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Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at
a Zen garden in the dark

• They must decide by
majority to attack or not
(“don’t attack” if tie)

• How can they conduct the
vote?
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Deaf Black Ninjas in the Dark

• Ninjas randomly wander around the garden, interacting when
they bump into each other

• Each Ninja stores their current estimation of the final outcome
of the vote (Yes or No). Additionally, it is Active or Passive.

• Initially all Ninjas are Active, and their initial estimation is
their own vote

• Ninjas follow this protocol:

(Y A,NA) → (NP,NP ) (opposite votes “cancel”)

(Y A,NP ) → (Y A, Y P ) (active “survivors” tell
(NA, Y P ) → (NA,NP ) outcome to passive Ninjas)

(NP, Y P ) → (NP,NP ) (to deal with ties)
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Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and Ninjas
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Syntax

A PP-scheme is a pair (Q,∆), where

• Q is a finite set of states, and

• ∆ ⊆ (Q×Q)× (Q×Q) is a set of interactions.

Intuition:

if (q1, q2) 7→ (q′1, q
′
2) ∈ ∆ and

two agents in states q1 and q2 “meet”,

then the agents can interact and

change their states to q′1, q
′
2.

Assumption: at least one interaction for each pair of states
(possibly (q1, q2) 7→ (q1, q2))
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Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.
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If several steps are possible, a random scheduler chooses one (fixed
nonzero prob. for each pair)
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Population protocols (PPs)

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• An ordered subset (in1, . . . , ink) of input states

• A partition of Q into 1-states (green) and 0-states (pink)

Q:

An execution reaches consensus b ∈ {0, 1} if from some point on
every agent stays within the b-states.
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Computing with PPs

A PP computes the value b for input (n1, n2, . . . , nk) if executions
starting at the configuration

n1 · in1 + n2 · in2 + · · ·+ nk · ink

reach consensus b with probability 1.

in1 in2

Equivalently: executions that do not reach consensus or reach
consensus 1− b have probability 0

A PP computes P (x1, . . . , xn) : Nn → {0, 1} if it computes
P (n1, . . . , nk) for every input (n1, . . . , nk)
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Previous work

Expressive power thoroughly studied:

• PPs compute exactly the Presburger predicates
(Angluin et al. 2007)

• Probabilistic PPs (Angluin et al. 2004-2006, Chatzigiannakis
and Spirakis, 2008)

• Fault-tolerant PPs (Delporte-Gallet et al. 2006)

• Private computation in PPs (Delporte-Gallet et al. 2007)

• PPs with identifiers (Guerraoui et al. 2007)

• PPs with a leader (Angluin et al. 2008)

• Mediated PPs (Michail et al., 2011)

• Trustful PPs (Bournez et al., 2013)
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Well-specified protocols

Q: And if the processes only reach consensus with probability < 1?

A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same
input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!

Q: And how do I know if my protocol is well-specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.
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Verifying population protocols: Previous work

• For each input, the semantics of the protocol is a finite-state
Markov chain

• The semantics for all inputs is an infinite collection of
finite-state Markov chain

• Use model-checkers (SPIN, PRISM , . . . ) to verify correctness
for some inputs
Pang et al., 2008 ; Sun et al., 2009
Chatzigiannakis et al., 2010 ; Clément et al., 2011

• Use interactive theorem provers (Coq) to prove correctness of
a specific protocol
Deng et al., 2009 and 2011

Not complete or not automatic.
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Main results

Are the well-specification and correctness problems decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems can be
reduced to the reachability problem for Petri nets, and are thus
decidable.

Theorem: The reachability problem for Petri nets can be reduced
to the well-specification and correctness problems for PPs.
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Population protocols Petri nets

State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
2) input places q1, q2

output places q′1, q
′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + family of
initial markings
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Some results from Petri net theory

Theorem [Mayr, Kosaraju, Lambert, Leroux]: The reachability
problem for Petri nets is decidable.

Best known algorithms are non-primitive recursive.

A Presburger set of markings is a set of markings expressible in
Presburger arithmetic.

M(x, y) = 3x + y ≥ 6 ∧ y − x ≤ 2

Theorem [Easy generalization]: Given two Presburger sets of
markings M1, M2, it is decidable if some marking of M2 is
reachable from some marking of M1
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Well-specification is decidable

Fact: Every execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph with probability 1.

Our main technical result: The set of all configurations belonging
to all bottom SCCs of a PP, for all initial configurations, is
effectively Presburger.

Fact: A PP is ill-specified iff there is an initial configuration C and

• a bottom SCC reachable from C with agents in both 0- and
1-states; or

• two bottom SCCs, one with only 0-states and the other with
only 1-states, both reachable from C.
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