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Geo-Distributed Software Systems

• large numbers of users 
• distributed across wide geographical areas 
• generate and access huge amounts of data

- online markets (Amazon) 
- government services (tax payment) 
- enterprise customer services 
- social networks (Facebook) 
- managing connected devices and sensors (Internet of Things) 

Examples:



Distributed Data Storage (Distributed Data Structures)

• to support failures, data is replicated 

• for availability, replicas may store different versions of data: weak consistency 

• interface restricted to a fixed set of methods 

• key-value stores provide put(key,value) and get(key) 

• weak consistency and restricted interface: different approach than relational databases
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Current Status

Data storage layer 

• informal and vague specifications 
• lack of rigorous methodologies for validation 

• testing the behavior of the system under stress  
• dormant bugs with potential severe consequences (millions of users) 

• used in critical systems: developing drugs, managing medical equipment, etc. 

Application layer 

• lack of programming abstractions of data storage while developing applications 
• no compositional reasoning 

• complex and fragile software systems



Optimistic Data Replication

Optimistic replication: replicas are allowed to diverge   
• operations are applied immediately at the submission site
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Concurrent Operations
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Concurrent Operations
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Solving conflicts between concurrent operations  
• speculate and roll-back, e.g., Google App Engine Datastore 
• convergent conflict resolution, e.g., CRDTs [Shapiro et al.’11]
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Formal verification of DDSs

• Correct operations ? Allowed level of consistency between replicas ? 
• by CAP theorem [Gilbert et al.’02], achieving strong consistency 

(linearizability) is impossible 
• various correctness criteria: eventual consistency, causal 

consistency, etc. 

• Developing algorithmic methods for the verification of these criteria



Plan

• Formal definitions of consistency criteria 
• safety: each operation is executed in the context of a local view, which must 

satisfy some specification 
• sites can have different local views 

• liveness: the local views converge toward a global view 

• Automatic verification of consistency criteria 
• decidability/complexity results 
• general reductions to classical verification problems (reachability, model 

checking)



Modeling DDS behaviors with traces

• operations are instances of a set of methods (add, rem, lookup) 

• traces record the submitted operations and their return values  

• trace = a partially-ordered set of operations  

• operations submitted to the same site are ordered
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• Vis(o',o): o' is visible when o is executed  

• Ordero(o1,o2): when o is executed, o1 has been executed before o2 

• Safety: ∃ Vis ∀o ∃ Ordero such that  

• eventual consistency: Vis ∪ Site_order is acyclic 

                         Ordero satisfies the specification 

• read-your-own-writes: + Site_order ⊆ Vis 

                       if Vis(o1,o), Vis(o2,o), and Site_order(o1,o2) then Ordero(o1,o2) 

• causal consistency: + Site_order ⊆ Vis and Vis is transitive 

                         if Vis(o1,o), Vis(o2,o), and Vis(o1,o2) then Ordero(o1,o2)



Specifications

• Sequential world: an operation is considered correct depending on the 
sequence of previously executed operations 

• lookup(0)    true is correct iff it executes after a sequence of operations where 
the projection on operations with input 0 ends in add(0) 

• e.g., add(2), rem(0), … , add(0), rem(2) 

• Distributed world: sequences are replaced by partial orders 

• lookup(0)    true is correct iff it executes after a poset of operations where the 
projection on operations with input 0 contains a maximal add(0) 

• e.g., add(2), rem(0), … , add(0), rem(2)

∇
 

∇
 



Specifying liveness (convergence)

• Arb(o1,o2): eventually, all sites agree that o1 should be executed before o2 

• Safety + Liveness: ∃ Vis ∃ Arb ∀o ∃ Ordero such that … and 

                            ∀ o1,o2: #o s.t. Ordero(o1,o2) ⋀ Arb(o2,o1) is finite



Verification problems

• Given a finite-state implementation Impl and a "regular" specification Spec, is there a 
"simple" centralized monitor that 

outputs error iff Impl is not X-consistent w.r.t. Spec 

( X = eventually, causal, read-your-own-writes,… ) 

•  Eventual consistency: Yes (counting + Presburger assertions) 

•  Read-your-own-writes, Causal consistency: No 

•  Linearizability: Yes (finite-state) 

•  Restricting specifications: for causal consistency, there exists such a monitor if the Spec is 
key-value store



Conclusions

• Distributed data structures, an alternative to classical databases 

• Several consistency criteria which are poorly understood 

• guarantees for the application layer ? 

• Hard (undecidable) verification problems 

• finding reasonable restrictions or approximations 


