
Consistency Cri ter ia for
Distr ibuted Data Structures

Constantin Enea

IRIF, University Paris Diderot

joint work with Ahmed Bouajjani, Rachid Guerraoui, Jad Hamza

Geo-Distributed Software Systems

• large numbers of users
• distributed across wide geographical areas
• generate and access huge amounts of data

- online markets (Amazon)
- government services (tax payment)
- enterprise customer services
- social networks (Facebook)
- managing connected devices and sensors (Internet of Things)

Examples:

Distributed Data Storage (Distributed Data Structures)

• to support failures, data is replicated

• for availability, replicas may store different versions of data: weak consistency

• interface restricted to a fixed set of methods

• key-value stores provide put(key,value) and get(key)

• weak consistency and restricted interface: different approach than relational databases

Application Layer

Data Storage

Replica

Replica

ReplicaReplica

Geo-distributed
software system

Current Status

Data storage layer

• informal and vague specifications
• lack of rigorous methodologies for validation

• testing the behavior of the system under stress
• dormant bugs with potential severe consequences (millions of users)

• used in critical systems: developing drugs, managing medical equipment, etc.

Application layer

• lack of programming abstractions of data storage while developing applications
• no compositional reasoning

• complex and fragile software systems

Optimistic Data Replication

Optimistic replication: replicas are allowed to diverge
• operations are applied immediately at the submission site

{ 2 }

{ 2 }
{ 2 }

{ 2 }

{ 2 }

{ 2 }

add 3

Optimistic Data Replication

Optimistic replication: replicas are allowed to diverge
• operations are applied immediately at the submission site

{ 2 }

{ 2 }
{ 2 }

{ 2 }

{ 2 }

{ 2, 3 }

add 3

Optimistic Data Replication

Optimistic replication: replicas are allowed to diverge
• operations are applied immediately at the submission site
• in the background, sites exchange and apply remote operations

{ 2 }

{ 2 }

add 3
add 3add 3

{ 2 }

{ 2 }

{ 2 }

{ 2, 3 }

add 3

Optimistic Data Replication

Optimistic replication: replicas are allowed to diverge
• operations are applied immediately at the submission site
• in the background, sites exchange and apply remote operations

{ 2 }

{ 2 }

add 3
add 3add 3

{ 2 }

{ 2 }

{ 2 }

lookup 3

false

{ 2, 3 }

add 3

Optimistic Data Replication

Optimistic replication: replicas are allowed to diverge
• operations are applied immediately at the submission site
• in the background, sites exchange and apply remote operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2, 3 }

{ 2, 3 }

lookup 3

false

{ 2, 3 }

add 3

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2, 3 }

{ 2, 3 }

{ 2, 3 }

add 3

rem 3

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2, 3 }

{ 2 }

{ 2, 3 }

add 3

rem 3

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2, 3 }

{ 2 }

{ 2, 3 }

add 3

rem 3

add 3

rem 3

Solving conflicts between concurrent operations

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2, 3 }

{ 2 }

{ 2, 3 }

add 3

rem 3

add 3

rem 3

Solving conflicts between concurrent operations
• speculate and roll-back, e.g., Google App Engine Datastore

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2, 3 }

{ 2 }

{ 2, 3 }

add 3

rem 3

Solving conflicts between concurrent operations
• speculate and roll-back, e.g., Google App Engine Datastore

ad
d

3

rem 3

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2 }

{ 2 }

{ 2, 3 }

add 3

rem 3

Solving conflicts between concurrent operations
• speculate and roll-back, e.g., Google App Engine Datastore

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2 }

{ 2 }

{ 2, 3 }

add 3

rem 3

Solving conflicts between concurrent operations
• speculate and roll-back, e.g., Google App Engine Datastore

communicate

and roll-back

Concurrent Operations

{ 2 }

{ 2 }
{ 2, 3 }

{ 2 }

{ 2 }

{ 2, 3 }

add 3

rem 3

Solving conflicts between concurrent operations
• speculate and roll-back, e.g., Google App Engine Datastore
• convergent conflict resolution, e.g., CRDTs [Shapiro et al.’11]

ad
d

3

rem 3

add 3

rem 3

“add wins”

Formal verification of DDSs

• Correct operations ? Allowed level of consistency between replicas ?
• by CAP theorem [Gilbert et al.’02], achieving strong consistency

(linearizability) is impossible
• various correctness criteria: eventual consistency, causal

consistency, etc.

• Developing algorithmic methods for the verification of these criteria

Plan

• Formal definitions of consistency criteria
• safety: each operation is executed in the context of a local view, which must

satisfy some specification
• sites can have different local views

• liveness: the local views converge toward a global view

• Automatic verification of consistency criteria
• decidability/complexity results
• general reductions to classical verification problems (reachability, model

checking)

Modeling DDS behaviors with traces

• operations are instances of a set of methods (add, rem, lookup)

• traces record the submitted operations and their return values

• trace = a partially-ordered set of operations

• operations submitted to the same site are ordered

rem(0)

add(1) lookup(0) true∇

add(0)

lookup(0) false∇

site order

lookup(0) false∇

Specifying Safety

• Specifying local views using relations between operations

rem(0)

add(1) lookup(0) true∇

add(0)

lookup(0) false∇
 lookup(0) false∇

• Vis(o',o): o' is visible when o is executed

• Ordero(o1,o2): when o is executed, o1 has been executed before o2

lookup(0) true∇

Specifying Safety

• Specifying local views using relations between operations

rem(0)

add(1) lookup(0) true∇

add(0)

lookup(0) false∇
 lookup(0) false∇

• Vis(o',o): o' is visible when o is executed

• Ordero(o1,o2): when o is executed, o1 has been executed before o2

lookup(0) true∇

lookup(0) false∇

Specifying Safety

• Specifying local views using relations between operations

rem(0)

add(1) lookup(0) true∇

add(0)

lookup(0) false∇
 lookup(0) false∇

• Vis(o',o): o' is visible when o is executed

• Ordero(o1,o2): when o is executed, o1 has been executed before o2

• Safety: ∃ Vis ∀o ∃ Ordero such that …

lookup(0) true∇

lookup(0) false∇

Specifying Safety

• Vis(o',o): o' is visible when o is executed

• Ordero(o1,o2): when o is executed, o1 has been executed before o2

• Safety: ∃ Vis ∀o ∃ Ordero such that

• eventual consistency: Vis ∪ Site_order is acyclic

 Ordero satisfies the specification

Specifying Safety

• Vis(o',o): o' is visible when o is executed

• Ordero(o1,o2): when o is executed, o1 has been executed before o2

• Safety: ∃ Vis ∀o ∃ Ordero such that

• eventual consistency: Vis ∪ Site_order is acyclic

 Ordero satisfies the specification

• read-your-own-writes: + Site_order ⊆ Vis

 if Vis(o1,o), Vis(o2,o), and Site_order(o1,o2) then Ordero(o1,o2)

Specifying Safety

• Vis(o',o): o' is visible when o is executed

• Ordero(o1,o2): when o is executed, o1 has been executed before o2

• Safety: ∃ Vis ∀o ∃ Ordero such that

• eventual consistency: Vis ∪ Site_order is acyclic

 Ordero satisfies the specification

• read-your-own-writes: + Site_order ⊆ Vis

 if Vis(o1,o), Vis(o2,o), and Site_order(o1,o2) then Ordero(o1,o2)

• causal consistency: + Site_order ⊆ Vis and Vis is transitive

 if Vis(o1,o), Vis(o2,o), and Vis(o1,o2) then Ordero(o1,o2)

Specifications

• Sequential world: an operation is considered correct depending on the
sequence of previously executed operations

• lookup(0) true is correct iff it executes after a sequence of operations where
the projection on operations with input 0 ends in add(0)

• e.g., add(2), rem(0), … , add(0), rem(2)

• Distributed world: sequences are replaced by partial orders

• lookup(0) true is correct iff it executes after a poset of operations where the
projection on operations with input 0 contains a maximal add(0)

• e.g., add(2), rem(0), … , add(0), rem(2)

∇

∇

Specifying liveness (convergence)

• Arb(o1,o2): eventually, all sites agree that o1 should be executed before o2

• Safety + Liveness: ∃ Vis ∃ Arb ∀o ∃ Ordero such that … and

 ∀ o1,o2: #o s.t. Ordero(o1,o2) ⋀ Arb(o2,o1) is finite

Verification problems

• Given a finite-state implementation Impl and a "regular" specification Spec, is there a
"simple" centralized monitor that

outputs error iff Impl is not X-consistent w.r.t. Spec

(X = eventually, causal, read-your-own-writes,…)

• Eventual consistency: Yes (counting + Presburger assertions)

• Read-your-own-writes, Causal consistency: No

• Linearizability: Yes (finite-state)

• Restricting specifications: for causal consistency, there exists such a monitor if the Spec is
key-value store

Conclusions

• Distributed data structures, an alternative to classical databases

• Several consistency criteria which are poorly understood

• guarantees for the application layer ?

• Hard (undecidable) verification problems

• finding reasonable restrictions or approximations

