝑛. This hypoth-

esis yields 𝑢, 𝑣 ∈ 𝐴+
such that |𝑢 | = |𝑣 | = 𝑛 and 𝑤 ( 𝑗, 𝑖) ∈ 𝑢𝐴∗𝑣 .

Since 𝛼−1 (1𝑁 ) = {𝜀}, it is immediate that 𝑢𝐴∗𝑣 is defined by an 𝛼-

polynomial of degree 2𝑛. Since 𝐿 is an𝛼-monomial of degree at most

𝑛, Lemma B.2 yields that 𝐿 ∩𝑢𝐴∗𝑣 is defined by an 𝛼-polynomial of

degree at most 3𝑛. Since𝑤 ( 𝑗, 𝑖) ∈ 𝐿 ∩𝑢𝐴∗𝑣 , we get an 𝛼-monomial

𝑉 of degree at most 3𝑛 such that 𝑤 ( 𝑗, 𝑖) ∈ 𝑉 ⊆ 𝐿 ∩ 𝑢𝐴∗𝑣 . It re-
mains to prove that 𝑤 ( 𝑗, 𝑖) ∉ ({𝜀} ∪ 𝛼−1 (1𝐺 ))𝑉𝑎𝐴∗

. By contra-

diction, we assume that 𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧 with 𝑥 = 𝜀 or 𝛼 (𝑥) = 1𝐺 ,

𝑦 ∈ 𝑉 and 𝑧 ∈ 𝐴∗
. We prove that 𝜂 (𝑥𝑦) = 𝜂 (𝑤 ( 𝑗, 𝑖)) = 𝑡 . Since

𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧, this implies that 𝜂 (𝑤 ( 𝑗, 𝑖)) = 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑧), con-
tradicting the hypothesis that 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)). Since
𝐿 \ 𝐻 ⊆ 𝜂−1 (𝑡), it suffices to prove that 𝑥𝑦 ∈ 𝐿 \ 𝐻 . By hypoth-

esis on 𝑉 , we have 𝑦 ∈ 𝐿 ∩ 𝑢𝐴∗𝑣 . Thus, 𝑥𝑦 ∈ 𝐴∗𝑢𝐴∗𝑣 and since

𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧 ∈ 𝑢𝐴∗𝑣 , it follows that 𝑥𝑦 ∈ 𝑢𝐴∗𝑣 . Since 𝑦 ∈ 𝐴+

(which means that 𝛼 (𝑦) ∈ 𝐺) and either 𝑥 = 𝜀 or 𝛼 (𝑥) = 1𝐺 , we

also have 𝛼 (𝑥𝑦) = 𝛼 (𝑦). Hence, since 𝐿 is an 𝛼-monomial of degree

at most 𝑛 and 𝛼 (𝐴+) = 𝐺 is a group, it follows from Lemma B.4

that 𝑥𝑦 ∈ 𝐿. It remains to show that 𝑥𝑦 ∉ 𝐻 . By contradiction, we

assume that 𝑥𝑦 ∈ 𝐻 . Since 𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧 and 𝑥𝑦 both belong to

𝐿 which is an 𝛼-monomial, we have 𝛼 (𝑥𝑦) = 𝛼 (𝑥𝑦𝑎𝑧). Moreover,

𝑥𝑦 ∈ 𝑢𝐴∗𝑣 and 𝑥𝑦𝑎𝑧 = 𝑤 (𝑖, 𝑗) ∈ 𝑢𝐴∗𝑣 . Hence, since 𝐻 is an 𝛼-

polynomial of degree at most 𝑛 by definition and 𝛼 (𝐴+) = 𝐺 is a

group, Lemma B.4 yields𝑤 ( 𝑗, 𝑖) = 𝑥𝑦𝑎𝑧 ∈ 𝐻 . This is a contradiction

since𝑤 ( 𝑗, 𝑖) ∈ 𝐿\𝐻 by hypothesis. This completes the construction

of 𝑉 .

Construction of 𝐾 . With our 𝛼-monomial 𝑉 of degree at most 3𝑛 in

hand, we may build 𝐾 . There are two cases depending on whether

𝑗 = 0 or 𝑗 ≥ 1. Assume first that 𝑗 = 0. In that case, we choose

𝐾 = 𝑉 which has degree 3𝑛 ≤ (3𝑛 + 1)ℎ − 1. By (6), we have

𝑤 (0, 𝑖) ∈ 𝐾 and𝑤 (0, 𝑖) ∉ 𝐾𝑎𝐴∗
as desired.

Assume now that 1 ≤ 𝑗 < 𝑖 . Since 𝑗 ∈ P▷ (𝜂,ℎ − 1,𝑤), it follows
that ℎ − 1 ≥ 1. Let 𝑏 be the label of 𝑗 . Induction on ℎ in Lemma B.5

yields an 𝛼-monomial 𝑈 with degree at most (3𝑛 + 1) (ℎ − 1) − 1

such that𝑤 (0, 𝑗) ∈ 𝑈 and𝑤 (0, 𝑗) ∉ 𝑈𝑏𝐴∗
. We define 𝐾 = 𝑈𝑏𝑉 . By

hypothesis on𝑈 and𝑉 , we know that𝐾 is an 𝛼-monomial of degree

at most (3𝑛 + 1) (ℎ − 1) − 1 + 1 + 3𝑛 = (3𝑛 + 1)ℎ − 1. Moreover, we

have𝑤 (0, 𝑖) = 𝑤 (0, 𝑗)𝑏𝑤 ( 𝑗, 𝑖) ∈ 𝑈𝑏𝑉 = 𝐾 . It remains to prove that

𝑤 (0, 𝑖) ∉ 𝐾𝑎𝐴∗
. We use contradiction. We assume that 𝑤 (0, 𝑖) ∈

𝐾𝑎𝐴∗ = 𝑈𝑏𝑉𝑎𝐴∗
. We get 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 and 𝑧 ∈ 𝐴∗

such that

𝑤 (0, 𝑖) = 𝑥𝑏𝑦𝑎𝑧. Moreover, we know that𝑤 (0, 𝑖) = 𝑤 (0, 𝑗)𝑏𝑤 ( 𝑗, 𝑖)
and since 𝑤 (0, 𝑗) ∉ 𝑈𝑏𝐴∗

, the word 𝑥𝑏 ∈ 𝑈𝑏 cannot be a prefix

𝑤 (0, 𝑗). Hence, we have 𝑥 ′ ∈ 𝐴∗
such that 𝑥𝑏 = 𝑤 (0, 𝑗)𝑏𝑥 ′ and

𝑥 ′𝑦𝑎𝑧 = 𝑤 ( 𝑗, 𝑖). Since 𝑈 is an 𝛼-monomial and 𝑥,𝑤 (0, 𝑗) ∈ 𝑈 , we
have𝛼 (𝑥) = 𝛼 (𝑤 (0, 𝑗)). Hence,𝛼 (𝑥𝑏) = 𝛼 (𝑤 (0, 𝑗)𝑏) and since 𝑥𝑏 =

𝑤 (0, 𝑗)𝑏𝑥 ′, it follows that either 𝑥 ′ = 𝜀 or 𝛼 (𝑥 ′) = 1𝐺 . We conclude

that 𝑤 ( 𝑗, 𝑖) = 𝑥 ′𝑦𝑎𝑧 ∈ ({𝜀} ∪ 𝛼−1 (1𝐺 ))𝑉𝑎𝐴∗
. This contradicts (6)

in the definition of 𝑉 which concludes the proof. □

C APPENDIX TO SECTION 3
In this appendix, we prove Theorem 4.1 and the present the missing

proof for Lemma 4.5 (which is used to prove Theorem 4.3 in the

main text). We omit the proof of Theorem 4.2 since the argument is

symmetrical to the one for Theorem 4.1. Additionally, we present

a simple lemma which reformulates the characterizations of 𝐿𝑃𝑜𝑙

and 𝑅𝑃𝑜𝑙 . We shall use it multiple times in the sequel.

C.1 Characterization proofs
We start with the proof of Theorem 4.1.

Theorem 4.1. Let 𝒞 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a surjective
morphism. The following properties are equivalent:

a) 𝛼 is an 𝐿𝑃𝑜𝑙 (𝒞)-morphism.
b) 𝑠𝜔+1 = 𝑠𝜔𝑡 for all 𝒞-pairs (𝑠, 𝑡) ∈ 𝑀2.
c) 𝑠𝜔+1 = 𝑠𝜔𝑡 for all 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒞 𝑡 .



LICS ’22, August 2–5, 2022, Haifa, Israel Thomas Place

Proof. We first prove that 𝑎) ⇒ 𝑏). We assume 𝛼 is an 𝐿𝑃𝑜𝑙 (𝒞)-
morphism and prove that b) holds. Consider a 𝒞-pair (𝑠, 𝑡) ∈ 𝑀2

.

We show that 𝑠𝜔+1 = 𝑠𝜔𝑡 . Corollary 3.14 yields a 𝒞-morphism

𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that for every language recognized

by 𝛼 is a union of ▷𝜂,𝑘 -classes. Since (𝑠, 𝑡) is a 𝒞-pair and 𝜂 is

a 𝒞-morphism, one may verify that there exist 𝑢, 𝑣 ∈ 𝐴∗
such

that 𝜂 (𝑢) = 𝜂 (𝑣), 𝛼 (𝑢) = 𝑠 and 𝛼 (𝑣) = 𝑡 . Let 𝑝 = 𝜔 (𝑀) × 𝜔 (𝑁 ),
𝑤 = 𝑢𝑝𝑘𝑢 and𝑤 ′ = 𝑢𝑝𝑘𝑣 . We have the following lemma.

Lemma C.1. For every 𝑖 ∈ P▷ (𝜂, 𝑘,𝑤), we have 𝑖 ≤ |𝑢𝑝𝑘 |.

Proof. We use induction on ℎ to show that for every ℎ ≤ 𝑘 and

every 𝑖 ∈ P▷ (𝜂,ℎ,𝑤), we have 𝑖 ≤ |𝑢𝑝ℎ |. The lemma follows from

the case ℎ = 𝑘 . We write 𝑤 = 𝑎1 · · ·𝑎ℓ for the proof. Let ℎ ≤ 𝑘 .

By contradiction, assume that there exists 𝑖 ∈ P▷ (𝜂,ℎ,𝑤) such
that 𝑖 > |𝑢𝑝ℎ |. By definition, there exists 𝑗 ∈ P▷ (𝜂,ℎ − 1,𝑤) ∪ {0}
such that 𝑗 < 𝑖 and the strict inequality 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖))
holds. By induction, we have 𝑗 ≤ |𝑢𝑝 (ℎ−1) |. Hence, since 𝑖 > |𝑢𝑝ℎ |
and𝑤 = 𝑢𝑝𝑘𝑢, the infix𝑤 ( 𝑗, 𝑖) must contain an infix 𝑢𝑝 : we have

𝑥,𝑦 ∈ 𝐴∗
and 𝑛 ∈ N such that 𝑤 ( 𝑗, 𝑖) = 𝑥𝑢𝑝𝑦 and 𝑤 ( 𝑗, |𝑤 | + 1) =

𝑥𝑢𝑛 . Let ℎ ∈ N such that 𝑛 + ℎ is a multiple of 𝑝 . By definition

of 𝑝 , 𝜂 (𝑢𝑝 ) is an idempotent of 𝑁 . Hence, 𝜂 (𝑤 ( 𝑗, |𝑤 | + 1)𝑢ℎ𝑦) =

𝜂 (𝑥𝑢𝑝𝑦) = 𝜂 (𝑤 ( 𝑗, 𝑖)). Since 𝑤 ( 𝑗, 𝑖)𝑎𝑖 is a prefix of 𝑤 ( 𝑗, |𝑤 | + 1),
it follows that 𝜂 (𝑤 ( 𝑗, 𝑖)) ⩽ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ). This is a contradiction
since 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)) by hypothesis. □

We may now prove that 𝑠𝜔+1 = 𝑠𝜔𝑡 . By Lemma C.1, every po-

sition in P▷ (𝜂, 𝑘,𝑤) belong to the prefix 𝑢𝑝𝑘 of 𝑤 = 𝑢𝑝𝑘𝑢. There-

fore, since 𝑢𝑝𝑘 is also a prefix of𝑤 ′ = 𝑢𝑝𝑘𝑣 , P▷ (𝜂, 𝑘,𝑤) ⊆ Pc (𝑤 ′).
Since 𝜂 (𝑢) = 𝜂 (𝑣), we get 𝜎𝜂 (𝑤, P▷ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, P▷ (𝜂, 𝑘,𝑤)).
Hence, Lemma 3.9 yields P▷ (𝜂, 𝑘,𝑤) = P▷ (𝜂, 𝑘,𝑤 ′). Altogether, we
get𝑤 ▷𝜂,𝑘 𝑤

′
and it follows that 𝛼 (𝑤) = 𝛼 (𝑤 ′) since the languages

recognized by 𝛼 are unions of ▷𝜂,𝑘 -classes. By definition of𝑤,𝑤 ′

and since 𝑝 is a multiple of 𝜔 (𝑀), this yields 𝑠𝜔+1 = 𝑠𝜔𝑡 as desired.

We turn to the implication 𝑏) ⇒ 𝑐). We assume that b) holds

and consider 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒞 𝑡 . We show that 𝑠𝜔+1 = 𝑠𝜔𝑡 .

By Lemma 2.5, there exist 𝑟0, . . . , 𝑟𝑛 ∈ 𝑀 such that 𝑟0 = 𝑒 , 𝑟𝑛 = 𝑡

and (𝑟𝑖 , 𝑟𝑖+1) is a 𝒞-pair for all 𝑖 < 𝑛. We use induction on 𝑖 to

show that 𝑠𝜔+1 = 𝑠𝜔𝑟𝑖 for every 𝑖 ≤ 𝑛. The case 𝑖 = 𝑛 yields the

desired result as 𝑡 = 𝑟𝑛 . When 𝑖 = 0, the result is immediate as

𝑟0 = 𝑠 . Assume now that 𝑖 ≥ 1. Since (𝑟𝑖−1, 𝑟𝑖 ) is a 𝒞-pair, one

may verify that (𝑠𝜔𝑟𝑖−1, 𝑠
𝜔𝑟𝑖 ) is a 𝒞-pair as well. Therefore, we

get from b) that (𝑠𝜔𝑟𝑖−1)𝜔+1 = (𝑠𝜔𝑟𝑖−1)𝜔𝑠𝜔𝑟𝑖 . Finally, induction
yields 𝑠𝜔+1 = 𝑠𝜔𝑟𝑖−1. Combined with the previous equality, this

yields 𝑠𝜔+1 = (𝑠𝜔+1)𝜔+1 = (𝑠𝜔+1)𝜔𝑠𝜔𝑟𝑖 = 𝑠𝜔𝑟𝑖 as desired.
It remains to prove 𝑐) ⇒ 𝑎). We assume that c) holds and show

that 𝛼 is an 𝐿𝑃𝑜𝑙 (𝒞)-morphism. Let 𝑁 = 𝑀/∼𝒞 and recall that

𝑁 is a monoid since ∼𝒞 is a congruence by Lemma 2.6. We write

𝜂 = [·]𝒞 ◦ 𝛼 : 𝐴∗ → 𝑁 which is a 𝒞-morphism by Lemma 2.7. We

let 𝑘 = |𝑀 | and consider the equivalence ▷𝜂,𝑘 on 𝐴∗
. We prove the

following property:

for every𝑤,𝑤 ′ ∈ 𝐴∗
, 𝑤 ▷𝜂,𝑘 𝑤

′ ⇒ 𝛼 (𝑤) = 𝛼 (𝑤 ′). (7)

This implies that every language recognized by 𝛼 is a union of

▷𝜂,𝑘 -classes. Together with Proposition 3.13 this yields that ev-

ery language recognized by 𝛼 belongs to 𝐿𝑃𝑜𝑙 (𝒞) since 𝜂 is a 𝒞-

morphism. We now concentrate on 7. Let 𝑤,𝑤 ′ ∈ 𝐴∗
such that

𝑤 ▷𝜂,𝑘 𝑤
′
. We show that 𝛼 (𝑤) = 𝛼 (𝑤 ′). For the proof, we write

𝑃 = P▷ (𝛼, 1,𝑤). We use the hypothesis that𝑤 ▷𝜂,𝑘 𝑤
′
to prove the

following lemma.

Lemma C.2. There is 𝑃 ′ ⊆ Pc (𝑤 ′) s.t. 𝜎𝜂 (𝑤, 𝑃) = 𝜎𝜂 (𝑤 ′, 𝑃 ′).

Proof. Since c) holds, we know that for all 𝑠, 𝑡 ∈ 𝑀 such that

𝑠 ∼𝒞 𝑡 , we have 𝑠𝜔+1 = 𝑠𝜔𝑡 . We may multiply by 𝑠𝜔 on the right

to get 𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔 . Hence, it follows from Theorem 3.7 that 𝛼 is a

𝑈𝑃𝑜𝑙 (𝒞)-morphism. Since 𝑘 = |𝑀 |, it follows from Lemma 3.8 that

𝑃 = P▷ (𝛼, 1,𝑤) ⊆ P▷ (𝜂, 𝑘,𝑤). Finally, since 𝑤 ▷𝜂,𝑘 𝑤 ′
, we have

𝜎𝜂 (𝑤, P▷ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, P▷ (𝜂, 𝑘,𝑤 ′)). Thus, Fact B.1 yields a

set 𝑃 ′ ⊆ 𝜎𝜂 (𝑤 ′, P▷ (𝜂, 𝑘,𝑤 ′)) such that 𝜎𝜂 (𝑤, 𝑃) = 𝜎𝜂 (𝑤 ′, 𝑃 ′) as
desired. □

Consider the 𝛼-snapshots (𝑠0, 𝑎1, 𝑠1, . . . , 𝑎𝑛, 𝑠𝑛) = 𝜎𝛼 (𝑤, 𝑃) and
(𝑡0, 𝑏1, 𝑡1, . . . , 𝑏𝑚, 𝑡𝑚) = 𝜎𝛼 (𝑤 ′, 𝑃 ′). Lemma C.2 yields 𝜎𝜂 (𝑤, 𝑃) =
𝜎𝜂 (𝑤 ′, 𝑃 ′) . We get 𝑛 = 𝑚 and 𝑎𝑖 = 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑠𝑖 ∼𝒞 𝑡𝑖
for 0 ≤ 𝑖 ≤ 𝑛 by definition of 𝜂. Thus 𝛼 (𝑤) = 𝑠0𝑎1𝑠1 · · ·𝑎𝑛𝑠𝑛
and 𝛼 (𝑤 ′) = 𝑡0𝑎1𝑡1 · · ·𝑎𝑛𝑡𝑛 by definition of 𝛼-snapshots. It now

remains to prove that 𝑠0𝑎1𝑠1 · · ·𝑎ℎ𝑠ℎ = 𝑡0𝑎1𝑡1 · · ·𝑎ℎ𝑡ℎ . We let 𝑞ℎ =

𝑠0𝑎1𝑠1 · · ·𝑎ℎ and 𝑟ℎ = 𝑡0𝑎1𝑡1 · · ·𝑎ℎ for 0 ≤ ℎ ≤ 𝑛 (in particular,

𝑞0 = 𝑟0 = 1𝑀 ). We use induction on ℎ to show that 𝑞ℎ𝑠ℎ = 𝑟ℎ𝑡ℎ for

0 ≤ ℎ ≤ 𝑛. Clearly, the case ℎ = 𝑛 yields the desired result.

We fix ℎ ≤ 𝑛. Since 𝑃 = P▷ (𝛼, 1,𝑤), one may verify from the

definitions that 𝑞ℎ𝑠ℎ ℛ 𝑞ℎ for 0 ≤ ℎ ≤ 𝑛. We get 𝑥 ∈ 𝑀 such

that 𝑞ℎ = 𝑞ℎ𝑠ℎ𝑥 . Since 𝑠ℎ ∼𝒞 𝑡ℎ and ∼𝒞 is a congruence, we have

𝑥𝑠ℎ ∼𝒞 𝑥𝑡ℎ . Hence, it follows from c) that (𝑥𝑠ℎ)𝜔+1 = (𝑥𝑠ℎ)𝜔𝑥𝑡ℎ .
We may now multiply on the left by 𝑠ℎ to obtain (𝑠ℎ𝑥)𝜔+1𝑠ℎ =

(𝑠ℎ𝑥)𝜔+1𝑡ℎ . We combine this with 𝑞ℎ = 𝑞ℎ𝑠ℎ𝑥 to obtain 𝑞ℎ𝑠ℎ =

𝑞ℎ𝑡ℎ . This concludes the proof when ℎ = 0: this merely states that

𝑠0 = 𝑡0. Finally, ifℎ ≥ 1, induction yields𝑞ℎ−1
𝑠ℎ−1

= 𝑟ℎ−1
𝑡ℎ−1

. Since

𝑞ℎ = 𝑞ℎ−1
𝑎ℎ and 𝑟ℎ = 𝑟ℎ−1

𝑎ℎ by definition, it follows that 𝑞ℎ = 𝑡ℎ .

Altogether, we get 𝑞ℎ𝑠ℎ = 𝑟ℎ𝑡ℎ which completes the proof. □

We turn to the proof of Lemma 4.5 which is part of the larger

proof argument for Theorem 4.3. Recall that a 𝒞-morphism 𝜂 :

𝐴∗ → 𝑁 and 𝑘 ∈ N are fixed. Moreover, we have 𝑝 ≥ 1 which is a

multiple of𝜔 (𝑁 ) and four words𝑢, 𝑣, 𝑥,𝑦 ∈ 𝐴∗
such that𝜂 (𝑢 = 𝜂 (𝑣).

Finally, we defined𝑤 = (𝑢𝑥)𝑝𝑘𝑢 (𝑦𝑢)𝑝𝑘 and𝑤 ′ = (𝑢𝑥)𝑝𝑘𝑣 (𝑦𝑢)𝑝𝑘 .

Lemma 4.5. For every 𝑖 ∈ P⊲⊳ (𝜂, 𝑘,𝑤), either 𝑖 ≤ |(𝑢𝑥)𝑝𝑘 | or
𝑖 > | (𝑢𝑥)𝑝𝑘𝑢 |.

Proof. Since P⊲⊳ (𝜂, 𝑘,𝑤) = P▷ (𝜂, 𝑘,𝑤) ∪ P◁ (𝜂, 𝑘,𝑤), there are
two cases depending on whether 𝑖 ∈ P▷ (𝜂, 𝑘,𝑤) or 𝑖 ∈ P◁ (𝜂, 𝑘,𝑤).
lBy symmetry, we only treat the former case. Given a position

𝑖 ∈ P▷ (𝜂, 𝑘,𝑤), we show that either 𝑖 ≤ |(𝑢𝑥)𝑝𝑘 | or 𝑖 > | (𝑢𝑥)𝑝𝑘𝑢 |.
We write𝑤 = 𝑎1 · · ·𝑎ℓ for the proof. We consider a slightly stronger

property. Let ℎ ≤ 𝑘 . Using induction on ℎ, we show that for every

𝑖 ∈ P▷ (𝜂, ℎ,𝑤), either 𝑖 ≤ |(𝑢𝑥)𝑝ℎ | or 𝑖 > | (𝑢𝑥)𝑝𝑘𝑢 |. By contra-

diction, assume that there exists some position 𝑖 ∈ P▷ (𝜂,ℎ,𝑤)
such that | (𝑢𝑥)𝑝ℎ | < 𝑖 ≤ |(𝑢𝑥)𝑝𝑘𝑢 |. This yields 𝑗 ∈ P▷ (𝜂,ℎ −
1,𝑤) ∪ {0} such that 𝑗 < 𝑖 and 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)). By
induction, we have 𝑗 ≤ |(𝑢𝑥)𝑝 (ℎ−1) |. Therefore, since we have

| (𝑢𝑥)𝑝ℎ | < 𝑖 ≤ |(𝑢𝑥)𝑝𝑘𝑢 | and𝑤 = (𝑢𝑥)𝑝𝑘𝑢 (𝑦𝑢)𝑝𝑘 , the infix𝑤 ( 𝑗, 𝑖)
must contain an infix (𝑢𝑥)𝑝 : we have 𝑧, 𝑧′ ∈ 𝐴∗

and 𝑛 ∈ N such

that 𝑤 ( 𝑗, 𝑖) = 𝑧 (𝑢𝑥)𝑝𝑧′ and 𝑤 ( 𝑗, | (𝑢𝑥)𝑝𝑘𝑢 | + 1) = 𝑧 (𝑢𝑥)𝑛𝑢. Let
𝑚 ∈ N be a number such that 𝑛 + 1 + 𝑚 is a multiple of 𝑝 . By
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definition of 𝑝 , 𝜂 (𝑢𝑝 ) is an idempotent of 𝑁 . Therefore, we have

𝜂 (𝑤 ( 𝑗, | (𝑢𝑥)𝑝𝑘𝑢 | +1)𝑥 (𝑢𝑥)ℎ𝑧′) = 𝜂 (𝑧 (𝑢𝑥)𝑝𝑧′) = 𝜂 (𝑤 ( 𝑗, 𝑖)). By def-
inition,𝑤 ( 𝑗, 𝑖)𝑎𝑖 is a prefix of 𝜂 (𝑤 ( 𝑗, | (𝑢𝑥)𝑝𝑘𝑢 | + 1). Consequently,
it follows that 𝜂 (𝑤 ( 𝑗, 𝑖)) ⩽ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ). This is a contradiction
since 𝜂 (𝑤 ( 𝑗, 𝑖)𝑎𝑖 ) <ℛ 𝜂 (𝑤 ( 𝑗, 𝑖)) by hypothesis. □

C.2 Additional lemma
We present a corollary of Theorems 4.1 and 4.2. We shall use it

multiple times in the sequel. Given two prevarieties 𝒞 and 𝒟 such

that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞), we present a property of the 𝐿𝑃𝑜𝑙 (𝒟)-
and 𝑅𝑃𝑜𝑙 (𝒟)-morphisms. Recall that when 𝒞 is a prevariety and

𝛼 : 𝐴∗ → 𝑀 is a surjective morphism, the equivalence ∼𝒞 on 𝑀

is a congruence by Lemma 2.6. We consider the Green relations of

the quotient𝑀/∼𝒞 .

Lemma C.3. Let 𝒞,𝒟 be prevarieties such that 𝒞 ⊆ 𝒟 and 𝒟 ⊆
𝑈𝑃𝑜𝑙 (𝒞) and 𝛼 : 𝐴∗ → 𝑀 a morphism. Let 𝑒, 𝑞, 𝑟 ∈ 𝑀 such that
𝑒 is an idempotent and 𝑞 ∼𝒟 𝑟 . If 𝛼 is an 𝐿𝑃𝑜𝑙 (𝒟)-morphism and
[𝑒]𝒞 ⩽ℛ [𝑞]𝒞 , then 𝑒𝑞 = 𝑒𝑟 . Moreover, if 𝛼 is a 𝑅𝑃𝑜𝑙 (𝒟)-morphism
and [𝑒]𝒞 ⩽ℒ [𝑞]𝒞 , then 𝑞𝑒 = 𝑟𝑒 .

Proof. By symmetry, we only consider the case when 𝛼 is an

𝐿𝑃𝑜𝑙 (𝒟)-morphism. Thus, we assume that [𝑒]𝒞 ⩽ℛ [𝑞]𝒞 and

prove 𝑒𝑞 = 𝑒𝑟 . By hypothesis, we get 𝑠 ∈ 𝑀 such that [𝑒]𝒞 = [𝑞𝑠]𝒞 ,

i.e. 𝑒 ∼𝒞 𝑞𝑠 . Since 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞), we have 𝐿𝑃𝑜𝑙 (𝒟) ⊆
𝑈𝑃𝑜𝑙 (𝒞) and 𝛼 is a 𝑈𝑃𝑜𝑙 (𝒞)-morphism. Therefore, since 𝑒 ∼𝒞

𝑞𝑠 and 𝑒 is an idempotent, Theorem 3.7 yields 𝑒 = 𝑒𝑞𝑠𝑒 . Hence,

𝑒𝑞 = 𝑒𝑞𝑠𝑒𝑞 = 𝑒𝑞(𝑠𝑒𝑞)𝜔+1
. Moreover, since 𝑞 ∼𝒟 𝑟 and ∼𝒟 is a

congruence we have 𝑠𝑒𝑞 ∼𝒟 𝑠𝑒𝑟 . Hence, since 𝛼 is an 𝐿𝑃𝑜𝑙 (𝒟)-
morphism, it follows from Theorem 4.1 that (𝑠𝑒𝑞)𝜔+1 = (𝑠𝑒𝑞)𝜔𝑠𝑒𝑟 .
Since we already know that 𝑒𝑞 = 𝑒𝑞(𝑠𝑒𝑞)𝜔+1

, we obtain 𝑒𝑞 =

𝑒𝑞(𝑠𝑒𝑞)𝜔𝑠𝑒𝑟 . This exactly says that 𝑒𝑞 = (𝑒𝑞𝑠𝑒)𝜔+1𝑟 and since

𝑒 = 𝑒𝑞𝑠𝑒 is an idempotent, we obtain 𝑒𝑞 = 𝑒𝑟 as desired. □

D APPENDIX TO SECTION 5
We prove the statements presented in Section 5. Let us start with

Lemma 5.4.

Lemma 5.4. Let 𝒞 be a prevariety. For every 𝑛 ≥ 1, we have
𝐿𝑃𝑛+1 (𝒞)=𝑀𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)) and 𝑅𝑃𝑛+1 (𝒞)=𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)).

Proof. We prove that 𝐿𝑃𝑛+1 (𝒞) = 𝑀𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)) (the other
property is symmetrical). Since 𝐿𝑃𝑛+1 (𝒞) = 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)) by def-

inition, the left to right inclusion is immediate. We concentrate

on the converse one. We write 𝒟 = 𝐿𝑃𝑛−1 (𝒞) for the proof. By
definition, we need to prove that,

𝑀𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) ⊆ 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) .

Every language in 𝑀𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) is a finite disjoint union of

mixed deterministic marked products of languages in 𝑅𝑃𝑜𝑙 (𝒟).
Hence, since 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) is closed under union, it suffices to

prove that if 𝐿 = 𝐿0𝑎1𝐿1 · · ·𝑎𝑘𝐿𝑘 is a mixed deterministic marked

product such that 𝐿1, . . . , 𝐿𝑘 ∈ 𝑅𝑃𝑜𝑙 (𝒟), then 𝐿 ∈ 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)).
We proceed by induction on 𝑘 . If 𝑘 = 0, then 𝐿 = 𝐿0 ∈ 𝑅𝑃𝑜𝑙 (𝒟) ⊆
𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) and we are finished. Assume now that 𝑘 ≥ 1.

Since 𝐿0𝑎1𝐿1 · · ·𝑎𝑘𝐿𝑘 is mixed deterministic, we know that the

marked concatenation (𝐿0𝑎1𝐿1 · · · 𝐿𝑘−1
)𝑎𝑘 (𝐿𝑘 ) is either left deter-

ministic or right deterministic. We handle these two cases sep-

arately. Assume first that (𝐿0𝑎1𝐿1 · · ·𝑎𝑘−1
𝐿𝑘−1

)𝑎𝑘 (𝐿𝑘 ) is left de-
terministic. One may verify that the product of 𝑘 − 1 languages

𝐿0𝑎1𝐿1 · · ·𝑎𝑘−1
𝐿𝑘−1

remains a mixed deterministic product. Hence,

𝐿0𝑎1𝐿1 · · ·𝑎𝑘−1
𝐿𝑘−1

∈ 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) by induction. Moreover,

since 𝐿0 ∈ 𝑅𝑃𝑜𝑙 (𝒟) ⊆ 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) and the marked concate-

nation (𝐿0𝑎1𝐿1 · · ·𝑎𝑘−1
𝐿𝑘−1

)𝑎𝑘 (𝐿𝑘 ) is left deterministic, we ob-

tain 𝐿0𝑎1𝐿1 · · ·𝑎𝑘𝐿𝑘 ∈ 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) from Lemma 3.4. Assume

now that (𝐿0𝑎1𝐿1 · · ·𝑎𝑘−1
𝐿𝑘−1

)𝑎𝑘 (𝐿𝑘 ) is right deterministic. Hence,

𝐿𝑘−1
𝑎𝑘𝐿𝑘 is right deterministic. Thus, since 𝐿𝑘−1

, 𝐿𝑘 ∈ 𝑅𝑃𝑜𝑙 (𝒟),
we obtain from Lemma 3.4 that𝐿𝑘−1

𝑎𝑘𝐿𝑘 ∈ 𝑅𝑃𝑜𝑙 (𝒟). Onemay now

verify that the product of𝑘−1 languages𝐿0𝑎1𝐿1 · · ·𝑎𝑘−1
(𝐿𝑘−1

𝑎𝑘𝐿𝑘 )
is mixed deterministic. Thus, we obtain from induction on𝑘 that 𝐿 =

𝐿0𝑎1𝐿1 · · ·𝑎𝑘𝐿𝑘 ∈ 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟)) This completes the proof. □

We turn to Theorem 5.5. We start with a preliminary lemma

concerning classes of the form 𝒞 ∩𝒟 that we shall need for the

proof.

Lemma D.1. Let 𝒞,𝒟 be a prevarieties and ℰ = 𝒞 ∩ 𝒟. Let
𝛼 : 𝐴∗ → 𝑀 be a surjective morphism. The equivalence ∼ℰ on𝑀 is
the least one containing both ∼𝒞 and ∼𝒟.

Proof. We write ≡ for the least equivalence of 𝑀 containing

both ∼𝒞 and ∼𝒟. We have to prove that ≡=∼ℰ . It is clear that
≡⊆∼ℰ since ∼ℰ contains both ∼𝒞 and ∼𝒟 (this is immediate by

definition as 𝒞 and𝒟 both containℰ).

Conversely, consider 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼ℰ 𝑡 . We show that

𝑠 ≡ 𝑡 . Let 𝐹 ⊆ 𝑀 be the ≡-class of 𝑠 . We have to show that 𝑡 ∈ 𝐹 .
By definition of ≡, 𝐹 is simultaneously a union of ∼𝒞-classes and

∼𝒟-classes. Thus, Lemma 2.7 yields that 𝛼−1 (𝐹 ) belongs to 𝒞 and

𝒟. In other words, we have 𝛼−1 (𝐹 ) ∈ ℰ. Since 𝑠 ∈ 𝐹 and 𝑠 ∼ℰ 𝑡 ,

we get 𝑡 ∈ 𝐹 by definition of ∼ℰ . This concludes the proof. □

We are ready to prove Theorem 5.5.

Theorem 5.5. Let 𝒞 be a prevariety. For every 𝑛 ≥ 1, we have
𝐿𝑃𝑛+1 (𝒞) ∩ 𝑅𝑃𝑛+1 (𝒞) = 𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞)).

Proof. We start with right to left inclusion. It is immediate that

𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞)) is included in both𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)) and
𝑀𝑃𝑜𝑙 (𝑅𝑃𝑛 (𝒞)). Moreover, these two classes are equal to 𝑅𝑃𝑛+1 (𝒞)
and 𝐿𝑃𝑛+1 (𝒞) respectively as shown in Lemma 5.4. Altogether, we

obtain𝑀𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞)) ⊆ 𝐿𝑃𝑛+1 (𝒞) ∩ 𝑅𝑃𝑛+1 (𝒞).
We turn to the converse inclusion. For the sake of avoiding clut-

ter, we write 𝒟 for the class 𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞). Consider 𝐿 ∈
𝐿𝑃𝑛+1 (𝒞) ∩ 𝑅𝑃𝑛+1 (𝒞). We show that 𝐿 ∈ 𝑀𝑃𝑜𝑙 (𝒟). By The-

orem 3.15, 𝒟 and 𝑀𝑃𝑜𝑙 (𝒟) are prevarieties. Hence, by Propo-

sition 2.2, it suffices to verify that the syntactic morphism 𝛼 :

𝐴∗ → 𝑀 of 𝐿 satisfies the characterization of𝑀𝑃𝑜𝑙 (𝒟) presented
in Theorem 4.3. Let 𝑞, 𝑟, 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼𝒟 𝑡 . We prove

that (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 . Since 𝒟 = 𝐿𝑃𝑛 (𝒞) ∩ 𝑅𝑃𝑛 (𝒞),
Lemma D.1 yields 𝑝0, . . . , 𝑝ℓ ∈ 𝑀 such that 𝑝0 = 𝑠 , 𝑝ℓ = 𝑡 and

for 𝑖 < ℓ , either 𝑝𝑖 ∼𝐿𝑃𝑛 (𝒞) 𝑝𝑖+1 or 𝑝𝑖 ∼𝑅𝑃𝑛 (𝒞) 𝑝𝑖+1. We prove

that for every 𝑖 < ℓ , we have (𝑠𝑞)𝜔𝑝𝑖 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑝𝑖−1 (𝑟𝑠)𝜔 . By
transitivity, this implies that (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 as de-

sired. We fix 𝑖 < ℓ for the proof. We only treat the case when

𝑝𝑖−1 ∼𝐿𝑃𝑛 (𝒞) 𝑝𝑖 (the case when 𝑝𝑖−1 ∼𝑅𝑃𝑛 (𝒞) 𝑝𝑖 is symmetrical



LICS ’22, August 2–5, 2022, Haifa, Israel Thomas Place

and left to the reader). With this hypothesis in hand, we prove that

𝑝𝑖 (𝑟𝑠)𝜔 = 𝑝𝑖−1 (𝑟𝑠)𝜔 which implies the desired result.

We have 𝐿 ∈ 𝑅𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞)) by hypothesis. Consequently, its

syntactic morphism 𝛼 is a 𝑅𝑃𝑜𝑙 (𝐿𝑃𝑛 (𝒞))-morphism by Proposi-

tion 2.2. It is also clear that 𝒞 ⊆ 𝐿𝑃𝑛 (𝒞) ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Moreover,

by hypothesis, we have 𝑝𝑖−1 ∼𝐿𝑃𝑛 (𝒞) 𝑝𝑖 and (𝑟𝑠)𝜔 is an idempo-

tent. Finally, since 𝒞 is included in both 𝐿𝑃𝑛 (𝒞) and 𝑅𝑃𝑛 (𝒞), the
equivalences ∼𝐿𝑃𝑛 (𝒞) and ∼𝑅𝑃𝑛 (𝒞) are included in ∼𝒞 . Hence, we

have 𝑠 ∼𝒞 𝑝𝑖 by definition which implies that [(𝑟𝑠)𝜔 ]𝒞 ⩽ℒ [𝑝𝑖 ]𝒞 .

Altogether, it follows from Lemma C.3 that 𝑝𝑖 (𝑟𝑠)𝜔 = 𝑝𝑖−1 (𝑟𝑠)𝜔 as

desired. □

E APPENDIX TO SECTION 6
In this appendix we present the missing proofs of Section 6. First,

we prove Lemma 6.2. Then, we introduce definitions and results

concerning the quantifier-alternation hierarchy of two-variable

first-order logic that we shall need in the proof of Theorem 6.4. The

last part of the appendix is devoted to Theorem 6.4 itself.

E.1 Proof of Lemma 6.2
We first present a useful preliminary statement about𝒢- and𝒢

+
-

morphisms when𝒢 is a group prevariety.

Lemma E.1. Let 𝒢 be a group prevariety and 𝜂 : 𝐴∗ → 𝑁 a
morphism. If 𝜂 is a𝒢-morphism, then 𝜂 (𝐴∗) is a group. Moreover, if
𝜂 is𝒢+-morphism, then 𝜂 (𝐴+) is a group.

Proof. We treat the case when 𝜂 is 𝒢
+
-morphism. The other

one is handled with a similar argument which is left to the reader.

Let𝐺 = 𝛼 (𝐴+). We show that𝐺 is a group. By definition of groups,

it suffices to prove that there is only one idempotent in 𝐺 . Hence,

we consider two idempotents 𝑒, 𝑓 ∈ 𝐺 and show that 𝑒 = 𝑓 . Let

𝑢, 𝑣 ∈ 𝐴+
such that 𝜂 (𝑢) = 𝑒 and 𝜂 (𝑣) = 𝑓 . By hypothesis we have

𝜂−1 (𝑒) ∈ 𝒢
+
. This yields 𝐿 ∈ 𝒢 such that either 𝜂−1 (𝑒) = 𝐿 ∪ {𝜀}

or 𝜂−1 (𝑒) = 𝐿∩𝐴+
. Since 𝐿 is group language, we have a morphism

𝛽 : 𝐴∗ → 𝐻 into a group 𝐻 recognizing 𝐿. Let 𝑝 = 𝜔 (𝐻 ). Since 𝑒
is idempotent, we have 𝛼 (𝑢𝑝 ) = 𝑒 and since 𝑢𝑝 ∈ 𝐴+

, this yields

𝑢𝑝 ∈ 𝐿. Moreover, since 𝐻 is a group, we have 𝛽 (𝑢𝑝 ) = 1𝐻 = 𝛽 (𝑣𝑝 ).
Hence, 𝑣𝑝 ∈ 𝐿 since 𝛽 recognizes 𝐿. Since 𝑣𝑝 ∈ 𝐴+

, it follows that

𝜂 (𝑣𝑝 ) = 𝑒 . Finally, since 𝜂 (𝑣) = 𝑓 which is an idempotent, we also

have 𝜂 (𝑣𝑝 ) = 𝑓 and we get 𝑒 = 𝑓 as desired. □

We turn to Lemma 6.2.

Lemma 6.2. If𝒢 is a group prevariety and ℱ is a fragment of FO,
then ℱ(I𝒢) = ℱ(<, P𝒢) andℱ(I𝒢+ ) = ℱ(<, +1, P𝒢).

Proof. We first handle the inclusionsℱ(<, P𝒢) ⊆ ℱ(I𝒢) and
ℱ(<, +1, P𝒢) ⊆ ℱ(I𝒢+ ). It suffices to prove that we may express

all atomic formulas of ℱ(<, P𝒢) and ℱ(<, +1, P𝒢) using atomic

formulas ofℱ(I𝒢) andℱ(I𝒢+ ) respectively. The linear order 𝑥 < 𝑦

is expressed by 𝐼𝐴∗ (𝑥,𝑦). For every 𝐿 ∈ 𝒢, 𝑃𝐿 (𝑥) is expressed by

𝐼𝐿 (𝑚𝑖𝑛, 𝑥). Finally, 𝑥 + 1 = 𝑦 is expressed 𝐼 {𝜀 } (𝑥,𝑦) (note that 𝐼 {𝜀 }
is a predicate of I𝒢+ but not of I𝒢). We get the desired inclusions.

We now prove that ℱ(I𝒢) ⊆ ℱ(<, P𝒢). By definition of frag-

ments, it suffices to prove that for every 𝐿 ∈ 𝒢, the atomic for-

mula 𝐼𝐿 (𝑥,𝑦) is equivalent to a quantifier-free formula ofℱ(<, P𝒢).
Proposition 2.3 yields a 𝒢-morphism 𝜂 : 𝐴∗ → 𝐺 recognizing 𝐿.

Since𝒢 is a group prevariety, 𝐺 is a group by Lemma E.1. For ev-

ery 𝑔 ∈ 𝐺 , the language 𝛼−1 (𝑔) belongs to𝒢, whence 𝑃𝛼−1 (𝑔) is a
predicate in P𝒢 . Let 𝐹 ⊆ 𝐺 be the set such that 𝛼−1 (𝐹 ) = 𝐿. Since𝐺
is a group, we have 𝛼 (𝑣) = (𝛼 (𝑢𝑎))−1𝛼 (𝑢𝑎𝑣) for all 𝑢, 𝑣 ∈ 𝐴∗

and

𝑎 ∈ 𝐴. We define 𝑇 = {(𝑔, 𝑎, ℎ) ∈ 𝐺 × 𝐴 × 𝐺 | (𝑔𝛼 (𝑎))−1ℎ ∈ 𝐹 }.
Consider the following quantifier-free formula ofℱ (<,P𝒢):

𝜑 (𝑥,𝑦) = (𝑥 < 𝑦) ∧
( ∨
(𝑔,𝑎,ℎ) ∈𝑇

(
𝑃𝛼−1 (𝑔) (𝑥) ∧ 𝑎(𝑥) ∧ 𝑃𝛼−1 (ℎ) (𝑦)

) )
.

Onemay verify that 𝐼𝐿 (𝑥,𝑦) is equivalent to the following quantifier-
free formula ofℱ(<, P𝒢):

(𝑥 =𝑚𝑖𝑛 ∧ 𝑃𝐿 (𝑦)) ∨ 𝜑 (𝑥,𝑦).

This concludes the proof forℱ(I𝒢) ⊆ ℱ(<, P𝒢).
Finally, we prove that ℱ(I𝒢+ ) ⊆ ℱ(<, +1, P𝒢). By definition,

it suffices to show that for every language 𝐾 ∈ 𝒢
+
, the atomic

formula 𝐼𝐾 (𝑥,𝑦) is equivalent to a quantifier-free formula of ℱ(<
, +1, P𝒢). By definition of 𝒢

+
, there exists 𝐿 ∈ 𝒢 such that either

𝐿 = {𝜀} ∪ 𝐾 or 𝐿 = 𝐴+ ∩ 𝐾 . Consequently, 𝐼𝐾 (𝑥,𝑦) is equivalent
to either 𝐼 {𝜀 } (𝑥,𝑦) ∨ 𝐼𝐿 (𝑥,𝑦) or 𝐼𝐴+ (𝑥,𝑦) ∧ 𝐼𝐿 (𝑥,𝑦). Since, 𝐿 ∈ 𝒢,

we already proved above that 𝐼𝐿 (𝑥,𝑦) is equivalent to a quantifier-

free formula ofℱ(<, P𝒢) ⊆ ℱ(<, +1, P𝒢). Moreover, 𝐼 {𝜀 } (𝑥,𝑦) is
equivalent to 𝑥 +1 = 𝑦 and 𝐼𝐴+ is equivalent to 𝑥 < 𝑦∧¬(𝑥 +1 = 𝑦).
This concludes the proof. □

E.2 Preorders associated to FO2

We define preorders that we use to characterize the quantifier alter-

nation hierarchy of FO
2 (I𝒞) for some prevariety𝒞. The definitions

are based on standard constructions in finite model theory. We then

prove properties of these preorders that we shall need in the proof

of Theorem 6.4.

Relations. We start with two preliminary definitions. We use the

standard notion of quantifier rank. The quantifier rank (or simply

rank) of an FO
2
formula 𝜑 is the maximal nesting depth of quanti-

fiers in 𝜑 . Moreover, for every morphism 𝜂 : 𝐴∗ → 𝑁 , we associate

a set I𝜂 of predicates. For every language 𝐿 ⊆ 𝐴∗
which is recog-

nized by 𝜂, the set I𝜂 contains the binary predicate 𝐼𝐿 . Recall that

for𝑤 ∈ 𝐴∗
and 𝑖, 𝑗 ∈ P(𝑤), we have𝑤 |= 𝐼𝐿 (𝑖, 𝑗) if and only if 𝑖 < 𝑗

and𝑤 (𝑖, 𝑗) ∈ 𝐿. Note that I𝜂 is a finite set of predicates.
Let 𝜂 : 𝐴∗ → 𝑁 be a morphism, 𝑘 ∈ N and 𝑛 ≥ 1. We associate

a preorder ⪯𝜂,𝑘,𝑛 which compares pairs (𝑤, 𝑖) where 𝑤 ∈ 𝐴∗
and

𝑖 ∈ P(𝑤). Consider 𝑤,𝑤 ′ ∈ 𝐴∗
, 𝑖 ∈ P(𝑤) and 𝑖 ′ ∈ P(𝑤 ′). We let

𝑤, 𝑖 ⪯𝜂,𝑘,𝑛 𝑤 ′, 𝑖 ′ if and only if for every formula 𝜑 (𝑥) of Σ2

𝑛 (I𝜂 )
with quantifier rank at most 𝑘 and at most one free variable “𝑥” the

following implication holds:

𝑤 |= 𝜑 (𝑖) ⇒ 𝑤 ′ |= 𝜑 (𝑖 ′).

It is immediate by definition that ⪯𝜂,𝑘,𝑛 is a preorder and it has

finitely many upper sets (there are finitely many non-equivalent

formulas 𝜑 (𝑥) of Σ2

𝑛 (I𝜂 ) with quantifier-rank at most 𝑘 since I𝜂 is

finite). One may verify the following fact.

Fact E.2. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism, 𝑘 ∈ N, 𝑛 ≥ 1,𝑤 ∈ 𝐴∗

and 𝑖 ∈ P(𝑤). There exists a formula 𝜑 (𝑥) of Σ2

𝑛 (I𝜂 ) with quantifier
rank at most 𝑘 such that for all 𝑤 ′ ∈ 𝐴∗ and 𝑖 ′ ∈ P(𝑤 ′), we have
𝑤 ′ |= 𝜑 (𝑖 ′) if and only if𝑤, 𝑖 ⪯𝜂,𝑘,𝑛 𝑤 ′, 𝑖 ′.
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We restrict the preorders ⪯𝜂,𝑘,𝑛 to single words in𝐴∗
. Let𝑤,𝑤 ′ ∈

𝐴∗
. We let𝑤 ⪯𝜂,𝑘,𝑛 𝑤 ′

if and only if𝑤, 0 ⪯𝜂,𝑘,𝑛 𝑤 ′, 0. This is a pre-
order on 𝐴∗

. Finally, we write �𝜂,𝑘,𝑛 for the equivalence associated

to ⪯𝜂,𝑘,𝑛 : 𝑤 �𝜂,𝑘,𝑛 𝑤 ′
if and only if 𝑤 ⪯𝜂,𝑘,𝑛 𝑤 ′

and 𝑤 ′ ⪯𝜂,𝑘,𝑛 𝑤 .
Clearly, this equivalence has finite index. We use it to characterize

the classes ℬΣ2

𝑛 (I𝒞).

Lemma E.3. Let 𝒞 be a prevariety, 𝑛 ≥ 1 and 𝐿 ⊆ 𝐴∗. We have
𝐿 ∈ ℬΣ2

𝑛 (I𝒞) if and only if there exists a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁

and 𝑘 ∈ N such that 𝐿 is a union of �𝜂,𝑘,𝑛-classes..

Proof. For the “only if” direction, assume that 𝐿 ∈ ℬΣ2

𝑛 (I𝒞)
and let 𝜑 be the sentence ofℬΣ2

𝑛 (I𝒞) which defines 𝐿. Let 𝑘 ∈ N
be the rank of 𝜑 . Proposition 2.3 yields a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁

such that 𝜑 ∈ ℬΣ2

𝑛 (I𝜂 ). One may verify that 𝐿 is a union of �𝜂,𝑘,𝑛-

classes. For the “if” direction, consider a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁

and 𝑘 ∈ N. We prove that every union of �𝜂,𝑘,𝑛-classes belongs

toℬΣ2

𝑛 (I𝒞). As �𝜂,𝑘,𝑛 has finite index, it suffices to show that all

�𝜂,𝑘,𝑛-classes belong toℬΣ2

𝑛 (I𝒞). For every𝑢 ∈ 𝐴∗
, Fact E.2 yields

a formula 𝜓𝑢 (𝑥) of Σ2

𝑛 (I𝒞) of rank at most 𝑘 such that for every

𝑣 ∈ 𝐴∗
and 𝑗 ∈ P(𝑣), we have 𝑣 |= 𝜓𝑢 ( 𝑗) if and only if𝑢, 0 ⪯𝜂,𝑘,𝑛 𝑣, 𝑗 .

Let𝑤 ∈ 𝐴∗
. We define,

𝜑𝑤 = 𝜓𝑤 (𝑚𝑖𝑛) ∧
©«

∧
𝑤⪯𝜂,𝑘,𝑛𝑢 and 𝑢 ̸�𝜂,𝑘,𝑛𝑤

¬𝜓𝑢 (𝑚𝑖𝑛)
ª®¬ .

Note the conjunction boils down to a finite one since there finitely

many non-equivalent Σ2

𝑛 (I𝒞) of rank at most 𝑘 . One may now

verify that 𝜑𝑤 defines the �𝜂,𝑘,𝑛-class of 𝑤 which concludes the

proof since it aℬΣ2

𝑛 (I𝒞) sentence. □

We complete the definitions with a useful proposition. It provides

an alternate definition of the preorders ⪯𝜂,𝑘,𝑛 . Intuitively, it boils
down Ehrenfeucht-Fraïssé games. Yet, formulating it as an inductive

definition rather than a game is more convenient. We start with a

preliminary notion. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism, 𝑤,𝑤 ′ ∈ 𝐴∗
,

𝑖 ∈ P(𝑤) and 𝑖 ′ ∈ P(𝑤). We say that (𝑤, 𝑖) and (𝑤 ′, 𝑖 ′) are 𝜂-
equivalent if and only if one of the three following conditions

holds:

• 𝑖 = 𝑖 ′ = 0, and 𝜂 (𝑤) = 𝜂 (𝑤 ′) or,
• 𝑖 = |𝑤 | + 1, 𝑖 ′ = |𝑤 ′ | + 1 and 𝜂 (𝑤) = 𝜂 (𝑤 ′) or,
• 𝑖 ∈ Pc (𝑤), 𝑖 ′ ∈ Pc (𝑤), the positions 𝑖 and 𝑖 ′ have the same

label, 𝜂 (𝑤 (𝑖, |𝑤 | + 1)) = 𝜂 (𝑤 ′(𝑖 ′, |𝑤 ′ | + 1)) and 𝜂 (𝑤 (0, 𝑖)) =
𝜂 (𝑤 ′(0, 𝑖 ′)).

We may now present the proposition.

Proposition E.4. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism, 𝑘 ∈ N, 𝑛 ≥ 1,
𝑤,𝑤 ′ ∈ 𝐴∗, 𝑖 ∈ P(𝑤) and 𝑖 ′ ∈ P(𝑤 ′). Then, we have𝑤, 𝑖 ⪯𝜂,𝑘,𝑛 𝑤 ′, 𝑖 ′

if and only if the following properties hold:

(1) (𝑤, 𝑖) and (𝑤 ′, 𝑖 ′) are 𝜂-equivalent.
(2) If 𝑛 ≥ 2, then𝑤 ′, 𝑖 ′ ⪯𝜂,𝑘,𝑛−1

𝑤, 𝑖 .
(3) If 𝑘 ≥ 1, then for all 𝑗 ∈ P(𝑤) such that 𝑖 < 𝑗 , we have

𝑗 ′ ∈ P(𝑤 ′) such that 𝑖 ′ < 𝑗 ′, 𝜂 (𝑤 (𝑖, 𝑗)) = 𝜂 (𝑤 ′(𝑖 ′, 𝑗 ′)) and
𝑤, 𝑗 ⪯𝜂,𝑘−1,𝑛 𝑤

′, 𝑗 ′.
(4) If 𝑘 ≥ 1, then for all 𝑗 ∈ P(𝑤) such that 𝑗 < 𝑖 , we have

𝑗 ′ ∈ P(𝑤 ′) such that 𝑗 ′ < 𝑖 ′, 𝜂 (𝑤 ( 𝑗, 𝑖)) = 𝜂 (𝑤 ′( 𝑗 ′, 𝑖 ′)) and
𝑤, 𝑗 ⪯𝜂,𝑘−1,𝑛 𝑤

′, 𝑗 ′.

Proof. We start with the “only if” implication. Assume that

𝑤, 𝑖 ⪯𝜂,𝑘,𝑛 𝑤 ′, 𝑖 ′. We show that the four conditions in the lemma are

satisfied. The first one is immediate as one may check 𝜂-equivalence

using quantifier-free formulas in Σ2

𝑛 (I𝜂 ). We turn to Condition 2.

Assume that 𝑛 ≥ 2. We prove𝑤 ′, 𝑖 ′ ⪯𝜂,𝑘,𝑛−1
𝑤, 𝑖 . Given a formula

𝜑 (𝑥) of Σ2

𝑛−1
(I𝜂 ) with rank at most 𝑘 , we show that𝑤 ′ |= 𝜑 (𝑖 ′) ⇒

𝑤 |= 𝜑 (𝑖). By definition, ¬𝜑 (𝑥) ∈ Σ2

𝑛 (I𝜂 ) and it has rank at most 𝑘 .

Hence, since𝑤, 𝑖 ⪯𝜂,𝑘,𝑛 𝑤 ′, 𝑖 ′, we have𝑤 |= ¬𝜑 (𝑖) ⇒ 𝑤 ′ |= ¬𝜑 (𝑖 ′).
The contrapositive is exactly the desired implication. It remains to

handle Conditions 3 and 4. By symmetry, we only detail the former.

Assume that 𝑘 ≥ 1 and let 𝑗 ∈ P(𝑤) such that 𝑖 < 𝑗 . We have to

exhibit 𝑗 ′ ∈ P(𝑤 ′) such that 𝑖 ′ < 𝑗 ′, 𝜂 (𝑤 (𝑖, 𝑗)) = 𝜂 (𝑤 ′(𝑖 ′, 𝑗 ′)) and
𝑤, 𝑗 ⪯𝜂,𝑘−1,𝑛 𝑤

′, 𝑗 ′. Fact E.2 yields a formula 𝜑 (𝑥) of Σ2

𝑛 (I𝜂 ) with
rank at most 𝑘 −1 such that for all𝑢 ∈ 𝐴∗

and ℎ ∈ P(𝑢),𝑢 |= 𝜑 (ℎ) if
and only if 𝑤, 𝑗 ⪯𝜂,𝑘−1,𝑛 𝑢,ℎ. Moreover, we let 𝑠 = 𝜂 (𝑤 (𝑖, 𝑗)) ∈ 𝑁
(recall that 𝑖 < 𝑗 ) and 𝐿 = 𝜂−1 (𝑠). Consider the following formula:

𝜓 (𝑥) := ∃𝑦 (𝐼𝐿 (𝑥,𝑦) ∧ 𝜑 (𝑦)).

Clearly, 𝜓 (𝑥) ∈ Σ2

𝑛 (I𝜂 ) and it has rank at most 𝑘 . Moreover, it is

clear that 𝑤 |= 𝜓 (𝑖) (one may use 𝑗 as the position quantified by

𝑦). Hence, since 𝑤, 𝑖 ⪯𝜂,𝑘,𝑛 𝑤 ′, 𝑖 ′, it follows that 𝑤 ′ |= 𝜓 (𝑖 ′). This
yields 𝑗 ′ ∈ P(𝑤 ′) such that 𝑖 ′ < 𝑗 ′, 𝑤 ′(𝑖 ′, 𝑗 ′) ∈ 𝐿 and 𝑤 ′ |= 𝜑 ( 𝑗 ′).
By definition of 𝐿, the fact that𝑤 ′(𝑖 ′, 𝑗 ′) ∈ 𝐿 yields 𝜂 (𝑤 (𝑖 ′, 𝑗 ′)) =
𝑠 = 𝜂 (𝑤 (𝑖, 𝑗)) . Finally, since 𝑤 ′ |= 𝜑 ( 𝑗 ′), we obtain 𝑤, 𝑗 ⪯𝜂,𝑘−1,𝑛

𝑤 ′, 𝑗 ′ by definition of 𝜑 . This concludes the proof for the “only if”

direction.

We turn to the “if” implication. Assume that the four conditions

are satisfied. We show that𝑤, 𝑖 ⪯𝜂,𝑘,𝑛 𝑤 ′, 𝑖 ′. We have to prove that

given a Σ2

𝑛 (I𝜂 ) formula 𝜑 (𝑥) with rank at most 𝑘 , the implication

𝑤 |= 𝜑 (𝑖) ⇒ 𝑤 ′ |= 𝜑 (𝑖 ′) holds. First, we put 𝜑 (𝑥) into normal form.

The following lemma can be verified from the definition of Σ2

𝑛 and

DeMorgan’s laws.

Lemma E.5. The formula 𝜑 (𝑥) is equivalent to another formula
of rank at most 𝑘 which belongs to the least set of expressions closed
under disjunction, conjunction and existential quantification, and
containing atomic formulas as well as their negations and, if 𝑛 ≥ 2,
the negations of Σ2

𝑛−1
(I𝜂 ) formulas.

We assume that 𝜑 (𝑥) is of the form described in Lemma E.5 and

prove that𝑤 |= 𝜑 (𝑖) ⇒ 𝑤 ′ |= 𝜑 (𝑖 ′) by structural induction on 𝜑 . If

𝜑 (𝑥) is an atomic formula of its negation, the implication can be

verified from Condition 1. We turn to the case when 𝜑 (𝑥) := ¬𝜓 (𝑥)
where 𝜓 (𝑥) is a Σ2

𝑛−1
(I𝜂 ) formula (this may only happen when

𝑛 ≥ 2). Clearly, 𝜓 (𝑥) has rank at most 𝑘 by hypothesis on 𝜑 (𝑥).
Since 𝑤 ′, 𝑖 ′ ⪯𝜂,𝑘,𝑛−1

𝑤, 𝑖 by Condition 2, 𝑤 ′ |= 𝜓 (𝑖 ′) ⇒ 𝑤 |= 𝜓 (𝑖).
The contrapositive yields 𝑤 |= 𝜑 (𝑖) ⇒ 𝑤 ′ |= 𝜑 (𝑖 ′). We turn to

conjunction and disjunction. If 𝜑 = 𝜓1 𝑋 𝜓2 for 𝑋 ∈ {∨,∧}, we
get 𝑤 |= 𝜓ℎ (𝑖) ⇒ 𝑤 ′ |= 𝜓ℎ (𝑖) for ℎ = 1, 2 by structural induction.

Hence,𝑤 |= 𝜑 (𝑖) ⇒ 𝑤 ′ |= 𝜑 (𝑖 ′) as desired.
It remains to handle existential quantification. Assume that

𝜑 (𝑥) = ∃𝑦 𝜓 (𝑥,𝑦) (since variables can be renamed, we may as-

sume that 𝑦 ≠ 𝑥). By hypothesis on 𝜑 , we know that 𝜓 has rank

at most 𝑘 − 1. Assume that𝑤 |= 𝜑 (𝑖). We show that𝑤 |= 𝜑 (𝑖 ′). By
hypothesis on 𝜑 , we get 𝑗 ∈ P(𝑤) such that𝑤 |= 𝜓 (𝑖, 𝑗). We use it

define 𝑗 ′ ∈ P(𝑤 ′). There are several cases depending on whether

𝑗 = 𝑖 , 𝑖 < 𝑗 or 𝑗 < 𝑖 . By symmetry, we only treat the case when
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𝑖 < 𝑗 . In this case, Condition 3 yields 𝑗 ′ ∈ P(𝑤 ′) such that 𝑖 ′ < 𝑗 ′,
𝑤, 𝑗 ⪯𝜂,𝑘−1,𝑛 𝑤 ′, 𝑗 ′ and 𝜂 (𝑤 (𝑖, 𝑗)) = 𝜂 (𝑤 (𝑖 ′, 𝑗 ′)). We use a sub-

induction on the structure of 𝜓 (𝑥,𝑦) to show that 𝑤 ′ |= 𝜓 (𝑖 ′, 𝑗 ′)
which implies that 𝑤 ′, 𝑖 ′ |= 𝜑 (𝑖 ′) as desired. If 𝑥 is the only free

variable in 𝜓 , then our hypothesis states that 𝑤 |= 𝜓 (𝑖) and the

main induction yields 𝑤 ′ |= 𝜓 (𝑖 ′) as desired. If 𝑦 is the only free

variable in 𝜓 , then our hypothesis states that 𝑤 |= 𝜓 ( 𝑗). Hence,
since 𝑤, 𝑗 ⪯𝜂,𝑘−1,𝑛 𝑤 ′, 𝑗 ′ and 𝜓 has rank at most 𝑘 − 1, we ob-

tain 𝑤 ′ |= 𝜓 ( 𝑗 ′) has desired. If𝜓 (𝑥,𝑦) is an atomic formula or its

negation involving both 𝑥 and 𝑦 (i.e. 𝑥 = 𝑦, ¬(𝑥 = 𝑦), 𝐼𝐿 (𝑥,𝑦) or
¬𝐼𝐿 (𝑥,𝑦) with 𝐿 recognized by 𝜂), since𝑤 |= 𝜓 (𝑖, 𝑗), 𝑖 < 𝑗 , 𝑖 ′ < 𝑗 ′

and 𝜂 (𝑤 (𝑖, 𝑗)) = 𝜂 (𝑤 (𝑖 ′, 𝑗 ′)), one may verify that 𝑤 |= 𝜓 (𝑖 ′, 𝑗 ′).
Finally, disjunction and conjunction are handled by sub-induction

as in the main induction. This concludes the proof. □

Properties.We now present important properties of the preorders

⪯𝜂,𝑘,𝑛 . We start with a simple preliminary lemma which can be

verified from Proposition E.4.

Lemma E.6. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism, 𝑘 ∈ N and 𝑛 ≥ 1. Let
𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝐴∗ and 𝑎 ∈ 𝐴 such that 𝑥1 ⪯𝜂,𝑘,𝑛 𝑦1 and 𝑥2 ⪯𝜂,𝑘,𝑛 𝑦2.
Moreover, let 𝑖 = |𝑥1 | + 1 and 𝑗 = |𝑦1 | + 1. Then, 𝑥1𝑥2 ⪯𝜂,𝑘,𝑛 𝑦1𝑦2

and 𝑥1𝑎𝑥2, 𝑖 ⪯𝜂,𝑘,𝑛 𝑦1𝑎𝑦2, 𝑖
′.

We turn to the property that we shall use in the proof of Theo-

rem 6.4. They are specific to morphisms 𝜂 : 𝐴∗ → 𝑁 such that the

set 𝜂 (𝐴+) is a finite group. This reflects the fact that Theorem 6.4

only applies to group prevarieties 𝒢 and their well-suited exten-

sions𝒢
+
. We first present two preliminary results for the preorders

⪯𝜂,𝑘,1. The first one considers the case when 𝜂 is a morphism into

a group.

Lemma E.7. Consider amorphism𝜂 : 𝐴∗ → 𝐺 into a group and 𝑝 a
multiple of𝜔 (𝐺). Let 𝑢, 𝑣, 𝑥,𝑦 ∈ 𝐴∗ and ℓ ∈ N such that 𝜂 (𝑢) = 𝜂 (𝑣).
Then, 𝑣 ⪯𝜂,ℓ,1 𝑢 (𝑦𝑣)𝑝 and 𝑣 ⪯𝜂,ℓ,1 (𝑣𝑥)𝑝𝑢.

Proof. By symmetry, we only prove that 𝑣 ⪯𝜂,ℓ,1 𝑢 (𝑦𝑣)𝑝 . Since
𝐺 is a group, we have 𝜂 ((𝑣𝑦)𝑝 ) = 1𝐺 . Since 𝜂 (𝑢) = 𝜂 (𝑣), this yields
𝜂 (𝑢𝑦 (𝑣𝑦)𝑝−1) = 1𝐺 . Thus, one may verify from Proposition E.4

that 𝜀 ⪯𝜂,ℓ,1 𝑢𝑦 (𝑣𝑦)𝑝−1
. Hence, Lemma E.6 yields 𝑣 ⪯𝜂,ℓ,1 𝑢 (𝑦𝑣)𝑝

as desired. □

We now consider the case of morphisms 𝜂 : 𝐴∗ → 𝑁 such that

𝜂 (𝐴+) is a group. We prove a slightly weaker result.

Lemma E.8. Consider a morphism 𝜂 : 𝐴∗ → 𝑁 such that 𝐺 =

𝛼 (𝐴+) is group, ℓ ∈ N and 𝑝 a multiple of 𝜔 (𝐺). We consider
𝑢, 𝑣,𝑤, 𝑥 ∈ 𝐴∗ such that |𝑤 | ≥ ℓ and 𝜂 (𝑢) = 𝜂 (𝑣). We have𝑤𝑣 ⪯𝜂,ℓ,1
𝑤𝑢 (𝑥𝑤𝑣)𝑝 and 𝑣𝑤 ⪯𝜂,ℓ,1 (𝑣𝑤𝑥)𝑝𝑢𝑤 .

Proof. By symmetry, we only prove that𝑤𝑣 ⪯𝜂,ℓ,1 𝑤𝑢 (𝑥𝑤𝑣)𝑝 .
We consider a slightly more general property that we prove by in-

duction. We let 𝑧 = 𝑤𝑣 and 𝑧′ = 𝑤𝑢 (𝑥𝑤𝑣)𝑝 . Let𝑚 = |𝑤𝑢 (𝑥𝑤𝑣)𝑝𝑥 |.
Clearly, if 𝑖 ∈ P(𝑧), then𝑚 + 𝑖 is the corresponding position in the

suffix 𝑧 = 𝑤𝑣 of 𝑧′ = 𝑤𝑢 (𝑥𝑤𝑣)𝑝 . We prove that the two following

properties are satisfied for every ℎ ≤ ℓ :

• if 𝑖 ≤ ℓ − ℎ, then 𝑧, 𝑖 ⪯𝜂,ℎ,1 𝑧′, 𝑖 .
• if 𝑖 > ℓ − ℎ, then 𝑧, 𝑖 ⪯𝜂,ℎ,1 𝑧′,𝑚 + 𝑖 .

In the case ℎ = ℓ , we may apply the first assertion for 𝑖 = 0 which

yields𝑤𝑣 ⪯𝜂,ℓ,1 𝑤𝑢 (𝑥𝑤𝑣)𝑝 as desired.

We now prove that the two above properties hold for every

𝑖 ∈ P(𝑤𝑣) and ℎ ≤ ℓ . We proceed by induction on ℎ. By symmetry,

we only consider the first property and leave the other to the reader.

Thus, we assume that 𝑖 ≤ ℓ − ℎ and show that 𝑧, 𝑖 ⪯𝜂,ℎ,1 𝑧′, 𝑖 .
We use Proposition E.4. There are only three conditions to verify:

Condition 2 is trivial since we are in the case 𝑛 = 1. Moreover, it

is straightforward to verify Condition 1 from our hypotheses. We

turn to Conditions 3 and 4. By symmetry, we only detail the former.

Assume that ℎ ≥ 1 and let 𝑗 ∈ P(𝑣) such that 𝑖 < 𝑗 , we show that

there exists 𝑗 ′ ∈ P(𝑤) such that 𝑖 < 𝑗 ′, 𝜂 (𝑧 (𝑖, 𝑗)) = 𝜂 (𝑧′(𝑖, 𝑗 ′))
and 𝑧, 𝑗 ⪯𝜂,ℎ−1,1 𝑧, 𝑗 ′. There are two sub-cases depending on 𝑗 .

First, assume that 𝑗 ≤ ℓ − (ℎ − 1). In this case, we let 𝑗 ′ = 𝑗 .

Clearly, we have 𝜂 (𝑧 (𝑖, 𝑗)) = 𝜂 (𝑧′(𝑖, 𝑗)) since 𝑧 (𝑖, 𝑗) = 𝑧′(𝑖, 𝑗) (this
is because 𝑤 is a common prefix of 𝑧 and 𝑧′, and |𝑤 | ≥ ℓ). Since

𝑗 ≤ ℓ − (ℎ − 1), we get 𝑣, 𝑗 ⪯𝜂,ℎ−1,1 𝑤, 𝑗 by induction on ℎ. We turn

to the second sub-case. Assume that ℓ − (ℎ − 1) < 𝑗 . We define

𝑗 ′ = 𝑚 + 𝑗 . Clearly, 𝑖 < 𝑗 ′ since we have 𝑖 < 𝑗 . Moreover, since

𝑗 > ℓ − (ℎ − 1) and 𝑗 ′ = 𝑚 + 𝑗 , induction on ℎ yields 𝑧, 𝑗 ⪯𝜂,ℎ−1,1

𝑧′, 𝑗 ′. We show that 𝜂 (𝑧 (𝑖, 𝑗)) = 𝜂 (𝑧′(𝑖, 𝑗 ′)). By definition 𝑗 ′ is
the position corresponding to 𝑗 ∈ P(𝑧) in the suffix 𝑧 = 𝑤𝑣 of 𝑧′.
Hence, there exists 𝑦 ∈ 𝐴∗

such that 𝑧 (𝑖, |𝑧 | + 1) = 𝑧 (𝑖, 𝑗)𝑦 and

𝑧′(𝑖, |𝑧′ | + 1) = 𝑧′(𝑖, 𝑗 ′)𝑦. Moreover, by definition of 𝑧′, we have
𝑧′(𝑖, |𝑧′ | + 1) = 𝑧 (𝑖, |𝑧 | + 1) (𝑥𝑤𝑣)𝑝 . Since 𝑝 is a multiple of 𝜔 (𝐺)
and 𝑥𝑤𝑣 ∈ 𝐴+

(we have |𝑤 | ≥ ℓ), we get 𝜂 (𝑥𝑤𝑣) = 1𝐺 . Moreover,

𝑧 (𝑖, |𝑧 | + 1) ∈ 𝐴+
since we have 𝑖 ≤ ℓ − ℎ and ℎ ≥ 1. Altogether,

it follows that 𝜂 (𝑧 (𝑖, 𝑗)𝑦) = 𝜂 (𝑧′(𝑖, 𝑗 ′)𝑦). If 𝑦 = 𝜀, this concludes

the proof. Otherwise, 𝑦 ∈ 𝐴+
and since we have 𝑖 ≤ ℓ = ℎ and

ℓ − (ℎ − 1) < 𝑗 , we also know that 𝑧 (𝑖, 𝑗), 𝑧′(𝑖, 𝑗 ′) ∈ 𝐴+
. Since

𝐺 = 𝛼 (𝐴+) is a group, we get 𝜂 (𝑧 (𝑖, 𝑗)) = 𝜂 (𝑧′(𝑖, 𝑗 ′)) as desired. □

We are ready to present the main property. We state it in the

following proposition.

Proposition E.9. Consider a morphism 𝜂 : 𝐴∗ → 𝑁 such that
𝐺 = 𝛼 (𝐴+) is a group. For all 𝑘 ∈ N, we have 𝑝 ≥ 1 such that if 𝑛 ≥ 1

and 𝑢, 𝑣, 𝑥,𝑦, 𝑧 ∈ 𝐴∗ satisfy 𝑢 ⪯𝜂,𝑘,𝑛 𝑣 ⪯𝜂,𝑘,1 𝑧,

(𝑧𝑥)𝑝𝑢 (𝑦𝑧)𝑝 ⪯𝜂,𝑘,𝑛+1
(𝑧𝑥)𝑝𝑣 (𝑦𝑧)𝑝 .

Proof. We fix 𝑘 ∈ N. Let us first define 𝑝 ≥ 1. By Lemma E.6

the equivalence �𝜂,𝑘,1 is a congruence of finite index. Hence, the

quotient set𝐴∗/�𝜂,𝑘,1 is a finitemonoid. We now define 𝑝 = 𝜔 (𝐺)×
𝜔 (𝐴∗/�𝜂,𝑘,1). By definition, we have the following key property of

𝑝:

for every ℓ ≤ 𝑘 and𝑤 ∈ 𝐴∗
,𝑤2𝑝 �𝜂,ℓ,1 𝑤

𝑝
. (8)

Let 𝑛 ≥ 1 and 𝑥,𝑦, 𝑧 ∈ 𝐴∗
. Moreover we write 𝑤1 = (𝑧𝑥)𝑝 and

𝑤2 = (𝑦𝑧)𝑝 . We prove a more general property.

Lemma E.10. Let ℓ ≤ 𝑘 , 1 ≤ 𝑚 ≤ 𝑛 and 𝑢, 𝑣 ∈ 𝐴∗ such that
𝑢 ⪯𝜂,ℓ,1 𝑧 and 𝑣 ⪯𝜂,ℓ,1 𝑧. Let𝑤 = 𝑤1𝑢𝑤2 and𝑤 ′ = 𝑤1𝑣𝑤2. The three
following properties hold:

(1) if 0 ≤ 𝑖 ≤ |𝑤1 | and 𝑢 ⪯𝜂,ℓ,𝑚 𝑣 , then𝑤, 𝑖 ⪯𝜂,ℓ,𝑚+1 𝑤
′, 𝑖 .

(2) if 1 ≤ 𝑖 ≤ |𝑤2 | + 1 and 𝑢 ⪯𝜂,ℓ,𝑚 𝑣 , then
𝑤, |𝑤1𝑢 | + 𝑖 ⪯𝜂,ℓ,𝑚+1 𝑤

′, |𝑤1𝑣 | + 𝑖 .
(3) if 𝑖 ∈ Pc (𝑢) and 𝑖 ′ ∈ Pc (𝑣) satisfy 𝑢, 𝑖 ⪯𝜂,ℓ,𝑚 𝑣, 𝑖 ′, then

𝑤, |𝑤1 | + 𝑖 ⪯𝜂,ℓ,𝑚+1 𝑤
′, |𝑤1 | + 𝑖 ′.

Let us first apply the lemma to compete the main argument.

Consider 𝑢, 𝑣 ∈ 𝐴∗
such that 𝑢 ⪯𝜂,𝑘,𝑛 𝑣 ⪯𝜂,𝑘,1 𝑧. The first assertion
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in Lemma E.10 yields𝑤1𝑢𝑤2, 0 ⪯𝜂,𝑘,𝑛+1
𝑤1𝑣𝑤2, 0. This exactly says

that 𝑤1𝑢𝑤2 ⪯𝜂,𝑘,𝑛+1
𝑤1𝑣𝑤2 by definition and Proposition E.9 is

proved. It remains to prove Lemma E.10.

We fix ℓ ≤ 𝑘 , 1 ≤ 𝑚 ≤ 𝑛 and 𝑢, 𝑣 ∈ 𝐴∗
such that 𝑢 ⪯𝜂,ℓ,1

𝑧 and 𝑣 ⪯𝜂,ℓ,1 𝑧. We write 𝑤 = 𝑤1𝑢𝑤2 and 𝑤 ′ = 𝑤1𝑣𝑤2. We

use induction on ℓ and 𝑚 (in any order) to prove that the three

properties in the lemma hold. Since the three of them are handled

using similar arguments, we only detail the third one and leave

the other two to the reader. Hence, we consider 𝑖 ∈ Pc (𝑢) and 𝑖 ′ ∈
Pc (𝑣) such that 𝑢, 𝑖 ⪯𝜂,ℓ,𝑚 𝑣, 𝑖 ′. We show that 𝑤, |𝑤1 | + 𝑖 ⪯𝜂,ℓ,𝑚+1

𝑤 ′, |𝑤1 | + 𝑖 ′. The argument is based on Proposition E.4. There are

four conditions to verify. For Condition 1, that (𝑤, |𝑤1 | + 𝑖) and
(𝑤 ′, |𝑤1 | + 𝑖 ′) are 𝜂-equivalent can be verified from 𝑢, 𝑖 ⪯𝜂,ℓ,𝑚 𝑣, 𝑖 ′

which implies that (𝑢, 𝑖) and (𝑣, 𝑖 ′) are 𝜂-equivalent. We turn to

Condition 2. we have to prove that𝑤 ′, |𝑤1 | + 𝑖 ′ ⪯𝜂,ℓ,𝑚 𝑤, |𝑤1 | + 𝑖 .
There are two sub-cases depending on𝑚. First, assume that𝑚 ≥ 2.

Since 𝑢, 𝑖 ⪯𝜂,ℓ,𝑚 𝑣, 𝑖 ′, Proposition E.4 implies that 𝑣, 𝑖 ′ ⪯𝜂,ℓ,𝑚−1

𝑢, 𝑖 . Hence, by induction on𝑚, the third assertion in Lemma E.10

yields𝑤 ′, |𝑤1 | + 𝑖 ⪯𝜂,ℓ,𝑚 𝑤, |𝑤1 | + 𝑖 as desired.We now assume that

𝑚 = 1: we prove that 𝑤 ′, |𝑤1 | + 𝑖 ′ ⪯𝜂,ℓ,1 𝑤, |𝑤1 | + 𝑖 . Consider the
decompositions 𝑢 = 𝑢1𝑎𝑢2 and 𝑣 = 𝑣1𝑎𝑣2 where the positions

carrying the highlighted letters “𝑎” are 𝑖 and 𝑖 ′. We prove that

𝑤1𝑣1 ⪯𝜂,ℓ,1 𝑤1𝑢1 and 𝑣2𝑤2 ⪯𝜂,ℓ,1 𝑢2𝑤2, Since 𝑤 = 𝑤1𝑢1𝑎𝑢2𝑤2

and 𝑤 ′ = 𝑤1𝑣1𝑎𝑣2𝑤2, it will then follow from Lemma E.6 that

𝑤 ′, |𝑤1 | + 𝑖 ′ ⪯𝜂,ℓ,1 𝑤, |𝑤1 | + 𝑖 as desired. By symmetry, we only

prove that 𝑣2𝑤2 ⪯𝜂,ℓ,1 𝑢2𝑤2. If 𝑢2 = 𝑣2, this is trivial. Hence, we

assume that 𝑢2 ≠ 𝑣2. Since 𝑢, 𝑖 ⪯𝜂,ℓ,1 𝑣, 𝑖 ′, one may verify from

Proposition E.4 that 𝜂 (𝑢2) = 𝜂 (𝑣2). We prove that 𝑣2 ⪯𝜂,ℓ,1 𝑢2 (𝑦𝑣)𝑝 .
Let us first explain why this implies the desired result. By (8), we

have (𝑦𝑣)2𝑝 ⪯𝜂,ℓ,1 (𝑦𝑣)𝑝 . Together, with 𝑣2 ⪯𝜂,ℓ,1 𝑢2 (𝑦𝑣)𝑝 and

Lemma E.6, this implies 𝑣2 (𝑦𝑣)𝑝 ⪯𝜂,ℓ,1 𝑢2 (𝑦𝑣)2𝑝 ⪯𝜂,ℓ,1 𝑢2 (𝑦𝑣)𝑝 as

desired. It remains to prove that 𝑣2 ⪯𝜂,ℓ,1 𝑢2 (𝑦𝑣)𝑝 . Let 𝑦′ = 𝑦𝑣1𝑎.

Clearly, we have 𝑦𝑣 = 𝑦′𝑣2. Thus, we have to show that 𝑣2 ⪯𝜂,ℓ,1
𝑢2 (𝑦′𝑣2)𝑝 . There are two cases depending on 𝜂. If 𝜂 (𝐴∗) = 𝐺 , the
result is immediate from Lemma E.7 since 𝜂 (𝑢2) = 𝜂 (𝑣2) and 𝑝 is a

multiple of 𝜔 (𝐺). Assume now that 𝜂 (𝐴∗) ≠ 𝐺 . Since 𝜂 (𝐴+) = 𝐺 , it
follows that 𝜂−1 (1𝑁 ) = {𝜀}. Hence, since𝑢, 𝑖 ⪯𝜂,ℓ,1 𝑣, 𝑖 ′ and𝑢2 ≠ 𝑣2,

one may verify from Proposition E.4 that |𝑢2 | ≥ ℓ , |𝑣2 | ≥ ℓ and

𝑢2 (0, ℓ +1) = 𝑣2 (0, ℓ +1). Hence, we may apply Lemma E.8 to obtain

𝑣2 ⪯𝜂,ℓ,1 𝑢2 (𝑦′𝑣2)𝑝 since 𝑝 is a multiple of 𝜔 (𝐺). This completes

the proof for Condition 2.

It remains to handle Conditions 3 and 4. Since those are sym-

metrical, we only present an argument for the former. Let 𝑗 ∈
P(𝑤) such that |𝑤1 | + 𝑖 < 𝑗 . We have to exhibit 𝑗 ′ ∈ P(𝑤 ′) such
that |𝑤1 | + 𝑖 ′ < 𝑗 ′, 𝜂 (𝑤 ′( |𝑤1 | + 𝑖 ′, 𝑗 ′)) = 𝜂 (𝑤 ( |𝑤1 | + 𝑖, 𝑗)) and
𝑤, 𝑗 ⪯𝜂,ℓ−1,𝑚+1 𝑤 ′, 𝑗 ′. We distinguish two sub-cases depending

on 𝑗 . First, assume that |𝑤1 | + 𝑖 < 𝑗 ≤ |𝑤1𝑢 |. In this case, there

exists a position ℎ ∈ Pc (𝑢) such that 𝑗 = |𝑤1 | + ℎ. In particular,

we have 𝑖 ≤ ℎ. Hence, since 𝑢, 𝑖 ⪯𝜂,ℓ,𝑚 𝑣, 𝑖 ′, Proposition E.4 yields

ℎ′ ∈ Pc (𝑣) such that 𝜂 (𝑢 (𝑖, ℎ)) = 𝜂 (𝑣 (𝑖 ′, ℎ′)) and 𝑢,ℎ ⪯𝜂,ℓ−1,𝑚 𝑣, ℎ′.
We now define 𝑗 ′ = |𝑤1 | + ℎ′. Clearly, 𝑤 ′( |𝑤1 | + 𝑖 ′, 𝑗 ′) = 𝑣 (𝑖 ′, ℎ′)
and𝑤 ( |𝑤1 | + 𝑖, 𝑗) = 𝑢 (𝑖, ℎ). Hence, it is immediate that 𝜂 (𝑤 ′( |𝑤1 | +
𝑖 ′, 𝑗 ′)) = 𝜂 (𝑤 ( |𝑤1 | + 𝑖, 𝑗)). Moreover, since 𝑢,ℎ ⪯𝜂,ℓ−1,𝑚 𝑣, ℎ′,
it follows from induction on ℓ that we may apply the third as-

sertion in Lemma E.10 to get 𝑤, 𝑗 ⪯𝜂,ℓ−1,𝑚+1 𝑤
′, 𝑗 ′. We turn to

the second sub-case: 𝑗 > |𝑤1𝑢 |. In this case, there exists a po-

sition 1 ≤ ℎ ≤ |𝑤2 | + 1 of 𝑤2 such that 𝑗 = |𝑤1𝑢 | + ℎ. We let

𝑗 ′ = |𝑤1𝑣 | + ℎ. Clearly, we have |𝑤1 | + 𝑖 ′ < 𝑗 ′. It is also immediate

that 𝑤 ′( |𝑤1 | + 𝑖 ′, 𝑗 ′) = 𝑣 (𝑖 ′, |𝑣 | + 1)𝑤2 (0, ℎ) and 𝑤 ( |𝑤1 | + 𝑖, 𝑗) =

𝑢 (𝑖, |𝑢 | + 1)𝑤2 (0, ℎ). Additionally, since 𝑢, 𝑖 ⪯𝜂,ℓ,𝑚 𝑣, 𝑖 ′, one may

verify from Proposition E.4 that 𝜂 (𝑢 (𝑖, |𝑢 | + 1)) = 𝜂 (𝑣 (𝑖 ′, |𝑣 | + 1)).
Hence, we get 𝜂 (𝑤 ′( |𝑤1 | + 𝑖 ′, 𝑗 ′)) = 𝜂 (𝑤 ( |𝑤1 | + 𝑖, 𝑗)). Finally, it
follows from induction on ℓ that we may apply the second assertion

in Lemma E.10 to get 𝑤, 𝑗 ⪯𝜂,ℓ−1,𝑚+1 𝑤
′, 𝑗 ′. This completes the

proof of Lemma E.10. □

Finally, we complete Proposition E.9 with a useful corollary. In

fact, this is the result that we shall actually need.

Corollary E.11. Consider a morphism 𝜂 : 𝐴∗ → 𝑁 such that
𝐺 = 𝛼 (𝐴+) is a group. For all 𝑘 ∈ N, we have 𝑝 ≥ 1 such that for
𝑛 ≥ 1 and 𝑢, 𝑣, 𝑥,𝑦 ∈ 𝐴∗ satisfying 𝑢 �𝜂,𝑘,𝑛 𝑣 , we have,

(𝑣𝑥)𝑝𝑢 (𝑦𝑣)𝑝 �𝜂,𝑘,𝑛+1
(𝑣𝑥)𝑝𝑣 (𝑦𝑣)𝑝 .

Proof. We fix 𝑘 ∈ N and define 𝑝 ≥ 1 as the number given by

Proposition E.9. Since 𝑢 ⪯𝜂,𝑘,𝑛 𝑣 ⪯𝜂,𝑘,1 𝑣 , the case 𝑧 = 𝑣 in the

proposition yields,

(𝑣𝑥)𝑝𝑢 (𝑦𝑣)𝑝 ⪯𝜂,𝑘,𝑛+1
(𝑣𝑥)𝑝𝑣 (𝑦𝑣)𝑝 .

Moreover, we also have 𝑣 ⪯𝜂,𝑘,𝑛 𝑢 ⪯𝜂,𝑘,1 𝑣 . Therefore, we may

apply Proposition E.9 in the case when 𝑢 and 𝑣 have been swapped

and 𝑧 = 𝑣 . This yields,

(𝑣𝑥)𝑝𝑣 (𝑦𝑣)𝑝 ⪯𝜂,𝑘,𝑛+1
(𝑣𝑥)𝑝𝑢 (𝑦𝑣)𝑝 .

We get (𝑣𝑥)𝑝𝑢 (𝑦𝑣)𝑝 �𝜂,𝑘,𝑛+1
(𝑣𝑥)𝑝𝑣 (𝑦𝑣)𝑝 as desired. □

E.3 Proof of Theorem 6.4
We now concentrate on proving Theorem 6.4. Let us first recall the

statement.

Theorem 6.4. If𝒢 is a group prevariety and 𝒞 ∈ {𝒢,𝒢+}, then
ℬΣ2

𝑛+1
(I𝒞) = 𝑀𝑃𝑜𝑙 (ℬΣ2

𝑛 (I𝒞)) for all 𝑛 ≥ 1.

Proof. For all 𝑛 ≥ 1, we write 𝒟𝑛 = ℬΣ2

𝑛 (I𝒞). We use in-

duction on 𝑛 to prove that 𝒟𝑛+1 = 𝑀𝑃𝑜𝑙 (𝒟𝑛) for all 𝑛 ≥ 1. Fix

𝑛 ≥ 1 for the proof. we already proved the inclusion𝑀𝑃𝑜𝑙 (𝒟𝑛) ⊆
𝒟𝑛+1 in the main text. Here, we concentrate on the converse one:

𝒟𝑛+1 ⊆ 𝑀𝑃𝑜𝑙 (𝒟𝑛). The argument is based on Corollary E.11.

Let 𝐿 ∈ 𝒟𝑛+1. Since 𝒟𝑛 is a prevariety, it follows from Propo-

sition 2.2 that it suffices to prove that the syntactic morphism

𝛼 : 𝐴∗ → 𝑀 of 𝐿 is an 𝑀𝑃𝑜𝑙 (𝒟𝑛)-morphism. We use Theo-

rem 4.3: for every 𝑞, 𝑟, 𝑠, 𝑡 ∈ 𝑀 such that (𝑠, 𝑡) ∈ 𝑀2
is a 𝒟𝑛-

pair, we prove that (𝑠𝑞)𝜔𝑠 (𝑟𝑠)𝜔 = (𝑠𝑞)𝜔𝑡 (𝑟𝑠)𝜔 . By definition of

𝒟𝑛+1, we have 𝐿 ∈ ℬΣ2

𝑛+1
(I𝒞). Therefore, Lemma E.3 yields a

𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that 𝐿 is a union of

�𝜂,𝑘,𝑛+1
-classes. Let 𝐾 be the union of all �𝜂,𝑘,𝑛-classes which

intersect 𝛼−1 (𝑠). Lemma E.3 yields 𝐾 ∈ ℬΣ2

𝑛 (I𝒞) = 𝒟𝑛 . More-

over, 𝛼−1 (𝑠) ⊆ 𝐾 by hypothesis. Since (𝑠, 𝑡) ∈ 𝑀2
is a 𝒟𝑛-pair, it

follows that 𝐾 ∩ 𝛼−1 (𝑡) ≠ ∅. Hence, we get 𝑢, 𝑣 ∈ 𝐴∗
such that

𝛼 (𝑣) = 𝑠 , 𝛼 (𝑢) = 𝑡 and 𝑢 �𝜂,𝑘,𝑛 𝑣 . We also let 𝑥,𝑦 ∈ 𝐴∗
such that

𝛼 (𝑥) = 𝑞 and 𝛼 (𝑦) = 𝑟 . Since 𝒞 ∈ {𝒢,𝒢+} and 𝜂 : 𝐴∗ → 𝑁 is a

𝒞-morphism, Lemma E.1 implies that𝐺 = 𝜂 (𝐴+) is a group. Hence,



LICS ’22, August 2–5, 2022, Haifa, Israel Thomas Place

since 𝑢 �𝜂,𝑘,𝑛 𝑣 , Corollary E.11 and Lemma E.6 yields 𝑝 ≥ 1 such

that,

𝑤 (𝑣𝑥)𝑝𝑢 (𝑦𝑣)𝑝𝑤 ′ �𝜂,𝑘,𝑛 𝑤 (𝑣𝑥)𝑝𝑣 (𝑦𝑣)𝑝𝑤 ′
for all𝑤,𝑤 ′ ∈ 𝐴∗

.

By definition of the syntactic morphism, it follows that the words

(𝑣𝑥)𝑝𝑣 (𝑦𝑣)𝑝 and (𝑣𝑥)𝑝𝑢 (𝑦𝑣)𝑝 have the same image under 𝛼 . We

get (𝑠𝑞)𝑝𝑠 (𝑟𝑠)𝑝 = (𝑠𝑞)𝑝𝑡 (𝑟𝑠)𝑝 . It now suffices to multiply by the

right amount of copies of 𝑡𝑞 on the left and of 𝑟𝑡 on the right to

obtain (𝑡𝑞)𝜔𝑠 (𝑟𝑡)𝜔 = (𝑠𝑡)𝜔𝑡 (𝑟𝑡)𝜔 . This completes the proof of

𝒟𝑛+1 ⊆ 𝑀𝑃𝑜𝑙 (𝒟𝑛). □

F APPENDIX TO SECTION 7
This appendix contains the proofs of all statements in Section 7. Its

organization mimics the one of Section 7.

F.1 Preliminary statements
We start with the proof of Fact 7.2

Fact 7.2. Let 𝒞 be a finite prevariety. Given as input two regular
languages 𝐿0 and 𝐿1, one may compute a 𝒞-compatible morphism
recognizing both 𝐿0 and 𝐿1.

Proof. Proposition 2.3 yields a 𝒞-morphism 𝜂 : 𝐴∗ → 𝑁 rec-

ognizing all languages in 𝒞 since 𝒞 is finite. Moreover, since 𝐿0

and 𝐿1 are regular, one may compute morphism 𝛼0 : 𝐴∗ → 𝑀0 and

𝛼1 : 𝐴∗ → 𝑀1 which recognize 𝐿0 and 𝐿1 respectively. We consider

the monoid𝑀0 ×𝑀1 × 𝑁 equipped with the componentwise multi-

plication. Moreover, we let 𝛼 : 𝐴∗ → 𝑀0 ×𝑀1 ×𝑁 as the morphism

defined by 𝛼 (𝑤) = (𝛼0 (𝑤), 𝛼1 (𝑤), 𝜂 (𝑤)) for every 𝑤 ∈ 𝐴∗
. One

may now verify that the surjective restriction of 𝛼 is 𝒞-compatible

and recognizes both 𝐿0 and 𝐿1. □

We complete Fact 7.2 with a useful result on 𝒞-compatible mor-

phisms.

Fact F.1. Let𝒞 be a finite prevariety,𝛼 : 𝐴∗ → 𝑀 a𝒞-compatible
morphism and 𝜂 : 𝐴∗ → 𝑁 an arbitrary morphism. For every
𝑢, 𝑣 ∈ 𝐴∗, if 𝛼 (𝑢) ∼𝒞 𝛼 (𝑣), then 𝜂 (𝑢) ∼𝒞 𝜂 (𝑣).

Proof. Let 𝑢, 𝑣 ∈ 𝐴∗
such that 𝛼 (𝑢) ∼𝒞 𝛼 (𝑣). We show that

𝜂 (𝑢) ∼𝒞 𝜂 (𝑣). Given 𝐹 ⊆ 𝑁 such that 𝜂−1 (𝐹 ) ∈ 𝒞, we have

to prove that 𝜂 (𝑢) ∈ 𝐹 ⇔ 𝜂 (𝑣) ∈ 𝐹 . By hypothesis, 𝜂−1 (𝐹 ) is
recognized by 𝛼 . We get 𝑃 ⊆ 𝑀 such that 𝜂−1 (𝐹 ) = 𝛼−1 (𝑃). In
particular, 𝛼−1 (𝑃) ∈ 𝒞 and since 𝛼 (𝑢) ∼𝒞 𝛼 (𝑣), we get 𝛼 (𝑢) ∈
𝑃 ⇔ 𝛼 (𝑣) ∈ 𝑃 . Therefore, 𝑢 ∈ 𝛼−1 (𝑃) ⇔ 𝑣 ∈ 𝛼−1 (𝑃) and since

𝜂−1 (𝐹 ) = 𝛼−1 (𝑃), we get 𝜂 (𝑢) ∈ 𝐹 ⇔ 𝜂 (𝑣) ∈ 𝐹 , completing the

proof. □

We now prove Lemma 7.3.

Lemma 7.3. Let 𝒟 be a prevariety, 𝛼 : 𝐴∗ → 𝑀 a morphism and
𝐹0, 𝐹1 ⊆ 𝑀 . In this case, 𝛼−1 (𝐹0) is𝒟-separable from 𝛼−1 (𝐹1) if and
only if (𝐹0 × 𝐹1) ∩ NS𝒟 [𝛼] = ∅.

Proof. Assume first that 𝛼−1 (𝐹0) is𝒟-separable from 𝛼−1 (𝐹1)
and let 𝐿 ∈ 𝒟 be a separator. Clearly, for every 𝐻0 ⊆ 𝛼−1 (𝐹0) and
every 𝐻1 ⊆ 𝛼−1 (𝐹1), 𝐿 separates 𝐻0 from 𝐻1. Hence, for every

(𝑠0, 𝑠1) ∈ 𝐹0 × 𝐹1, the language 𝐿 ∈ 𝒟 separates 𝛼−1 (𝑠0) from
𝛼−1 (𝑠1). It follows that (𝑠0, 𝑠1) ∉ NS𝒟 [𝛼]. Therefore, (𝐹0 × 𝐹1) ∩
NS𝒟 [𝛼] = ∅ as desired.

We now assume that (𝐹0 × 𝐹1) ∩ NS𝒟 [𝛼] = ∅. Consider a
pair (𝑠0, 𝑠1) ∈ 𝐹0 × 𝐹1. By hypothesis 𝛼−1 (𝑠0) is𝒟-separable from

𝛼−1 (𝑠1). We let 𝐿𝑠0,𝑠1
∈ 𝒟 as a separator. We now define,

𝐿 =
⋃
𝑠0∈𝐹0

©«
⋂
𝑠1∈𝐹1

𝐿𝑠0,𝑠1

ª®¬ .
Clearly, 𝐿 ∈ 𝒟 since 𝒟 is a prevariety. One may verify that 𝐿

separates 𝛼−1 (𝐹0) from 𝛼−1 (𝐹1), completing the proof. □

We complete the presentation with a lemma which connects

the set NS𝒟 [𝜂, 𝛼] to 𝒟-morphisms. It will be useful in proofs

arguments.

Lemma F.2. Let be 𝒟 is a prevariety, and 𝛼 : 𝐴∗ → 𝑀 be a
morphism. The following properties hold:

(1) For all (𝑠, 𝑠 ′) ∈ NS𝒟 [𝛼], if 𝜂 : 𝐴∗ → 𝑁 is a 𝒟-morphism,
there exist 𝑢,𝑢 ′ ∈ 𝐴∗ such that 𝛼 (𝑢) = 𝑠 , 𝛼 (𝑢 ′) = 𝑠 ′ and
𝜂 (𝑢) = 𝜂 (𝑢 ′).

(2) There exists a 𝒟-morphism 𝜂 : 𝐴∗ → 𝑁 such that for all
𝑢,𝑢 ′ ∈ 𝐴∗, if 𝜂 (𝑢) = 𝜂 (𝑢 ′), then (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ NS𝒟 [𝛼].

Proof. For the first assertion, consider (𝑠, 𝑠 ′) ∈ NS𝒟 [𝛼] and
some 𝒟-morphism 𝜂 : 𝐴∗ → 𝑁 . By hypothesis 𝛼−1 (𝑠) is not 𝒟-

separable from 𝛼−1 (𝑠 ′). In particular, these two languages cannot

be separated by a language recognized by 𝜂. Hence, there exists

some 𝑞 ∈ 𝑁 such that 𝜂−1 (𝑞) intersects both 𝛼−1 (𝑠) and 𝛼−1 (𝑠 ′).
This yields 𝑢,𝑢 ′ ∈ 𝐴∗

such that 𝛼 (𝑢) = 𝑠 , 𝛼 (𝑢 ′) = 𝑠 ′ and 𝜂 (𝑢) =

𝜂 (𝑢 ′) = 𝑞.
We turn to the second assertion. Let 𝑆 = 𝑀2 \ NS𝒟 [𝛼]. By

definition, for every pair (𝑠, 𝑠 ′) ∈ 𝑆 , there exists a language 𝐿𝑠,𝑠′ ∈
𝒟 which separates 𝛼−1 (𝑠) from 𝛼−1 (𝑠 ′). Proposition 2.3 yields a

𝒟-morphism 𝜂 : 𝐴∗ → 𝑁 recognizing all languages 𝐿𝑠,𝑠′ ∈ 𝒟 for

(𝑠, 𝑠 ′) ∈ 𝑆 . We now consider 𝑢,𝑢 ′ ∈ 𝐴∗
such that 𝜂 (𝑢) = 𝜂 (𝑢 ′)

and show that (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ NS𝒟 [𝛼]. Since 𝜂 (𝑢) = 𝜂 (𝑢 ′), no
language recognized by 𝜂 can separate 𝛼−1 (𝛼 (𝑢)) from 𝛼−1 (𝛼 (𝑢 ′)).
Hence, (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∉ 𝑆 by definition of 𝜂. This exactly says that

(𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ NS𝒟 [𝛼] as desired. □

We now turn to the proof of Lemma 7.4.

Lemma 7.4. Let𝒟 be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a morphism.
Then, NS𝒟 [𝛼] is saturated for 𝛼 .

Proof. First, it is clear that (𝛼 (𝑤), 𝛼 (𝑤)) ∈ NS𝒟 [𝛼] for every
𝑤 ∈ 𝐴∗

. Indeed, 𝛼−1 (𝛼 (𝑤)) is not 𝒟-separable from 𝛼−1 (𝛼 (𝑤))
since these two languages intersect (𝑤 is in the intersection). We

prove closure under multiplication. For 𝑖 = 1, 2, we let (𝑠𝑖 , 𝑠 ′𝑖 ) ∈
NS𝒟 [𝛼] and prove that (𝑠1𝑠2, 𝑠 ′

1
𝑠 ′
2
) ∈ NS𝒟 [𝛼]. Lemma 7.4 yields

a 𝒟-morphism 𝜂 : 𝐴∗ → 𝑁 such that for every 𝑤,𝑤 ′ ∈ 𝐴∗
, if

𝜂 (𝑤) = 𝜂 (𝑤 ′), then (𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ NS𝒟 [𝛼]. Since (𝑠𝑖 , 𝑠 ′𝑖 ) ∈
NS𝒟 [𝛼] for 𝑖 = 1, 2, Lemma 7.4 yields 𝑢𝑖 , 𝑢

′
𝑖

∈ 𝐴∗
such that

𝛼 (𝑢𝑖 ) = 𝑠𝑖 , 𝛼 (𝑢 ′𝑖 ) = 𝑠
′
𝑖
and 𝜂 (𝑢𝑖 ) = 𝜂 (𝑢 ′𝑖 ). Therefore, 𝛼 (𝑢1𝑢2) = 𝑠1𝑠2,

𝛼 (𝑢 ′
1
𝑢 ′

2
) = 𝑠 ′

1
𝑠 ′
2
, 𝜂 (𝑢1𝑢2) = 𝜂 (𝑢 ′

1
𝑢 ′

2
). By definition of 𝜂, it follows

that (𝑠1𝑠2, 𝑠 ′
1
𝑠 ′
2
) ∈ NS𝒟 [𝛼] as desired. □

We now consider Lemma 7.5

Lemma 7.5. The following equalities hold:𝑈𝑃𝑜𝑙 (AT) = 𝑈𝑃𝑜𝑙 (PT),
𝐿𝑃𝑜𝑙 (AT) = 𝐿𝑃𝑜𝑙 (PT) and 𝑅𝑃𝑜𝑙 (AT) = 𝑅𝑃𝑜𝑙 (PT).
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Proof. Since it is clear that AT ⊆ PT the left to right inclu-

sions are immediate. We prove that 𝐿𝑃𝑜𝑙 (PT) ⊆ 𝐿𝑃𝑜𝑙 (AT) and
𝑈𝑃𝑜𝑙 (PT) ⊆ 𝑈𝑃𝑜𝑙 (AT) (the case of 𝑅𝑃𝑜𝑙 is symmetrical and left

to the reader). We prove that PT ⊆ 𝐿𝑃𝑜𝑙 (AT). This will imply

that 𝐿𝑃𝑜𝑙 (PT) ⊆ 𝐿𝑃𝑜𝑙 (𝐿𝑃𝑜𝑙 (AT)) = 𝐿𝑃𝑜𝑙 (AT) and 𝑈𝑃𝑜𝑙 (PT) ⊆
𝑈𝑃𝑜𝑙 (𝐿𝑃𝑜𝑙 (AT)) = 𝑈𝑃𝑜𝑙 (AT) as desired. Every language in PT is a

Boolean combination of marked products 𝐴∗𝑎1𝐴
∗ · · ·𝑎𝑛𝐴∗

. There-

fore, since 𝐿𝑃𝑜𝑙 (AT) is a prevariety by Theorem 3.15, it suffices to

prove that every such marked product belongs to 𝐿𝑃𝑜𝑙 (AT). Ob-
serve that 𝐴∗𝑎1𝐴

∗ · · ·𝑎𝑛𝐴∗
is also defined by the marked product

(𝐴 \ {𝑎1})∗𝑎1 (𝐴 \ {𝑎2})∗𝑎2 · · · (𝐴 \ {𝑎𝑛})∗𝑎𝑛𝐴∗
. One may verify

that this a left deterministic marked product of languages in AT.

Thus,𝐴∗𝑎1𝐴
∗ · · ·𝑎𝑛𝐴∗ ∈ 𝐿𝑃𝑜𝑙 (AT) which concludes the proof. □

Finally, we shall need the following standard lemma about the

Green relations of finite monoids.

Lemma F.3. Let𝑀 be a finite monoid and 𝑠, 𝑡 ∈ 𝑀 . If 𝑠 ⩽ℛ 𝑡 and
𝑡 ⩽𝒥 𝑠 , then 𝑠 ℛ 𝑡 . Symmetrically, if 𝑠 ⩽ℒ 𝑡 and 𝑡 ⩽𝒥 𝑠 , then 𝑠 ℒ 𝑡 .

Proof. By symmetry, we only prove the first property. Assume

that 𝑠 ⩽ℛ 𝑡 and 𝑡 ⩽𝒥 𝑠 . We show that 𝑠 ℛ 𝑡 . Since we already

know that 𝑡 ⩽ℛ 𝑠 , this amounts to proving that 𝑠 ⩽ℛ 𝑡 . Since

𝑡 ⩽ℛ 𝑠 , we have 𝑥 ∈ 𝑀 such that 𝑠𝑥 = 𝑡 . Since 𝑠 ⩽𝒥 𝑡 , we have

𝑦, 𝑧 ∈ 𝑀 such that 𝑦𝑡𝑧 = 𝑠 . This yields,

𝑠 = 𝑦𝑠𝑥𝑧 = 𝑦𝜔𝑠 (𝑥𝑧)𝜔 = 𝑦𝜔𝑠 (𝑥𝑧)𝜔 (𝑥𝑧)𝜔 = 𝑠 (𝑥𝑧)𝜔 .
Therefore, 𝑠 = 𝑠𝑥 (𝑧𝑥)𝜔−1𝑧 = 𝑡 (𝑧𝑥)𝜔−1𝑧 and we get 𝑠 ⩽ℛ 𝑡 , com-

pleting the proof. □

F.2 Left/right polynomial closure
This part of the appendix is devoted to the proof of Theorem 7.7.

Let us first recall the statement.

Theorem 7.7. Let𝒞 be a finite prevariety and𝒟 a prevariety such
that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Let 𝛼 : 𝐴∗ → 𝑀 be a 𝒞-compatible mor-
phism and 𝑃 = NS𝒟 [𝛼]. Then, NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] is the least (𝐿𝑃𝑜𝑙, 𝑃)-
saturated subset of 𝑀2 and NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼] is the least (𝑅𝑃𝑜𝑙, 𝑃)-
saturated subset of𝑀2 for 𝛼 .

By symmetry, we only prove that NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] is the least

(𝐿𝑃𝑜𝑙, 𝑃)-saturated subset of𝑀2
. The proof involves two indepen-

dent arguments. First, we show that NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] is (𝐿𝑃𝑜𝑙, 𝑃)-
saturated. Then, we show it includes all (𝐿𝑃𝑜𝑙, 𝑃)-saturated subsets.
We start with the former.

Soundness. We prove that NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] is (𝐿𝑃𝑜𝑙, 𝑃)-saturated.
We write 𝑆 = NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] for the proof. We already know from

Lemma 7.4 that it is saturated since 𝐿𝑃𝑜𝑙 (𝒟) is a prevariety by

Theorem 3.15. Hence, we focus on (3). Let (𝑒, 𝑒 ′) ∈ 𝑆 be a pair of

idempotents and (𝑠, 𝑠 ′) ∈ 𝑃 such that [𝑒]𝒞 ⩽ℛ [𝑠]𝒞 . We show that

(𝑒𝑠, 𝑒 ′𝑠 ′) ∈ 𝑆 . By Lemma F.2, there exists an 𝐿𝑃𝑜𝑙 (𝒟)-morphism

𝜂 : 𝐴∗ → 𝑁 such that for every pair 𝑢,𝑢 ′ ∈ 𝐴∗
, such that 𝜂 (𝑢) =

𝜂 (𝑢 ′), we have (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑆 .
Since (𝑒, 𝑒 ′) ∈ 𝑆 , 𝑆 = NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] and 𝜂 is an 𝐿𝑃𝑜𝑙 (𝒟)-

morphism, Lemma F.2 yields two words 𝑥, 𝑥 ′ ∈ 𝐴∗
such that

𝜂 (𝑥) = 𝜂 (𝑥 ′), 𝛼 (𝑥) = 𝑒 and 𝛼 (𝑥 ′) = 𝑒 ′. We shall write 𝑡 =

𝜂 (𝑥) = 𝜂 (𝑥 ′). Moreover, since (𝑠, 𝑠 ′) ∈ 𝑃 , 𝑃 = NS𝒟 [𝛼] and

[·]𝒟 ◦ 𝜂 : 𝐴∗ → 𝑁 /∼𝒟 is a 𝒟-morphism by Lemma 2.7, we get

from Lemma F.2 that there exist 𝑦,𝑦′ ∈ 𝐴∗
such that 𝜂 (𝑦) ∼𝒟

𝜂 (𝑦′), 𝛼 (𝑦) = 𝑠 and 𝛼 (𝑦′) = 𝑠 ′. We write 𝑝 = 𝜂 (𝑦) and 𝑝 ′ =

𝜂 (𝑦′): we have 𝑝 ∼𝒟 𝑝 ′. Finally, since [𝑒]𝒞 ⩽ℛ [𝑠]𝒞 , we have

[𝛼 (𝑥)]𝒞 ⩽ℛ [𝛼 (𝑦)]𝒞 . Since 𝛼 is 𝒞-compatible, Fact F.1 yields

[𝜂 (𝑥)]𝒞 ⩽ℛ [𝜂 (𝑦)]𝒞 , i.e. [𝑡]𝒞 ⩽ℛ [𝑝]𝒞 . Clearly, this implies that

[𝑡𝜔 ]𝒞 ⩽ℛ [𝑝]𝒞 . By hypothesis, 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞) and 𝜂 is an

𝐿𝑃𝑜𝑙 (𝒟)-morphism. Hence, since 𝑡𝜔 is an idempotent of 𝑁 and

we have 𝑝 ∼𝒟 𝑝 ′, Lemma C.3 yields 𝑡𝜔𝑝 = 𝑡𝜔𝑝 ′. Let 𝑛 = 𝜔 (𝑁 ).
Since we have 𝑡 = 𝜂 (𝑥) = 𝜂 (𝑥 ′), 𝑝 = 𝜂 (𝑦) and 𝑝 ′ = 𝜂 (𝑦′), we
just proved that 𝜂 (𝑥𝑛𝑦) = 𝜂 ((𝑥 ′)𝑛𝑦′). As 𝑒 and 𝑒 ′ are idempo-

tents, we have 𝛼 (𝑥𝑛𝑦) = 𝑒𝑠 and 𝛼 ((𝑥 ′)𝑛𝑦′) = 𝑒 ′𝑠 ′. We obtain

(𝑒𝑠, 𝑒 ′𝑠 ′) ∈ NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] = 𝑆 by definition of 𝜂.

Completeness. Consider an arbitrary (𝐿𝑃𝑜𝑙, 𝑃)-saturated set 𝑆 ⊆
𝑀2

. We prove thatNS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] ⊆ 𝑆 . Since we have 𝑃 = NS𝒟 [𝛼],
it follows from Lemma F.2 that there exists a𝒟-morphism 𝜂 : 𝐴∗ →
𝑁 such that for every 𝑢,𝑢 ′ ∈ 𝐴∗

which satisfy 𝜂 (𝑢) = 𝜂 (𝑢 ′), we
have (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃 . Moreover, we define two notions that we

shall use as induction parameters. In the definition we consider the

Green relations ⩽𝒥 of 𝑀/∼𝒞 and ⩽ℛ of 𝑆 (note that 𝑆 ⊆ 𝑀2
is a

monoid since it is saturated for 𝛼):

(1) The 𝒥-rank 𝑟 (𝑤) ∈ N of a word 𝑤 ∈ 𝐴∗
is the number of

elements 𝑞 ∈ 𝑀/∼𝒞 such that [𝛼 (𝑤)]𝒞 ⩽𝒥 𝑞.

(2) Theℛ-index 𝑑 (𝑡, 𝑡 ′) ∈ N of a pair (𝑡, 𝑡 ′) ∈ 𝑆 is the number

of pairs (𝑝, 𝑝 ′) ∈ 𝑆 such that (𝑝, 𝑝 ′) ⩽ℛ (𝑡, 𝑡 ′).
Let𝑚 = |𝑀2 |. We prove the following lemma by induction.

Lemma F.4. Let 𝑑, 𝑟 ∈ N and 𝑘 ≥ 𝑚𝑟 + 𝑑 , For all (𝑡, 𝑡 ′) ∈ 𝑆

such that 𝑑 (𝑡, 𝑡 ′) ≤ 𝑑 and all 𝑤,𝑤 ′ ∈ 𝐴∗ such that 𝑟 (𝑤) ≤ 𝑟 and
𝑤 ▷𝜂,𝑘 𝑤

′, we have (𝑡𝛼 (𝑤), 𝑡𝛼 (𝑤 ′)) ∈ 𝑆 .

We first use Lemma F.4 to prove that NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] ⊆ 𝑆 . Let

(𝑠, 𝑠 ′) ∈ NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼]. We show that (𝑠, 𝑠 ′) ∈ 𝑆 . We let 𝑘 =

𝑚 × |𝑀/∼𝒞 | +𝑚 and consider the equivalence ▷𝜂,𝑘 . By Proposi-

tion 3.13 every union of ▷𝜂,𝑘 -class belongs to 𝐿𝑃𝑜𝑙 (𝒟) since 𝜂 is a

𝒟-morphism. Therefore, we obtain𝑤,𝑤 ′ ∈ 𝐴∗
such that 𝛼 (𝑤) = 𝑠 ,

𝛼 (𝑤 ′) = 𝑠 ′ and 𝑤 ▷𝜂,𝑘 𝑤 ′
(otherwise, 𝛼−1 (𝑠) would be separated

from 𝛼−1 (𝑠 ′) by a union of ▷𝜂,𝑘 -classes, which contradicts the hy-

pothesis that (𝑠, 𝑠 ′) ∈ NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼]). Clearly, we have 𝑟 (𝑤) ≤
|𝑀/∼𝒞 |. Moreover, (1𝑀 , 1𝑀 ) ∈ 𝑆 since 𝑆 is saturated and it is clear

that 𝑑 (1𝑀 , 1𝑀 ) ≤ |𝑀2 | =𝑚. Hence, since 𝑘 =𝑚 × |𝑀/∼𝒞 | +𝑚 and

𝑤 ▷𝜂,𝑘 𝑤
′
, Lemma F.4 yields (𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ 𝑆 , i.e., (𝑠, 𝑠 ′) ∈ 𝑆 as

desired.

We now prove Lemma F.4. We fix 𝑑, 𝑟 ∈ N and 𝑘 ≥ 𝑚𝑟 + 𝑑 for

the proof. We let (𝑡, 𝑡 ′) ∈ 𝑆 such that 𝑑 (𝑡, 𝑡 ′) ≤ 𝑑 and 𝑤,𝑤 ′ ∈
𝐴∗

such that 𝑟 (𝑤) ≤ 𝑟 and 𝑤 ▷𝜂,𝑘 𝑤 ′
. We need to prove that

(𝑡𝛼 (𝑤), 𝑡𝛼 (𝑤 ′)) ∈ 𝑆 . We proceed by induction on 𝑟 and 𝑑 (in that

order of importance). There are two cases.

Base case: we have (𝑠, 𝑠 ′) ∈ 𝑆 such that [𝑠]𝒞 ℛ [𝛼 (𝑤)]𝒞 and
(𝑡𝑠, 𝑡𝑠 ′) ℛ (𝑡, 𝑡 ′). By hypothesis, we get (𝑞, 𝑞′) ∈ 𝑆 such that

(𝑡𝑠𝑞, 𝑡 ′𝑠 ′𝑞′) = (𝑡, 𝑡 ′). Let (𝑒, 𝑒 ′) = ((𝑠𝑞)𝜔 , (𝑠 ′𝑞′)𝜔 ). Clearly, this is
a pair of idempotents in𝑀 , (𝑡𝑒, 𝑡 ′𝑒 ′) = (𝑡, 𝑡 ′) and (𝑒, 𝑒 ′) ∈ 𝑆 since
𝑆 is saturated. Since [𝑠]𝒞 ℛ [𝛼 (𝑤)]𝒞 , it is clear that [𝑒]𝒞 ⩽ℛ
[𝛼 (𝑤)]𝒞 . Finally, since 𝑤 ▷𝜂,𝑘 𝑤 ′

, we have 𝜂 (𝑤) = 𝜂 (𝑤 ′) which
yields (𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ 𝑃 by definition of 𝜂. Altogether, since 𝑆 is

(𝐿𝑃𝑜𝑙, 𝑃)-saturated, it follows from (3) that (𝑒𝛼 (𝑤), 𝑒 ′𝛼 (𝑤 ′)) ∈ 𝑆 .
By closure under multiplication, we get (𝑡𝑒𝛼 (𝑤), 𝑡 ′𝑒 ′𝛼 (𝑤 ′)) ∈ 𝑆
which exactly says that (𝑡𝛼 (𝑤), 𝑡 ′𝛼 (𝑤 ′)) ∈ 𝑆 as desired.
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Inductive case: for every (𝑠, 𝑠 ′) ∈ 𝑆 such that [𝑠]𝒞 ℛ [𝛼 (𝑤)]𝒞 , we
have (𝑡𝑠, 𝑡 ′𝑠 ′) <ℛ (𝑡, 𝑡 ′). Let 𝑥 ∈ 𝐴∗

be the least prefix of 𝑤 such

that [𝛼 (𝑥)]𝒞 ℛ [𝛼 (𝑤)]𝒞 . Observe that 𝑥 is nonempty. Indeed, if

𝑥 = 𝜀, then (1𝑀 , 1𝑀 ) = (𝛼 (𝜀), 𝛼 (𝜀)) ∈ 𝑆 since 𝑆 is saturated and

we have [1𝑀 ]𝒞 ℛ [𝛼 (𝑤)]𝒞 . This contradicts our hypothesis as
(𝑡1𝑀 , 𝑡 ′1𝑀 ) = (𝑡, 𝑡 ′) ℛ (𝑡, 𝑡)′.

Since 𝑥 ∈ 𝐴+
we get 𝑢 ∈ 𝐴∗

and 𝑎 ∈ 𝐴 such that 𝑥 = 𝑢𝑎.

We let 𝑣 ∈ 𝐴∗
as the suffix such 𝑤 = 𝑢𝑎𝑣 . By definition of 𝑥 as

the least prefix of 𝑤 such that [𝛼 (𝑥)]𝒞 ℛ [𝛼 (𝑤)]𝒞 , we have

[𝛼 (𝑤)]𝒞 ℛ [𝛼 (𝑢𝑎)]𝒞 <ℛ [𝛼 (𝑢)]𝒞 . Using this property and the

hypothesis that𝑤 ▷𝜂,𝑘 𝑤
′
, we prove the following fact.

Fact F.5. We have 𝑢 ′, 𝑣 ′ ∈ 𝐴∗ such that 𝑤 ′ = 𝑢 ′𝑎𝑣 ′, 𝑢 ▷𝜂,𝑘 𝑢 ′

and 𝑣 ▷𝜂,𝑘−1
𝑣 ′.

Proof. We first show that 𝜂 (𝑢𝑎) <ℛ 𝜂 (𝑢). By contradiction

assume that there exists 𝑦 ∈ 𝐴∗
such that 𝜂 (𝑢𝑎𝑦) = 𝜂 (𝑢). By def-

inition of 𝜂, it follows that (𝛼 (𝑢𝑎𝑦), 𝛼 (𝑢𝑎)) ∈ NS𝒟 [𝛼] and since

𝒞 ⊆ 𝒟, we get (𝛼 (𝑢𝑎𝑦), 𝛼 (𝑢𝑎)) ∈ NS𝒞 [𝛼]. One may verify that

this implies 𝛼 (𝑢𝑎𝑦) ∼𝒞 𝛼 (𝑢𝑎), contradicting the hypothesis that

[𝛼 (𝑢𝑎)]𝒞 <ℛ [𝛼 (𝑢)]𝒞 .

We may now prove the fact. Let 𝑖 ∈ Pc (𝑤) be the position car-

rying the highlighted letter “𝑎” in𝑤 = 𝑢𝑎𝑣 . Since 𝜂 (𝑢𝑎) <ℛ 𝜂 (𝑢),
it follows that 𝑖 ∈ P▷ (𝜂, 1,𝑤). We define 𝑋 = P▷ (𝜂, 𝑘,𝑢) and 𝑌 =

P▷ (𝜂, 𝑘 − 1, 𝑣). Since 𝑖 ∈ P▷ (𝜂, 1,𝑤), we have 𝑋 ∪ {𝑖} ∪ {𝑖 + 𝑗 |
𝑗 ∈ 𝑌 } ⊆ P▷ (𝜂, 𝑘,𝑤) by definition. Moreover, since we have

𝑤 ▷𝜂,𝑘 𝑤
′
, we know that 𝜎𝜂 (𝑤, P▷ (𝜂, 𝑘,𝑤)) = 𝜎𝜂 (𝑤 ′, P▷ (𝜂, 𝑘,𝑤 ′)).

Thus, one may verify that there exist 𝑖 ′ ∈ Pc (𝑤 ′), 𝑋 ′ ⊆ Pc (𝑢 ′) for
𝑢 ′ = 𝑤 ′(0, 𝑖 ′) and 𝑌 ′ ⊆ Pc (𝑣 ′) for 𝑣 ′ = 𝑤 ′(𝑖 ′, |𝑤 ′ | + 1) such that 𝑖 ′

has label 𝑎, 𝜎𝜂 (𝑢,𝑋 ) = 𝜎𝜂 (𝑢 ′, 𝑋 ′) and 𝜎𝜂 (𝑣, 𝑌 ) = 𝜎𝜂 (𝑣 ′, 𝑌 ′). By con-
struction, we have𝑤 ′ = 𝑢 ′𝑎𝑣 ′. Moreover, since we have 𝜎𝜂 (𝑢,𝑋 ) =
𝜎𝜂 (𝑢 ′, 𝑋 ′) and 𝑋 = P▷ (𝜂, 𝑘,𝑢), Lemma 3.9 yields 𝑋 ′ = P▷ (𝜂, 𝑘,𝑢 ′).
Hence, we get 𝑢 ▷𝜂,𝑘 𝑢

′
. Finally, since 𝜎𝜂 (𝑣, 𝑌 ) = 𝜎𝜂 (𝑣 ′, 𝑌 ′) and

𝑌 = P▷ (𝜂, 𝑘 − 1, 𝑣), Lemma 3.9 yields 𝑌 ′ = P▷ (𝜂, 𝑘 − 1, 𝑣 ′). Hence,
𝑣 ▷𝜂,𝑘−1

𝑣 ′. □

Since 𝑘 ≥ 𝑚𝑟 + 𝑑 , we have 𝑘 ≥ 𝑚(𝑟 − 1) +𝑚. By definition,

[𝛼 (𝑤)]𝒞 <ℛ [𝛼 (𝑢)]𝒞 which yields [𝛼 (𝑤)]𝒞 <𝒥 [𝛼 (𝑢)]𝒞 by

Lemma F.3. Hence, 𝑟 (𝑢) < 𝑟 (𝑤) and since 𝑟 (𝑤) ≤ 𝑟 , we get

𝑟 (𝑢) ≤ 𝑟 − 1. Recall that 𝑑 (1𝑀 , 1𝑀 ) ≤ 𝑚 = |𝑀2 |. Hence, since
𝑢 ▷𝜂,𝑘 𝑢

′
, it follows by induction on 𝑟 in Lemma F.4 (our most im-

portant parameter) that (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑆 . Moreover, we know

that (𝛼 (𝑎), 𝛼 (𝑎)) ∈ 𝑆 since 𝑆 is saturated. Thus closure under

multiplication yields that (𝛼 (𝑢𝑎), 𝛼 (𝑢 ′𝑎)) ∈ 𝑆 . We let (𝑠, 𝑠 ′) =

(𝛼 (𝑢𝑎), 𝛼 (𝑢 ′𝑎)). Since 𝑠 = 𝛼 (𝑢𝑎), we have [𝛼 (𝑤)]𝒞 ℛ [𝑠]𝒞 by

definition of 𝑢 and 𝑎. Hence, our hypothesis in the inductive case

yields (𝑡𝑠, 𝑡 ′𝑠 ′) <ℛ (𝑡, 𝑡 ′). It follows that 𝑑 (𝑡𝑠, 𝑡 ′𝑠 ′) < 𝑑 (𝑡, 𝑡 ′)
which yields 𝑑 (𝑡𝑠, 𝑡 ′𝑠 ′) ≤ 𝑑 − 1. Moreover, since 𝑤 = 𝑢𝑎𝑣 , we

have [𝛼 (𝑤)]𝒞 ⩽𝒥 [𝛼 (𝑣)]𝒞 . Thus, 𝑟 (𝑣) ≤ 𝑟 (𝑤) ≤ 𝑟 . Finally, since
𝑘 ≥ 𝑚𝑟 +𝑑 , we have 𝑘 − 1 ≥ 𝑚𝑟 + (𝑑 − 1). Hence, since 𝑣 ▷𝜂,𝑘−1

𝑣 ′,
induction on 𝑑 in Lemma F.4 yields (𝑡𝑠𝛼 (𝑣), 𝑡𝑠 ′𝛼 (𝑣 ′)) ∈ 𝑆 . By defini-
tion of (𝑠, 𝑠 ′), this exactly says that (𝑡𝛼 (𝑤), 𝑡𝛼 (𝑤 ′)) ∈ 𝑆 as desired.

F.3 Mixed polynomial closure
This final part of the appendix is devoted to the proof of Theo-

rem 7.10. Let us first recall the statement.

Theorem 7.10. Let 𝒞 be a finite prevariety and 𝒟 a prevariety
such that 𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞). Moreover, let 𝛼 : 𝐴∗ → 𝑀 be a
𝒞-compatible morphism and let 𝑃 = NS𝒟 [𝛼], 𝑃1 = NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼]
and 𝑃2 = NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼]. Then, the set NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼] is the least
(𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated subset of𝑀2 for 𝛼 .

The proof involves two independent arguments. First, we show

that NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼] is (𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated. Then, we show
it includes all (𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated subsets.

Soundness.We write 𝑆 = NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼]. We have to prove that

𝑆 is (𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated. We already know from Lemma 7.4

that it is saturated since𝑀𝑃𝑜𝑙 (𝒟) is a prevariety by Theorem 3.15.

Hence, we focus on (5). By Lemma F.2, there exists an 𝑀𝑃𝑜𝑙 (𝒟)-
morphism 𝜂 : 𝐴∗ → 𝑁 such that for every pair𝑢,𝑢 ′ ∈ 𝐴∗

satisfying

𝜂 (𝑢) = 𝜂 (𝑢 ′), we have (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑆 . We start with a prelimi-

nary lemma.

Lemma F.6. Let (𝑠, 𝑠 ′) ∈ 𝑀2 be a (𝑃1, 𝑃, 𝑃2)-block. We have𝑢,𝑢 ′ ∈
𝐴∗ such that 𝛼 (𝑢) = 𝑠 , 𝛼 (𝑢 ′) = 𝑠 ′ and 𝜂 (𝑢) = 𝜂 (𝑢 ′). Moreover,
there exists an infix 𝑣 of 𝑢 such that 𝜂 (𝑣) is an idempotent of 𝑁 and
[𝛼 (𝑣)]𝒞 𝒥 [𝑠]𝒞 .

Proof. We have (𝑠1, 𝑠 ′
1
), (𝑒1, 𝑒

′
1
) ∈ 𝑃1, (𝑠2, 𝑠 ′

2
), (𝑒2, 𝑠

′
2
) ∈ 𝑃2 and

(𝑠3, 𝑠 ′
3
) ∈ 𝑃 such that 𝑒1, 𝑒

′
1
, 𝑒2, 𝑒

′
2
∈ 𝑀 are idempotents satisfying

[𝑒1]𝒞 𝒥 [𝑒2]𝒞 𝒥 [𝑠1𝑒1𝑠3𝑒2𝑠2]𝒞 and,

(𝑠, 𝑠 ′) = (𝑠1𝑒1𝑠3𝑒2𝑠2, 𝑠
′
1
𝑒 ′

1
𝑠 ′
3
𝑒 ′

2
𝑠 ′
2
).

We have 𝑃 = NS𝒟 [𝛼]. Hence since [·]𝒟 ◦ 𝜂 is a 𝒟-morphism by

Lemma 2.7 and (𝑠3, 𝑠 ′
3
) ∈ 𝑃 , Lemma F.2 yields 𝑥3, 𝑥

′
3
∈ 𝐴∗

such

that 𝛼 (𝑥3) = 𝑠3, 𝛼 (𝑥 ′
3
) = 𝑠 ′

3
and 𝜂 (𝑥3) ∼𝒟 𝜂 (𝑥 ′

3
). Since 𝑃1 =

NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] and (𝑠1, 𝑠 ′
1
), (𝑒1, 𝑒

′
1
) ∈ 𝑃1, a similar argument yields

𝑥1, 𝑥
′
1
, 𝑦1, 𝑦

′
1
∈ 𝐴∗

such that 𝛼 (𝑥1) = 𝑠1, 𝛼 (𝑥 ′
1
) = 𝑠 ′

1
, 𝛼 (𝑦1) = 𝑒1,

𝛼 (𝑦′
1
) = 𝑒 ′

1
,𝜂 (𝑥1) ∼𝐿𝑃𝑜𝑙 (𝒟) 𝜂 (𝑥 ′1) and𝜂 (𝑦1) ∼𝐿𝑃𝑜𝑙 (𝒟) 𝜂 (𝑦′1). More-

over„ since 𝑃2 = NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼] and (𝑠2, 𝑠 ′
2
), (𝑒2, 𝑒

′
2
) ∈ 𝑃2, we also

get 𝑥2, 𝑥
′
2
, 𝑦2, 𝑦

′
2
∈ 𝐴∗

which satisfy 𝛼 (𝑥2) = 𝑠2, 𝛼 (𝑥 ′
2
) = 𝑠 ′

2
, 𝛼 (𝑦2) =

𝑒2, 𝛼 (𝑦′
2
) = 𝑒 ′

2
, 𝜂 (𝑥2) ∼𝑅𝑃𝑜𝑙 (𝒟) 𝜂 (𝑥 ′2) and 𝜂 (𝑦2) ∼𝑅𝑃𝑜𝑙 (𝒟) 𝜂 (𝑦′2).

Finally, we let 𝑛 = 𝜔 (𝑀) × 𝜔 (𝑁 ). We now define 𝑢 = 𝑥1𝑦
𝑛
1
𝑥3𝑦

𝑛
2
𝑥2,

𝑢 ′ = 𝑥 ′
1
(𝑦′

1
)𝑛𝑥 ′

3
(𝑦′

2
)𝑛𝑥 ′

2
and 𝑣 = 𝑦𝑛

1
. Since 𝑒1, 𝑒2, 𝑒

′
1
, 𝑒 ′

2
are idem-

potents, it is immediate by definition that 𝛼 (𝑢) = 𝑠 and 𝛼 (𝑢 ′) =

𝑠 ′. Moreover, 𝑣 is an infix of 𝑀 and 𝛼 (𝑣) = 𝑒1. Hence, we have

[𝛼 (𝑣)]𝒞 𝒥 [𝑠]𝒞 by hypothesis on 𝑒1.

It remains to prove that 𝜂 (𝑢) = 𝜂 (𝑢 ′). We write 𝑞1 = 𝜂 (𝑥1),
𝑓1 = 𝜂 (𝑦𝑛

1
), 𝑞3 = 𝜂 (𝑥3), 𝑓2 = 𝜂 (𝑦𝑛

2
) and 𝑞2 = 𝜂 (𝑥3). Clearly, 𝜂 (𝑢) =

𝑞1 𝑓1𝑞3 𝑓2𝑞2. Moreover, we define 𝑞′
1
, 𝑓 ′

1
, 𝑞′

3
, 𝑓 ′

2
, 𝑞′

2
analogously such

that 𝜂 (𝑢 ′) = 𝑞′
1
𝑓 ′
1
𝑞′

3
𝑓 ′
2
𝑞′

2
. We have to prove that 𝑞1 𝑓1𝑞3 𝑓2𝑞2 =

𝑞′
1
𝑓 ′
1
𝑞′

3
𝑓 ′
2
𝑞′

2
. As [𝑒1]𝒞 𝒥 [𝑒2]𝒞 𝒥 [𝑠1𝑒1𝑠3𝑒2𝑠2]𝒞 , we get from

Lemma F.3 that [𝑒1]𝒞 ⩽ℛ [𝑒1𝑠3𝑒2𝑠2]𝒞 and [𝑒2]𝒞 ⩽ℒ [𝑠1𝑒1𝑠3𝑒2]𝒞 .

Since 𝛼 is 𝒞-compatible, one may verify from the definitions and

Fact F.1 that this implies [𝑓1]𝒞 ⩽ℛ [𝑓1𝑞3 𝑓2𝑞2]𝒞 and [𝑓2]𝒞 ⩽ℒ
[𝑞1 𝑓1𝑞3 𝑓2]𝒞 .

Fact F.7. We have 𝑞3 𝑓2 ∼𝑅𝑃𝑜𝑙 (𝒟) 𝑞
′
3
𝑓 ′
2
.

Proof. We first define 𝛽 : 𝑁 → 𝑁 /∼𝑅𝑃𝑜𝑙 (𝒟) as the morphism

𝑞 ↦→ [𝑞]𝑅𝑃𝑜𝑙 (𝒟) and 𝛾 = 𝛽 ◦ 𝜂 : 𝐴∗ → 𝑁 /∼𝑅𝑃𝑜𝑙 (𝒟) . It follows
from Lemma 2.7 that 𝛾 is an 𝑅𝑃𝑜𝑙 (𝒟)-morphism. We know that

𝒞 ⊆ 𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞) by hypothesis. Moreover, 𝛽 (𝑓2) is an idempo-

tent of 𝑁 /∼𝑅𝑃𝑜𝑙 (𝒟) and since 𝑞3 ∼𝒟 𝑞′
3
which yields 𝑞3 𝑓2 ∼𝒟 𝑞′

3
𝑓2,

one may verify 𝛽 (𝑞3 𝑓2) ∼𝒟 𝛽 (𝑞′
3
𝑓2). Moreover, since [𝑓2]𝒞 ⩽ℒ
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[𝑞1 𝑓1𝑞3 𝑓2]𝒞 , one may verify that [𝛽 (𝑓2)]𝒞 ⩽ℒ [𝛽 (𝑞3 𝑓2)]𝒞 . Al-
together, Lemma C.3 yields 𝛽 (𝑞3 𝑓2)𝛽 (𝑓2) = 𝛽 (𝑞′

3
𝑓2)𝛽 (𝑓2). Since

we have 𝑓2 ∼𝑅𝑃𝑜𝑙 (𝒟) 𝑓 ′
2
by definition, 𝛽 (𝑓2) = 𝛽 (𝑓 ′

2
). We get

𝛽 (𝑞3 𝑓2) = 𝛽 (𝑞′
3
𝑓 ′
2
) which exactly says that 𝑞3 𝑓2 ∼𝑅𝑃𝑜𝑙 (𝒟) 𝑞

′
3
𝑓 ′
2

as desired. □

We now prove that 𝑞1 𝑓1𝑞3 𝑓2𝑞2 = 𝑞′
1
𝑓 ′
1
𝑞′

3
𝑓 ′
2
𝑞′

2
. There are two

steps: one proves independently that 𝑞1 𝑓1𝑞3 𝑓2𝑞2 = 𝑞1 𝑓1𝑞
′
3
𝑓 ′
2
𝑞′

2
and

that 𝑞1 𝑓1𝑞
′
3
𝑓 ′
2
𝑞′

2
= 𝑞′

1
𝑓 ′
1
𝑞′

3
𝑓 ′
2
𝑞′

2
. As the arguments are symmetri-

cal, we only prove the former. Since 𝛼 is an𝑀𝑃𝑜𝑙 (𝒟)-morphism,

Lemma 5.4 implies that it is an 𝐿𝑃𝑜𝑙 (𝑅𝑃𝑜𝑙 (𝒟))-morphism. More-

over, we have 𝒞 ⊆ 𝑅𝑃𝑜𝑙 (𝒟) ⊆ 𝑈𝑃𝑜𝑙 (𝒞) by hypothesis on 𝒟. By

Fact F.7, we have 𝑞3 𝑓2 ∼𝑅𝑃𝑜𝑙 (𝒟) 𝑞
′
3
𝑓 ′
2
and since 𝑞2 ∼𝑅𝑃𝑜𝑙 (𝒟) 𝑞

′
2
by

definition of 𝑞2, 𝑞
′
2
, we have 𝑓1𝑞3 𝑓2𝑞2 ∼𝑅𝑃𝑜𝑙 (𝒟) 𝑓1𝑞

′
3
𝑓 ′
2
𝑞′

2
. We have

[𝑓1]𝒞 ⩽ℛ [𝑓1𝑞3 𝑓2𝑞2]𝒞 . Altogether, Lemma C.3 yields 𝑓1 𝑓1𝑞3 𝑓2𝑞2 =

𝑓1 𝑓1𝑞
′
3
𝑓 ′
2
𝑞′

2
. We get 𝑞1 𝑓1𝑞3 𝑓2𝑞2 = 𝑞1 𝑓1𝑞

′
3
𝑓 ′
2
𝑞′

2
since 𝑓1 is idempo-

tent. □

We prove that 𝑆 satisfies (5). Let 𝑛 ∈ N and (𝑠0, 𝑠 ′
0
), . . . , (𝑠𝑛, 𝑠 ′𝑛) ∈

𝑀2
be (𝑃1, 𝑃, 𝑃2)-blocks. Moreover, let (𝑡1, 𝑡 ′

1
), . . . , (𝑡𝑛, 𝑡 ′𝑛) ∈ 𝑃 such

that [𝑠𝑖−1𝑡𝑖 ]𝒞 𝒥 [𝑠𝑖−1]𝒞 and [𝑡𝑖𝑠𝑖 ]𝒞 𝒥 [𝑠𝑖 ]𝒞 for 1 ≤ 𝑖 ≤ 𝑛. We

have to prove that,

(𝑠0𝑡1𝑠1 · · · 𝑡𝑛𝑠𝑛, 𝑠 ′0𝑡
′
1
𝑠 ′
1
· · · 𝑡 ′𝑛𝑠 ′𝑛) ∈ 𝑆. (9)

For 0 ≤ 𝑖 ≤ 𝑛, Lemma F.6 yields 𝑢𝑖 , 𝑢
′
𝑖
, 𝑣𝑖 ∈ 𝐴∗

such that we

have 𝛼 (𝑢𝑖 ) = 𝑠𝑖 , 𝛼 (𝑢 ′𝑖 ) = 𝑠 ′
𝑖
, 𝜂 (𝑢𝑖 ) = 𝜂 (𝑢 ′

𝑖
), 𝑣𝑖 is an infix of 𝑢𝑖 ,

𝜂 (𝑣𝑖 ) is an idempotent of 𝑁 and [𝛼 (𝑣𝑖 )]𝒞 𝒥 [𝑠𝑖 ]𝒞 . Moreover,

recall that [·]𝒟 ◦ 𝜂 is a 𝒟-morphism by Lemma 2.7. Hence, as

(𝑡𝑖 , 𝑡 ′𝑖 ) ∈ 𝑃 and 𝑃 = NS𝒟 [𝛼], Lemma F.2 yields 𝑤𝑖 ,𝑤
′
𝑖
∈ 𝐴∗

such

that 𝛼 (𝑤𝑖 ) = 𝑡𝑖 , 𝛼 (𝑤 ′
𝑖
) = 𝑡 ′

𝑖
and 𝜂 (𝑤𝑖 ) ∼𝒟 𝜂 (𝑤 ′

𝑖
) for 1 ≤ 𝑖 ≤ 𝑛. We

may now define 𝑤 = 𝑢0𝑤1𝑢1 · · ·𝑤𝑛𝑢𝑛 and 𝑤 ′ = 𝑢 ′
0
𝑤 ′

1
𝑢 ′

1
· · ·𝑤 ′

𝑛𝑢
′
𝑛 .

We show that 𝜂 (𝑤) = 𝜂 (𝑤 ′). By definition 𝜂, this will imply that

(𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ 𝑆 . Moreover, by definition of𝑤 and𝑤 ′
, this exactly

says that (9) holds, concluding the proof.

We prove that 𝜂 (𝑤) = 𝜂 (𝑤 ′). Let𝑤 ′′ = 𝑢0𝑤
′
1
𝑢1 · · ·𝑤 ′

𝑛𝑢𝑛 . Since

𝜂 (𝑢𝑖 ) = 𝜂 (𝑢 ′𝑖 ) for 0 ≤ 𝑖 ≤ 𝑛, we have 𝜂 (𝑤 ′) = 𝜂 (𝑤 ′′). Hence, we
have to prove that 𝜂 (𝑤) = 𝜂 (𝑤 ′′). By definition of𝑤 , it suffices to

prove that 𝜂 (𝑢𝑖−1𝑤𝑖𝑢𝑖 ) = 𝜂 (𝑢𝑖−1𝑤
′
𝑖
𝑢𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛. By transitivity,

it will follow that 𝜂 (𝑤) = 𝜂 (𝑤 ′′). We fix 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛 for

the proof. Let 𝑞𝑖 = 𝜂 (𝑤𝑖 ) and 𝑞′𝑖 = 𝜂 (𝑤
′
𝑖
). We have the following

lemma

Lemma F.8. There exist two elements 𝑟𝑖−1, 𝑟𝑖 ∈ 𝑁 such that we
have 𝜂 (𝑢𝑖−1) = 𝜂 (𝑢𝑖−1) (𝑞𝑖𝑟𝑖−1)𝜔 and 𝜂 (𝑢𝑖 ) = (𝑟𝑖𝑞𝑖 )𝜔𝜂 (𝑢𝑖 ).

Proof. By symmetry, we only prove the existence of 𝑟𝑖 . Recall

that by hypothesis, we have an infix 𝑣𝑖 of 𝑢𝑖 such that 𝜂 (𝑢𝑖 ) is
idempotent and [𝛼 (𝑣𝑖 )]𝒞 𝒥 [𝑠𝑖 ]𝒞 . We get 𝑥,𝑦 ∈ 𝐴∗

such that

𝑢𝑖 = 𝑥𝑣𝑖𝑦. Moreover, [𝑡𝑖𝑠𝑖 ]𝒞 𝒥 [𝑠𝑖 ]𝒞 . Since 𝑠𝑖 = 𝛼 (𝑢𝑖 ) and

𝑡𝑖 = 𝛼 (𝑤𝑖 ). We get [𝛼 (𝑤𝑖𝑥𝑣𝑖𝑦)]𝒞 𝒥 [𝑠𝑖 ]𝒞 𝒥 [𝛼 (𝑣𝑖 )]𝒞 . It fol-
lows that [𝛼 (𝑣𝑖 )]𝒞 ⩽𝒥 [𝛼 (𝑤𝑖𝑥𝑣𝑖 )]𝒞 . Moreover, since it is clear

that we have [𝛼 (𝑤𝑖𝑥𝑣𝑖 )]𝒞 ⩽ℒ [𝛼 (𝑣𝑖 )]𝒞 , we get [𝛼 (𝑤𝑖𝑥𝑣𝑖 )]𝒞 ℒ

[𝛼 (𝑣𝑖 )]𝒞 from Lemma F.3. We get 𝑧 ∈ 𝐴∗
such that 𝛼 (𝑧𝑤𝑖𝑥𝑣𝑖 ) ∼𝒞

𝛼 (𝑣𝑖 ). Since 𝛼 is 𝒞-compatible, it then follows from Lemma F.1

that 𝜂 (𝑧𝑤𝑖𝑥𝑣𝑖 ) ∼𝒞 𝜂 (𝑣𝑖 ). Since 𝜂 is an 𝑀𝑃𝑜𝑙 (𝒟)-morphism and

𝒟 ⊆ 𝑈𝑃𝑜𝑙 (𝒞), we know that 𝜂 is 𝑈𝑃𝑜𝑙 (𝒞)-morphism. Hence,

since 𝜂 (𝑣𝑖 ) is an idempotent of 𝑁 , Theorem 3.7 yields 𝜂 (𝑣𝑖 ) =

𝜂 (𝑣𝑖𝑧𝑤𝑖𝑥𝑣𝑖 ). Hence, 𝜂 (𝑥𝑣𝑖 ) = 𝜂 (𝑥𝑣𝑖𝑧𝑤𝑖𝑥𝑣𝑖 ) = (𝜂 (𝑥𝑣𝑖𝑧𝑤𝑖 ))𝜔𝜂 (𝑥𝑣𝑖 ).

Let 𝑟𝑖 = 𝜂 (𝑥𝑣𝑖𝑧). Since 𝑢𝑖 = 𝑥𝑣𝑖𝑦 and 𝑞𝑖 = 𝜂 (𝑤𝑖 ), we obtain that

𝜂 (𝑢𝑖 ) = (𝑟𝑖𝑞𝑖 )𝜔𝜂 (𝑢𝑖 ) as desired. □

Recall that by definition, 𝜂 (𝑤𝑖 ) ∼𝒟 𝜂 (𝑤 ′
𝑖
), i.e. 𝑞𝑖 ∼𝒟 𝑞′

𝑖
. Hence,

since 𝜂 is an 𝑀𝑃𝑜𝑙 (𝒟)-morphism by definition, it follows from

Theorem 4.3 that,

(𝑞𝑖𝑟𝑖−1)𝜔𝑞𝑖 (𝑟𝑖𝑞𝑖 )𝜔 = (𝑞𝑖𝑟𝑖−1)𝜔𝑞′𝑖 (𝑟𝑖𝑞𝑖 )
𝜔 .

We may now multiply by 𝜂 (𝑢𝑖−1) on the left and by 𝜂 (𝑢𝑖 ) on the

right. Since 𝑞𝑖 = 𝜂 (𝑤𝑖 ) and 𝑞′𝑖 = 𝜂 (𝑤
′
𝑖
), in view of Lemma F.8, this

yields 𝜂 (𝑢𝑖−1𝑤𝑖𝑢𝑖 ) = 𝜂 (𝑢𝑖−1𝑤
′
𝑖
𝑢𝑖 ) which completes the soundness

proof.

Completeness. We now prove that for every set 𝑆 ⊆ 𝑀2
which is

(𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated for 𝛼 , we have NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼] ⊆ 𝑆 . We

fix 𝑆 for the proof. First, we use the sets 𝑃, 𝑃1 and 𝑃2 to construct a

𝒟-morphism 𝜂 : 𝐴∗ → 𝑁 . Since 𝒟 is a prevariety, Theorem 3.15

implies that 𝐿𝑃𝑜𝑙 (𝒟) and 𝑅𝑃𝑜𝑙 (𝒟) are prevarieties as well. Since
𝑃 = NS𝒟 [𝛼], Lemma F.2 yields a 𝒟-morphism 𝜂3 : 𝐴∗ → 𝑁3 such

that for every 𝑢,𝑢 ′ ∈ 𝐴∗
, if 𝜂3 (𝑢) = 𝜂3 (𝑢), the (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃 .

Similarly, since 𝑃1 = NS𝐿𝑃𝑜𝑙 (𝒟) [𝛼] and 𝑃2 = NS𝑅𝑃𝑜𝑙 (𝒟) [𝛼],
we get an 𝐿𝑃𝑜𝑙 (𝒟)-morphism 𝛾1 : 𝐴∗ → 𝑄1 and an 𝑅𝑃𝑜𝑙 (𝒟)-
morphism 𝛾2 : 𝐴∗ → 𝑄2 such that for every 𝑢,𝑢 ′ ∈ 𝐴∗

and

𝑖 ∈ {1, 2}, if 𝛾𝑖 (𝑢) = 𝛾𝑖 (𝑢 ′), then (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃𝑖 . Moreover,

Proposition 3.13 yields two 𝒟-morphisms 𝜂1 : 𝐴∗ → 𝑁1 and

𝜂2 : 𝐴∗ → 𝑁2 and 𝑘1, 𝑘2 ∈ N such that all languages recognized by

𝛾1 are unions of ▷𝜂1,𝑘1
-classes and all languages recognized by 𝛾2

are unions of ◁𝜂2,𝑘2
-classes. Since 𝒞 ⊆ 𝒟 is finite, Proposition 2.3

yields a 𝒟-morphism 𝜂 : 𝐴∗ → 𝑁 recognizing all languages which

are in𝒞, or which are recognized by 𝜂1, 𝜂2 or 𝜂3. In particular, note

that 𝜂 is 𝒞-compatible. We have the following fact.

Fact F.9. Let 𝑢,𝑢 ′ ∈ 𝐴∗ and 𝑘 ∈ N. The following hold:
• If 𝜂 (𝑢) = 𝜂 (𝑢 ′), then (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃 .
• If 𝑘 ≥ 𝑘1 and 𝑢 ▷𝜂,𝑘 𝑢 ′, then (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃1.
• If 𝑘 ≥ 𝑘2 and 𝑢 ◁𝜂,𝑘 𝑢 ′, then (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃2.

Proof. By definition, if 𝜂 (𝑢) = 𝜂 (𝑢 ′), then 𝜂3 (𝑢) = 𝜂3 (𝑢 ′). This
yields (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃 by definition of 𝜂3. We prove the second

assertion (the third one is symmetrical and left to the reader). As-

sume that 𝑘 ≥ 𝑘1 and 𝑢 ▷𝜂,𝑘 𝑢
′
. By definition of 𝜂 and since 𝑘 ≥ 𝑘1,

one may verify that 𝑢 ▷𝜂1,𝑘1
𝑢 ′. Hence, since the languages recog-

nized by 𝛾1 are unions of ▷𝜂1,𝑘1
-classes, we have 𝛾1 (𝑢) = 𝛾1 (𝑢 ′).

By definition of 𝛾1, this yields (𝛼 (𝑢), 𝛼 (𝑢 ′)) ∈ 𝑃1 as desired. □

We let 𝑚 = 𝑚𝑎𝑥 (𝑘1, 𝑘2) and 𝑝 = |𝑀 |2. Moreover, we define

𝑘 = (2𝑝 + 2) |𝑁 | + 𝑝 +𝑚. The argument is based on the following

key proposition.

Proposition F.10. For all 𝑤,𝑤 ′ ∈ 𝐴∗ such that 𝑤 ⊲⊳𝜂,𝑘 𝑤
′, we

have (𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ 𝑆 .

We first use Proposition F.10 to prove NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼] ⊆ 𝑆 . Let
(𝑠, 𝑠 ′) ∈ NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼]. By Proposition 3.13 every union of ⊲⊳𝜂,𝑘 -

classes belongs to𝑀𝑃𝑜𝑙 (𝒟) since 𝜂 is a𝒟-morphism. Hence, we

obtain 𝑤,𝑤 ′ ∈ 𝐴∗
such that 𝛼 (𝑤) = 𝑠 , 𝛼 (𝑤 ′) = 𝑠 ′ and 𝑤 ⊲⊳𝜂,𝑘 𝑤

′

(otherwise, 𝛼−1 (𝑠) would be separated from 𝛼−1 (𝑠 ′) by a union

of ⊲⊳𝜂,𝑘 -classes, which contradicts the hypothesis that (𝑠, 𝑠 ′) ∈
NS𝑀𝑃𝑜𝑙 (𝒟) [𝛼]). Thus, Proposition F.10 yields (𝑠, 𝑠 ′) ∈ 𝑆 as desired.
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We turn to the proof of Proposition F.10. We start with a prelimi-

nary statement. Consider a word𝑤 ∈ 𝐴∗
and 𝑛 ∈ N. We say that𝑤

is an 𝑛-iteration if it admits a decomposition𝑤 = 𝑥𝑤1 · · ·𝑤𝑛𝑦 with

𝑥,𝑦,𝑤1, . . . ,𝑤𝑛 ∈ 𝐴∗
such that 𝜂 (𝑤𝑖 ) 𝒥 𝜂 (𝑤) for every 𝑖 ≤ 𝑛. We

have the following lemma.

Lemma F.11. Let 𝑤,𝑤 ′ ∈ 𝐴∗ such that 𝑤 ⊲⊳𝜂,𝑝+𝑚 𝑤 ′ and 𝑤 is a
2𝑝-iteration. Then, (𝛼 (𝑤), 𝛼 (𝑤 ′)) is a (𝑃1, 𝑃, 𝑃2)-block.

Proof. We first consider the case when 𝜂 (𝑤) 𝒥 𝜂 (𝜀). Since
𝑤 ⊲⊳𝜂,𝑝+𝑚 𝑤 ′

, we have 𝜂 (𝑤) = 𝜂 (𝑤 ′). In view of Fact F.9, this

yields (𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ 𝑃 . Moreover, it is clear that (1𝑀 , 1𝑀 ) ∈ 𝑃1

and (1𝑀 , 1𝑀 ) ∈ 𝑃2 by Lemma 7.4. Finally, since 𝜂 (𝑤) 𝒥 𝜂 (𝜀),
we have [𝜂 (𝑤)]𝒞 𝒥 [𝜂 (𝜀)]𝒞 and since 𝜂 is 𝒞-compatible, we

get [𝛼 (𝑤)]𝒞 𝒥 [𝛼 (𝜀)]𝒞 by Fact F.1. In other words [𝛼 (𝑤)]𝒞 𝒥

[1𝑀 ]𝒞 . By definition, it follows that the pair (𝛼 (𝑤), 𝛼 (𝑤 ′)) =

(1𝑀1𝑀𝛼 (𝑤)1𝑀1𝑀 , 1𝑀1𝑀𝛼 (𝑤 ′)1𝑀1𝑀 ) is a (𝑃1, 𝑃, 𝑃2)-block as de-

sired.

We now assume that𝜂 (𝑤) <𝒥 𝜂 (𝜀) (which implies that if𝜂 (𝑢) 𝒥
𝜂 (𝑤), then 𝑢 is nonempty). One may verify from the definition of

2𝑝-iterations that there exist 2𝑝 positions 𝑖1, . . . , 𝑖𝑝 ∈ P▷ (𝜂, 𝑝,𝑤)
and 𝑗1, . . . , 𝑗𝑝 ∈ P◁ (𝜂, 𝑝,𝑤) such that we have 0 = 𝑖0 < 𝑖1 <

· · · < 𝑖𝑝 < 𝑗𝑝 < · · · < 𝑗1 < 𝑗0 = |𝑤 | + 1 and, for 1 ≤ ℎ ≤ 𝑝 ,

if we define 𝑢ℎ = 𝑤 (𝑖ℎ−1
, 𝑖ℎ + 1) and 𝑣ℎ = 𝑤 ( 𝑗ℎ − 1, 𝑗ℎ−1

), then
𝜂 (𝑤) 𝒥 𝜂 (𝑢ℎ) 𝒥 𝜂 (𝑣ℎ). Finally, we let 𝑥 = 𝑤 (𝑖𝑝 , 𝑗𝑝 ). By definition,

𝑤 = 𝑢1 · · ·𝑢𝑝𝑥𝑣𝑝 · · · 𝑣1.

Consequently, since𝑤 ⊲⊳𝜂,𝑝+𝑚 𝑤 ′
, onemay verify that𝑤 ′

admits

a decomposition 𝑤 ′ = 𝑢 ′
1
· · ·𝑢 ′𝑝𝑥 ′𝑣 ′𝑝 · · · 𝑣 ′1 such that 𝜂 (𝑥) = 𝜂 (𝑥 ′),

𝑢ℎ ▷𝜂,𝑚 𝑢 ′
ℎ
and 𝑣ℎ ◁𝜂,𝑚 𝑣 ′

ℎ
for 1 ≤ ℎ ≤ 𝑝 . We define (𝑠, 𝑠 ′) =

(𝛼 (𝑥), 𝛼 (𝑥 ′)). We have (𝑠, 𝑠 ′) ∈ 𝑃 by Fact F.9. Also, for 1 ≤ ℎ ≤
𝑝 , we let (𝑞ℎ, 𝑞′ℎ) = (𝛼 (𝑢ℎ), 𝛼 (𝑢 ′ℎ)) and (𝑟ℎ, 𝑟 ′ℎ) = (𝛼 (𝑣ℎ), 𝛼 (𝑣 ′ℎ)).
Since𝑚 =𝑚𝑎𝑥 (𝑘1, 𝑘2), Fact F.9 yields (𝑞ℎ, 𝑞′ℎ) ∈ 𝑃1 and (𝑟ℎ, 𝑟 ′ℎ) ∈
𝑃2. By definition,

(𝛼 (𝑤), 𝛼 (𝑤 ′)) = (𝑞1 · · ·𝑞𝑝𝑠3𝑟𝑝 · · · 𝑟1, 𝑞′1 · · ·𝑞
′
𝑝𝑠

′
3
𝑟 ′𝑝 · · · 𝑟 ′1) .

Recall that 𝑝 = |𝑀 |2. Thus, the pigeon-hole principle yields ℎ,ℎ′
such that 0 ≤ ℎ < ℎ′ ≤ 𝑝 , 𝑞1 · · ·𝑞ℎ = 𝑞1 · · ·𝑞ℎ′ and 𝑞′1 · · ·𝑞

′
ℎ
=

𝑞′
1
· · ·𝑞′

ℎ′
We also get ℓ, ℓ ′ such that ℓ < ℓ ′ ≤ 𝑝 , 𝑟ℓ · · · 𝑟1 = 𝑟ℓ′ · · · 𝑟1

and 𝑟ℓ · · · 𝑟1 = 𝑟ℓ′ · · · 𝑟1. We let,

(𝑠1, 𝑠 ′
1
) = (𝑞1 · · ·𝑞ℎ, 𝑞′1 · · ·𝑞

′
ℎ
)

(𝑒1, 𝑒
′
1
) = ((𝑞ℎ+1

· · ·𝑞ℎ′)𝜔 , (𝑞′ℎ+1
· · ·𝑞′

ℎ′
)𝜔 )

(𝑠3, 𝑠 ′
3
) = (𝑞ℎ′+1

· · ·𝑞𝑝𝑠𝑟𝑝 · · · 𝑟ℓ′+1, 𝑞
′
ℎ′+1

· · ·𝑞′𝑝𝑠 ′𝑟 ′𝑝 · · · 𝑟 ′ℓ′+1
)

(𝑒2, 𝑒
′
2
) = ((𝑟ℓ′ · · · 𝑟ℓ+1)𝜔 , (𝑟 ′ℓ′ · · · 𝑟

′
ℓ+1

)𝜔 )
(𝑠2, 𝑠 ′

2
) = (𝑟ℓ · · · 𝑟1, 𝑟 ′ℓ · · · 𝑟

′
1
)

By Lemma 7.4, 𝑃, 𝑃1 and 𝑃2 are closed under multiplication. Hence,

we get (𝑠1, 𝑠 ′
1
), (𝑒1, 𝑒

′
1
) ∈ 𝑃1 and (𝑠2, 𝑠 ′

2
), (𝑒2, 𝑒

′
2
) ∈ 𝑃1. Moreover,

since 𝒟 is included in 𝐿𝑃𝑜𝑙 (𝒟) and 𝑅𝑃𝑜𝑙 (𝒟), we have 𝑃1 ⊆ 𝑃

and 𝑃2 ⊆ 𝑃 . Hence, (𝑠3, 𝑠 ′
3
) ∈ 𝑃 . It is also immediate by definition

that 𝑒1, 𝑒
′
1
, 𝑒2, 𝑒

′
2
are idempotents of 𝑀 . Thus, as (𝛼 (𝑤), 𝛼 (𝑤 ′)) =

(𝑠1𝑒1𝑠3𝑒2𝑠2, 𝑠
′
1
𝑒 ′

1
𝑠 ′
3
𝑒 ′

2
𝑠 ′
2
) by construction, it remains to prove that

[𝑒1]𝒞 𝒥 [𝑒2]𝒞 𝒥 [𝛼 (𝑤)]𝒞 to conclude that (𝛼 (𝑤), 𝛼 (𝑤 ′)) is
a (𝑃1, 𝑃, 𝑃2)-block. By symmetry, we only show that [𝑒1]𝒞 𝒥

[𝛼 (𝑤)]𝒞 . Clearly, we have [𝛼 (𝑤)]𝒞 ⩽𝒥 [𝑒1]𝒞 . Moreover, by defi-

nition of 𝑒1, we have [𝑒1]𝒞 ⩽𝒥 [𝑞ℎ′]𝒞 = [𝛼 (𝑢ℎ′)]𝒞 . By definition,

we know that 𝜂 (𝑤) 𝒥 𝜂 (𝑢ℎ′) which yields [𝜂 (𝑤)]𝒞 𝒥 [𝜂 (𝑢ℎ′)]𝒞 .

As 𝜂 is 𝒞-compatible, it follows that [𝛼 (𝑤)]𝒞 𝒥 [𝛼 (𝑢ℎ′)]𝒞 by

Fact F.1. Altogether, we get [𝑒1]𝒞 ⩽𝒥 [𝛼 (𝑤)]𝒞 , completing the

proof. □

We now introduce a technique for decomposing an arbitrary

word into factors that are 𝑛-iterations. Consider a 𝑛 ∈ N. Let
𝑤 ∈ 𝐴∗

. An 𝑛-template for 𝑤 consists in a sequence of positions

𝑖0, 𝑗0, . . . , 𝑖ℓ , 𝑗ℓ ∈ P(𝑤) within𝑤 which satisfy the three following

conditions:

• 𝑖0 = 0 and 𝑗ℓ = |𝑤 | + 1,

• for 0 ≤ ℎ ≤ ℓ , we have 𝑖ℎ < 𝑗ℎ and the factor𝑤 (𝑖ℎ, 𝑗ℎ) is an
𝑛-iteration.

• for 1 ≤ ℎ ≤ ℓ , we have 𝑗ℎ−1
≤ 𝑖ℎ . Moreover, we have the rela-

tions𝛼 (𝑤 (𝑖ℎ−1
, 𝑗ℎ−1

)) ℛ 𝛼 (𝑤 (𝑖ℎ−1
, 𝑖ℎ)) and𝛼 (𝑤 (𝑖ℎ, 𝑗ℎ)) ℒ

𝛼 (𝑤 ( 𝑗ℎ−1
, 𝑗ℎ)).

We prove for all𝑤 ∈ 𝐴∗
there exists a particular 𝑛-template.

Lemma F.12. Let 𝑛 ∈ N and 𝑘 ′ = (𝑛 + 2) |𝑁 | . For every word
𝑤 ∈ 𝐴∗, there exists an 𝑛-template 𝑖0, 𝑗0, . . . , 𝑖ℓ , 𝑗ℓ for 𝑤 such that
𝑖1, . . . , 𝑖𝑛 ∈ P▷ (𝜂, 𝑘 ′,𝑤) and 𝑗0, . . . , 𝑗𝑛−1 ∈ P◁ (𝜂, 𝑘 ′,𝑤).

Proof. We proceed in three steps. The first two steps consist in

proving that every word𝑤 ∈ 𝐴∗
admits a decomposition satisfying

specific properties. Let𝑤 ∈ 𝐴∗
and ℓ ≥ 1. A good decomposition of

length ℓ for 𝑤 is a decomposition 𝑤 = 𝑤1𝑎1 · · ·𝑤ℓ−1𝑎ℓ−1𝑤ℓ such

that every factor𝑤𝑖 ∈ 𝐴∗
is a (𝑛 + 2)-iteration and 𝑎1, . . . , 𝑎ℓ−1 ∈ 𝐴.

We first prove that every word𝑤 ∈ 𝐴∗
admits a good decomposi-

tion of length at most 𝑘 ′ = (𝑛 + 2) |𝑁 |
. Given𝑤 ∈ 𝐴∗

, we define the

𝒥-depth of𝑤 denoted by 𝑑 (𝑤) ∈ N as number of elements 𝑞 ∈ 𝑁
satisfying 𝜂 (𝑤) <𝒥 𝑞. Clearly, 𝑑 (𝑤) ≤ |𝑁 | − 1 for every 𝑤 ∈ 𝐴∗

.

Hence, it suffices to prove that every𝑤 ∈ 𝐴∗
admits a good decom-

position of length at most (𝑛 + 2)𝑑 (𝑤) . We proceed by induction on

𝑑 (𝑤). If 𝑑 (𝑤) = 0, then 𝜂 (𝑤) 𝒥 1𝑁 which implies that𝑤 = 𝜀𝑛+2𝑤

is a an (𝑛+2)-iteration. In particular,𝑤 admits a good decomposition

whose length is 1 = (𝑛+2)0
. Assume now that𝑑 (𝑤) ≥ 1. In that case,

we have 𝛼 (𝑤) <𝒥 1𝑀 . Hence, there exists ℓ > 1, 𝑤1, . . . ,𝑤ℓ ∈ 𝐴∗

and 𝑎1, . . . , 𝑎ℓ ∈ 𝐴 such that𝑤 = 𝑤1𝑎1 · · ·𝑤ℓ𝑎ℓ𝑤ℓ+1 and for every

𝑖 ≤ 𝑛, we have 𝛼 (𝑤) 𝒥 𝛼 (𝑤𝑖𝑎𝑖 ) <𝒥 𝛼 (𝑤𝑖 ) and 𝛼 (𝑤) <𝒥 𝛼 (𝑤ℓ+1).
We consider two independent cases depending on ℓ . First, assume

that ℓ ≥ 𝑛 + 2. In that case, since 𝛼 (𝑤𝑖𝑎𝑖 ) 𝒥 𝛼 (𝑤) for every 𝑖 ≤ ℓ , it

is immediate that𝑤 is an (𝑛 + 2)-iteration. In particular,𝑤 admits a

good decomposition of length 1 ≤ (𝑛 + 2)𝑑 (𝑤) and we are finished.

Conversely, assume that ℓ < 𝑛 + 2. Since 𝛼 (𝑤) <𝒥 𝛼 (𝑤𝑖 ) for every
𝑖 ≤ ℓ , we have 𝑑 (𝑤𝑖 ) ≤ 𝑑 (𝑤) − 1 by definition. Hence, induction

yields that each word 𝑤𝑖 admits a good decomposition of length

at most (𝑝 + 2)𝑑 (𝑤)−1
. Consequently, since ℓ + 1 ≤ 𝑛 + 2, the word

𝑤 = 𝑤1𝑎1 · · ·𝑤ℓ𝑎ℓ𝑤ℓ+1 admits a good decomposition of length at

most (𝑛 + 2) × (𝑛 + 2)𝑑 (𝑤)−1 = (𝑛 + 2)𝑑 (𝑤) . This concludes the first
step.

We turn to the second step. Let𝑤 ∈ 𝐴∗
and a good decomposition

𝑤 = 𝑤1𝑎1 · · ·𝑤ℓ−1𝑎ℓ−1𝑤ℓ of 𝑤 . We say that this good decomposi-

tion is irreducible to indicate that for every 𝑖 such that 1 ≤ 𝑖 ≤ ℓ −1,

we have 𝛼 (𝑤𝑖𝑎𝑖𝑤𝑖+1) <ℛ 𝛼 (𝑤𝑖 ) and 𝛼 (𝑤𝑖𝑎𝑖𝑤𝑖+1) <ℒ 𝛼 (𝑤𝑖+1).
In view of the first step, it is simple to verify that every word

𝑤 ∈ 𝐴∗
admits a irreducible good decomposition of length at most

𝑘 ′ = (𝑛 + 2) |𝑁 |
. Indeed, we already know that it admits an arbitrary

good decomposition of length at most 𝑘 . If it is not irreducible, it

is possible to make it smaller by merging the consecutive factors
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which do not satisfy the condition in the definition (clearly, the

merging remains an 𝑛 + 2-iteration. One may then iterate the pro-

cess to get a irreducible good decomposition of𝑤 whose length is

at most 𝑘 ′.
We complete the proof. Let 𝑤 ∈ 𝐴∗

. The second step yields

a irreducible good decomposition 𝑤 = 𝑤1𝑎1 · · ·𝑤ℓ𝑎ℓ𝑤ℓ+1 where

ℓ + 1 ≤ 𝑘 ′. Let us define our 𝑛-template 𝑖0, 𝑗0, . . . , 𝑖ℓ , 𝑗ℓ . We start

with 𝑖0, . . . , 𝑖ℓ . We let 𝑖0 = 0. Then, for 1 ≤ ℎ ≤ ℓ , we define 𝑖ℓ
as a particular position of the factor 𝑎ℓ𝑤ℓ+1 of𝑤 . By definition of

irreducible good decompositions, we know that 𝛼 (𝑤ℎ𝑎ℎ𝑤ℎ+1
) <ℛ

𝛼 (𝑤ℎ). We let 𝑖ℎ as the least position within 𝑎ℎ𝑤ℎ+1
where this

change in ℛ-class happens. One may verify from the definition

that for 1 ≤ ℎ ≤ ℓ , we have 𝛼 (𝑤 (𝑖ℎ−1
, 𝑖ℎ + 1)) <ℛ 𝛼 (𝑤 (𝑖ℎ−1

, 𝑖ℎ)).
Hence, we have 𝑖1, . . . , 𝑖ℓ ∈ P▷ (𝜂, 𝑘 ′,𝑤). Let us now define 𝑗0, . . . , 𝑗ℓ .

First, we let 𝑗ℓ = |𝑤 | + 1. Then, for 0 ≤ ℎ ≤ ℓ − 1, we define 𝑗ℎ
as a position of the factor 𝑤ℎ𝑢ℎ of 𝑤 . By definition of irreducible
good decompositions, we know that 𝛼 (𝑤ℎ𝑎ℎ𝑤ℎ+1

) <ℒ 𝛼 (𝑤ℎ+1
).

We let 𝑗ℎ as the greatest position in 𝑤ℎ𝑎ℎ at which this change

in ℒ-class happens. One may verify from the definition that for

0 ≤ ℎ ≤ ℓ − 1, 𝛼 (𝑤 ( 𝑗ℎ − 1, 𝑗ℎ+1
)) <ℒ 𝛼 (𝑤 ( 𝑗ℎ, 𝑗ℎ+1

)). Hence,
𝑗0, . . . , 𝑗ℓ−1 ∈ P◁ (𝜂, 𝑘 ′,𝑤). Onemay now verify from the definitions

that 𝑖0, 𝑗0, . . . , 𝑖ℓ , 𝑗ℓ is an 𝑛-template for𝑤 . □

We are now ready to prove Proposition F.10. Recall that we

have 𝑘 = (2𝑝 + 2) |𝑁 | + 𝑝 +𝑚 and consider 𝑤,𝑤 ′ ∈ 𝐴∗
such that

𝑤 ⊲⊳𝜂,𝑘 𝑤 ′
. We need to prove that (𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ 𝑆 . Let 𝑘 ′ =

(2𝑝 + 2) |𝑁 |
: we have 𝑘 = 𝑘 ′ + 𝑝 + 𝑚. Lemma F.12 yields a 2𝑝-

template 𝑖0, 𝑗0, . . . , 𝑖ℓ , 𝑗ℓ for𝑤 such that 𝑖1, . . . , 𝑖ℓ ∈ P▷ (𝜂, 𝑘 ′,𝑤) and
𝑗0, . . . , 𝑗ℓ−1 ∈ P◁ (𝜂, 𝑘 ′,𝑤). By definition, we have 0 = 𝑖0 < 𝑗0 ≤
𝑖1 < 𝑗1 ≤ · · · ≤ 𝑖ℓ < 𝑗ℓ = |𝑤 |+1. Since𝑤 ⊲⊳𝜂,𝑘 𝑤

′
and 𝑘 = 𝑘 ′+𝑚+𝑝 ,

one may verify that there exist positions 𝑖 ′
0
, 𝑗 ′

0
, . . . , 𝑖 ′

ℓ
, 𝑗 ′
ℓ
∈ P(𝑤)

such that:

• 0 = 𝑖 ′
0
< 𝑗 ′

0
≤ 𝑖 ′

1
< 𝑗 ′

1
≤ · · · ≤ 𝑖 ′𝑛 < 𝑗 ′𝑛 = |𝑤 ′ | + 1.

• 𝑗ℎ and 𝑗 ′
ℎ
have the same label “𝑏ℎ” for 0 ≤ ℎ ≤ 𝑛 − 1.

• 𝑖ℎ and 𝑖 ′
ℎ
have the same label “𝑐ℎ” for 1 ≤ ℎ ≤ 𝑛.

• 𝑤 (𝑖ℎ, 𝑗ℎ) ⊲⊳𝜂,𝑝+𝑚 𝑤 ′(𝑖 ′
ℎ
, 𝑗 ′
ℎ
) for 0 ≤ ℎ ≤ 𝑛.

• 𝑗ℎ−1
< 𝑖ℎ ⇔ 𝑗ℎ−1

< 𝑖ℎ for 1 ≤ 𝑖 ≤ ℎ and in that case, we

have 𝜂 (𝑤 ( 𝑗ℎ−1
, 𝑖ℎ)) = 𝜂 (𝑤 ′( 𝑗 ′

ℎ−1
, 𝑖 ′
ℎ
)).

For ℎ,𝑔 such that 0 ≤ ℎ ≤ 𝑔 ≤ ℓ , we write 𝑤ℎ,𝑔 = 𝑤 (𝑖ℎ, 𝑗𝑔) and
𝑤 ′
ℎ,𝑔

= 𝑤 ′(𝑖 ′
ℎ
, 𝑗 ′𝑔). In particular, we write 𝑤ℎ and 𝑤 ′

ℎ
for 𝑤ℎ,ℎ and

𝑤 ′
ℎ,ℎ

. We prove that (𝛼 (𝑤ℎ,𝑔), 𝛼 (𝑤 ′
ℎ,𝑔

)) ∈ 𝑆 for all ℎ,𝑔 such that

0 ≤ ℎ ≤ 𝑔 ≤ ℓ . By definition, the case ℎ = 0 and 𝑔 = ℓ yields

(𝛼 (𝑤), 𝛼 (𝑤 ′)) ∈ 𝑆 as desired. We fix ℎ,𝑔 for the proof and proceed

by induction on the number 𝑔 − ℎ ∈ N. There are two cases.

First, assume that there exists 𝑛 such that ℎ < 𝑛 ≤ 𝑔 and

𝑗𝑛−1 = 𝑖𝑛 . We handle this case by induction. Since 𝑗𝑛−1 = 𝑖𝑛 , we also

have 𝑗 ′
𝑛−1

= 𝑖 ′𝑛 and 𝑖𝑛, 𝑖
′
𝑛 both have label 𝑏𝑛 . Hence, it is immediate

by definition that𝑤ℎ,𝑔 = 𝑤ℎ,𝑛−1
𝑏𝑛𝑤𝑛,𝑔 and𝑤

′
ℎ,𝑔

= 𝑤 ′
ℎ,𝑛−1

𝑏𝑛𝑤
′
𝑛,𝑔 . It

is immediate from induction that (𝛼 (𝑤ℎ,𝑛−1
), 𝛼 (𝑤 ′

ℎ,𝑛−1
)) ∈ 𝑆 and

(𝛼 (𝑤𝑛,𝑔), 𝛼 (𝑤 ′
𝑛,𝑔)) ∈ 𝑆 . We have (𝛼 (𝑏𝑛), 𝛼 (𝑏𝑛)) ∈ 𝑆 since 𝑆 is satu-

rated. By closure under multiplication, we get (𝛼 (𝑤ℎ,𝑔), 𝛼 (𝑤 ′
ℎ,𝑔

)) ∈
𝑆 .

We now assume that for every 𝑛 such that ℎ < 𝑛 ≤ 𝑔, we have
𝑗𝑛−1 < 𝑖𝑛 . By definition, we get 𝑗

′
𝑛−1

< 𝑖 ′𝑛 as well. For all 𝑛 such that

ℎ < 𝑛 ≤ 𝑔, we may define 𝑣𝑛 = 𝑤 ( 𝑗𝑛−1, 𝑖𝑛) and 𝑣 ′𝑛 = 𝑤 ′( 𝑗 ′
𝑛−1

, 𝑖 ′𝑛).

By hypothesis, we have 𝜂 (𝑣𝑛) = 𝜂 (𝑣 ′𝑛) and Fact F.9 implies that

(𝛼 (𝑣𝑛), 𝛼 (𝑣 ′𝑛)) ∈ 𝑃 . We also define 𝑢ℎ = 𝑤ℎ𝑏ℎ+1
and 𝑢 ′

ℎ
= 𝑤 ′

ℎ
𝑏ℎ+1

,

𝑢𝑛 = 𝑐𝑛𝑤𝑛𝑏𝑛+1 and 𝑢 ′𝑛 = 𝑐𝑛𝑤
′
𝑛𝑏𝑛+1 for ℎ + 1 ≤ 𝑛 ≤ 𝑔 − 1 and

𝑢𝑔 = 𝑐𝑔𝑤𝑔 and 𝑢 ′𝑔 = 𝑐𝑔𝑤
′
𝑔 . By hypothesis and since ⊲⊳𝑝+𝑚 is a

congruence, we have𝑢𝑛 ⊲⊳𝑝+𝑚 𝑢 ′𝑛 forℎ ≤ 𝑛 ≤ 𝑔. Moreover, onemay

verify from the properties of 2𝑝-templates that 𝑢ℎ, . . . , 𝑢𝑔 are 2𝑝-

iterations. Hence, it follows from Lemma F.11 that (𝛼 (𝑢𝑛), 𝛼 (𝑢 ′𝑛))
is a (𝑃1, 𝑃, 𝑃2)-block for ℎ ≤ 𝑛 ≤ 𝑔. Finally, by definition of 2𝑝-

templates, we have 𝜂 (𝑢𝑛−1𝑣𝑛) 𝒥 𝜂 (𝑢𝑛−1) and 𝜂 (𝑣𝑛𝑢𝑛) 𝒥 𝜂 (𝑢𝑛)
for ℎ + 1 ≤ 𝑛 ≤ 𝑔. Since 𝜂 is𝒞-compatible, we get [𝛼 (𝑢𝑛−1𝑣𝑛)]𝒞 𝒥

[𝛼 (𝑢𝑛−1)]𝒞 and [𝛼 (𝑣𝑛𝑢𝑛)]𝒞 𝒥 [𝛼 (𝑢𝑛)]𝒞 . It now follows from (5)

in the definition of (𝑀𝑃𝑜𝑙, 𝑃1, 𝑃, 𝑃2)-saturated sets that,

(𝛼 (𝑢ℎ𝑣ℎ+1
𝑢ℎ+1

· · · 𝑣𝑔𝑢𝑔), 𝛼 (𝑢 ′ℎ𝑣
′
ℎ+1

𝑢 ′
ℎ+1

· · · 𝑣 ′𝑔𝑢 ′𝑔)) ∈ 𝑆.
This exactly says that (𝛼 (𝑤ℎ,𝑔), 𝛼 (𝑤 ′

ℎ,𝑔
)) ∈ 𝑆 by definition which

completes the proof.


	Abstract
	Acknowledgments
	1 Introduction
	2 Preliminaries
	2.1 Finite words and classes of languages
	2.2 C-morphisms
	2.3 Canonical relations

	3 Operators
	3.1 Polynomial closure
	3.2 Deterministic restrictions
	3.3 Framework

	4 Algebraic characterizations
	5 Deterministic hierarchies
	5.1 Definition
	5.2 Connection with mixed polynomial closure

	6 Two-variable first-order logic
	6.1 Definitions
	6.2 Connection with mixed polynomial closure

	7 Separation
	7.1 Preliminaries
	7.2 Left/right polynomial closure
	7.3 Mixed polynomial closure

	8 Conclusion
	References
	A Appendix to Section 2
	B Appendix to Section 3
	B.1 Statements involved in the definition
	B.2 Proof of Proposition 3.11

	C Appendix to Section 3
	C.1 Characterization proofs
	C.2 Additional lemma

	D Appendix to Section 5
	E Appendix to Section 6
	E.1 Proof of Lemma 6.2
	E.2 Preorders associated to FO2
	E.3 Proof of Theorem 6.4

	F Appendix to Section 7
	F.1 Preliminary statements
	F.2 Left/right polynomial closure
	F.3 Mixed polynomial closure


