
The Covering Problem: a Unified Approach for
Investigating the Expressive Power of Logics
Thomas Place and Marc Zeitoun∗

LaBRI, Bordeaux University, France, firstname.lastname@labri.fr

Abstract
An important endeavor in computer science is to precisely understand the expressive power of
logical formalisms over discrete structures, such as words. Naturally, “understanding” is not a
mathematical notion. Therefore, this investigation requires a concrete objective to capture such
a notion. In the literature, the standard choice for this objective is the membership problem,
whose aim is to find a procedure deciding whether an input regular language can be defined in
the logic under study. This approach was cemented as the “right” one by the seminal work of
Schützenberger, McNaughton and Papert on first-order logic and has been in use since then.

However, membership questions are hard: for several important fragments, researchers have
failed in this endeavor despite decades of investigation. In view of recent results on one of the
most famous open questions, namely the quantifier alternation hierarchy of first-order logic, an
explanation may be that membership is too restrictive as a setting. These new results were
indeed obtained by considering more general problems than membership, taking advantage of
the increased flexibility of the enriched mathematical setting. This opens a promising avenue
of research and efforts have been devoted at identifying and solving such problems for natural
fragments. However, until now, these problems have been ad hoc, most fragments relying on a
specific one. A unique new problem replacing membership as the right one is still missing.

The main contribution of this paper is a suitable candidate to play this role: the Covering
Problem. We motivate this problem with three arguments. First, it admits an elementary set
theoretic formulation, similar to membership. Second, we are able to reexplain or generalize
all known results with this problem. Third, we develop a mathematical framework as well as a
methodology tailored to the investigation of this problem.
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1 Introduction

One of the most successful applications of the notion of regularity in computer science is
the investigation of logics on discrete structures such as words or trees. The story began in
the 60s when Büchi [4], Elgot [8] and Trakhtenbrot [32] proved that the regular languages of
finite words are those that can be defined in monadic second order logic (MSO). This result
has since been exploited to study the expressive power of important fragments of MSO by
relying on a decision problem: the membership problem. Given a regular language as input,
this problem asks if it can be defined by a sentence of the fragment under investigation.
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78:2 The Covering Problem

Getting membership algorithms is difficult. In fact, this is still open on finite trees for
the most natural fragment of MSO, namely first-order logic (FO). On words however, this
question was solved in the 70s by Schützenberger, McNaughton and Papert [27, 12]. This
theorem was very influential and has often been revisited [34, 7, 5, 18]. It paved the way to
a series of results of the same nature. A famous example is Simon’s Theorem [28], which
yields an algorithm for the first level of the quantifier alternation hierarchy of FO. Other
examples include [3, 11, 35, 29] which consider fragments of FO where the linear order on
positions is replaced by the successor relation or [30] which considers the 2-variable fragment
of FO. The relevance of this approach is nowadays validated by a wealth of results.

The reason for this success is twofold. First, these results cemented membership as the
“right” question: a solution conveys a deep intuition on the investigated logic. In particular,
most results include a generic method for building a canonical sentence witnessing mem-
bership of an input language in the logic. Second, Schützenberger’s solution established
a suitable framework and a methodology to solve membership problems. This methodol-
ogy is based on a canonical algebraic abstraction of a regular language which is finite and
computable, the syntactic monoid. The core of the approach is to translate the semantic
question (is the language definable in the fragment?) into a purely syntactical, easy question
to be tested on the syntactic monoid (does the syntactic monoid satisfy some equation?).

Unfortunately, this methodology seems to have reached its limits for the hardest ques-
tions. An emblematic example is the quantifier alternation hierarchy of first-order logic
which classifies sentences according to the number of alternations between ∃ and ∀ quantifiers
in their prenex normal form. A sentence is Σi if its prenex normal form has (i−1) alternations
and starts with a block of existential quantifiers. A sentence is BΣi if it is a boolean combi-
nation of Σi sentences. Obtaining membership algorithms for all levels in this hierarchy is a
major open question and has been given a lot of attention (see [33, 31, 13, 14, 15, 16, 25, 17]
for details and a complete bibliography). However, progress on this question has been slow:
until recently, only the lowest levels were solved: Σ1 [2, 19], BΣ1 [28] and Σ2 [2, 19].

It took years to solve higher levels. Recently, membership algorithms were obtained
for Σ3 [23], BΣ2 [23] and Σ4 [20]. This was achieved by introducing new ingredients into
Schützenberger’s methodology: problems that are more general than membership. For each
result, the strategy is the same: first, a well-chosen more general problem is solved for a
lower level in the hierarchy, then, this result is transferred into a membership algorithm for
the level under investigation. Let us illustrate what we mean by “more general problem” and
present the simplest of them: the separation problem. It takes two regular languages as input
and asks whether there exists a third one which is definable in the logic, contains the first,
and is disjoint from the second. Being more general, such problems are also more difficult
than membership. However, this generality also makes them more rewarding in the insight
they give on the investigated logic. This motivated a series of papers on the separation
problem [26, 6, 21, 22, 24] which culminated in the three results above [23, 20]. However,
while this avenue of research is very promising, it presently suffers three important flaws:

1. The family of problems that have been considered up until now is a jungle: each particular
result relies on a specific ad-hoc problem. For example, the results of [23, 20] rely on
three different problems. In fact, even if one is only interested in separation, the actual
solution often considers an even more general problem (see [26, 23, 20] for example).

2. Among the problems that have been investigated, separation is the only one that admits
a simple and generic set-theoretic definition (which is why it is favored as an example).
On the other hand, for all other problems, the definition requires to introduce additional
concepts such as semigroups and Ehrenfeucht-Fraïssé games.
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3. In contrast to membership solutions, the solutions that have been obtained for these more
general problems are non-constructive. For example, most of the separation solutions
do not include a generic method for building a separator language when it exists (the
algorithms are built around the idea of proving that the two inputs are not separable).

Contributions. Our objective in this paper is to address these three issues. Our first
contribution is the presentation of a single general problem, the “covering problem”, which
admits a purely set-theoretic definition and generalizes all problems that have already been
considered. Furthermore, its definition is modular: the covering problem is designed so that
it can easily be generalized to accommodate future needs. Its design is based on an analysis of
the methods used to solve membership and separation. In both cases, the algorithms almost
always exploit the fact that an input regular language L is not isolated: its recognizer defines
a set of regular languages from which L is built. This set has a structure upon which the
algorithms are based. The covering problem takes this observation into account: an input of
the problem is directly any finite set of regular languages. Given such a set L, the problem
asks to compute the “best possible approximation” (called optimal cover, hence the name
“covering”) of this set of languages by languages belonging to the investigated fragment. In
particular, the separation problem is just the special case when the input set is of size 2.

The main advantage of the covering problem is that it comes with a generic framework
and a generic methodology designed for solving it. This framework is our second contribu-
tion. It generalizes the original framework of Schützenberger for membership in a natural
way and lifts all its benefits to a more general setting. In particular, we recover construc-
tiveness: a solution to the covering problem associated to a particular fragment yields a
generic way for building an actual optimal cover of the input set.

Finally, the relevance of our new framework is supported by the fact that we are able to
obtain covering algorithms for the fragments that were already known to enjoy a decidable
separation problem. In contrast to the previous algorithms, these more general ones are
presented within a single unified framework. This is our third contribution. We present
actual covering algorithms for four particular logics: first-order logic (FO), two-variables
FO (FO2) and two logics within the quantifier alternation hierarchy of FO (BΣ1 and Σ2).
As explained, the payoff is that we obtain effective solutions to the covering problem. Hence,
we obtain an effective method for building separators in the weaker separation problem.
Historical note. As observed by Almeida [1], separation is tied to a purely algebraic problem
of Henckell and Rhodes (see [9, 10]): computing the “pointlike sets of a given finite semigroup
with respect to a variety V”. This can probably be lifted to covering. However, there are two
main advantages to our approach. First, it is more general: pointlike sets are restricted to
classes and inputs that are both more specific than ours. Second, covering admits a simple
set theoretic definition that pointlike sets obfuscate with heavy terminology.
Organization. We define the covering problem in Section 2 (for arbitrary input sets of
languages, i.e., not necessarily made of regular languages). We present our framework for the
particular case of regular inputs in Sections 3 and 4. Four examples of covering algorithms
are presented in Section 5. Due to lack of space, proofs are deferred to the journal version.

2 The Covering Problem

In this section, we define the covering problem. For the whole paper, we fix a finite alphabet
A and work with finite words over A (i.e., elements of A∗). A language is a subset of A∗. Note
that we restrict ourselves to words for the sake of simplifying the presentation. However,
the covering problem makes sense for any structure (such as infinite words or trees).

MFCS 2016
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We focus on two kinds of classes of languages. We say that a class of languages C is a
lattice when it contains the empty and universal languages (∅ and A∗) and it is closed under
finite union and finite intersection: K,L ∈ C implies K ∪ L,K ∩ L ∈ C . Furthermore, C

is a boolean algebra when C is a lattice that is closed under complement: L ∈ C implies
{w ∈ A∗ | w 6∈ L} ∈ C . The covering problem then comes into two variants:

a variant that can be associated to any class of languages that is a lattice. We call this
variant the pointed covering problem.
a weaker variant that can be associated to any class of languages that is a boolean algebra.
We call it the covering problem. While weaker than the first one, this variant enjoys
simpler terminology, which makes it our choice when working with boolean algebras.

We now define these two variants. In the definition, we use the separation problem as
a foundation to motivate and explain our design choices. As we explained, given a class of
languages C , solutions to membership and separation exploit the fact that the recognizer
of an input regular language L recognizes a set of regular languages from which L is built.
The covering problem is based on this observation: its input is any finite set of languages L.
I Remark. A “set of languages” is a purely mathematical object. An actual input is a set of
recognizing devices for these languages. In particular, it may happen that two such devices
recognize the same language. Therefore our inputs are actually finite sets of languages names
(which may contain “several copies” of the same language). This is harmless: two sets of
names for the same underlying set of languages are equivalent for both covering problems.

2.1 The Covering Problem for Boolean Algebras
We begin with the simpler covering problem. Let C be a boolean algebra1. Given a finite
set of languages names L = {L1, . . . , Ln}, a C -cover of L is a finite set of languages K =
{K1, . . . ,Km} such that Ki ∈ C for all i ≤ n and:

L1 ∪ · · · ∪ Ln ⊆ K1 ∪ · · · ∪Km.

Note that since C is a boolean algebra, there always exists a C -cover of L: the singleton
{A∗}. When we have a C -cover K of L in hand, our main interest will be to know how good
K is at separating languages in L: what languages in L are separated by unions of languages
in K? What are the “best C -covers” of L (called optimal C -covers)? This information is
captured by a new object that we associate to any cover of L, its imprint on L.
Filterings and Imprints. Imprints are based on filterings. Given a finite set of names L and
a language K, the filtering of L by K, measures the “interaction” between L and K. More
precisely, the filtering of L by K, denoted by 〈L|K〉, is defined as the following set:

〈L|K〉 = {L ∈ L | L ∩K 6= ∅} ⊆ L

I Remark. This notion is what makes the problem modular. It can be strengthened to
define harder variants of the problem and accommodate future needs.

We may now define imprints. Given a subset E of 2L, we write ↓E to denote the downset
of E, i.e., the set ↓E = {H | ∃H′ ∈ E such that H ⊆ H′}. If K is a finite set of languages,
the imprint of K on L is the set,

I[L](K) = ↓{〈L|K〉 | K ∈ K} ⊆ 2L

1 The problem actually makes sense for any class that contains the universal language and is closed under
intersection. However, we need C to be a boolean algebra for the connection with separation.
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Note that we shall mainly use this definition when K is a C -cover of L. However, in some
proofs, it will be convenient to have it for an arbitrary set of languages K. We present
examples of imprints when K is a C -cover of L in Figure 1.

K1

K2

Cover K = {K1,K2}
I[L](K) =

↓{{L1, L2, L3}}

K ′1

K ′2 K ′3

K ′′1

K ′′2

L1 L2

L3

L1 L2

L3

Cover K′ = {K ′1,K ′2,K ′3}
I[L](K′) =

↓{{L1, L2}, {L1, L3}, {L2, L3}}

L1 L2

L3

Cover K′′ = {K ′′1 ,K ′′2 }
I[L](K′′) =

↓{{L1, L2}, {L1, L3}}

Figure 1 Some C -covers of L = {L1, L2, L3} and their imprint on L

Let us make a few observations about imprints. An imprint on L is a subset of 2L.
Therefore, for a fixed finite set L, there are finitely many possible imprints on L, even
though there are infinitely many finite sets K of languages. Another simple observation is
that all imprints are closed under downset: I[L](K) = ↓I[L](K). Also notice that if K is
a C -cover of L, its imprint captures separation-related information: if {L1, L2} 6∈ I[L](K),
then L1 (resp. L2) can be separated from L2 (resp. L1) by a union (in C ) of languages in K.
I Remark. Imprints capture more than just separation-related information. From the sepa-
ration point of view, the C -covers K and K′ of Figure 1 are equivalent: they cannot separate
any pair of languages in L. However, their imprints on L tell us that K′ is “better” as it
covers L without containing a language that intersects all languages in L at the same time.

Finally, observe that if K is a C -cover of a finite set L, then its imprint on L always
contains some trivial elements. To any finite set of names L, we associate the following set:

Itriv[L] = ↓{〈L|{w}〉 | w ∈ A∗} = {H ⊆ L | ∩H∈HH 6= ∅}

I Fact 1. For any C -cover K of L, we have Itriv[L] ⊆ I[L](K).

Optimal C -covers. We now use imprints to define our notion of “best” C -cover of L which
we call optimal C -covers. A necessary (but not sufficient) property for a C -cover of L to be
optimal will be that L1, L2 ∈ L are C -separable if and only if they can be separated by a
union of languages in the C -cover. Formally, we say that a C -cover K of L is optimal when,

I[L](K) ⊆ I[L](K′) for any C -cover K′ of L.

In general, there can be infinitely many optimal C -covers of a given finite set of names L.
We now state that for any L, there always exists an optimal C -cover of L. Note that the
proof only requires C to be closed under finite intersection.

I Lemma 2. For any finite set of languages names L, there exists an optimal C -cover of L.

Note that the proof of Lemma 2 is non-constructive. Given a finite set of names L,
computing an actual optimal C -cover is a difficult problem in general. In fact, as seen in
Theorem 4 below, this is more general than solving C -separability for any pair of languages
in L. Before we present this theorem, let us make a key observation about optimal C -covers.

MFCS 2016
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By definition, given a boolean algebra C and a finite set of names L, all optimal C -covers
of L have the same imprint on L. Hence, this unique imprint on L is a canonical object for
C and L. We call it the optimal imprint with respect to C on L and we denote it by IC [L]:

IC [L] = I[L](K) for any optimal C -cover K of L.

We can now state the covering problem. We parametrize it by two classes of languages,
a class D constraining the input, and a boolean algebra C .

I Definition 3. The Covering problem for C inside D is as follows:
INPUT: A finite set of languages L ⊆ D .
QUESTION: Compute IC [L].

As expected, we only consider the covering problem when the input class D is the class
of regular languages (in particular we will often simply say “covering problem” for this
particular variant). There are two stages when solving the covering problem.

1. Stage One: find an algorithm that, given a finite set of regular languages L as input,
computes IC [L] (we call such an algorithm a covering algorithm for C ). In Theorem 4
below, we prove that this generalizes separation as a decision problem.

2. Stage Two: find an algorithm that, given a finite set of regular languages L as input,
computes an optimal C -cover of L (i.e., one whose imprint is IC [L]). We prove below
that this generalizes separation as a computational problem: if one has an optimal C -
cover of L, one may build a separator in C for any two separable languages in L.

I Theorem 4. Let C be a boolean algebra and let L be a finite set of languages names.
Given any two language name‘ ’s L1, L2 ∈ L, the following properties are equivalent:

1. L1 and L2 are C -separable.
2. {L1, L2} 6∈ IC [L].
3. For any optimal C -cover K of L, L1 and L2 are C -separable by a union of languages in K.

Theorem 4 will be proved in the journal version of this paper. It entails that ‘covering’
is a more general problem than ‘separation’. It is actually strictly more general as IC [L]
captures more information than which pairs of languages in L are C -separable.

2.2 The Pointed Covering Problem for Lattices
So far, we connected the separation problem to the more general covering problem. Un-
fortunately, while the definition of the covering problem makes sense for all lattices, the
connection with separation stated in Theorem 4 requires the investigated class C to be a
boolean algebra. When C is not closed under complement, the optimal imprint IC [L] does
not capture enough information to decide whether two languages in L are C -separable.

I Example 5. Let C be the class of languages which are unions and intersections of languages
of the form A∗aA∗ for some a ∈ A. Observe that L1 = A∗aA∗ ∩A∗bA∗ is C -separable from
L2 = a∗ (L1 belongs to C and L1 ∩ L2 = ∅). However, it can be verified that the optimal
imprint with respect to C on {L1, L2} is IC [{L1, L2}] = {∅, {L1}, {L2}, {L1, L2}}.

We solve this issue with a new problem generalizing separation for any lattice of lan-
guages C : the pointed C -covering problem. The main idea behind this new problem is to
replace the notion of cover of a finite set of languages names L with a more general one:
pointed covers. When a class of languages C is a lattice but not a boolean algebra (i.e., C

is not closed under complement), the associated separation problem is asymmetric: given
L1, L2 ⊆ A∗, the two following problems are non-equivalent:
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finding K1 ∈ C such that L1 ⊆ K1 and K1 ∩ L2 = ∅.
finding K2 ∈ C such that L2 ⊆ K2 and K2 ∩ L1 = ∅.

From the point of view of C -covers, this means that we have to define a notion of “C -cover
of {L1, L2}” making a distinction between the languages used to cover L1 and those used
to cover L2. This is what pointed C -covers are designed for.
Pointed C -covers. Let L be a finite set of names. An L-pointed set of languages is a finite set
P ⊆ L×2A∗ (i.e., elements of P are pairs (L,K) where L is a name in L andK is an arbitrary
language). Furthermore, we call support of P the set K = {K | (L,K) ∈ P for some L ∈ L}.
In other words the support of P is the smallest set of languages such that P ⊆ L×K. Finally,
when we have an L-pointed set of languages P with support K in hand, for all L ∈ L, we
will denote by P(L) ⊆ K the set of all K ∈ K such that (L,K) ∈ P.

We may now define pointed C -covers. Let C be a lattice. Given a finite set of languages
names L, a pointed C -cover of L is an L-pointed set of languages P such that all K in the
support of P belong to C and for all L ∈ L,

L ⊆
⋃

K∈P(L)

K (i.e., P(L) is a cover of {L})

Note that since C is a lattice, we have A∗ ∈ C . Hence, for all finite sets L, there always
exists a pointed C -cover of L: the set {(L,A∗) | L ∈ L}.
I Remark. Pointed C -covers are more general than C -covers: if P is a pointed C -cover
of L, then the support K of P is a C -cover of L. Intuitively, pointed C -covers capture more
information: they record for each L ∈ L which languages in K are needed to cover L. We
use this additional information to define a finer notion of optimality.

Pointed Imprints. We now generalize imprints to pointed covers with the notion of pointed
imprint (also based on the notion of filtering which is unchanged). To define pointed im-
prints, we first have to generalize the notion of downset to our new setting. If L is a finite
set of language names and E ⊆ L× 2L, we denote by ↓E the set,

↓E = {(L,H) | there exists (L,H′) ∈ E such that H ⊆ H′}

We may now define pointed imprints. Let L be a finite set of language names and let P be
an L-pointed set of languages. The pointed imprint of P on L is the set,

P[L](P) = ↓{(L, 〈L|K〉) | (L,K) ∈ P} ⊆ L× 2L

This new notion of pointed imprint has similar properties to those of the original notion of
imprint. For a fixed L, any pointed imprint on L is a subset of L× 2L, so there are finitely
many pointed imprints on L. Furthermore, pointed imprints are closed under downset.

Moreover, as for imprints, pointed imprints contain some trivial elements. If L is a finite
set of languages, we let

Ptriv[L] = ↓{(L, 〈L|{w}〉) | L ∈ L and w ∈ L} = {(L,H) | (∩H∈HH) ∩ L 6= ∅}

I Fact 6. For any pointed C -cover P of L, we have Ptriv[L] ⊆ P[L](P).

Optimal Pointed C -Covers. We can now define optimal pointed C -covers. The definition is
similar to that of optimal C -covers. We say that a pointed C -cover P of L is optimal when,

P[L](P) ⊆ P[L](P′) for any pointed C -cover P′ of L

MFCS 2016
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I Lemma 7. For any finite set of languages names L, there exists an optimal pointed C -
cover of L.

As Lemma 2, Lemma 7 is based on closure under intersection. We now generalize the
notion of optimal imprint. By definition, all optimal pointed C -covers of L share the same
pointed imprint on L. Hence, this unique pointed imprint is a canonical object for C and L.
We call it the optimal pointed imprint with respect to C on L denoted by PC [L]:

PC [L] = P[L](K) for any optimal pointed C -cover K of L

We are now ready to state the pointed covering problem. As before, it is parametrized
by a class D constraining the input, and a lattice C .

I Definition 8. The Pointed covering problem for C inside D is as follows:

INPUT: A finite set of languages L ⊆ D .
QUESTION: Compute PC [L].

Similarly to the covering problem, there are two stages when solving the pointed covering
problem for a given lattice C . The first one is to find an algorithm that computes PC [L] from
L and the second one is to find a generic method for constructing optimal pointed C -covers.
We now make the connection with the C -separation problem in the following theorem.

I Theorem 9. Let C be a lattice and let L be a finite set of languages. Given any two
languages L1, L2 ∈ L, the following properties are equivalent:

1. L1 is C -separable from L2.
2. (L1, {L2}) 6∈ PC [L].
3. For any optimal pointed C -cover P of L, the language

⋃
K∈P(L1)K separates L1 from L2.

Let us make two remarks. The first one is that for any lattice C , pointed covering is more
general than covering. The second is that while this relation can be strict (see Example 5),
this only happens when the class C is not closed under complement: if C is a boolean
algebra, then the two problems are equivalent. In other words, when C is a boolean algebra,
there is no point in considering pointed covering: the covering problem (which relies on
simpler terminology) suffices. We refer to the journal version of this paper for details.

Now that we have defined both covering problems, the remaining sections are devoted to
presenting their benefits. In particular, we present a general methodology for regular inputs
in Sections 3 and 4 and use it in Section 5 on specific examples. Note that in contrast to
this section which was generic to all types of structures and inputs, the remainder of the
paper is specific to words and regular languages: we will rely on the fact that our inputs are
sets of regular languages of finite words in our methodology.

3 Tame Sets of Languages

We now present a special class of input sets for the covering problem that we call the class of
tame sets of languages names. A tame set contains only regular languages and has a specific
algebraic structure (which is connected to language concatenation). While not all finite
sets of regular languages are tame, we will be able to restrict our algorithms to such inputs
without loss of generality. This restriction is central: we rely heavily on the properties of
tame inputs in all our algorithms. The typical example of a tame set is the following.

I Example 10. Given a nondeterministic finite automaton (NFA) A = (A,Q, I, F, δ), the
set {Lq,r | (q, r) ∈ Q2} is tame (where Lq,r is a name for the language {w | q w−→ r}).
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3.1 Definition
A finite set of languages names is said to be tame if it can be given a partial semigroup
structure. Let us first define partial semigroups. A partial semigroup is a set S equipped
with a partial multiplication (i.e., st may not be defined for all s, t ∈ S) such that for all
r, s, t ∈ S, if rs and st are both defined, then (rs)t and r(st) are defined and equal.

We may now define tame sets. Let L be a finite set of languages names. A tame
multiplication for L is a partial semigroup multiplication “�” (we use this notation to avoid
confusion with language concatenation) that satisfies the following properties:

(1) for all L,L′ ∈ L, if L� L′ is defined then LL′ ⊆ L� L′.
(2) for all H ∈ L and all words w ∈ H, if w may be decomposed as w = uu′, then there

exist L,L′ ∈ L such that u ∈ L, u′ ∈ L′ and H = L� L′.

We say that a finite set of languages names L is tame if it can be equipped with a
tame multiplication. Note that when working with tame sets, we will implicitly assume
that we have a tame multiplication “�” for this set. Furthermore, since L is a finite partial
semigroup, it is known that there exists an integer ω(L) (denoted by ω when L is understood)
such that if L� L is defined, then Lω is defined and idempotent (i.e., Lω � Lω = Lω).

An important observation is that tame sets of languages names may only contain regular
languages, as stated in the following lemma (proved in the journal version).

I Lemma 11. Any language in a tame set of languages is regular.

Unfortunately, the converse of Lemma 11 is not true: there are finite sets of regular
languages that are not tame. For example, the set L = {{ab}} fails Condition (2). However,
this issue is easily solved with the following proposition.

I Proposition 12. Let H = {H1, . . . ,Hn} be a finite set of languages given by n NFAs
A1, . . . ,An. There exists a tame set of languages names L such that for any lattice C ,

IC [H] (resp. PC [H]) can be computed from IC [L] (resp. PC [L]).
any optimal (pointed) C -cover of L is an optimal (pointed) C -cover of H.
L and its tame multiplication can be computed from A1, . . . ,An in polynomial time and
has size |A1|2 + · · ·+ |An|2 (where |Ai| stands for the number of states of Ai).

Proposition 12 is proved in the journal version (the construction is based on Example 10).
From now on, we will assume that our inputs are tame. We finish the section by explaining
the benefits of considering tame inputs in the covering and pointed covering problems.

3.2 Tame Sets of Languages and the Covering Problems
As explained, we will restrict our inputs to tame sets. We now have to explain the benefits
of such a restriction. In order to get these benefits, we need the investigated class C to
satisfy a new property in addition to being a boolean algebra or a lattice. The left quotient
of a language L by a word w is the language w−1L = {u ∈ A∗ | wu ∈ L}. The right quotient
Lw−1 is defined symmetrically. A class of languages is a quotienting boolean algebra if it is
a boolean algebra of regular languages closed under left and right quotient. A quotienting
lattice is a lattice of regular languages closed under left and right quotients.

When L is tame, the partial semigroup multiplication � over L can be extended as a
semigroup multiplication over 2L: S �R = {S � R | S ∈ S, R ∈ R and S �R is defined}.
Hence, 2L is a semigroup and L × 2L a partial semigroup. It turns out that when C is a
quotienting lattice these structures are transferred to IC [L] ⊆ 2L and PC [L] ⊆ L× 2L.
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I Lemma 13. Let C be a quotienting lattice and let L be a tame set of languages. Then the
two following properties holds:

(1) PC [L] is closed under multiplication: for all (L1,L1), (L2,L2) in PC [L], if L1 � L2 is
defined, then (L1 � L2,L1 � L2) ∈ PC [L].

(2) IC [L] is closed under multiplication: for all L1 and L2 in IC [L], L1 � L2 ∈ IC [L].

Lemma 13 will be proved in the full version. Let us explain why it is crucial. We do it in
the setting of the covering problem, which is simpler. We start with the following statement.

I Lemma 14. Let L be a tame set of languages and let K1,K2 be two languages, then
〈L|K1〉 � 〈L|K2〉 = 〈L|K1K2〉.

Let C be a boolean algebra and L be a finite set of names. A natural method for building
an optimal C -cover K of L is to start from K = Itriv[L] and to add new languages K in
C to K until K covers L. By definition of imprints, for K to be optimal, we need all such
candidate languages K to satisfy 〈L|K〉 ∈ IC [L]. It follows from Lemma 13 and Lemma 14
that when C is a quotienting boolean algebra and L is tame, these K may be built with
concatenation: if we already have K1 and K2 such that 〈L|K1〉, 〈L|K2〉 ∈ IC [L], then we
may add K1K2 as well since by Lemmas 13 and 14, 〈L|K1K2〉 = 〈L|K1〉 � 〈L|K2〉 ∈ IC [L].

This is central for classes of languages defined through logic (such as first-order logic).
Indeed, concatenation is a fundamental process for building new languages in such classes.

4 General Approach

In this section, we present a natural methodology for attempting to solve the covering or
pointed covering problem for a particular input class C . This is the methodology that we
use for all examples of Section 5.

Let C be a quotienting boolean algebra or a quotienting lattice. Recall that since we
restrict ourselves to tame sets, the two objectives of the covering (resp. pointed covering)
problem are as follows. Given as input a tame set L,
1. we want an algorithm that computes IC [L] (resp. PC [L]).
2. we want an algorithm that computes optimal C -covers (resp. pointed C -covers).

We now detail our methodology for the pointed covering problem (the case of the weaker
covering problem is similar, see Section 5). This methodology consists in three steps.
Step 1: Presentation of the Pointed Covering Algorithm. The first step presents a solution
to stage one: an algorithm that takes as input a tame set L and computes PC [L]. This step
only presents the algorithm: the second and third steps are devoted to its proof.

A key point is that pointed covering algorithms are designed as lowest fixpoint algorithms.
Since PC [L] is a pointed imprint on L, we have Ptriv[L] ⊆ PC [L] (Fact 6). All our algorithms
start from Ptriv[L], and then add new elements using finitely many operations until a fixpoint
is reached. Among these operations, some are specific to the particular quotienting lattice C

that we consider, and some are generic to all quotienting lattices. In particular, the set of
operations that we use will always include downset and multiplication (see Lemma 13). To
sum up, our algorithms compute PC [L] as a the smallest set SatC (L) ⊆ L× 2L (Sat means
‘saturation’), containing Ptriv[L] and closed under the following operations:

1. Downset: SatC (L) = ↓SatC (L).
2. Multiplication: if (L,H), (L′,H′) ∈ SatC (L), then (L�L′,H�H′) ∈ SatC (L) (if defined).
3. · · · (additional operation(s) specific to C ).
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Step 2: Soundness. The second step is devoted to proving that the covering algorithm of
Step 1 is sound, i.e., that SatC (L) ⊆ PC [L]: for any pointed C -cover P of L, SatC (L) ⊆
P[L](P). This is the “easy” direction and it involves Ehrenfeucht-Fraïssé arguments.
Step 3: Completeness. The third step is devoted to proving that the covering algorithm
of Step 1 is complete, i.e., that PC [L] ⊆ SatC (L). While usually difficult, this proof is of
particular interest as it yields a solution to second stage of the pointed covering problem as
a byproduct: an algorithm that computes optimal pointed C -covers.

The proof of this step should be presented as a generic construction for building an
actual pointed C -cover P of L whose imprint on L is included in SatC (L). This proves that
PC [L] ⊆ P[L](P) ⊆ SatC (L), and therefore completeness. However, by combining this with
the knowledge that the algorithm is also sound (this is proved in Step 2), we obtain that
PC [L] = P[L](P). In other words the proof builds an optimal pointed C -cover P of L.

5 Examples of Covering Algorithms

We now present examples of covering algorithms for several classical logical fragments, all
based on first-order logic on words. Let us first briefly recall the definition of first-order
logic over finite words. A word is viewed as logical structure made of a sequence of positions
labeled over A. In first-order logic over words (FO), for each a ∈ A, one is allowed to use
a unary predicate “a(x)” which selects positions x labeled with an a, as well as a binary
predicate “<” for the linear order. A language L is said to be first-order definable if there is
an FO sentence ϕ such that L = {w | w |= ϕ}. Also denote by FO the class of all first-order
definable languages. We present algorithms for FO itself and its fragments BΣ1, FO2, Σ2.

Note that we only present Step 1 of our methodology in the main text, i.e., algorithms
without their proofs. An important remark is that these proofs are all difficult: while we
have a generic template, proving a covering algorithm always requires arguments specific
to the investigated class. We present proofs for BΣ1, FO2 and Σ2 in the full version of
this paper. The proof for FO is omitted as it is close to proof of [26] (which is based on
a prototype of the present framework). On the other hand, the algorithms and proofs for
BΣ1, FO2 and Σ2 are new.
First-Order Logic: FO. The first algorithm that we present is for FO itself, which is among
the most famous classes of regular languages in the literature. The decidability of the
membership problem for FO was proved by Schützenberger, McNaughton and Papert [27, 12]
and the result is among those that started this line of research. Separation was later proved
to be decidable as well [9, 10, 26]. As explained the covering algorithm is a generalization
of that of [26] (which is based on a prototype of this framework). As FO is known to be a
quotienting boolean algebra, we use the covering problem.

I Theorem 15. Let L be a tame set of languages. Then IFO[L] is the smallest subset of 2L

containing Itriv[L], closed under downset, multiplication and such that for all S ∈ IFO[L],
we have Sω ∪ Sω+1 ∈ IFO[L].

Boolean Combinations of Σ1: BΣ1. The next class that we use as an example is BΣ1,
which is the restriction of FO to sentences that are boolean combinations of Σ1 sentences.
A sentence is Σ1 if its prenex normal form uses only existential quantifiers. The class BΣ1
is famous in the literature. the decidability of BΣ1-membership was proved by Simon [28].
BΣ1-separation is also known to be decidable [6, 21]. As BΣ1 is known to be a quotienting
boolean algebra, we use the covering problem. Given a word w ∈ A∗, we denote by alph(w)
the set of letters occurring in w, i.e. the smallest subset of B of A such that w ∈ B∗.
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I Theorem 16. Let L be a tame set of languages. IBΣ1 [L] is the smallest subset of 2L

containing Itriv[L], closed under downset, multiplication and such that for all B ⊆ A, if
H = {L ∈ L | ∃w ∈ L, s.t. alph(w) = B}, then Hω ∈ IBΣ1 [L].

Two-variable First-Order Logic: FO2. The logic FO2 is the restriction of FO to sentences
that use at most two distinct variables (which may be reused). That the associated mem-
bership problem is decidable is due to Thérien and Wilke [30]. The separation problem was
proved to be decidable in [21]. As FO2 is known to be a quotienting boolean algebra, we
use the covering problem. Our algorithm requires the input to satisfy a new condition in
addition to being tame: alphabet compatibility (this may be assumed without loss of gener-
ality, as will be shown in the full version). A set L is said to be alphabet compatible if for
all languages L ∈ L, there exists a unique B ⊆ A such that for any w ∈ L, alph(w) = B.
Note that when L is alphabet compatible, then alph(L) is well-defined for all L ∈ L as this
unique alphabet.

I Theorem 17. Let L be a tame and alphabet compatible set of languages. IFO2 [L] is the
smallest subset of 2L containing Itriv[L], closed under downset, multiplication and such that
for all B ⊆ A and S,T ∈ IFO2 [L] containing S, T with alph(S) = alph(T ) = B,

Sω � 〈L|B∗〉 �Tω ∈ IFO2 [L].

One Quantifier Alternation: Σ2. Our third example is Σ2, which is the restriction of FO
to sentences whose prenex normal form have a quantifier prefix of the form ‘∃∗∀∗’. It was
proved that Σ2-membership is decidable in [2, 19] and the same was proved for separation
in [23]. As Σ2 is a quotienting lattice but not a boolean algebra, we use the pointed covering
problem. Our algorithm requires the input to be tame and alphabet compatible.

I Theorem 18. Let L be a tame and alphabet compatible set of languages PΣ2 [L] is the
smallest subset of L× 2L containing Ptriv[L], closed under downset, multiplication and such
that for any B ⊆ A, and (S,S) ∈ PΣ2 [L] satisfying alph(S) = B and S � S is defined,

(Sω,Sω � 〈L|B∗〉 � Sω) ∈ PΣ2 [L].

6 Conclusion

We introduced the covering and pointed covering problems which are designed to investi-
gate quotienting boolean algebras and quotienting lattices respectively. We also presented
a methodology outlining how these problems should be approached. Furthermore, we pre-
sented four examples of algorithms for the instances associated to FO, BΣ1, FO2 and Σ2.

It is worth noting that while our examples include the most significant logics for which
separation is known to be decidable, an important one is missing: Σ3. This is not surprising
as the algorithm of [20] considers an ad hoc problem which is associated to two logics at the
same time: Σ2 and Σ3. However, it is possible to generalize this result as well within our
framework: this is where the modularity of our problems comes into play. Using a stronger
notion of filtering, one can reformulate and generalize the problem of [20] as an instance of
the pointed covering problem (we leave the presentation of this instance for further work).

Our results raise several questions. The most natural is to apply our framework to classes
for which no membership or separation algorithm is known yet. Another one is related to
the classical membership algorithms. These algorithms are usually stated as equations on
the syntactic monoid of the language which share similarities with fixpoint operations of our
(pointed) covering algorithms. An interesting question would be to find a criterion under
which membership equations can be lifted as a fixpoint operation for the covering problem.
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A Appendix to Section 2

In this appendix, we present the missing proofs of Section 2. Furthermore, we connect
the covering and pointed covering problems by proving the latter is more general than the
former.

Proofs for the Covering Problem
We prove Fact 1, Lemma 2 and Theorem 4. The three results depend on a boolean algebra C

and a finite set of language names L. We begin with the proof of Fact 1. Let us first restate
this fact.

I Fact 1. For any C -cover K of L, we have Itriv[L] ⊆ I[L](K).

Proof. Recall that Itriv[L] = ↓{〈L|{w}〉 | w ∈ A∗} and let K be a C -cover of L. Since
I[L](K) is closed under downset by definition, we have to prove that for all w ∈ A∗,
〈L|{w}〉 ∈ I[L](K). Let w ∈ A∗. If 〈L|{w}〉 = ∅, then 〈L|{w}〉 ∈ I[L](K) by closure
under downset. Otherwise let H = 〈L|{w}〉 and let H ∈ H. By definition w ∈ H and since
K is a C -cover of L, there exists K ∈ K such that w ∈ K. It follows that 〈L|{w}〉 ⊆ 〈L|K〉
and therefore that 〈L|{w}〉 ∈ I[L](K), again by closure under downset. J

We now prove Lemma 2. We first recall the statement.

I Lemma 2. For any finite set of languages names L, there exists an optimal C -cover of L.

Proof. We already know that the set of C -covers of L is not empty, since the singleton
containing the universal language only is such a cover. We prove that for any two C -
covers K′ and K′′ of L, there exists a third C -cover K such that I[L](K) ⊆ I[L](K′) and
I[L](K) ⊆ I[L](K′′). Since there are only finitely possible imprints on L, the statement
will follow. Define K = {K ′ ∩K ′′ | K ′ ∈ K′ and K ′′ ∈ K′′}. Since K′ and K′′ are C -covers
of L, the set K is also a cover of L. Moreover, it is a C -cover since C is closed under
intersection. Finally, it is immediate from the definitions that I[L](K) ⊆ I[L](K′) and
I[L](K) ⊆ I[L](K′′). J

We finish with the proof of Theorem 4. We begin by recalling the statement.

I Theorem 4. Let C be a boolean algebra and let L be a finite set of languages names.
Given any two languages L1, L2 ∈ L, the following properties are equivalent:

1. L1 and L2 are C -separable.
2. {L1, L2} 6∈ IC [L].
3. For any optimal C -cover K of L, L1 and L2 are separable by a union of languages in K.

Proof. We prove 3) ⇒ 1) ⇒ 2) ⇒ 3). Let us first assume that 3) holds, i.e., that for any
optimal C -cover K of L, L1 and L2 are separable by a union of languages in K. Since there
exists at least one C -cover of L that is optimal (by Lemma 2), L1 can be separated from L2
with a union of languages in C . Since C is closed under union, this separator is in C and
1) holds.

We now prove 1) ⇒ 2). Assume that 1) holds, i.e., that L1 is C -separable from L2.
This means that there exists a language K ∈ C such that L1 ⊆ K and K ∩ L2 = ∅ (i.e.,
L2 ⊆ A∗\K). Since C is closed under complement, A∗\K ∈ C and K = {K,A∗\K} is a C -
cover. By construction, {L1, L2} 6∈ I[L](K), hence {L1, L2} 6∈ IC [L] since IC [L] ⊆ I[L](K)
by definition.
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It remains to prove 2) ⇒ 3). Assume that {L1, L2} 6∈ IC [L] and let K be an optimal
C -cover of L. Since K is optimal, we know from our hypothesis that {L1, L2} 6∈ I[L](K).
By definition of I[L](K) it follows that no K ∈ K intersects both L1 and L2. Hence the
union of all languages K ∈ K that intersect L1 separates L1 from L2. J

Proofs for the Pointed Covering Problem
We prove Fact 6, Lemma 7 and Theorem 9. The three results depend on a lattice C and a
finite set of language names L. We begin with the proof of Fact 6. Let us first restate this
fact.

I Fact 6. For any pointed C -cover P of L, we have Ptriv[L] ⊆ P[L](P).

Proof. Recall that Ptriv[L] = ↓{(L, 〈L|{w}〉) | L ∈ L and w ∈ L} and let P be a pointed
C -cover of L. By definition, we have to prove that for all L ∈ L and all w ∈ L, we have
(L, 〈L|{w}〉) ∈ P[L](P). Since P is a pointed C -cover, we have L ⊆ P(L), hence there
exists K ∈ P(L) such that w ∈ K. Hence 〈L|{w}〉 ⊆ 〈L|K〉 and (L, 〈L|{w}〉) ∈ P[L](P) by
closure under downset. J

We now prove Lemma 7.

I Lemma 7. For any finite set of languages names L, there exists an optimal pointed C -
cover of L.

Proof. We know that there always exists a pointed C -cover of L. Therefore, in order to
prove that there always exists an optimal one, it suffices to prove that for any two pointed
C -covers P′ and P′′ of L, there exists a third one P such that P[L](P) ⊆ P[L](P′) and
P[L](P) ⊆ P[L](P′′). Since there are only finitely possible pointed imprints on L, the lemma
will follow. We define,

P = {(L,K ′ ∩K ′′) | (L,K ′) ∈ P′ and (L,K ′′) ∈ P′′}

Since P′ and P′′ are pointed C -covers of L, P is also a pointed cover of L. Moreover, it
is a pointed C -cover since C is closed under intersection. Finally, it is immediate from the
definitions that P[L](P) ⊆ P[L](P′) and P[L](P) ⊆ P[L](P′′). J

We finish with Theorem 9.

I Theorem 9. Let C be a lattice and let L be a finite set of languages. Given any two
languages L1, L2 ∈ L, the following properties are equivalent:

1. L1 is C -separable from L2.
2. (L1, {L2}) 6∈ PC [L].
3. For any optimal pointed C -cover P of L, the language

⋃
K∈P(L1)K separates L1 from L2.

Proof. The proof is similar to that of Theorem 4. We prove that 3) ⇒ 1) ⇒ 2) ⇒ 3).
Let us first assume that 3) holds, i.e., that the language ∪K∈P(L1)K separates L1 from L2.
Since there exists at least one pointed C -cover of L that is optimal (see Lemma 7), L1 can
be separated from L2 with a union of languages in C . Since C is closed under union, this
separator is in C and 1) holds.

We now prove that 1)⇒ 2). Assume that 1) holds, i.e., that L1 is C -separable from L2.
This means that there exists a language K ∈ C such that L1 ⊆ K and K ∩ L2 = ∅. We
define,

P = {(L1,K)} ∪ {(L,A∗) | L 6= L1}
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By definition, P is a pointed C -cover of L and (L1, {L2}) 6∈ P[L](P). Therefore,
(L1, {L2}) 6∈ PC [L] since PC [L] ⊆ P[L](P) by definition.

It remains to prove that 2) ⇒ 3). Assume that (L1{L2}) 6∈ PC [L] and let P be an
optimal pointed C -cover of L. Since P is optimal, we know from our hypothesis that
(L1{L2}) 6∈ P[L](P). Hence it follows from the definition that no K ∈ P(L1) intersects L2.
Hence L1 can be separated from L2 by

⋃
K∈P(L1)K. J

Connection with the Covering Problem
In this subsection, we connect the pointed covering problem to the covering problem. First,
we formally state that for any class C that is a lattice, the pointed covering problem for C

generalizes the covering problem for C (i.e., the latter can be reduced to the former).

I Proposition 19. Let L be a finite set of languages names and C be a lattice. Then the
two following properties hold:

1. If P is an optimal pointed C -cover of L, then its support is an optimal C -cover of L.
2. IC [L] = {L′ | (L,L′) ∈ PC [L] for some L ∈ L}.

Proof. We begin with the proof of the first item. The second one will then be a simple
consequence. Both proofs are based on the following simple observation which follows from
the definitions of imprints and pointed imprints. If Q is a pointed cover of L and H is its
support, then,

I[L](H) = {L′ | (L,L′) ∈ P[L](Q) for some L ∈ L} (1)

We can now prove the first item in the lemma. Let P be an optimal pointed C -cover of L
and let K be its support. We have to prove that K is an optimal C -cover of L. By definition,
this amounts to proving that for any C -cover K′ of L, we have I[L](K) ⊆ I[L](K′). Let K′
be a C -cover of L and consider the following L-pointed set:

P′ = {(L,K) | L ∈ L and K ∈ K′}

By definition, for all L, P′(L) = K′ which is a C -cover of L by definition. Hence, P′ is a
pointed C -cover of L. Since P is optimal by hypothesis, we obtain that P[L](P) ⊆ P[L](P′).
It then follows from (1) that I[L](K) ⊆ I[L](K′) which terminates the proof of the first
item.

It remains to prove the second item. Let P be an optimal pointed C -cover of L and let K
be its support. By definition, P[L](P) = PC [L] and we just proved that I[L](K) = IC [L].
Hence, the second item is immediate from (1). J

As seen in Example 5, the converse of Proposition 19 does not hold: pointed covering is
strictly more general than covering. However, as we observe in the proposition below, this
only happens when the class C is a lattice and not a boolean algebra. When C is a boolean
algebra, the associated covering and pointed covering problems are equivalent.

I Proposition 20. Let L be a finite set of languages and C be a boolean algebra. Then
the two following properties hold:

1. if K is an optimal C -cover of L, then P = {(L,K) | L ∈ L,K ∈ K and K ∩ L 6= ∅} is
an optimal pointed C -cover of L.

2. PC [L] = ↓{(L,L′) | L′ ∈ IC [L] and L ∈ L′}.
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Proof. We begin with the proof of the first item. We then obtain the second item as a
corollary. Let K be an optimal C -cover of L and let P = {(L,K) | L ∈ L,K ∈ K and K ∩
L 6= ∅}. We have to prove that P is an optimal pointed C -cover of L.

The fact that it is a C -cover is obvious. By definition, we need to prove that for any
pointed C -cover P′ of L, P[L](P) ⊆ P[L](P′). Let (L,H) ∈ P[L](P), we prove that
(L,H) ∈ P[L](P′). Since (L,H) ∈ P[L](P), we have K ∈ P(L) such that H ⊆ 〈L|K〉.
Hence, by closure under downset, we have to prove that (L, 〈L|K〉) ∈ P[L](P′). Consider
the following set of languages,

K′ = P′(L) ∪ {A∗ \ (
⋃

K′∈P′(L)

K ′)}

Observe that K′ is a C -cover of L. Indeed, by definition K′ covers A∗ and since C is
a boolean algebra, each language in K′ belongs to C . Moreover, since (L,K) ∈ P we
have K ∈ K and since K is optimal, we have 〈L|K〉 ∈ I[L](K) ⊆ I[L](K′). In other
words, there exists H ∈ K′ such that, 〈L|K〉 ⊆ 〈L|H〉. We prove that H ∈ P′(L) (i.e.,
H is not the language A∗ \ (∪K′∈P′(L)K

′)). This terminates the proof since it means that
(L, 〈L|H〉) ∈ P[L](P′) and therefore that (L, 〈L|K〉) ∈ P[L](P′) by closure under downset.
Since (L,K) ∈ P, we have K ∩ L 6= ∅ and L ∈ 〈L|K〉 ⊆ 〈L|H〉. This suffices to conclude
that H ∈ P′(L), since P′(L) is a cover of L which implies that,

L 6∈ 〈L|A∗ \ (∪K∈P′(L)K)〉

It remains to prove the second item in the lemma. Let K be an optimal C -cover of L.
We just proved that the L-pointed set P = {(L,K) | L ∈ L,K ∈ K and K ∩ L 6= ∅} is an
optimal pointed C -cover of L. Therefore,

PC [L] = ↓{(L, 〈L|K〉) | L ∈ L,K ∈ K and K ∩ L 6= ∅}
= ↓{(L,L′) | L′ ∈ I[L](K) and L ∈ L′}

We conclude that PC [L] = ↓{(L,L′) | L′ ∈ IC [L] and L ∈ L′} since K is optimal. J

The main consequence of Proposition 20 is that when the investigated class C is a boolean
algebra, there is no point in considering pointed covering: the covering problem suffices (and
relies on simpler terminology).

B Appendix to Section 3

In this appendix we present the missing proofs in Section 3. We prove Lemma 11, Lemma 13
and Proof of Lemma 14 which state the properties of tame sets. The proof of Proposition 12
is postponed to Appendix C.

B.1 Proof of Lemma 11
We begin with Lemma 11.

I Lemma 11. Any language in a tame set of languages is regular.

Proof. Let L be tame set. the tame multiplication can be lifted as a semigroup multiplica-
tion over 2L. One may verify from the properties of tame sets that the map α : A∗ → 2L

defined by α(w) = {L ∈ L | w ∈ L} is semigroup morphism. This implies that α(A∗) ⊆ 2L

is a monoid and this monoid recognizes each language in L ∈ L. Indeed, by definition,
L = α−1({K ∈ α(A∗) | L ∈ K}). J
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B.2 Proof of Lemma 13
We now turn to Lemma 13.

I Lemma 13. Let C be a quotienting lattice and let L be a tame set of languages. Then the
two following properties holds:

(1) PC [L] is closed under multiplication: for all (L1,L1), (L2,L2) in PC [L], if L1 � L2 is
defined, then (L1 � L2,L1 � L2) ∈ PC [L].

(2) IC [L] is closed under multiplication: for all L1 and L2 in IC [L], L1 � L2 ∈ IC [L].

Proof. We prove the first item. The proof of the second one is similar. Let (S,S) and (T,T)
be two elements of PC [L] such that S � T is defined and let (H,H) = (S � T,S�T). We
prove that (H,H) ∈ PC [L]. By definition, it suffices to prove that for any pointed C -cover
P of L, we have (H,H) ∈ P[L](P). Let S = {S1, . . . , Sm} and T = {T1, . . . , Tn}.

Let P be such a pointed C -cover of L and let K be its support. That (H,H) ∈ P[L](P)
is a consequence of the following claim.

Claim There exist two words u0 ∈ S and v0 ∈ T such that for every K ∈ K and every
w ∈ A∗,

1. if u0 ∈ Kw−1 then (Kw−1) ∩ Si 6= ∅ for all 1 ≤ i ≤ m.
2. if v0 ∈ w−1K, then (w−1K) ∩ Tj 6= ∅ for all 1 ≤ j ≤ n.

Before we prove the claim, let us use it to finish the proof of Lemma 13. By definition,
u0v0 ∈ ST . Moreover, ST ⊆ H since H = S � T , and therefore u0v0 ∈ H. Hence, since P
is a pointed C -cover of L, P(H) is a C -cover of H and there exists K ∈ P(H) such that
u0v0 ∈ K. We prove that for all Si ∈ S and Tj ∈ T, K intersects all the languages Si � Tj .
This will exactly mean that K intersects all languages in H = S �T =

⋃
i,j{Si � Tj} and

therefore (H,H) ∈ P[L](P), which terminates the proof of Lemma 13.
Set Si ∈ S, Tj ∈ T such that Si � Tj is defined. By definition u0 ∈ K · (v0)−1. Hence,

we know from the first item in the claim that K · (v0)−1 intersects Si. We obtain a word
ui ∈ Si such that uiv0 ∈ K. It now follows that v0 ∈ (ui)−1 · K. Hence, we know from
the second item in the claim that (ui)−1 ·K intersects Tj . We obtain a word vj ∈ Tj such
that uivj ∈ K. Finally, since SiTj ⊆ Si � Tj , we have uivj ∈ Si � Tj . We conclude that K
intersects Si � Tj , which terminates the proof.

It now remains to prove the claim. We prove the existence of v0 (the existence of u0 is
obtained by symmetry). Let Q be the set of left quotients of languages in K: Q = {w−1 ·K |
w ∈ A∗ and K ∈ K}. We need to find v0 ∈ T such that for all Q ∈ Q, if v0 ∈ Q, then Q
intersects all languages T1, . . . , Tn. Let us begin by stating two properties of the set Q that
we will use:

1. All Q ∈ Q belong to C . This is because C , as a quotienting lattice, is closed under
quotients and by definition all K ∈ K belong to C .

2. The set Q is finite. This is because each language in K is regular (they belong to C

which is a quotienting lattice). Hence, we know from Myhill-Nerode Theorem that each
language in K has finitely many left quotients. Since K is finite, so is Q.

We can now prove the existence of v0. We proceed by contradiction: assume that for
all v ∈ T , there exists Qv ∈ Q such that v ∈ Qv and Qv does not intersect all languages
T1, . . . , Tn. We use this hypothesis to construct a pointed C -cover P′ of L such that (T,T) 6∈
P[L](P′). The existence of such a pointed cover of L is a contradiction since by definition,

MFCS 2016



78:20 The Covering Problem

(T,T) belongs to PC [L] (and therefore to the imprint of any pointed cover of L). Recall
that Q is finite (and therefore that the set {Qv | v ∈ T} is finite), we define,

P′ = {(T,Qv) | v ∈ T} ∪ {(L,A∗) | L 6= T}

By definition, P′ is a L-pointed set that contains only languages in C . Moreover, by con-
struction, we know that P′(T ) is a cover of T . We conclude that P′ is a pointed C -cover
of L. By construction, we know that there is no language in P′(T ) which intersects all
the languages T1, . . . , Tn. Therefore, it is immediate that (T,T) 6∈ P[P′](). We have a
contradiction, which terminates the proof. J

B.3 Proof of Lemma 14

We finish with Lemma 14.

I Lemma 14. Let L be a tame set of languages and let K1,K2 be two languages, then
〈L|K1〉 � 〈L|K2〉 = 〈L|K1K2〉.

Proof. Let L ∈ 〈L|K1〉 � 〈L|K2〉. By definition of a tame multiplication, there exists
L1 ∈ 〈L|K1〉 and L2 ∈ 〈L|K2〉 such that L = L1�L2. By definition of a tame multiplication
again, this implies L1L2 ⊆ L. Moreover, since Ki intersects Li for i = 1, 2, K1K2 intersects
L1L2 and therefore L. Finally, L ∈ 〈L|K1K2〉

Let L ∈ 〈L|K1K2〉. By definition, K1K2 intersects L. Hence there exists w1 ∈ K1 and
w2 ∈ K2 such that w1w2 ∈ L. By definition of a tame multiplication, we obtain L1, L2 ∈ L
such that w1 ∈ L1 and w2 ∈ L2 and L = L1 � L2. It is immediate that L1 ∈ 〈L|K1〉 and
L2 ∈ 〈L|K2〉. Therefore, L ∈ 〈L|K1〉 � 〈L|K2〉 by the first item in the definition of a tame
multiplication. J

C From Finite Sets of Regular Languages to Tame Sets

This section, is devoted to the proof of Proposition 12. Let us first recall the statement of
proposition.

I Proposition 12. Let H = {H1, . . . ,Hn} be a finite set of languages given by n NFAs
A1, . . . ,An. There exists a tame set of languages names L such that for any lattice C ,

IC [H] (resp. PC [H]) can be computed from IC [L] (resp. PC [L]).
any optimal (pointed) C -cover of L is an optimal (pointed) C -cover of H.
L and its tame multiplication can be computed from A1, . . . ,An in polynomial time and
has size |A1|2 + · · ·+ |An|2 (where |Ai| stands for the number of states of Ai).

We proceed in two steps. First, we introduce a new notion called extension of input
sets. It is designed with the following objective in mind: given two input sets L and H, if L
extends H, then we want the (pointed) covering problem with input H to be easily reducible
to that with input L. We then prove that for any finite set of regular languages, one can
build a tame set that extends it. It will follow that we may restrict inputs to tame ones
without loss of generality. Additionally, we use extension to prove that we may also assume
that our input sets are alphabet compatibility.
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C.1 Extension
Let L and H be two finite sets of languages. We say that L extends H if and only if any
language in H is a union of languages in L, i.e., for any H ∈ H, there exists L′ ⊆ L such
that H =

⋃
L′∈L′ L

′.
For instance, L = {L1, L2, L3, L4, L5} extends H = {L1 ∪ L2, L3 ∪ L5}. Likewise, L =

{L1, L2} and H = {L1, L2, L1∪L2} mutually extend each other. Observe that by definition,
extension is a preorder on the set of finite sets of languages. Also note that containment is
stronger than extension: given two sets L and H, if L ⊇ H, then L extends H. However,
containment is not the only case of extension, as shown by the above examples.

I Lemma 21. Let C be a lattice and L and H be two finite sets of languages such that L
extends H. Then, the two following properties hold:

1. IC [H] (resp. PC [H]) can be computed from IC [L] (resp. PC [L]).
2. Any optimal C -cover (resp. pointed C -cover) of L is an optimal (resp. pointed C -cover)

of H.

Proof. We do the proof for the covering problem. The proof for the pointed covering problem
is similar. We prove that the three following properties hold:

1. Any C -cover of L is a C -cover of H.
2. Any optimal C -cover of L is an optimal C -cover of H.
3. IC [H] can be computed from IC [L]:

IC [H] =
{
{H1, . . . ,Hm} ⊆ H | ∃{L1, . . . , Lm} ∈ IC [L]

∀i, we have Li ⊆ Hi

}
The first item is immediate since by definition,

⋃
H∈H H ⊆

⋃
L∈L L. For the two other

items, it suffices to observe that since L extends H, for any C -cover K of L (which makes
it a C -cover of H as well),

I[H](K) =
{
{H1, . . . ,Hm} ⊆ H |∃{L1, . . . , Lm} ∈ I[L](K)

∀i, we have Li ⊆ Hi

}
It then follows that for any two C -covers K,K′ of L and H, if I[L](K) ⊆ I[L](K′), then
I[H](K) ⊆ I[H](K′), which yields the second item. We can now set K as an optimal
C -cover of both L and H. The third item is now immediate as IC [L] = I[L](K) and
IC [H] = I[H](K). J

C.2 Constructing Tame Sets
Now that we have extension, that we may restrict ourselves to tame inputs (i.e., Propo-
sition 12) is an immediate consequence of the following proposition: given a finite set of
regular languages, it is always possible to construct a tame one that extends it.

I Proposition 22. Let H = {H1, . . . ,Hn} be a finite set of languages given by n NFAs
A1, . . . ,An. There exists a tame set of languages names L such that for any lattice C ,

L extends H.
L and its tame multiplication can be computed from A1, . . . ,An in polynomial time and
has size |A1|2 + · · ·+ |An|2 (where |Ai| stands for the number of states of Ai).
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Proof. We first prove that for any NFA A = (A,Q, δ, I, F ) (where Q is the set of states,
δ ⊆ Q × A ×Q the set of transitions and I, F the sets of initial and final states), one may
construct a tame set LA of size at most Q2 that extends the singleton set {L(A )}, which
contains only the language recognized by A . For all q, r ∈ Q, we define Lq,r as a name for
the language {w ∈ A∗ | q w−→ r}.
I Remark. Note that we need names here as it may happen that Lq,r and Lq′,r′ represent
the same language while (q, r) 6= (q′, r′).

We define LA as follows LA = {Lq,r | (q, r) ∈ Q2}. Let us explain why LA is tame. We
begin by defining our tame multiplication. We define,

Lq,r � Ls,t =
{
Lq,t when r = s

undefined otherwise

In particular observe that this mutliplication is well-defined because we are working with a
set of names and not the underlying set of languages (otherwise the definition above could
be ambiguous). One can verify that this is a tame multiplication. Moreover, the following
fact is immediate.

I Fact 23. Let L be the language recognized by A . Then L extends {L}.

We may now finish the construction in Proposition 22. The proof is based on the two
following facts. In these two facts we speak of the dijoint union of two tame sets. By
this we mean that when making the union of a tame set of names L1 with a second tame
set of names L2, we assume that the two sets are disjoint (which can be assumed without
generality using renaming).

I Fact 24. Let L1,L2,H1 and H2 be finite sets of languages names such that L1 extends
H1 and L2 extends H2. Then the disjoint union L1]L2 extends the disjoint union H1]H2.

I Fact 25. Let L1 and L2 be two tame sets of languages names. Then the disjoint union
L1 ] L2 is tame and an actual tame multiplication can be constructed from those of L1 and
L2.

Before proving the two facts, we finish the proof of Proposition 22. Let H = {H1, . . . ,Hn}
be a finite set of regular languages names and A1, . . . ,An the associated NFAs. Then, let
L1, . . . ,Ln be the tame sets associated to A1, . . . ,An as above. We let L = L1 ] · · · ] Ln.
It is immediate from Facts 23 and 24 that L extends H and from Fact 25 that L is tame.
Moreover, it can be verified from the construction that L satisfies the properties described
in the proposition.

It remains to prove the two facts. Fact 24 is immediate from the definition of extension.
Let us describe the construction for Fact 25. Let L1 and L2 be two tame sets. We have to
prove that L1 ]L2 is tame as well. For i = 1, 2, we let �i as the tame multiplication on Li.
We define a tame multiplication � for L1]L2 as follows. For i = 1, 2 abd all S, T ∈ Li such
that S �i T is defined, we define S� = S �i T . All other products are undefined. One may
verify that this yields a tame multiplication. J

C.3 Alphabet Compatible Sets of Languages
Recall that alphabet compatibility is an additional restriction that we use in our algorithms
for FO2 and Σ2. We use extension to prove that it can be assumed without loss of generality
as well. Let us first recall the definition.
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Recall that A denotes the alphabet over which our languages are defined. For any word
w ∈ A∗, we denote by alph(w) the set of letters that occur in w (i.e., the smallest B such
that w ∈ B∗). A finite set of languages L is said to be alphabet compatible if for all languages
L ∈ L, there exists B ⊆ A such that for any w ∈ L, alph(w) = B (i.e., all words in L

have the same alphabet). In particular, note that when L is an alphabet compatible set of
languages L, for each language L ∈ L, alph(L) is well defined as the unique alphabet shared
by all words in L.

It follows from Lemma 26 below that we may assume that our inputs are alphabet
compatible without loss of generality.

I Lemma 26. From any finite set of languages H, one can construct a finite set of languages
L of size |H| × |2A| that extends H and is alphabet compatible. Moreover, if H is tame, L
is tame as well.

Proof. For all H ∈ H, we define LH,B as a name for the language of all words w ∈ H such
that alph(w) = B. We define L as the following set of languages:

L = {LH,B | H ∈ H and B ⊆ A}.

It is immediate from the definition that L is alphabet compatible, extends H, and has size
at most |H| × |2A|. It remains to prove that if H is tame, then so is L. Let �H be the tame
multiplication of H. We define a tame multiplication �L on L. Given LH,B and LG,C in L,
LH,B �L LG,C is defined when H �H G and,

LH,B �L LG,C = LH�HG,B∪C

One may verify that �L satisfies the properties of tame multiplications. J

D Proof of Theorem 16: BΣ1-Covering

This appendix is devoted to the proof of Theorem 16, i.e., of our covering algorithm for BΣ1.
We begin by presenting the algorithm in more details and introduce some terminology that
we will need for the proof.

We follow the template introduced in Section 4: our covering algorithm is a lowest
fixpoint. Moreover, it is restricted to input sets that are tame, that is sets L such that L
is equipped with a tame multiplication “�”. Recall that A denotes our alphabet. Given a
finite set of languages names L and B ⊆ A, we write:

L=B = {L ∈ L | there exists w ∈ L such that alph(w) = B}

I Definition 27 (Covering Algorithm for BΣ1(<)). Let L be a tame set of languages names.
We define SatBΣ1(L) ⊆ 2L as the smallest subset of 2L containing Itriv[L] and closed under
the following operations:

1. Downset: SatBΣ1(L) = ↓SatBΣ1(L).
2. Multiplication: for S,T ∈ SatBΣ1(L), we have S�T ∈ SatBΣ1(L).
3. For all B ⊆ A, we have (L=B)ω ∈ SatBΣ1(L).

Observe that SatBΣ1(L) may be computed from L. Indeed, Itriv[L] may be computed
from L as well as L=B for all B ⊆ A, hence SatBΣ1(L) is easily computed using a lowest
fixpoint algorithm. We now state the correctness of our algorithm.

I Theorem 28. Let L be a tame set of languages names. Then IBΣ1 [L] = SatBΣ1(L).
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To prove Theorem 28, we begin by proving that the algorithm is sound (i.e., that
SatBΣ1(L) ⊆ IBΣ1 [L]). We then prove the difficult direction which is completeness (i.e.,
that IBΣ1 [L] ⊆ SatBΣ1(L)).

In both proofs, we will rely on the definition of BΣ1 as the class of piecewise testable
languages. Let us recall this definition. Let v ∈ A∗ be a word. A piece of v is a word
u = a1 · · · an for which there exist words v0, . . . , vn ∈ A∗ such that

v = v0a1v1a2v2 · · · anvn.

A language is said to be piecewise testable if it is a boolean combination of languages of the
form

{v ∈ A∗ | u is a piece of v} for some fixed u ∈ A∗.

It is well-know that a language is piecewise testable if and only if it can be defined by a
BΣ1(<) sentence.

D.1 Soundness
In this section, we prove the first half of Theorem 28: given a tame set of languages names L,
we prove that SatBΣ1(L) ⊆ IBΣ1 [L]. By definition of SatBΣ1(L), it suffices to prove that
IBΣ1 [L] contains the set Itriv[L] and that it is closed under the following operations:

1. Downset: IBΣ1 [L] = ↓IBΣ1 [L].
2. Multiplication: for S,T ∈ IBΣ1 [L], we have S�T ∈ IBΣ1 [L].
3. For all B ⊆ A, we have (L=B)ω ∈ IBΣ1 [L].

As we saw in the main paper, only one of these properties is specific to BΣ1(<). We
know that IC [L] contains Itriv[L] and is closed under downset for any boolean algebra C

(see Fact 1). Hence, this is true in particular for C = BΣ1(<). Moreover, since BΣ1(<) is
known to be a quotienting boolean algebra, we also know from Lemma 13 that IBΣ1 [L] is
closed under multiplication. Therefore, we only have to prove that for all B ⊆ A, we have
(L=B)ω ∈ IBΣ1 [L].

We prove that for B ⊆ A and any BΣ1(<)-cover K of L (and therefore in particular
for optimal ones), (L=B)ω ∈ I[L](K). It will then follow that (L=B)ω ∈ IBΣ1 [L] since
IBΣ1 [L] = I[L](K) for any optimal BΣ1(<)-cover K of L.

So Let B = {b1, . . . , bn} ⊆ A and let K be a BΣ1(<)-cover of L. Given two words w1, w2
and k ∈ N, we write w1 ∼k w2 if and only if w1 and w2 have the same pieces of length up
to k. Since all languages in K are BΣ1-definable, they are piecewise testable and one can
verify that there exists k ∈ N such that they are all unions of equivalence classes of ∼k. Let
K′ be the set of equivalence classes of ∼k. By definition, I[L](K′) ⊆ I[L](K). Therefore
it suffices to prove that (L=B)ω ∈ I[L](K′). In other words, we have to prove that there
exists an equivalence class K ∈ K′ of ∼k that intersects all languages in (L=B)ω. This is a
consequence of the following lemma.

I Lemma 29. For all L ∈ (L=B)ω, there exists wL ∈ L which satisfies the two following
conditions:

1. (b1 · · · bn)kω is a piece of wL.
2. alph(wL) = B.
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Before we prove the lemma, let us use it to conclude the main proof. It follows from
Lemma 29 that all words wL for L ∈ (L=B)ω admit the same pieces of length less than k,
namely all words whose alphabet is exactly B and whose length is less than k. Therefore,
all words wL are ∼k-equivalent and we get a ∼k-class K ∈ K′ that intersects all languages
L ∈ (L=B)ω, which exactly says that (L=B)ω ∈ I[L](K′).

It now remains to prove Lemma 29, we finish the section with this proof. Let L ∈ (L=B)ω.
By definition of the idempotent power ‘ω’, we have (L=B)ω = (L=B)nkω. Therefore, there
exist L1, . . . , Lnkω ∈ L=B such that L = L1 � · · · � Lnkω. Now for all i, the language Li

contains some word ui of alphabet B (by definition of L=B). We define wL = u1 · · ·unkω.
Note that wL ∈ L by definition of a tame multiplication (wL ∈ L1 · · ·Lnkω ⊆ L). We prove
that wL satisfies the conditions of the lemma.

1. Observe that (b1 · · · bn)kω has length nkω and let c1 · · · cnkω be its decomposition as
letters. By definition, for all i, ci ∈ B and therefore ci is a piece of ui. It follows that
(b1 · · · bn)kω is a piece of wL = u1 · · ·unkω.

2. Since wL is a concatenation of words of alphabet B, it is immediate that alph(wL) = B.

D.2 Completeness
In this section, we prove the difficult direction of Theorem 28: for any tame set L, IBΣ1 [L] ⊆
SatBΣ1(L). As announced in the main paper, we achieve this by presenting a generic method
for constructing a BΣ1(<)-cover K of L such that I[L](K) ⊆ SatBΣ1(L). Since IBΣ1 [L] ⊆
I[L](K) for any BΣ1(<)-cover K of L, this proves the desired result. Moreover, since we
already proved that SatBΣ1(L) ⊆ IBΣ1 [L], our construction actually builds a BΣ1(<)-cover
K such that,

IBΣ1 [L] ⊆ I[L](K) ⊆ SatBΣ1(L) ⊆ IBΣ1 [L]

In other words, I[L](K) = IBΣ1 [L]: what we present is a generic method for constructing
optimal BΣ1(<)-covers, that is, a solution to the second stage of the covering problem for
BΣ1(<).

We now start the construction. Let L be a tame set of languages names. We have to
construct a BΣ1(<)-cover K of L such that I[L](K) ⊆ SatBΣ1(L). For the construction, we
fix an arbitrary linear order on the elements of the alphabet A. To every integers p, ` ≥ 1,
we associate a finite set of BΣ1(<)-definable languages Kp,`. We then prove that

we can find p large enough so that for any `, we have I[L](Kp,`) ⊆ SatBΣ1(L), and
that for this p, we can find ` such that Kp,` is a cover of L (actually of A∗) which
terminates the proof.

The languages of Kp,` are defined according to a new notion called template: each lan-
guage in Kp,` corresponds to a template. Let us first define what a template is. Given ` ≥ 0,
a template of length ` is a sequence T = t1, . . . , t` (empty when ` = 0), such that every ti
is either a letter a ∈ A or a triple (b, B, b′) where B ⊆ A is a subalphabet and b, b′ ∈ B

are two (possibly equal) letters in B. Moreover, we say that a template is unambiguous
if all pairs of consecutive elements ti, ti+1 in the template are either two letters, a letter
a and a triple (b, B, b′) such that a 6∈ B or two triples (bi, Bi, b

′
i) and (bi+1, Bi+1, b

′
i+1)

such that b′i 6∈ Bi+1 and bi+1 6∈ Bi. For example, T = a, (c, {b, c}, b), d, (a, {a}, a) is
an unambiguous template of length 4 while T ′ = b, (c, {b, c}, c), d, (a, {a}, a) and T ′′ =
a, (c, {b, c}, b), (c, {c}, c), (a, {a}, a) are ambiguous templates of length 4.
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We now define the language associated to a template. Note that the while the notion
is defined for both unambiguous and ambiguous templates, only the languages associated
to unambiguous ones will be definable in BΣ1(<). To each p ≥ 1 and each triple (b, B, b′)
with B ⊆ A and b, b′ ∈ B, we associate a language Itp(b, B, b′) that we call the p-iteration
of (b, B, b′). Let B = {b1, . . . , bn} (where the order on the elements of B is the one we fixed
on A at the beginning). We define

Itp(b, B, b′) = B∗b(B∗b1B∗b2B∗ · · ·B∗bnB
∗)pb′B∗

Given a template T and p ≥ 1, we call p-implementation of T the language Kp,T defined as
follows. If T is empty, then Kp,T = {ε}. Otherwise, T = t1, . . . , t` for some ` ≥ 1 and we
define Kp,T = K1 · · ·K` such that for all i ≤ `,

if ti is a single letter a ∈ A, then Ki = {a}.
if ti is a triple (b, B, b′) with B ⊆ A and b, b′ ∈ B, then Ki = Itp(b, B, b′).

Finally, for all p, ` ≥ 1, we define Kp,` as the set of all languages that are the p-
implementation of some unambiguous template of length at most `. Observe that by defini-
tion, Kp,` is a finite set as there are finitely many unambiguous templates of length at most `.
We may now finish the proof of Theorem 28. We use the two following propositions to prove
that we may find p and ` such that Kp,` is a BΣ1(<)-cover of L and I[L](Kp,`) ⊆ SatBΣ1(L).

I Proposition 30. Let p > |L|. Then for any ` ≥ 1, I[L](Kp,`) ⊆ SatBΣ1(L).

I Proposition 31. Let p ≥ 1. Then, for any ` ≥ ((p+ 2)|A|)|A|− 1, Kp,` is a BΣ1(<)-cover
of A∗.

Before we prove the propositions, we use them to finish the proof of Theorem 28. Let
p = |L| + 1 and ` = ((p + 2)|A|)|A| − 1. It is immediate from Proposition 31 that Kp,`

is a BΣ1(<)-cover of L and from Proposition 30 that I[L](Kp,`) ⊆ SatBΣ1(L). Since by
definition, IBΣ1 [L] ⊆ I[L](Kp,`), we conclude that IBΣ1 [L] ⊆ SatBΣ1(L) as desired. It now
remains to prove Proposition 30 and Proposition 31. We devote a subsection to each proof.

Proof of Proposition 30
Let p > |L| and ` ≥ 1, we have to prove that I[L](Kp,`) ⊆ SatBΣ1(L). Since SatBΣ1(L)
is closed under downset by definition, this amounts to proving that for any language K ∈
I[L](Kp,`), 〈L|K〉 ∈ SatBΣ1(L).

Let K ∈ I[L](Kp,`), by definition there exists an unambiguous template T of length
`′ ≤ ` such that K is the p-implementation of T . If `′ = 0, then K = {ε} is a singleton.
Hence, 〈L|K〉 ∈ Itriv[L] ⊆ SatBΣ1(L) by definition. Otherwise, `′ ≥ 1 and T = t1, . . . , t`′ .
For all i ≤ `′, we let Ki = Itp(b, B, b′) if ti is a triple (b, B, b′) and Ki = {a} if ti is a single
letter a. By definition, K = K1 · · ·K`′ . We use the following intermediate result.

I Lemma 32. For all i ≤ `′, 〈L|Ki〉 ∈ SatBΣ1(L).

Before we prove Lemma 32, we use it to finish the proof of Proposition 30. Since L is
tame, we know from Lemma 14 that,

〈L|K1 · · ·Kn〉 = 〈L|K1〉 � · · · � 〈L|Kn〉

Hence, it is immediate from Lemma 32 and the fact that SatBΣ1(L) is closed under multi-
plication that 〈L|K〉 ∈ SatBΣ1(L) which terminates the proof of Proposition 30. We finish
with the proof of Lemma 32.
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Let i ≤ `′. If Ki = {a}, then Ki is a singleton and 〈L|Ki〉 ∈ Itriv[L] ⊆ SatBΣ1(L)
by definition. Otherwise Ki = Itp(b, B, b′) for some B ⊆ A and some b, b′ ∈ B. We
prove that 〈L|Ki〉 ⊆ (L=B)ω. It will then follow from closure under downset and Op-
eration 3 in the definition of SatBΣ1(L) that 〈L|Ki〉 ∈ SatBΣ1(L). Let L ∈ 〈L|Ki〉, we
have to prove that L ∈ (L=B)ω. By definition, L contains some word w ∈ Itp(b, B, b′) =
B∗b(B∗b1B∗b2B∗ · · ·B∗bnB

∗)pb′B∗ (with B = {b1, . . . , bn}). This means that w can be
decomposed as w = w1 · · ·wp such that all words wi satisfy alph(wi) = B. Since L is tame
and w1 · · ·wp ∈ L, we may use the second property in the definition of tame multiplications
to obtain L1, . . . , Lp ∈ L such that,

1. for all i, wi ∈ Li.
2. L = L1 � · · · � Lp.

Note that since p > |L|, a pigeon-hole principle argument yields i < j ≤ p such that,
L1�· · ·�Li = L1�· · ·�Lj . This means that L1�· · ·�Li = L1�· · ·�Li�(Li+1�· · ·�Lj)k

for all k, and therefore

L = L1 � · · · � Li � (Li+1 � · · · � Lj)ω � Lj+1 � · · · � Lp

Furthermore, it is immediate from the first item above that for all i, Li ∈ L=B (recall that
alph(wi) = B). It follows that,

L ∈ (L=B)(j−i)ω+i+p−j = (L=B)ω+i+p−j

It then follows from the next lemma that (L=B)ω+i+p−j ⊆ (L=B)ω and therefore that
L ∈ (L=B)ω.

I Lemma 33. L=B � L=B ⊆ L=B.

Proof. By definition, if H ∈ L=B � L=B , there exist H1, H2 ∈ L=B such that H = H1 �
H2. In particular, this means that H1H2 ⊆ H. Moreover, since H1, H2 ∈ L=B , we have
w1, w2 ∈ H1, H2 such alph(w1) = alph(w2) = B. It follows that w1w2 ∈ H and since
alph(w1w2) = B, that H ∈ L=B . J

Proof of Proposition 31
Let p ≥ 1 and let ` ≥ ((p+2)|A|)|A|−1, we have to prove that Kp,` is a BΣ1(<)-cover of A∗.
We prove separately that the union of all languages in Kp,` is A∗ and that each language in
Kp,` is definable in BΣ1(<). Note that we only need ` to be larger than ((p+ 2)|A|)|A| − 1
for the first result, definability in BΣ1(<) is independent from the choice of `. We begin by
proving that Kp,` is a cover of A∗. We state this result in the next lemma.

I Lemma 34. Let p ≥ 1 and let ` ≥ ((p+ 2)|A|)|A| − 1. Then,⋃
K∈Kp,`

K = A∗

Proof. Let p ≥ 1 and let ` ≥ ((p+2)|A|)|A|−1. We have to prove that for any w ∈ A∗, there
exists a language in Kp,` that contains it. In other words, we want to find an unambiguous
template T of length less than ` such that w belongs to the p-implementation of T . First
observe that if w = ε, then w belongs to the p-implementation of the empty template.

We now assume that w 6= ε. We begin with an intermediary result. Given m ≥ 1, we say
that w admits a good decomposition of length m if w can be decomposed as w = w1 · · ·wm

such that for all i, wi is of one the two following types:
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1. wi = ai ∈ A or,
2. there exists Bi = {b1, . . . , bn} ⊆ A such that wi ∈ (B∗i b1B∗i b2 · · ·B∗i bnB

∗
i )p+2.

Claim There exists `′ ≤ ` such that w admits a good decomposition of length `′.

Before we prove the claim, we use it to construct an unambiguous template T such that
w belongs to the p-implementation of T and conclude the proof of Lemma 34. Using the
claim, we obtain a good decomposition of length `′ ≤ ` of w. Observe that we may assume
without loss of generality that this decomposition satisfies the following property. For all i,
if wi is of type 2, then there exist bi, b

′
i ∈ Bi such that,

if wi−1 (resp. wi+1) is of type 1, then ai−1 6∈ Bi (resp. ai+1 6∈ Bi).
if wi−1 (resp. wi+1) is of type 2, then bi 6∈ Bi−1 (resp. b′i 6∈ Bi+1).

Indeed, otherwise we can simply merge pairs of factors wi, wi+1 to get an even smaller good
decomposition of w. Consider the template T = t1, . . . , t`′ defined as follows. For all i,
ti = ai if wi is of the type 1 and ti = (bi, Bi, b

′
i) if wi is of type 2. It follows from our

hypothesis on the good decomposition that T is unambiguous and it is immediate from the
definition of good decompositions that w is a p-implementation of T . Since `′ ≤ `, this
terminates the proof of Lemma 34.

It remains to prove the claim. Let B = alph(w). We proceed by induction on |B| and
prove that that w admits a good decomposition of length smaller than ((p + 2)|B|)|B| − 1
(which suffices by choice of `). Observe first that if |B| = 1, then B = {b} and w = bm for
some m. If m ≤ p+ 1, then we are finished as w admits a good decomposition of length m
in which each factor is a letter. Otherwise, m ≥ p+ 2 and w ∈ (b∗bb∗)p+2. It follows that w
admits a good decomposition of length 1.

Assume now that |B| ≥ 2. We prove that for any m ≥ ((p + 2)|B|)|B|, if w admits a
good decomposition of length m, then w also admits a good decomposition of length strictly
smaller than m. This suffices since w admits a good decomposition of length |w| in which
each factor is a single letter. Let w = w1 · · ·wm be the good decomposition of w and let
m′ = ((p + 2)|B|)|B|−1. Observe that by definition m ≥ (p + 2)|B|m′. We consider two
cases.

In the first case, we assume that there exists i such that alph(wi+1wi+2 · · ·wi+m′) =
C ( B. By induction hypothesis, wi+1wi+2 · · ·wi+m′ admits a good decomposition of length
smaller than ((p + 2)|C|)|C| − 1 < m′. We may now replace the factor wi+1wi+2 · · ·wi+m′

in the good decomposition of w with this new decomposition to obtain a new good decom-
position of w of length strictly smaller than m.

Otherwise, we know that for all i, alph(wi+1wi+2 . . . wi+m′) = B. it follows that w can
be redecomposed into (p+ 2)|B| factors w = w′1 · · ·w′p|B| such that for all i, alph(w′i) = B.
We conclude that w ∈ (B∗b1B∗b2 · · ·B∗bnB

∗)p+2 with {b1, . . . , bn} = B. In other words, w
admits a good decomposition of length 1 and we are finished. J

It now remains to prove that each language in Kp,` is definable in BΣ1(<). We do this
in the next lemma.

I Lemma 35. Let p ≥ 1 and let T be an unambiguous template. Then Kp,T , the p-
implementation of T , is definable in BΣ1(<).

Proof. We adopt a ‘piecewise testable point of view’: we prove that Kp,T is a piecewise
testable language which is equivalent to being BΣ1(<)-definable.
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If T has length 0, Kp,T = {ε} which is the language of words that do not admit any
word of length 1 as a piece. Therefore, Kp,T is piecewise testable. Otherwise T = t1, . . . , t`
for some ` ≥ 1. We construct a word v ∈ A∗ and a finite set of words U ⊆ A∗ such that
Kp,T is the language of all words w ∈ A∗ such that v is a piece of w while there exists no
word in U which is a piece of w. It will then be immediate that Kp,T is piecewise testable.
We begin by constructing v. For all i ≤ `, we associate a word vi to ti as follows:

if ti is a letter a ∈ A, then vi = a.
if ti is a triple (b, B, b′) with B ⊆ A and b, b′ ∈ B, then vi = b(b1 · · · bn)pb′ (with
B = {b1, . . . , bn}).

We define v = v1 · · · v`. Note that by definition of Kp,T , v is piece of all words in Kp,T .
We now define U as the following set,

U = {u ∈ A∗ | |u| ≤ |v|+ 2 and for all w ∈ Kp,T , u is not a piece of w}

Finally, we define H as the language of all words w such that v is a piece of w and no
word in U is a piece of w. By definition, H is a piecewise testable language. We prove that
H = Kp,T which terminates the proof of Lemma 35. We start with the simpler Kp,T ⊆ H

inclusion. Let w ∈ Kp,T , by definition of Kp,T , v is a piece of w. Moreover, by definition of
U , no word of U is a piece of w. It follows that w ∈ H and therefore that Kp,T ⊆ H.

It now remains to prove that H ⊆ Kp,T . Let w ∈ H. Proving that w ∈ Kp,T amounts
to proving that w can be decomposed as w = w1 · · ·w` such that for all i, either ti = a and
wi = a or ti = (b, B, b′) and wi ∈ Itp(b, B, b′). In particular, note that this is where we use
the fact that our template T is unambiguous. The construction is based on the following
lemma.

I Lemma 36. For all i ≤ `− 1, there exists a decomposition of w as w = w1 · · ·wi ·w′i such
that:

1. if ti = (b, B, b′), then the first letter of w′i does not belong to B.
2. vi+1 · · · v` is a piece of w′i.
3. for all j ≤ i, either tj = a and wj = a or tj = (b, B, b′) and wj ∈ Itp(b, B, b′).

Before proving the lemma, we use it to finish the proof of Lemma 35. By applying
Lemma 36 for i = `− 1, we obtain a decomposition w = w1 · · ·w`−1 · w′`−1 of w such that:

1. if t`−1 = (b, B, b′), then the first letter of w′i does not belong to B.
2. v` is a piece of w′`−1.
3. for all j ≤ `− 1, either tj = a and wj = a or tj = (b, B, b′) and wj ∈ Itp(b, B, b′).

One can now verify using the fact that T is unambiguous that either t` = a and w′`−1 = a

or t` = (b, B, b′) and w`−1 ∈ Itp(b, B, b′) (the argument is similar to the arguments used to
prove Lemma 36 and is left to the reader). We conclude that w ∈ Kp,T which finishes the
proof. It now remains to prove Lemma 36.

This is an induction on i. The proof is quite tedious as there are many cases to consider
depending on the nature of consecutive elements ti, ti+1 in T . As all these cases are similar,
we only consider two cases: one for the induction base and one for the induction step. These
two cases are chosen to encompass all arguments that are need to treat the other ones (which
are left to the reader).

We begin with the induction base. When i = 1, there are two cases depending on the
nature of t1. We treat the case when t1 = a. We prove that the first letter of w is an “a”.
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We proceed by contradiction. Observe that v1 = a, hence the word v (which is a piece of
w ∈ H) begins with an “a”. Therefore, if w does not begin with an “a”, it follows that bv is
a piece of w for some b 6= a. One may use the fact that T is unambiguous to verify that bv
is the piece of no word in Kp,T which means that bv ∈ U . This is a contradiction since no
word in U can be a piece of w ∈ H.

Assume now that i > 1. By induction hypothesis, we obtain a decomposition w =
w1 · · ·wi−1 · w′i−1 of w that satisfies the conditions in the lemma. There are four cases
depending on the nature of ti−1 and ti. We treat the case when ti−1 = (c, C, c′) and
ti = (b, B, b′) which is the most involved one. We define wi as the largest prefix of w′i−1
such that wi ∈ B∗ and we define w′i as the corresponding suffix. It is immediate that
w = w1 · · ·wi · w′i. It remains to prove that this choice satisfies the three conditions of the
lemma. The first condition is immediate since w′i was chosen as the largest prefix in B∗.
For the second condition, we know that vi · · · v` is a piece of w′i−1 = wiw

′
i. Moreover, we

know from the fact that T is unambiguous that the first letter of vi+1 does not belong to
B. Since wi ∈ B∗, it follows that vi+1 · · · v` is a piece of w′i. It now remains to prove the
third item. We prove that vi = b(b1 · · · bn)pb′ is piece of wi. Since wi ∈ B∗, it will follow
that wi ∈ Itp(b, B, b′) = B∗b(B∗b1B∗ · · ·B∗bnB

∗)pb′B∗.
We begin by proving that wi is nonempty. Let b′′ be the first letter in w′i−1. By

hypothesis, b′′ 6∈ C (since w′i−1 was constructed by induction, it satisfies Item 1 in the
lemma). We prove that b′′ ∈ B, it will then follow that b′′ is the first letter of wi since
it is the largest prefix of w′i−1 that belongs to B∗. By contradiction assume that b′′ 6∈ B.
By construction of w1, . . . , wi−1 and w′i−1 (see Items 2 and 3 in the lemma), it follows that
v′ = v1 · · · vi−1 · b′′ · vi · · · v` is a piece of w. However, using the fact that T is unambiguous
and b′′ 6∈ B ∪ C, one may verify that v′ is the piece of no word in Kp,T . Therefore v′ ∈ U
which is a contradiction since no word in U can be a piece of w ∈ H. We conclude that
b′′ ∈ B and that wi = b′′x for some x ∈ B∗. Moreover, we know that b′′ ∈ B \ C.

We are now ready to prove that vi is a piece of wi. By contradiction assume that wi is
not a piece of wi. Let d be the first letter of w′i. By construction of wi as the largest prefix in
B∗, we know that d 6∈ B. Recall that vi = b(b1 · · · bn)pb′ and observe that b′ 6= d since d 6∈ B.
Since vi · · · v` is a piece of wiw

′
i, if vi is not a piece of wi, we obtain that b′′db′ · vi+1 · · · v`

is a piece of w′i−1 = wiw
′
i. It follows that v′ = v1 · · · vi · b′′db′ · vi+1 · · · v` is piece of w. In

particular this means that v′ 6∈ U since w ∈ H. One can verify that this contradicts the fact
that T is unambiguous. We conclude that vi is piece of wi which terminates the proof. J

E Proof of Theorem 17: FO2-Covering

This appendix is devoted to the proof of Theorem 17, i.e., of our covering algorithm for
FO2. We begin by presenting the algorithm in more details and introduce some terminology
that we will need for the proof.

I Definition 37 (Covering Algorithm for FO2). Let L be a tame set of languages names. We
define SatFO2(L) ⊆ 2L as the smallest subset of 2L which contains Itriv[L] and is closed
under the following operations:

1. Downset: SatFO2(L) = ↓SatFO2(L).
2. Multiplication: if S,T ∈ SatFO2(L), then S�T ∈ SatFO2(L).
3. For any B ⊆ A and any S,T ∈ SatFO2(L) containing S, T such that alph(S) =

alph(T ) = B, Sω � 〈L|B∗〉 �Tω ∈ SatFO2(L).
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It is immediate from the definition that SatFO2(L) can be computed from L using a
lowest fixpoint algorithm. In the following theorem, we state that SatFO2 is a covering
algorithm for FO2.

I Theorem 38. Let L be a finite set of languages names that is both tame and alphabet
compatible. Then IFO2 [L] = SatFO2(L).

It now remains to prove Theorem 38: we follow the methodology presented in Sec-
tion 4: we first prove soundness: IFO2 [L] ⊇ SatFO2(L) and then completeness: SatFO2(L) ⊆
IFO2 [L].

E.1 Soundness
In this section that our covering algorithm is sound. In other words, we prove the inclusion
IFO2 [L] ⊇ SatFO2(L) in Theorem 38. By definition of SatFO2(L), it suffices to prove that
IFO2 [L] contains the set Itriv[L] and that it is closed under the following operations:

1. Downset: IFO2 [L] = ↓IFO2 [L].
2. Multiplication: for S,T ∈ IFO2 [L], we have S�T ∈ IFO2 [L].
3. For any B ⊆ A and any S,T ∈ IFO2 [L] containing S, T such that alph(S) = alph(T ) =

B, Sω � 〈L|B∗〉 �Tω ∈ IFO2 [L].

As usual, only one of these properties is specific to FO2. We know that IC [L] contains
Itriv[L] and is closed under downset for any boolean algebra C (see Fact 1). Hence, this is
true in particular for C = FO2. Moreover, since FO2 is a quotienting boolean algebra, we
also know from Lemma 13 that IFO2 [L] is closed under multiplication. Therefore, we only
need to prove that IFO2 [L] is closed under the third operation.

To prove this, we use the classical equivalence associated to FO2. Recall that the quan-
tifier rank of a first-order sentence (and therefore in particular of an FO2 sentence) is the
length of the longest sequence of nested quantifiers inside the sentence. Given two words
w,w′ ∈ A∗ and k ≥ 1, we write w ∼=k w′ to denote the fact that w and w′ satisfy the
same FO2-sentences of quantifier rank k. One can verify that for all k, ∼=k is an equivalence
relation of finite index and that each class can be defined in FO2.

For all k ≥ 1, we denote by Kk the partition of A∗ into equivalence classes of ∼=k. By
definition Kk is an FO2-cover of L for all k. We will need the following lemma.

I Lemma 39. For any FO2-cover H of L, there exists k such that I[L](Kk) ⊆ I[L](H).

Proof. Since H is finite, there exists k such that all languages in H may be defined with
FO2 sentences of rank k. Since all languages in H are unions of classes of ∼=k, it is immediate
that I[L](Kk) ⊆ I[L](H). J

We can now prove that IFO2 [L] is closed under the third operation in the definition of
SatFO2 . LetB ⊆ A and S,T ∈ IFO2 [L] that contain S, T such that alph(S) = alph(T ) = B,
we have to prove that Sω � 〈L|B∗〉 �Tω ∈ IFO2 [L]. In other words, we have to prove that
for all FO2-covers H of L, we have Sω � 〈L|B∗〉 �Tω ∈ I[L](H).

Let H be an FO2-cover of L and let k be as defined in Lemma 39 for H. That is
I[L](Kk) ⊆ I[L](H). We prove that Sω � 〈L|B∗〉 �Tω ∈ I[L](Kk), which terminates the
proof. By hypothesis, S,T ∈ I[L](Kk). Hence, we haveKS,KT ∈ Kk such that S ⊆ 〈L|KS〉
and T ⊆ 〈L|KT〉. Consider the language,

K = (KS)(k+1)ωB∗(KT)(k+1)ω
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with ω as the idempotent power of 2L. Do note that by “(KS)(k+1)ω” in the expression
above, we mean the concatenation of (k + 1)ω copies of the language KS and not a tame
multiplication. It follows from Lemma 14 that,

〈L|K〉 = (〈L|KS〉)ω � 〈L|B∗〉 � (〈L|KT〉)ω

Since S ⊆ 〈L|KS〉 and T ⊆ 〈L|KT〉, it follows that Sω � 〈L|B∗〉 � Tω ⊆ 〈L|K〉. Hence, if
we can find K ′ ∈ Kk such that K ⊆ K ′, we will obtain that

Sω � 〈L|B∗〉 �Tω ⊆ 〈L|K〉 ⊆ 〈L|K ′〉 ∈ I[L](Kk)

This will mean that Sω�〈L|B∗〉�Tω ∈ I[L](Kk) as desired. Since the languages of Kk are
the equivalence classes of ∼=k, proving that there exists K ′ ∈ Kk such that K ⊆ K ′ amounts
to proving that all words in K are ∼=k-equivalent. To do this, we use two classical properties
of the equivalence ∼=k that we state in the two lemmas below (whose proofs are based on
Ehrenfeucht-Fraïssé games and left to the reader).

I Lemma 40. For all k ∈ N, the ∼=k is a congruence for concatenation: if w1 ∼=k w
′
1 and

w2 ∼=k w
′
2, then w1w2 ∼=k w

′
1w
′
2.

I Lemma 41. Let B ⊆ A and u, v ∈ A∗ such that alph(u) = alph(v) = B. Finally, let
k, ` ∈ N such that ` ≥ k. Then for any w,w′ ∈ B∗,

u`wv` ∼=k u
`w′v`

Since S,T contain languages names S, T of alphabet B which are intersected by KS and
KT respectively, there exist u ∈ KS and v ∈ KT such that alph(u) = alph(v) = B. Let w
be any word in B∗ and let ` = (k + 1)ω. We prove that all words in K = (KS)`B∗(KT)`

are ∼=k-equivalent to the word u`wv`. By definition, a word in K = (KS)`B∗(KT)` is of
the form u′w′v′ with u′ ∈ (KS)`, v′ ∈ (KT)` and w′ ∈ B∗. Observe that it follows from
Lemma 41 that,

u`wv` ∼=k u
`w′v`

Moreover, since all words in KS (resp. in KT) are ∼=k-equivalent, it follows from Lemma 40
that u′ ∼=k u

` and v′ ∼=k v
`. Using Lemma 40 a second time, we obtain that,

u′w′v′ ∼=k u
`w′v` ∼=k u

`wv`

We conclude that all words in K = (KS)`B∗(KT)` are ∼=k-equivalent, which terminates the
proof.

E.2 Completeness
In this section, we prove the difficult direction of Theorem 38 which corresponds to com-
pleteness of our pointed covering algorithm for FO2. In other words, we prove that given
a tame and alphabet compatible set of languages names L, IFO2 [L] ⊆ SatFO2(L). More
precisely, we present a generic construction for building a FO2-cover K of L such that
I[L](K) ⊆ SatFO2(L). Since by definition, IFO2 [L] ⊆ I[L](K), the result will follow.

In particular, recall that this generic construction is also a solution to the second stage of
the covering problem: it is a generic method for building an optimal FO2-cover of an input
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set of languages. Indeed, since we already know that IFO2 [L] ⊆ SatFO2(L), the FO2-cover
K that we construct satisfies,

IFO2 [L] ⊆ I[L](K) ⊆ SatFO2(L) ⊆ IFO2 [L]

This means that the FO2-cover that we construct is actually optimal. We start with a few
facts that we will use in the construction.

Recall that since we work with an alphabet compatible set of languages names, all words
belonging to the same L ∈ L have the same alphabet that we denote alph(L). An important
process in our construction will be to use induction and reduce the problem of covering L
to covering only 〈L|B∗〉 = {L ∈ L | alph(L) ⊆ B} for increasingly smaller subsets B of the
alphabet A. In particular, to simplify notations, we will simply write LB for 〈L|B∗〉. Let
us begin with an important observation,

I Fact 42. Let B ⊆ A, then the restriction of the tame multiplication of L to LB remains
a tame multiplication. In particular, LB is tame.

Proof. Immediate from alphabet compatibility. J

Furthermore the two following facts will prove useful.

I Fact 43. Let B,C ⊆ A such that C ⊆ B. Then,

SatFO2(LC) ⊆ SatFO2(LB)

Proof. Immediate by definition since Itriv[LC ] ⊆ Itriv[LB ]. J

I Fact 44. Let B,C ⊆ A such that C ⊆ B and let K be a finite set of languages such that
all K ∈ K satisfy K ⊆ C∗. Then,

I[LB ](K) = I[LC ](K)

Proof. Since C ⊆ B, we have LB ⊆ Lc. Therefore it is immediate that I[LC ](K) ⊆
I[LB ](K) for any K. We prove the converse inclusion. Let H ∈ I[LB ](K). By definition,
H ⊆ 〈LB |K〉 for some K ∈ K. In particular, since K ⊆ C∗, this means that all languages in
H ∈ H satisfy H ∈ LC . Therefore, 〈LB |K〉 = 〈LC |K〉 which means that H ∈ I[LC ](K). J

We are now ready to start the construction. We state it in Proposition 45 below. Observe
that for all B ⊆ A, SatFO2(LB) is a subsemigroup of 2L by definition. In particular, we use
the notation (SatFO2(LB))1 to denote the following monoid:

(SatFO2(LB))1 =
{
SatFO2(LB) if SatFO2(LB) is a monoid
SatFO2(LB) ∪ {1} where 1 is an artificial neutral element, otherwise

I Proposition 45. Let B ⊆ A and T`,Tr ∈ (SatFO2(LB))1. Then there exists a FO2-cover
K of LB such that,

T` � I[LB ](K)�Tr ⊆ SatFO2(LB)

Before we prove Proposition 45, we use it to finish the proof of Theorem 38. We apply
Proposition 45 in the case when B = A and T`,Tr are both equal to the neutral element
of (SatFO2(LB))1. We obtain a FO2-cover K of LA = L such that, I[L](K) ⊆ SatFO2(L)
which terminates the proof.
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It now remains to prove Proposition 45. We let B,T` and Tr be as in the statement of
the proposition. The proof is by induction on three parameters that we define now. The
first and most important parameter is the size of B. The other two also depend on T` and
Tr respectively. Given R1,R2 ∈ (SatFO2(LB))1, we say that,

R2 is left reachable from R1 if there exists Q ∈ (SatFO2(LB))1 such that R2 ⊆ Q�R1.
R2 is right reachable from R1 if there exists Q ∈ (SatFO2(LB))1 such that R2 ⊆ R1�Q.

One may verify that left and right reachability are both preorder relations on the set
(SatFO2(LB))1 (this is because tame multiplications are compatible with inclusion). For
each R ∈ (SatFO2(LB))1, we call left index of R (resp. right index of R) the number of
elements that are left reachable (resp. right reachable) from R. We proceed by induction
on the following parameters listed by order of importance:

1. |B|
2. The right index of T`.
3. The left index of Tr.

We consider three cases depending on a property of T` and a property of Tr. These
properties are based on the following fact.

I Fact 46. For all b ∈ B, 〈LB |{b}〉 ∈ SatFO2(LB).

Proof. Let H = 〈LB |{b}〉. Since {b} is a singleton, all language in H contain the word b.
Therefore ∩H∈HH 6= ∅ and H ∈ Itriv[LB ] ⊆ SatFO2(LB) by definition. J

We may now define the two properties that specify our three cases.

we say that T` is right saturated by B if for all b ∈ B, there exists Q ∈ (SatFO2(LB))1

such that T` is right reachable from T` �Q� 〈LB |{b}〉.
we say that Tr is left saturated by B if for all b ∈ B, there exists Q ∈ (SatFO2(LB))1

such that Tr is left reachable from 〈LB |{b}〉 �Q�Tr.

The base case happens when T` is right saturated and Tr is left saturated. Otherwise
we use induction. We begin with the base case.

Base Case: T` is right saturated and Tr is left saturated
In this case, we simply define K = {B∗} (which is clearly a FO2-cover of LB). We use our
hypothesis to prove that it satisfies T`�I[LB ](K)�Tr ⊆ SatFO2(LB). Since by definition,
I[LB ](K) = ↓{LB}, it suffices to prove that T`�LB�Tr ∈ SatFO2(LB). There is a special
case when T` = ∅ or Tr = ∅. In that case, T` � LB �Tr = ∅ ∈ SatFO2(LB). Assume now
that T` 6= ∅ and Tr 6= ∅. We use the following lemma.

I Lemma 47. There exist Q`,Qr ∈ SatFO2(LB) containing Q`, Qr such that alph(Q`) =
alph(Qr) = B, T` ⊆ T` �Q` and Tr ⊆ Qr �Tr.

Before we prove the lemma we use it to conclude this case. Using a little algebra and the
fact that “�” is compatible with inclusion, we obtain T` ⊆ T`�(Q`)ω and Tr ⊆ (Qr)ω�Tr.
In particular, observe that we obtain,

T` � LB �Tr ⊆ T`(Q`)ω � LB � (Qr)ωTr
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Moreover, since alph(Q`) = alph(Qr) = B, we know from the definition of SatFO2 (see
Operation 3) that,

(Q`)ω � LB � (Qr)ω ∈ SatFO2(LB)

Using closure under multiplication, we then obtain that, T` � (Q`)ω � LB � (Qr)ω �Tr ∈
SatFO2(LB). Since T`�LB�Tr ⊆ T`(Q`)ω�LB�(Qr)ωTr, we use closure under downset
to conclude that T` � LB �Tr ∈ SatFO2(LB) which terminates the proof of this case. We
finish with the proof of Lemma 47.

Proof. We only prove the existence of Q` using the fact that T` is right saturated (the ex-
istence of Qr is proved symmetrically using the fact that Tr is left saturated). By definition
of right saturation, we know that for each b ∈ B, there exists Ub,Vb ∈ (SatFO2(LB))1 such
that,

T` ⊆ T` �Ub � 〈LB |{b}〉 �Vb ∈ SatFO2(LB)

We define Q` = Πb∈B(Ub � 〈LB |{b}〉 �Vb) (where the product is made in an arbitrarily
chosen order). By definition, we have T` ⊆ T` �Q`. It remains to prove that Q` contains
Q` of alphabet B. We prove an even stronger property: any Q` ∈ Q` has alphabet B. This
suffices since there exists at least one Q` ∈ Q` (by hypothesis T` 6= ∅ and T` ⊆ T` �Q`).

Observe that for any b ∈ B, all languages names Qb ∈ Ub � 〈LB |{b}〉 � Vb satisfy
b ∈ alph(Qb) ⊆ B. By definition, any Q` ∈ Q` includes the concatenation of a sequence of
languages Qb ∈ Ub � 〈LB |{b}〉 �Vb for each b ∈ B. Therefore, alph(Q`) = B. J

We are now finished with the base case. It remains to treat the case when either T` is
not right saturated or Tr is not left saturated. These two case are symmetrical. We consider
the case when T` is not right saturated. The second case is left to the reader.

Induction Case: T` is not right saturated
Since T` is not right saturated, this means that there exists some b ∈ B such that for all
Q ∈ SatFO2(LB), T` is not right reachable from T`�Q� 〈LB |{b}〉. We use b to construct
our FO2-cover K of LB .

Let C = B\{b}. Using induction on the size of the alphabet, we obtain a FO2-cover H of
LC such that I[LC ](H) ⊆ SatFO2(LC). Moreover, we may assume without loss of generality
that for all H ∈ H, we have H ⊆ C∗. Indeed, we can always restrict the languages H to
words belonging to C∗ with FO2. In particular, this means that I[LC ](H) = I[LB ](H) (this
is Fact 44). Moreover, since SatFO2(LC) ⊆ SatFO2(LB) (this is Fact 43), we obtain that,

I[LB ](H) ⊆ SatFO2(LB) (2)

For each H ∈ H let TH = T` � 〈LB |H〉 � 〈LB |{b}〉. Since I[LB ](H) ⊆ SatFO2(LB), we
know that 〈LB |H〉 ∈ SatFO2(LB) and therefore that TH ∈ SatFO2(LB). By definition of b,
we know that T` is not right reachable from TH . In particular, it follows that TH has a
right index that is strictly smaller than the right index of T`. Hence, we may use induction
to construct a FO2-cover KH of LB such that,

TH � I[LB ](KH)�Tr ⊆ SatFO2(LB) (3)

We are now ready to construct our FO2-cover K of LB . We build the languages of K from
the languages of H and the languages in the sets KH . We define,

K = H ∪
⋃

H∈H
{HbK | K ∈ KH}
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It remains to prove that K is an FO2-cover of LB and that T` � I[LB ](K) � Tr ⊆
SatFO2(LB). We begin by proving that all languages K ∈ K are definable in FO2. This
is immediate by construction of H if K ∈ H. Otherwise, K = HbK ′ with H ∈ H and
K ′ ∈ KH . Observe that by definition, H ⊆ C∗, b ∈ B \ C, H is definable in FO2 and K ′ is
definable in FO2. Hence, since H ⊆ C∗ and b 6∈ C, a word w belongs to HbK ′ if and only
if it satisfies the following three properties:

1. w contains a b.
2. the prefix of w obtained by keeping all positions that are strictly smaller than the position

with the leftmost b belongs to H.
3. the suffix of w obtained by keeping all positions that are strictly larger that the position

with the leftmost b belongs to K ′.

Therefore, it suffices to prove that these three properties can be expressed in FO2(<). This
is clear for the first property. For the second and third properties, observe that one can
select the position with the leftmost b using the following FO2 formula:

ϕ(x) := Pb(x) ∧ ¬∃y (Pb(y) ∧ y < x)

Therefore a sentence for the second property above can be obtained from a sentence ΨH

that defines H by restricting all quantifications to positions x that satisfy the formula
∃y x < y ∧ ϕ(y). Similarly, a sentence for the third property can be obtained from a
sentence ΨL that defines L by restricting all quantifications to positions x that satisfy the
formula ∃y y < x ∧ ϕ(y).

We now prove that K is covers of LB . Let L ∈ LB and w ∈ L, we need to find K ∈ K
such that w ∈ K. If L ∈ Lc, w belongs to some H ∈ H ⊆ K since H was constructed as
a cover of LC . Otherwise, b ∈ alph(L) = alph(w) and w can be decomposed as w = ubv

with alph(u) ⊆ C and alph(v) ⊆ B. Since L is tame, there exists Lu ∈ LC that contains u,
Lb ∈ LB that contains b and Lv ∈ LB that contains v such that L = Lu�Lb�Lv. It follows
that u belongs to some H ∈ H (H is a cover of LC) and that v belongs to some K ′ ∈ KH

(KH is a cover of LB). Hence w ∈ HbK ′ which is a language of K and we are finished.
Finally, we have to prove that T` � I[LB ](K) � Tr ⊆ SatFO2(LB). By definition of

I[LB ](K), it suffices to prove that for all K ∈ K, T` � 〈LB |K〉 � Tr ∈ SatFO2(LB). We
have two cases depending on K. If K ∈ H, then 〈LB |K〉 ∈ I[LB ](H) ⊆ SatFO2(LB)
(see (2)). Moreover, since T`,Tr ∈ SatFO2(LB) it follows from closure under multiplication
that T` � 〈LB |K〉 � Tr ∈ SatFO2(LB). Assume now that K = HbK ′ for H ∈ H and
K ′ ∈ KH . Using Lemma 14, we obtain that,

〈LB |K〉 = 〈LB |H〉 � 〈LB |{b}〉 � 〈LB |K ′〉

Recall that by definition, TH = T` � 〈LB |H〉 � 〈LB |{b}〉. Therefore, T` � 〈LB |K〉 �Tr =
TH � 〈LB |K ′〉 � Tr. Finally, since K ′ ∈ KH , we have 〈LB |K ′〉 ∈ I[L](KH). It follows
from (3) that T`�〈LB |K〉�Tr ∈ SatFO2(LB). This concludes the proof of Proposition 45.

F Proof of Theorem 18: Pointed Σ2-Covering

This appendix is devoted to the proof of Theorem 18, i.e., of our pointed covering algorithm
for Σ2. We begin by presenting the algorithm in more details and introduce some terminology
that we will need for the proof.

Consider a finite set of languages names L that is both tame and alphabet compatible.
Recall that since L is alphabet compatible, alph(L) is well-defined for all L ∈ L as the
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alphabet B shared by all words in L. Moreover, recall that for any B ⊆ A, we denote by
LB the set {L ∈ L | alph(L) ⊆ B}.

I Definition 48 (Pointed Covering Algorithm for Σ2). Let L be atame set of languages names
such that L is both tame and alphabet compatible. We define SatΣ2(L) ⊆ L × 2L as the
smallest subset of L× 2L containing Ptriv[L] and closed under the following operations:

1. Downset: SatΣ2(L) = ↓SatΣ2(L).
2. Multiplication: if (S,S), (T,T) ∈ SatΣ2(L) and S � T is defined, then,

(S � T,S�T) ∈ SatΣ2(L).
3. For any B ⊆ A and (S,S) ∈ SatΣ2(L) such that alph(S) = B and S � S is defined,

(Sω,Sω � 〈L|B∗〉 � Sω) ∈ SatΣ2(L).

As usual it is immediate that SatΣ2(L) may be computed from L using a lowest fixpoint
algorithm. This terminates the presentation of our pointed covering algorithm for Σ2. We
state its correctness below.

I Theorem 49. Let L be a set of languages names such that L is both tame and alphabet
compatible. Then PΣ2 [L] = SatΣ2(L).

It now remains to prove Theorem 49. We follow the methodology presented in Section 4:
we first prove soundness (PΣ2 [L] ⊇ SatΣ2(L)) and then completeness (PΣ2 [L] ⊆ SatΣ2(L)).

F.1 Soundness
In this section we prove the soundness of our algorithm, that is the inclusion PΣ2 [L] ⊇
SatΣ2(L) in Theorem 49. By definition of SatΣ2(L), we need to prove that PΣ2 [L] contains
Ptriv[L] and that it is closed under the following operations:

1. Downset: PΣ2 [L] = ↓PΣ2 [L].
2. Multiplication: if (S,S), (T,T) ∈ PΣ2 [L] and S � T is defined, then,

(S � T,S�T) ∈ PΣ2 [L].
3. For any B ⊆ A and (S,S) ∈ SatΣ2(L) such that alph(S) = B and S � S is defined,

(Sω,Sω � 〈L|B∗〉 � Sω) ∈ PΣ2 [L].

As usual, only one of these properties is specific to Σ2. Since PΣ2 [L] is a pointed imprint,
we already know that it contains Ptriv[L] (this is Fact 6) and that it is closed under downset.
Moreover, L is tame and Σ2 is a known quotienting lattice, hence we also know that PΣ2 [L]
is closed under multiplication (this is Lemma 13). It remains to prove that PΣ2 [L] is closed
under the third operation. This is what we do now.

Recall that the quantifier rank of a first-order sentence (and therefore in particular of a
Σ2 sentence) is the length of the longest sequence of nested quantifiers inside the sentence.
Given two words w,w′ ∈ A∗ and k ≥ 1, we write w .k w′ to denote the fact that all
Σ2-sentences of rank k that are satisfied by w are satisfied by w′ as well. One may verify
that for all k, .k is a preorder. Moreover, the following set of languages is a finite set of
Σ2-definable languages:{

{u ∈ A∗ | w .k u} | w ∈ A∗
}
.

For all k ∈ N, we denote by Pk the following L-pointed set:

Pk = {(L, {w | u .k w}) | L ∈ L and u ∈ L}
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I Lemma 50. For any pointed Σ2-cover Q of L, there exists k ∈ N such that P[L](Pk) ⊆
P[L](Q).

Proof. Since the support H of Q is finite, there exists ` such that all languages in H may
be defined with Σ2 sentences of rank `. It suffices to choose k = `. J

We can now prove that PΣ2 [L] is closed under the third operation in the definition
of SatΣ2(L) and conclude the soundness proof. Let B ⊆ A, (S,S) ∈ PΣ2 [L] such that
alph(S) = B, and S � S is defined. We have to prove that (Sω,Sω � 〈L|B∗〉 � Sω) ∈
PΣ2 [L]. In other words, we have to prove that for all pointed Σ2-covers Q of L, we have
(Sω,Sω � 〈L|B∗〉 � Sω) ∈ P[L](Q).

Let Q be a pointed Σ2-cover of L and let k be as defined in Lemma 50 for Q. We prove
that (Sω,Sω � 〈L|B∗〉 � Sω) ∈ P[L](Pk), which terminates the proof since P[L](Pk) ⊆
P[L](Q).

By hypothesis (S,S) ∈ PΣ2 [L]. Hence, we have K ∈ Pk(S) such that S ⊆ 〈L|K〉.
Consider the language,

H = (K)2k+1ωB∗(K)2k+1ω

with ω as the idempotent power of 2L. Observe that 〈L|H〉 = (〈L|K〉)ω � 〈L|B∗〉 �
(〈L|K〉)ω ⊇ Sω � 〈L|B∗〉 � Sω (see Lemma 14). Hence, if we can find H ′ ∈ Pk(Sω)
such that H ⊆ H ′, we will obtain that Sω � 〈L|B∗〉 � Sω ∈ 〈L|H ′〉 and therefore that
(Sω,Sω � 〈L|B∗〉 � Sω) ∈ P[L](Pk) as desired.

We begin by defining H ′ and then prove that it satisfies H ⊆ H ′. Recall that by
definition, since (S,K) ∈ Pk, there exists u ∈ S such that K = {w ∈ A∗ | u .k w}. In
particular, we know from the definition of tame multiplications that,

v = u2k+2ω ∈ S2k+2ω = Sω

By definition of Pk we know that H ′ = {w ∈ A∗ | v .k w} belongs to Pk(Sω). It now
remains to prove that H ⊆ H ′. By definition of H ′, this amounts to proving that all w ∈ H
satisfy v .k w. We use the two following lemmas (whose proof is based on Ehrenfeucht-
Fraïssé games and left to the reader).

I Lemma 51. For all i ≥ 1, the preorder .ki is a precongruence for concatenation: if
u .k iu

′ and v .k iv
′, then uv .k iu

′v′.

I Lemma 52. Let i ≥ 1, and let k, `, r, `′, r′ ∈ N be such that `, r, `′, r′ > 2k and let u, y ∈ A∗
such that alph(y) ⊆ alph(u). Then we have:

u`ur .k u
`′yur′ .

Let w ∈ H = (K)2k+1ωB∗(K)2k+1ω. Since K is the language {w′ ∈ A∗ | u .k w
′}, using

Lemma 51 one may verify that there exists y ∈ B∗ such that,

u2k+1ωyu2k+1ω .k w

Furthermore, by definition, v = u2k+2ω and since u ∈ S and B = alph(S), we have
alph(u) = B. Therefore, it follows from Lemma 52 that we have

v .k u
2k+1ωyu2k+1ω

We can now combine the two inequalities and obtain v .k w which terminates the proof.
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F.2 Completeness

In this section we prove the difficult direction in Theorem 49 which corresponds to com-
pleteness of our pointed covering algorithm for Σ2. More precisely, we prove that given a
tame and alphabet compatible set of languages names L, PΣ2 [L] ⊆ SatΣ2(L). As usual,
this proof is also a solution to the second stage of the pointed covering problem: following
it yields a generic method for building an optimal pointed Σ2-cover of an input tame set of
languages. We present a generic construction for building a pointed Σ2-cover P of L such
that P[L](P) ⊆ SatΣ2(L).

We begin with an overview of the construction. Consider the L-pointed set T that
contains all pairs (L, {w}) where L ∈ L and w belongs to L ∩ (A ∪ {ε}) (i.e. w belongs to
L and is either a single letter or the empty word). One can verify that T satisfies the two
following properties:

1. all languages in the support of T are definable in Σ2 (they are finite languages).
2. P[L](T) ⊆ SatΣ2(L) (by definition, P[L](T) ⊆ Ptriv[L] ⊆ SatΣ2(L)).

However, observe as soon as some L ∈ L contains a word with more than two letters, T is
clearly not a pointed Σ2-cover of L. While T is not a pointed Σ2-cover of L itself, we use
it to build one by relying on a new notion called “Q-decompositions”.

Q-Decompositions. Let Q be a L-pointed finite set of languages. Given L ∈ L and w ∈
A∗, we say that w admits a Q-decomposition for L if w may be decomposed as w = w1 · · ·wn

such that there exist pairs (L1, H1), . . . , (Ln, Hn) ∈ Q such that,

L = L1 � · · · � Ln.
for all i ≤ n, wi ∈ Hi.

We write DL(Q) the language of all words w which admit aQ-decomposition for L. Observe
that the L-pointed set T above satisfies the following fact.

I Fact 53. For all L ∈ L, L ⊆ DL(T).

Proof. Let L ∈ L and w ∈ L. If w = ε, then (L, {w}) ∈ T and therefore w admits a T-
decomposition of length 1 for L. We conclude that w ∈ DL(T). Otherwise let w = a1 · · · an

be the decomposition of w as a concatenation of letters. Since w ∈ L, by definition of tame
multiplications, we obtain L1, . . . , Ln ∈ L such that ai ∈ Li for all i and L = L1 � · · · �Ln.
By definition of T, it follows that (Li, {ai}) ∈ T for all i and therefore that w = a1 · · · an is
a T-decomposition of length n for L, i.e. w ∈ DL(T). J

We use induction to prove that if we have a L-pointed set Q of Σ2-definable languages
such that P[L](Q) ⊆ SatΣ2(L) in hand (for example T), we can use it to build a new L-
pointed set of Σ2-definable languages P which still satisfies P[L](P) ⊆ SatΣ2(L) and such
that,

for all L ∈ L, P(L) covers DL(Q) (i.e. DL(Q) ⊆ ∪K∈P(L)K)

In view of Fact 53 applying this result to T will yield the desired Σ2-cover P of L such that
P[L](P) ⊆ SatΣ2(L). Before we formally present this result, we introduce some terminology
that we will need.
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Preliminaries

Safe L-pointed sets. When constructing L-pointed sets of languages, it will be convenient
choose them so that they satisfy a specific property that we call “safe”. Given a L-pointed
finite set of languages Q, we say that Q is safe if and only if all pairs (L,H) ∈ Q satisfy
H 6= ∅ and H ⊆ (alph(L))∗.

Parameters of L-pointed sets. In the proof, we rely on three parameters that can be
associated to the L-pointed set Q from which we start. Let H be the support of Q (i.e.
H = {H | (L,H) ∈ Q for some L ∈ L}).

1. The alphabet of Q is the smallest set AQ ⊆ A such that alph(L) ⊆ AQ for all L ∈ L
satisfying Q(L) 6= ∅. Note that if Q is safe, we also have H ⊆ (AQ)∗ for all H ∈ H.

2. Furthermore, we denote by Dec(Q) the set of all L ∈ L for which DL(Q) 6= ∅.
3. Finally, we denote by Cov(Q) the language,

Cov(Q) = (
⋃

H∈H
H) ∪ (

⋃
H∈H

H)(AQ)∗(
⋃

H∈H
H)

We finish with a few facts about these parameters that can be verified from the definitions
and will prove useful.

I Fact 54. Let Q be a safe L-pointed set. Dec(Q) is the smallest sub-partial semigroup
of L which contains all L ∈ L such that Q(L) 6= ∅. Moreover, for all L ∈ Dec(Q),
alph(L) ⊆ AQ. In particular, AQ = ∪L∈Dec(Q)alph(L).

I Fact 55. Let Q be a safe L-pointed set, then Cov(Q) ⊆ (AQ)∗ and Cov(Q)Cov(Q) ⊆
Cov(Q).

Main proof
We are now ready to start the proof. We start our induction in the following proposition.

I Proposition 56. LetQ be a safe L-pointed set of Σ2-definable languages such that P[L](Q) ⊆
SatΣ2(L). There exists a safe L-pointed set of Σ2-definable languages P such that:

1. for all (L,K) ∈ P, L ∈ Dec(Q) and K ⊆ Cov(Q).
2. for all L ∈ L, P(L) is a cover of DL(Q).
3. P[L](P) ⊆ SatΣ2(L).

Before we prove the proposition, we use it to finish the proof of Theorem 49. As we
observed, the L-pointed set T above is a L-pointed set of Σ2-definable languages such that
P[L](T) ⊆ SatΣ2(L). Moreover, one can verify from the definition thatT is safe. Altogether,
we can apply Proposition 56 to obtain a new L-pointed finite set of Σ2-definable languages
P such that,

1. for all L ∈ L, P(L) is a cover of DL(T).
2. P[L](P) ⊆ SatΣ2(L).

We may now combine these two items with Fact 53 to obtain that P is a pointed Σ2-cover
of L such that P[L](P) ⊆ SatΣ2(L) which terminates the proof of Theorem 49.

We now turn to the proof of Proposition 56. Let Q be as in the statement of the
proposition. The proof is by induction on the three following parameters of Q.
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1. |Dec(Q)|.
2. |〈L|Cov(Q)〉|.
3. |Q|

We separate the proof in two cases which depend on a property of Q that we define now.
We say thatQ is saturated if and only if the two following properties hold for all (L,H) ∈ Q:{

{L} �Dec(Q) = Dec(Q)
〈L|H〉 � 〈L|Cov(Q)〉 = 〈L|Cov(Q)〉 and

{
Dec(Q)� {L} = Dec(Q)
〈L|Cov(Q)〉 � 〈L|H〉 = 〈L|Cov(Q)〉

The base case happens when Q is saturated. In that case, we construct Q directly
(i.e. we do not use induction). Otherwise, we refine the Q-decompositions and conclude by
induction.

Base Case: Q is saturated.
In this case we construct P directly. The construction is based on the following lemma
(which is where we use our hypothesis that Q is saturated).

I Lemma 57. For all L ∈ Dec(Q), (L, 〈L|Cov(Q)〉) ∈ SatΣ2(L).

Before we prove the lemma, we first use it to construct P. We let P = {(L,Cov(Q)) |
L ∈ Dec(Q)}. Note that by definition, the support K of P is the set K = {Cov(Q)}. Let
H be the support of Q and recall that,

Cov(Q) = (
⋃

H∈H
H) ∪ (

⋃
H∈H

H)(AQ)∗(
⋃

H∈H
H)

Observe that (AQ)∗ and ∪H∈HH are definable in Σ2 (by hypothesis in Proposition 56, all
H ∈ H are definable in Σ2). Therefore, Cov(Q) is a concatenation of Σ2-definable languages
and and is itself a Σ2-definable language since Σ2 is closed under concatenation. We now
use Lemma 57 to verify that Q is safe and satisfies the three conditions in Proposition 56.
We begin by proving that P is safe. Since by definition Cov(Q) ⊆ (AQ)∗ (see Fact 55), this
follows from the next fact.

I Fact 58. For all L ∈ Dec(Q), alph(L) = AQ.

Proof. We prove that all L ∈ Dec(Q) have the same alphabet (which must then be AQ
by Fact 54). Let L,L′ ∈ Dec(Q). Since Q is saturated, we have (L1, H1), (L2, H2) ∈ Q
such that L� L1 = L′ and L′ � L2 = L. We obtain that alph(L) ⊆ alph(L) ∪ alph(L1) =
alph(L′) and alph(L′) ⊆ alph(L′) ∪ alph(L2) = alph(L). We conclude that alph(L) =
alph(L′). J

The first condition in Proposition 56 is immediate from the definition of P. We prove
the second and third conditions. We start by proving that for all L ∈ L, P(L) is a cover of
DL(Q). If DL(Q) = ∅, this is immediate. Otherwise let w ∈ DL(Q). By definition, we have
to prove that w ∈ Cov(Q). By definition of DL(Q), w can be decomposed as w = w1 · · ·wn

and for all i there exists (Li, Hi) ∈ Q such that wi ∈ Hi. Hence, in particular, for all i,
wi ∈ ∪H∈HH. If n = 1, then w ∈ ∪H∈HH ⊆ Cov(Q). Otherwise, one can verify from the
fact that Q is safe that for all i, Hi ⊆ (AQ)∗. Therefore, we obtain,

w ∈ (
⋃

H∈H
H)(AQ)∗(

⋃
H∈H

H) ⊆ Cov(Q)
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We conclude that P(L) is a cover of DL(Q).
Finally, we prove that P[L](P) ⊆ SatΣ2(L). Consider (L,L′) ∈ P[L](P). By definition

of pointed imprints, we get K ∈ K such that (L,K) ∈ P and L′ ⊆ 〈L|K〉. By closure under
downset in the definition of SatΣ2 , it suffices to prove that (L, 〈L|K〉) ∈ SatΣ2(L). This
is immediate since by definition of K, K = Cov(Q) and (L, 〈L|Cov(Q)〉) ∈ SatΣ2(L) by
Lemma 57.

It remains to prove Lemma 57. This is where we use the fact that Q is saturated. The
proof is based on the following fact which treats a special case.

I Fact 59. Let (S,H) ∈ Q such that S � S is defined. Then,

(Sω, 〈L|Cov(Q)〉) ∈ SatΣ2(L)

Proof. By definition of pointed imprints, we know that (S, 〈L|H〉) ∈ P[L](Q) and therefore
(S, 〈L|H〉) ∈ SatΣ2(L) since P[L](Q) ⊆ SatΣ2(L) by hypothesis in Proposition 56. Also
note that by Fact 54, S ∈ Dec(Q) and therefore we know from Fact 58 that alph(S) = AQ.
Hence, we may use Operation 3 in the definition of SatΣ2 to conclude that,

(Sω, 〈L|H〉ω � 〈L|(AQ)∗〉 � 〈L|H〉ω) ∈ SatΣ2(L)

By closure under downset, it now suffices to prove that 〈L|Cov(Q)〉 ⊆ 〈L|H〉ω�〈L|(AQ)∗〉�
〈L|H〉ω. We know from Fact 55 that 〈L|Cov(Q)〉 ⊆ 〈L|(AQ)∗〉. Therefore, we obtain,

〈L|H〉ω � 〈L|Cov(Q)〉 � 〈L|H〉ω ⊆ 〈L|H〉ω � 〈L|(AQ)∗〉 � 〈L|H〉ω

Moreover, using the fact that Q is saturated (this is our hypothesis), we have 〈L|H〉ω �
〈L|Cov(Q)〉�〈L|H〉ω = 〈L|Cov(Q)〉. We conclude that, 〈L|Cov(Q)〉 ⊆ 〈L|H〉ω�〈L|(AQ)∗〉�
〈L|H〉ω which terminates the proof. J

We may now use Fact 59 to finish the proof of Lemma 57. Let L ∈ Dec(Q), we have
to prove that (L, 〈L|Cov(Q)〉) ∈ SatΣ2(L). Let (S,H) ∈ Q. Since Q is saturated, we know
that,

Dec(Q) = {S} �Dec(Q) = {S}ω �Dec(Q) (4)

In particular, note that since Dec(Q) 6= ∅ (it contains L), this means that {S}ω 6= ∅, i.e.
S � S is defined. In particular, we know from Fact 59 that (Sω, 〈L|Cov(Q)〉) ∈ SatΣ2(L).
Moreover, we obtain from (4) above that there exists L′ ∈ Dec(Q) such that L = Sω�L′. By
definition, of Dec(Q) there exists (L1, H1), . . . , (Ln, Hn) ∈ Q such that L1� · · · �Ln = L′.
It follows that L = Sω � L1 � · · · � Ln. Furthermore, by definition of pointed imprints,
we have, (Li, 〈L|Hi〉) ∈ P[L](Q) for all i, and since P[L](Q) ⊆ SatΣ2(L) by hypothesis in
Proposition 56, we obtain,

(Li, 〈L|Hi〉) ∈ SatΣ2(L) for all i

Using closure under multiplication in the definition of SatΣ2 we obtain that,

(Sω � L1 � · · · � Ln, 〈L|Cov(Q)〉 � 〈L|H1〉 � · · · � 〈L|Hn〉) ∈ SatΣ2(L)

By definition, the first component of the pair above is equal to L and by saturation of Q, the
second component is equal to 〈L|Cov(Q)〉. We conclude that (L, 〈L|Cov(Q)〉) ∈ SatΣ2(L)
which terminates the proof of the base case.
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Induction Case: Q is not saturated.
By hypothesis there exists (L,H) ∈ Q such that one of the four following properties hold:

{L} �Dec(Q) 6= Dec(Q) or,
〈L|H〉 � 〈L|Cov(Q)〉 = 〈L|Cov(Q)〉 or,
Dec(Q)� {L} 6= Dec(Q) or,
〈L|Cov(Q)〉 � 〈L|H〉 = 〈L|Cov(Q)〉.

In the remainder of the proof we denote by b = (Lb, Hb) this pair and by symmetry we
suppose that one of the two following properties holds:

{Lb} �Dec(Q) 6= Dec(Q) (5)
〈L|Hb〉 � 〈L|Cov(Q)〉 6= 〈L|Cov(Q)〉 (6)

Note that this means that we have two cases to treat depending on the property that holds.
However, both cases are similar. In particular, the construction of P is the same in both
cases. The only difference is the induction parameter that we use to conclude at the end of
the proof (it depends on the property that holds).

We begin by constructing two new L-pointed setsQpr andQsu. We define,Qpr = Q\{b}
andQsu = {b}. Observe that by definition,Qpr,Qsu ⊆ Q and therefore, AQpr , AQsu ⊆ AQ,
Dec(Qpr),Dec(Qsu) ⊆ Dec(Q) and 〈L|Cov(Qpr)〉, 〈L|Cov(Qsu)〉 ⊆ 〈L|Cov(Q)〉. For each
L ∈ L, consider the three following languages,

1. DL(Qpr), the language of all words which admit a Qpr-decomposition for L.
2. DL(Qsu), the language of all words which admit a Qsu-decomposition for L.
3. InfL is the language of all words w ∈ A∗ that admit a decomposition of the form

u1v1 · · ·unvn such that for all i there exist Ui, Vi ∈ L satisfying,
for all i, ui ∈ DUi

(Qsu).
for all i, vi ∈ DVi

(Qpr).
L = U1 � V1 � · · · � Un � Vn.

Recall that given L ∈ L, w ∈ DL(Q) if w can be decomposed as w = w1 . . . wn such
for all i there exists (Li, Hi) ∈ Q such that wi ∈ Hi and L = L1 � · · · � Ln. Observe
that we may sort the factors wi into two kinds: those such that (Li, Hi) = b and those
such that (Li, Hi) 6= b. We may then regroup the factors into maximal blocks such that all
factors in a block have the same kind. This means that each block of factors admits either
a Qpr-decomposition or a Qsu-decomposition. Altogether, we have the following fact.

I Fact 60. Let L ∈ L, then any word w ∈ DL(Q) can be decomposed in one of the following
ways:

w = w1w2w3 such that there exist L1, L2, L3 ∈ L satisfying w1 ∈ DL1(Qpr), w2 ∈ InfL2 ,
w3 ∈ DL3(Qsu) and L = L1 � L2 � L3.
w = w1w2 such that there exist L1, L2 ∈ L satisfying w1 ∈ DL1(Qpr), w2 ∈ InfL2 , and
L = L1 � L2.
w = w2w3 such that there exist L2, L3 ∈ L satisfying w2 ∈ InfL2 , w3 ∈ DL3(Qsu) and
L = L2 � L3.
w = w1w3 such that there exist L1, L3 ∈ L satisfying w1 ∈ DL1(Qpr), w3 ∈ DL3(Qsu)
and L = L1 � L3.
w ∈ DL(Qpr), w ∈ InfL or w ∈ DL(Qsu).
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The construction of P is based on Fact 60 and the three following lemmas.

I Lemma 61 (Pointed Covering of the Prefixes). There exists a safe L-pointed set of Σ2-
definable languages Ppr such that:

1. for all (L,K) ∈ Ppr, L ∈ Dec(Qpr) and K ⊆ Cov(Qpr).
2. for all L ∈ L, Ppr(L) is a cover of DL(Qpr).
3. P[L](Ppr) ⊆ SatΣ2(L).

I Lemma 62 (Pointed Covering of the Suffixes). There exists a safe L-pointed set of Σ2-
definable languages Psu such that:

1. for all (L,K) ∈ Psu, L ∈ Dec(Qsu) and K ⊆ Hb ∪HbCov(Qsu).
2. for all L ∈ L, Psu(L) is a cover of DL(Qsu).
3. P[L](Psu) ⊆ SatΣ2(L).

I Lemma 63 (Pointed Covering of the Infixes). There exists a safe L-pointed set of Σ2-
definable languages Pin such that:

1. for all (L,K) ∈ Pin, L ∈ Dec(Q) and K ⊆ Cov(Q).
2. for all L ∈ L, Pin(L) is a cover of InfL.
3. P[L](Pin) ⊆ SatΣ2(L).

Before, we prove the three lemmas, we use them to conclude the proof of Proposition 56
and construct P. We define,

P =

{(L1 � L2 � L3,K1K2K3) | (L1,K1) ∈ Ppr, (L2,K2) ∈ Pin and (L3,K3) ∈ Psu}
∪ {(L2 � L3,K2K3) | (L2,K2) ∈ Pin and (L3,K3) ∈ Psu}
∪ {(L1 � L3,K1K3) | (L1,K1) ∈ Ppr and (L3,K3) ∈ Psu}
∪ {(L1 � L2,K1K2) | (L1,K1) ∈ Ppr and (L2,K2) ∈ Pin}
∪ Ppr ∪Pin ∪Psu

Observe that all languages in the support K of P are Σ2-definable: by definition they are
concatenations of Σ2-definable languages and Σ2 is closed under concatenation. Moreover,
the fact that P is safe can be verified from the fact that Ppr, Pin and Psu were safe. We
now explain why P satisfies the three conditions in Proposition 56.

We begin with the first condition. Let (L,K) ∈ P, we have to prove that L ∈ Dec(Q)
andK ⊆ Cov(Q). We treat the case when (L,K) = (L1�L2�L3,K1K2K3) with (L1,K1) ∈
Ppr, (L2,K2) ∈ Pin and (L3,K3) ∈ Psu (other cases are similar). By hypothesis in the
lemmas, we have L1, L2, L3 ∈ Dec(Q). Hence L = L1 � L2 � L3 ∈ Dec(Q) (see Fact 54).
Moreover, we know that K1,K2,K3 ∈ Cov(Q). Hence K1K2K3 ⊆ (Cov(Q))3 ⊆ Cov(Q)
(see Fact 55) which terminates the proof.

The second condition (that P(L) is a cover of DL(Q) for all L ∈ L) can be verified from
Fact 60 and Item 2 in Lemmas 61, 62 and 63. Let us now prove that P[L](P) ⊆ SatΣ2(L). By
closure under downset, we have to prove that for all (L,K) ∈ P, (L, 〈L|K〉) ∈ SatΣ2(L). We
treat the case when (L,K) = (L1�L2�L3,K1K2K3) with (L1,K1) ∈ Ppr, (L2,K2) ∈ Pin

and (L3,K3) ∈ Psu (other cases are similar). We know from Lemma 14 that, 〈L|K〉 =
〈L|K1〉 � 〈L|K2〉 � 〈L|K3〉. moreover, by the third item in the three lemmas, we have,

(L1, 〈L|K1〉) ∈ P[L](Ppr) ⊆ SatΣ2(L)
(L2, 〈L|K2〉) ∈ P[L](Pin) ⊆ SatΣ2(L)
(L3, 〈L|K3〉) ∈ P[L](Psu) ⊆ SatΣ2(L)
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Since L = L1 � L2 � L3 we conclude using closure under downset and multiplication that
〈L|K〉 ∈ SatΣ2(L) which terminates the proof.

It now remains to prove the three lemmas. By definition of Qpr, Lemma 61 is immediate
using induction on the third parameter in Proposition 56 (the size of Q). It remains to
prove Lemma 62 and Lemma 63. We devote a subsection to each proof.

Proof of Lemma 62
First observe that we cannot simply use induction on the size of Q. There are two reasons
for this. First, it may happen that Q = Psu (i.e. b was already the only element in Q).
In that case, the size of Q has not decreased. Second, the first condition in Lemma 62 is
stronger than the corresponding one in Proposition 56.

Recall that Qsu = {(Lb, Hb)}. There are two cases depending on whether Lb � Lb is
defined. If Lb � Lb is not defined then DLb(Qsu) = Hb and DL(Qsu) = ∅ for L 6= Lb.
In that case, we simply define Psu = Qsu. One can verify that this choice satisfies the
conditions of the lemma.

Otherwise, Lb � Lb is defined and therefore (Lb)n is defined for all n ≥ 1. It follows
from a standard semigroup theory argument that there exists an integer m ≤ |2L| such
that (Lb)m = (Lb)ω and 〈L|Hb〉m = 〈L|Hb〉ω. Moreover, we may assume without loss of
generality that m ≥ 2 (we will need this property to ensure that Item 1 in the lemma holds).
We define,

Psu = {(Lk
b, H

k
b) | k ≤ 2m− 1} ∪ {(Lk

b, H
m
b (alph(Lb))∗Hm

b ) | k ≥ 2m}

Note that in the expression above, Lk
b denotes the tame multiplication of k copies of Lb

whereas Hk
b denotes the concatenation of k copies of Hb.

It remains to prove that Psu satisfies the conditions in the lemma. Psu is safe by
definition since Qsu was safe. Moreover, all languages in the support of Psu are definable in
Σ2 as they are concatenations of Σ2-definable languages. We now verify the three conditions
in the lemma.

We begin with the first condition. Let (L,K) ∈ Pin, we have to prove that L ∈ Dec(Q)
and K ⊆ Hb ∪HbCov(Qsu). We treat the case when (L,K) = (Lk

b, H
m
b (alph(Lb))∗Hm

b )
for k ≥ m. The other case is similar. That Lk

b ∈ Dec(Qsu) follows from Fact 54. Moreover,
observe that by definition, alph(Lb) = AQsu

and by Fact 55, Hb ⊆ (alph(Lb))∗. Therefore,
since we chose m ≥ 2, we have,

Hm
b (alph(Lb))∗Hm

b ⊆ Hb(Hm−1
b (alph(Lb))∗Hm

b ) ⊆ HbCov(Qsu)

We now turn to the second condition. Let L ∈ L, we have to prove that Psu(L) is a
cover of DL(Qsu). Let w ∈ DL(Qsu), we have to find K ∈ Psu(L) such that w ∈ K. By
definition, since (Lb, Hb) is the only element in Qb, there exists k ≥ 1 such that L = (Lb)k

and w ∈ Hk
b. If k ≤ 2m − 1, then Hk

b ∈ Psu(L) and we are finished. Otherwise, k ≥ 2m
and Hm

b (alph(Lb))∗Hm
b ∈ Psu(L). Since Hb ⊆ (alph(Lb))∗ (Qsu is safe), we obtain that

w ∈ Hm
b (alph(Lb))∗Hm

b .
We finish with the third condition. This amounts to proving that for all (L,K) ∈ Psu,

(L, 〈L|K〉) ∈ SatΣ2(L). If (L,K) = (Lk
b,K

k
b), then by Lemma 14, we obtain,

(L, 〈L|K〉) = (Lk
b, 〈L|Kb〉k)

By hypothesis in Proposition 56 (Lb, 〈L|Kb〉) ∈ SatΣ2(L). Hence, we obtain by closure un-
der multiplication that (L, 〈L|K〉) ∈ SatΣ2(L). Otherwise, (L,K) = (Lk

b,K
m
b (alph(Lb))∗Km

b )
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for some k ≥ m. Let k′ ≥ 0 such that k = m + k′. By choice of m, we have L = Lm+k′

b =
Lω
b � Lk′

b . Furthermore, using Lemma 14 again, we obtain,

〈L|K〉 = 〈L|Hb〉ω � 〈L|(alph(Lb))∗〉 � 〈L|Hb〉ω
〈L|K〉 = 〈L|Hb〉ω � 〈L|(alph(Lb))∗〉 � 〈L|Hb〉ω � 〈L|Hb〉k

′ω

〈L|K〉 = 〈L|Hb〉ω � 〈L|(alph(Lb))∗〉 � 〈L|Hb〉k
′(ω−1) � 〈L|Hb〉ω � 〈L|Hb〉k

′

〈L|K〉 ⊆ 〈L|Hb〉ω � 〈L|(alph(Lb))∗〉 � 〈L|Hb〉ω � 〈L|Hb〉k
′ (since Hb ⊆ (alph(Lb))∗)

Finally, using Operation (3) in the definition of SatΣ2 , we know that,

(Lω
b, 〈L|Hb〉ω � 〈L|(alph(Lb))∗〉 � 〈L|Hb〉ω) ∈ SatΣ2(L)

Therefore using closure under multiplication, we obtain that,

(Lω
b � Lk′

b , 〈L|Hb〉ω � 〈L|(alph(Lb))∗〉 � 〈L|Hb〉ω � 〈L|Hb〉k
′
) ∈ SatΣ2(L)

By closure under downset we conclude that (L, 〈L|K〉) ∈ SatΣ2(L) which terminates the
proof of Lemma 62.

Proof of Lemma 63
The proof is by induction on either the first or the second parameter in Proposition 56 (that
is the size of Dec(Q) or the size of 〈L|Cov(Q)〉). The induction parameter that we use
depends on whether (5) holds or (6) holds for b = (Lb, Hb).

We use the L-pointed sets Psu and Ppr (obtained from Lemmas 62 and 61 ) to define
a new L-pointed finite set of Σ2-definable languages S to which we apply induction. We
define,

S = {(L1 � L2,K1K2) | (L1,K1) ∈ Psu, (L2,K2) ∈ Ppr and L1 � L2 is defined}

We now state two simple facts about S. We use these two facts to connect S to the L-pointed
set Pin that we have to construct.

I Fact 64. Dec(S) ⊆ Dec(Q) and Cov(S) ⊆ Cov(Q)

Proof. Immediate using the definition, Fact 54 and Fact 55. J

I Fact 65. For all L ∈ L, InfL ⊆ DL(S).

Proof. Let L ∈ L and w ∈ InfL. By definition, w = u1v1 · · ·unvn such that for all i there
exist Ui, Vi ∈ L satisfying, ui ∈ DUi

(Qsu), vi ∈ DVi
(Qpr) and L = U1 � V1 � · · · �Un � Vn.

For all i, let wi = uivi, we prove that w = w1 · · ·wn is a S-decomposition of w for L which
exactly says that w ∈ DL(S). By definition of Ppr and Psu in Lemmas 61 and 62 (see
Item 2), for all i, there exists Ki,K

′
i such that (Ui,Ki) ∈ Psu, (ViK

′
i) ∈ Ppr, ui ∈ Ki and

vi ∈ K ′i. It follows that wi = uivi ∈ KiK
′
i. Moreover, by definition of S, (Ui�Vi,KiK

′
i) ∈ S.

We conclude that w ∈ DL(S). J

An immediate consequence of Facts 64 and 65 is that it suffices to construct our L-pointed
set of Σ2-definable languages Pin in Lemma 63 so that:

1. for all (L,K) ∈ Pin, L ∈ Dec(S) and K ⊆ Cov(S).
2. for all L ∈ L, Pin(L) is a cover of DL(S).
3. P[L](Pin) ⊆ SatΣ2(L).
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This is what we do now. As expected we are going to apply induction in Proposition 56
to S. To that end we first need to verify that S satisfies the conditions required to be an
input in Proposition 56. That S is safe can be verified from the definition (this is because
this was the case for Ppr and Psu). Moreover, the support of S contains only Σ2-definable
languages (they are all the concatenation of two Σ2-definable languages). Finally, we prove
that P[L](S) ⊆ SatΣ2(L) in the following fact.

I Fact 66. P[L](S) ⊆ SatΣ2(L)

Proof. Let (L,L′) ∈ P[L](S). By definition, L′ ⊆ 〈L|G〉 for some G ∈ S(L). By closure
under downset, it suffices to prove that (L, 〈L|G〉) ∈ SatΣ2(L). By definition of S, we have
(L1,K1) ∈ Psu and (L2,K2) ∈ Ppr such L = L1 � L2 and G = K1K2. In particular, using
the second item in Lemmas 61 and 62, we obtain that,

(L1, 〈L|K1〉) ∈ P[L](Psu) ⊆ SatΣ2(L)
(L2, 〈L|K2〉) ∈ P[L](Ppr) ⊆ SatΣ2(L)

Using closure under multiplication in SatΣ2 and Lemma 14, we conclude that, (L, 〈L|G〉) ∈
SatΣ2(L). J

It now remains to prove that S has strictly smaller induction parameters than Q and
to use this fact to apply induction in Proposition 56 to construct the desired L-pointed set
Pin. We use the two following lemmas.

I Lemma 67. Dec(S) ⊆ {Lb} �Dec(Q).

I Lemma 68. 〈L|Cov(S)〉 ⊆ 〈L|Hb〉 � 〈L|Cov(Q)〉.

Before proving Lemma 67 and Lemma 68, we use them to conclude the proof of Lemma 63.
Recall that we know from our choice of b that either (5) holds (i.e. {Lb} � Dec(Q) (
Dec(Q)) or (6) holds (i.e. 〈L|Hb〉 � 〈L|Cov(Q)〉 ( 〈L|Cov(Q)〉). If (5) holds, it follows
from Lemma 67 that we may apply induction on the first parameter (the size of Dec(Q))
in Proposition 56. Otherwise, if (6) holds, it follows from Lemma 68 that we may apply
induction on the second parameter (the size of 〈L|Cov(Q)〉) in Proposition 56. In both cases
we get a L-pointed set Pin that satisfies the conditions of Lemma 63 as desired.

We finish with the proofs of Lemma 67 and Lemma 68. We begin with Lemma 67.
Let L ∈ Dec(S). By definition, there exists (L1, G1), . . . , (Ln, Gn) ∈ S such that L =
L1 � · · · � Ln. We prove that for all i, Li ∈ {Lb} � Dec(Q) which suffices to conclude
that L ∈ {Lb} � Dec(Q). Let i ≤ n. By definition of S, there exists (L′i,K ′i) ∈ Psu

and (L′′i ,K ′′i ) ∈ Ppr such that Li = L′i � L′′i . Moreover, we know from the first item in
Lemmas 61 and 62 that L′i ∈ Dec(Qsu) ⊆ Dec(Q) and L′′i ∈ Dec(Qpr) ⊆ Dec(Q). By
definition of Qsu, since L′i ∈ Dec(Qsu), we know that L′i = (Lb)m for some m ≥ 1 and we
conclude that Li ∈ {Lb} �Dec(Q) which terminates the proof of Lemma 67.

We now prove Lemma 68. Let G be the support of S. Recall that by definition, we have,

Cov(S) = (
⋃

G∈G
G) ∪ (

⋃
G∈G

G)(AS)∗(
⋃

G∈G
G)

Moreover, we know that for all G ∈ G, there exists (L,K) ∈ Psu and (L′,K ′) ∈ Ppr such
that G = KK ′. We may combine this fact with the first item in Lemmas 61 and 62 to
conclude that,⋃

G∈G
G ⊆ HbCov(Qsu)Cov(Qpr) ⊆ HbCov(Q)Cov(Q)
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Moreover, we know from Fact 55 that Cov(Q)Cov(Q) ⊆ Cov(Q). We then obtain,

Cov(S) ⊆ HbCov(Q) ∪HbCov(Q)(AQ)∗HbCov(Q)

It then follows from Fact 55 that Cov(Q)(AQ)∗HbCov(Q) ⊆ Cov(Q) and therefore that
Cov(S) ⊆ HbCov(Q). Using Lemma 14, we conclude that 〈L|Cov(S)〉 ⊆ 〈L|Hb〉�〈L|Cov(Q)〉
which terminates the proof.
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