Verification of Population Protocols

Javier Esparza
Technical University of Munich

Joint work with Pierre Ganty, Jérome Leroux,
and Rupak Majumdar

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

e They must decide by
majority to attack or not
(“don’t attack” if tie)

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

e They must decide by
majority to attack or not
(“don’t attack” if tie)

Deaf Black Ninjas in the Dark

e Deaf Black Ninjas meet at
a Zen garden in the dark

e They must decide by
majority to attack or not
(“don’t attack” if tie)

e How can they conduct the
vote?

Deaf Black Ninjas in the Dark

e Ninjas randomly wander around the garden, interacting when
they bump into each other

Deaf Black Ninjas in the Dark

e Ninjas randomly wander around the garden, interacting when
they bump into each other

e Each Ninja stores their current estimation of the final outcome
of the vote (Yes or No). Additionally, it is Active or Passive.

Deaf Black Ninjas in the Dark

e Ninjas randomly wander around the garden, interacting when
they bump into each other

e Each Ninja stores their current estimation of the final outcome
of the vote (Yes or No). Additionally, it is Active or Passive.

e Initially all Ninjas are Active, and their initial estimation is
their own vote

Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when
they bump into each other

Each Ninja stores their current estimation of the final outcome
of the vote (Yes or No). Additionally, it is Active or Passive.

Initially all Ninjas are Active, and their initial estimation is
their own vote

Ninjas follow this protocol:

YA NA

()
(YA,NP) — (YA, YP) (active "survivors” tell
(NA,YP) — (NA,NP) outcome to passive Ninjas)
(NPYP) =

NP, YP NP,NP) (to deal with ties)

— (NP,NP) (opposite votes “cancel”)

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents
like

e ad-hoc networks of mobile sensors

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents
like

e ad-hoc networks of mobile sensors

b " - .
e ‘“soups’ of interacting molecules

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents
like

e ad-hoc networks of mobile sensors
e ‘“soups’ of interacting molecules

e people in social networks

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile sensors
e ‘“soups’ of interacting molecules

e people in social networks

. and Ninjas

A PP-scheme is a pair (Q,A), where

e () is a finite set of states, and
e AC(QxQ)x(QxQ)is a set of interactions.

Syntax

A PP-scheme is a pair (Q,A), where

e () is a finite set of states, and
e AC(QxQ)x(QxQ)is a set of interactions.

Intuition:
if (q1,92) — (¢1,495) € A and
two agents in states ¢; and g2 “meet”,

then the agents can interact and

change their states to ¢}, ¢5.

Assumption: at least one interaction for each pair of states
(possibly (q1,q2) — (1, 42))

Configuration: mapping C': @ — N, where C(q) is the current
number of agents in state q.

q1 q2 q3 q4

ORONORO),

Semantics

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in state q.

ONORORO

(q1,q2) — (g3, q4)

Semantics

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in state q.

ONORORORNORORORO

(q1,q2) — (g3, q4)

Semantics

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in state q.

q1 q2 a3 q4 a1 q2 a3 q4
ORORONORNORORORC
(q1,q2) = (43, qa)

If several steps are possible, a random scheduler chooses one (fixed
nonzero prob. for each pair)

Semantics

Configuration: mapping C: Q@ — N, where C(q) is the current
number of agents in state q.

q1 q2 a3 q4 a1 q2 a3 q4
ORORONORNORORORC
(q1,q2) = (43, qa)

If several steps are possible, a random scheduler chooses one (fixed
nonzero prob. for each pair)

Execution: infinite sequence Cy — C7 — Cy — --- of steps

Population protocols (PPs)

A population protocol (PP) consists of

e A PP-scheme (Q,A)

QOOO0OO0O0O0000OO0

Population protocols (PPs)

A population protocol (PP) consists of

e A PP-scheme (Q,A)

e An ordered subset (in,...,iny) of input states

Q000000000

Population protocols (PPs)

A population protocol (PP) consists of

e A PP-scheme (Q,A)
e An ordered subset (in,...,iny) of input states
e A partition of () into 1-states (green) and O-states (pink)

m

Q: 16@@@

Population protocols (PPs)

A population protocol (PP) consists of

e A PP-scheme (Q,A)
e An ordered subset (in,...,iny) of input states
e A partition of () into 1-states (green) and O-states (pink)

o 0000

An execution reaches consensus b € {0, 1} if from some point on
every agent stays within the b-states.

Computing with PPs

A PP computes the value b for input (n1,n2,...,ny) if executions
starting at the configuration

mn

000 @

Computing with PPs

A PP computes the value b for input (n1,n2,...,ny) if executions
starting at the configuration

ny - in1

inl

2000 @

Computing with PPs

A PP computes the value b for input (n1,n2,...,ny) if executions
starting at the configuration

ny -ing + ng - ing

inl

"® 00 @

Computing with PPs

A PP computes the value b for input (n1,n2,...,ny) if executions
starting at the configuration

ny -ing +no - ing + - - - + ng - iny

inl

"® 00 @

Computing with PPs

A PP computes the value b for input (n1,n2,...,ny) if executions
starting at the configuration

ny -ing +no - ing + - - - + ng - iny

reach consensus b with probability 1.
inl

"® 00 @

Computing with PPs

A PP computes the value b for input (n1,n2,...,ny) if executions
starting at the configuration

ny -ing +no - ing + - - - + ng - iny

reach consensus b with probability 1.
inl

"® 00 @

Equivalently: executions that do not reach consensus or reach
consensus 1 — b have probability 0

Computing with PPs

A PP computes the value b for input (n1,n2,...,ny) if executions
starting at the configuration

ny -ing +no - ing + - - - + ng - iny

reach consensus b with probability 1.
inl

"® 00 @

Equivalently: executions that do not reach consensus or reach
consensus 1 — b have probability 0

A PP computes P(x1,...,2,): N — {0, 1} if it computes
P(ny,...,ny) for every input (n1,...,ng)

Expressive power thoroughly studied:

e PPs compute exactly the Presburger predicates
(Angluin et al. 2007)

Previous work

Expressive power thoroughly studied:

PPs compute exactly the Presburger predicates
(Angluin et al. 2007)

Probabilistic PPs (Angluin et al. 2004-2006, Chatzigiannakis
and Spirakis, 2008)

Fault-tolerant PPs (Delporte-Gallet et al. 2006)

Private computation in PPs (Delporte-Gallet et al. 2007)
PPs with identifiers (Guerraoui et al. 2007)

PPs with a leader (Angluin et al. 2008)

Mediated PPs (Michail et al., 2011)

Trustful PPs (Bournez et al., 2013)

Q: And if the processes only reach consensus with probability < 17

Well-specified protocols

Q: And if the processes only reach consensus with probability < 17

A: Then your protocol is not well-specified. Repair it!

Well-specified protocols

Q: And if the processes only reach consensus with probability < 17
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same
input, both with positive probability?

Well-specified protocols

Q: And if the processes only reach consensus with probability < 17
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same
input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!

Well-specified protocols

Q: And if the processes only reach consensus with probability < 17
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same
input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!

Q: And how do | know if my protocol is well-specified?

Well-specified protocols

Q: And if the processes only reach consensus with probability < 17
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same
input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!
Q: And how do | know if my protocol is well-specified?

A: That's your problem . ..

Well-specified protocols

Q: And if the processes only reach consensus with probability < 17
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same
input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!

Q: And how do | know if my protocol is well-specified?

A: That's your problem . ..

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.

Verifying population protocols: Previous work

e For each input, the semantics of the protocol is a finite-state
Markov chain

e The semantics for all inputs is an infinite collection of
finite-state Markov chain

Verifying population protocols: Previous work

e For each input, the semantics of the protocol is a finite-state
Markov chain

e The semantics for all inputs is an infinite collection of
finite-state Markov chain

e Use model-checkers (SPIN, PRISM , ...) to verify correctness
for some inputs
Pang et al., 2008 ; Sun et al., 2009
Chatzigiannakis et al., 2010 ; Clément et al., 2011

Verifying population protocols: Previous work

For each input, the semantics of the protocol is a finite-state
Markov chain

The semantics for all inputs is an infinite collection of
finite-state Markov chain

Use model-checkers (SPIN, PRISM , ...) to verify correctness
for some inputs

Pang et al., 2008 ; Sun et al., 2009

Chatzigiannakis et al., 2010 ; Clément et al., 2011

Use interactive theorem provers (Coq) to prove correctness of
a specific protocol
Deng et al., 2009 and 2011

Verifying population protocols: Previous work

For each input, the semantics of the protocol is a finite-state
Markov chain

The semantics for all inputs is an infinite collection of
finite-state Markov chain

Use model-checkers (SPIN, PRISM , ...) to verify correctness
for some inputs

Pang et al., 2008 ; Sun et al., 2009

Chatzigiannakis et al., 2010 ; Clément et al., 2011

Use interactive theorem provers (Coq) to prove correctness of

a specific protocol
Deng et al., 2009 and 2011

Not complete or not automatic.

Are the well-specification and correctness problems decidable?

Main results

Are the well-specification and correctness problems decidable?

Open for about 10 years.

Main results

Are the well-specification and correctness problems decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems can be
reduced to the reachability problem for Petri nets, and are thus
decidable.

Main results

Are the well-specification and correctness problems decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems can be
reduced to the reachability problem for Petri nets, and are thus
decidable.

Theorem: The reachability problem for Petri nets can be reduced
to the well-specification and correctness problems for PPs.

Population protocols Petri nets

State Place

From PPs to Petri nets

Population protocols Petri nets

State Place
Interaction Transition with
(q1,92) = (41, 45) input places q1, ¢

output places ¢, ¢,

From PPs to Petri nets

Population protocols Petri nets

State Place
Interaction Transition with
(q1,92) = (41, 45) input places q1, ¢

output places ¢, ¢,

PP-scheme Net without marking

From PPs to Petri nets

Population protocols Petri nets

State Place
Interaction Transition with
(q1,92) = (41, 45) input places q1, ¢

output places ¢}, ¢,
PP-scheme Net without marking

Configuration Marking

From PPs to Petri nets

Population protocols Petri nets
State Place
Interaction Transition with

(q1,42) = (41, 45)

PP-scheme
Configuration

Configuration graph

input places q1, 2
output places ¢, ¢,

Net without marking
Marking

Reachability graph

From PPs to Petri nets

Population protocols Petri nets
State Place
Interaction Transition with

(q1,42) = (41, 45)

PP-scheme
Configuration
Configuration graph

PP

input places q1, 2
output places ¢, ¢,

Net without marking
Marking
Reachability graph

Net + family of
initial markings

Some results from Petri net theory

Theorem [Mayr, Kosaraju, Lambert, Leroux]: The reachability
problem for Petri nets is decidable.

Best known algorithms are non-primitive recursive.

Some results from Petri net theory

Theorem [Mayr, Kosaraju, Lambert, Leroux]: The reachability
problem for Petri nets is decidable.

Best known algorithms are non-primitive recursive.
A Presburger set of markings is a set of markings expressible in

Presburger arithmetic.

M(z,y)=3x4+y>6Ay—x<2

Some results from Petri net theory

Theorem [Mayr, Kosaraju, Lambert, Leroux]: The reachability
problem for Petri nets is decidable.

Best known algorithms are non-primitive recursive.
A Presburger set of markings is a set of markings expressible in

Presburger arithmetic.

M(z,y)=3x4+y>6Ay—x<2

Theorem [Easy generalization|: Given two Presburger sets of
markings My, Ma, it is decidable if some marking of My is
reachable from some marking of Mj

Well-specification is decidable

Fact: Every execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph with probability 1.

Well-specification is decidable

Fact: Every execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph with probability 1.

Our main technical result: The set of all configurations belonging
to all bottom SCCs of a PP, for all initial configurations, is
effectively Presburger.

Well-specification is decidable

Fact: Every execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph with probability 1.

Our main technical result: The set of all configurations belonging
to all bottom SCCs of a PP, for all initial configurations, is
effectively Presburger.

Fact: A PP is ill-specified iff there is an initial configuration C' and

e a bottom SCC reachable from C with agents in both 0- and
1-states; or

e two bottom SCCs, one with only O-states and the other with
only 1-states, both reachable from C'.

Well-specification is decidable

Given a PP, let
e N: Petri net for the PP

e 7: markings corresponding to initial configurations

e B: markings corresponding to bottom configurations

Well-specification is decidable

Given a PP, let
e N: Petri net for the PP

e 7: markings corresponding to initial configurations

e B: markings corresponding to bottom configurations

Decision procedure:

Well-specification is decidable

Given a PP, let
e N: Petri net for the PP

e 7: markings corresponding to initial configurations

e B: markings corresponding to bottom configurations
Decision procedure:

e Partition B into Birue, Bralse, Bneither

Well-specification is decidable

Given a PP, let

e N: Petri net for the PP
e 7: markings corresponding to initial configurations

e B: markings corresponding to bottom configurations

Decision procedure:

e Partition B into Birue, Bralse, Bneither

o Check if Bygither is reachable from Z
(using reachability in Petri nets)

Well-specification is decidable

Given a PP, let
e N: Petri net for the PP

e 7: markings corresponding to initial configurations

e B: markings corresponding to bottom configurations
Decision procedure:

e Partition B into Birue, Bralse, Bneither

o Check if Bygither is reachable from Z
(using reachability in Petri nets)

e Construct the net N || N (two copies of N side by side).

Well-specification is decidable

Given a PP, let
e N: Petri net for the PP

e 7: markings corresponding to initial configurations

e B: markings corresponding to bottom configurations
Decision procedure:

e Partition B into Birue, Bralse, Bneither

o Check if Bygither is reachable from Z
(using reachability in Petri nets)

e Construct the net N || N (two copies of N side by side).
e Construct the set 7o = {(M, M) | M € Z}.

Well-specification is decidable

Given a PP, let
e N: Petri net for the PP

e 7: markings corresponding to initial configurations

e B: markings corresponding to bottom configurations
Decision procedure:

e Partition B into Birue, Bralse, Bneither

o Check if Bygither is reachable from Z
(using reachability in Petri nets)

e Construct the net N || N (two copies of N side by side).
Construct the set 7o = {(M, M) | M € Z}.

Check if Birue X Bralse is reachable from 75
(using reachability in Petri nets)

o Elementary decision procedure for immediate observation
protocols

Further results

e Elementary decision procedure for immediate observation
protocols

e Decidability extends to all properties expressible in LTL

Further results

e Elementary decision procedure for immediate observation
protocols

e Decidability extends to all properties expressible in LTL

e Quantitative verification (probability exceeds given threshold)
is undecidable

Further results

e Elementary decision procedure for immediate observation
protocols

e Decidability extends to all properties expressible in LTL

e Quantitative verification (probability exceeds given threshold)
is undecidable

3333

Thank You

