Verification of Population Protocols

Javier Esparza

Technical University of Munich
Joint work with Pierre Ganty, Jérôme Leroux, and Rupak Majumdar

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by
 majority to attack or not ("don't attack" if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by majority to attack or not ("don't attack" if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by majority to attack or not ("don't attack" if tie)
- How can they conduct the vote?

Deaf Black Ninjas in the Dark

- Ninjas randomly wander around the garden, interacting when they bump into each other

Deaf Black Ninjas in the Dark

- Ninjas randomly wander around the garden, interacting when they bump into each other
- Each Ninja stores their current estimation of the final outcome of the vote (Yes or No). Additionally, it is Active or Passive.

Deaf Black Ninjas in the Dark

- Ninjas randomly wander around the garden, interacting when they bump into each other
- Each Ninja stores their current estimation of the final outcome of the vote (Yes or No). Additionally, it is Active or Passive.
- Initially all Ninjas are Active, and their initial estimation is their own vote

Deaf Black Ninjas in the Dark

- Ninjas randomly wander around the garden, interacting when they bump into each other
- Each Ninja stores their current estimation of the final outcome of the vote (Yes or No). Additionally, it is Active or Passive.
- Initially all Ninjas are Active, and their initial estimation is their own vote
- Ninjas follow this protocol:

$$
\begin{array}{llc}
(Y A, N A) & \rightarrow(N P, N P) & \text { (opposite votes "cancel") } \\
(Y A, N P) & \rightarrow(Y A, Y P) & \text { (active "survivors" tell } \\
(N A, Y P) & \rightarrow(N A, N P) & \text { outcome to passive Ninjas) } \\
(N P, Y P) \rightarrow(N P, N P) & \text { (to deal with ties) }
\end{array}
$$

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of
identical, finite-state, and mobile agents
like

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of
identical, finite-state, and mobile agents
like

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of
identical, finite-state, and mobile agents
like

- ad-hoc networks of mobile sensors

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of
identical, finite-state, and mobile agents
like

- ad-hoc networks of mobile sensors
- "soups" of interacting molecules

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of
identical, finite-state, and mobile agents
like

- ad-hoc networks of mobile sensors
- "soups" of interacting molecules
- people in social networks

Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of
identical, finite-state, and mobile agents
like

- ad-hoc networks of mobile sensors
- "soups" of interacting molecules
- people in social networks
- ... and Ninjas

Syntax

A PP-scheme is a pair (Q, Δ), where

- Q is a finite set of states, and
- $\Delta \subseteq(Q \times Q) \times(Q \times Q)$ is a set of interactions.

Syntax

A PP-scheme is a pair (Q, Δ), where

- Q is a finite set of states, and
- $\Delta \subseteq(Q \times Q) \times(Q \times Q)$ is a set of interactions.

Intuition:
if $\quad\left(q_{1}, q_{2}\right) \mapsto\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \Delta$ and two agents in states q_{1} and q_{2} "meet", then the agents can interact and change their states to $q_{1}^{\prime}, q_{2}^{\prime}$.

Assumption: at least one interaction for each pair of states (possibly $\left.\left(q_{1}, q_{2}\right) \mapsto\left(q_{1}, q_{2}\right)\right)$

Semantics

Configuration: mapping $C: Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

q_{1}	q_{2}	q_{3}	q_{4}
(2)	1	0	3

Semantics

Configuration: mapping $C: Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

q_{1}	q_{2}	q_{3}	q_{4}
(2)	0	3	
		$\left(q_{1}, q_{2}\right) \mapsto\left(q_{3}, q_{4}\right)$	

Semantics

Configuration: mapping $C: Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

$$
\begin{array}{cccccccc}
q_{1} & q_{2} & q_{3} q_{4} & & q_{1} & q_{2} & q_{3} & q_{4} \\
(2) & (1) 0 & \rightarrow & \rightarrow & (1) & 0 & (4) & \\
\left(q_{1}, q_{2}\right) & \mapsto\left(q_{3}, q_{4}\right)
\end{array}
$$

Semantics

Configuration: mapping $C: Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

If several steps are possible, a random scheduler chooses one (fixed nonzero prob. for each pair)

Semantics

Configuration: mapping $C: Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

If several steps are possible, a random scheduler chooses one (fixed nonzero prob. for each pair)

Execution: infinite sequence $C_{0} \rightarrow C_{1} \rightarrow C_{2} \rightarrow \cdots$ of steps

Population protocols (PPs)

A population protocol (PP) consists of

- A PP-scheme (Q, Δ)

Population protocols (PPs)

A population protocol (PP) consists of

- A PP-scheme (Q, Δ)
- An ordered subset $\left(i n_{1}, \ldots, i n_{k}\right)$ of input states

$$
i n_{1} \quad i n_{2}
$$

Population protocols (PPs)

A population protocol (PP) consists of

- A PP-scheme (Q, Δ)
- An ordered subset $\left(i n_{1}, \ldots, i n_{k}\right)$ of input states
- A partition of Q into 1 -states (green) and 0 -states (pink)

$$
i n_{1} \quad i n_{2}
$$

Population protocols (PPs)

A population protocol (PP) consists of

- A PP-scheme (Q, Δ)
- An ordered subset $\left(i n_{1}, \ldots, i n_{k}\right)$ of input states
- A partition of Q into 1 -states (green) and 0 -states (pink)

An execution reaches consensus $b \in\{0,1\}$ if from some point on every agent stays within the b-states.

Computing with PPs

A PP computes the value b for input $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if executions starting at the configuration
$i n_{1} \quad i n_{2}$

Computing with PPs

A PP computes the value b for input $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if executions starting at the configuration

$$
n_{1} \cdot \mathrm{in}_{1}
$$

$i n_{1} \quad i n_{2}$

Computing with PPs

A PP computes the value b for input $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if executions starting at the configuration

$$
n_{1} \cdot \mathbf{i n}_{\mathbf{1}}+n_{2} \cdot \mathbf{i n}_{\mathbf{2}}
$$

$i n_{1} \quad i n_{2}$

Computing with PPs

A PP computes the value b for input $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if executions starting at the configuration

$$
n_{1} \cdot \mathbf{i n}_{\mathbf{1}}+n_{2} \cdot \mathbf{i n}_{\mathbf{2}}+\cdots+n_{k} \cdot \mathbf{i n}_{\mathbf{k}}
$$

Computing with PPs

A PP computes the value b for input $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if executions starting at the configuration

$$
n_{1} \cdot \mathbf{i n}_{\mathbf{1}}+n_{2} \cdot \mathbf{i n}_{\mathbf{2}}+\cdots+n_{k} \cdot \mathbf{i n}_{\mathbf{k}}
$$

reach consensus b with probability 1.
$i n_{1} \quad i n_{2}$

Computing with PPs

A PP computes the value b for input $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if executions starting at the configuration

$$
n_{1} \cdot \mathbf{i n}_{\mathbf{1}}+n_{2} \cdot \mathbf{i n}_{\mathbf{2}}+\cdots+n_{k} \cdot \mathbf{i n}_{\mathbf{k}}
$$

reach consensus b with probability 1. $i n_{1} \quad i n_{2}$

Equivalently: executions that do not reach consensus or reach consensus $1-b$ have probability 0

Computing with PPs

A PP computes the value b for input $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ if executions starting at the configuration

$$
n_{1} \cdot \mathbf{i n}_{\mathbf{1}}+n_{2} \cdot \mathbf{i n}_{\mathbf{2}}+\cdots+n_{k} \cdot \mathbf{i n}_{\mathbf{k}}
$$

reach consensus b with probability 1 . $i n_{1} \quad i n_{2}$

Equivalently: executions that do not reach consensus or reach consensus $1-b$ have probability 0

A PP computes $P\left(x_{1}, \ldots, x_{n}\right): \mathbb{N}^{n} \rightarrow\{0,1\}$ if it computes $P\left(n_{1}, \ldots, n_{k}\right)$ for every input $\left(n_{1}, \ldots, n_{k}\right)$

Previous work

Expressive power thoroughly studied:

- PPs compute exactly the Presburger predicates (Angluin et al. 2007)

Previous work

Expressive power thoroughly studied:

- PPs compute exactly the Presburger predicates (Angluin et al. 2007)
- Probabilistic PPs (Angluin et al. 2004-2006, Chatzigiannakis and Spirakis, 2008)
- Fault-tolerant PPs (Delporte-Gallet et al. 2006)
- Private computation in PPs (Delporte-Gallet et al. 2007)
- PPs with identifiers (Guerraoui et al. 2007)
- PPs with a leader (Angluin et al. 2008)
- Mediated PPs (Michail et al., 2011)
- Trustful PPs (Bournez et al., 2013)

Well-specified protocols

Q: And if the processes only reach consensus with probability <1 ?

Well-specified protocols

Q: And if the processes only reach consensus with probability <1 ?
A: Then your protocol is not well-specified. Repair it!

Well-specified protocols

Q: And if the processes only reach consensus with probability <1 ?
A: Then your protocol is not well-specified. Repair it!
Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?

Well-specified protocols

Q: And if the processes only reach consensus with probability <1 ?
A: Then your protocol is not well-specified. Repair it!
Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!

Well-specified protocols

Q: And if the processes only reach consensus with probability <1 ?
A: Then your protocol is not well-specified. Repair it!
Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!
Q: And how do I know if my protocol is well-specified?

Well-specified protocols

Q: And if the processes only reach consensus with probability <1 ?
A: Then your protocol is not well-specified. Repair it!
Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!
Q: And how do I know if my protocol is well-specified?
A: That's your problem ...

Well-specified protocols

Q: And if the processes only reach consensus with probability <1 ?
A: Then your protocol is not well-specified. Repair it!
Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!
Q: And how do I know if my protocol is well-specified?
A: That's your problem ...
Well-specification problem: Given a protocol, decide if it is well-specified.

Correctness problem: Given a protocol and a Presburger predicate, decide if the protocol is well-specified and computes the predicate.

Verifying population protocols: Previous work

Verifying population protocols: Previous work

- For each input, the semantics of the protocol is a finite-state Markov chain
- The semantics for all inputs is an infinite collection of finite-state Markov chain

Verifying population protocols: Previous work

- For each input, the semantics of the protocol is a finite-state Markov chain
- The semantics for all inputs is an infinite collection of finite-state Markov chain
- Use model-checkers (SPIN, PRISM , ...) to verify correctness for some inputs
Pang et al., 2008 ; Sun et al., 2009
Chatzigiannakis et al., 2010 ; Clément et al., 2011

Verifying population protocols: Previous work

- For each input, the semantics of the protocol is a finite-state Markov chain
- The semantics for all inputs is an infinite collection of finite-state Markov chain
- Use model-checkers (SPIN, PRISM , ...) to verify correctness for some inputs
Pang et al., 2008 ; Sun et al., 2009
Chatzigiannakis et al., 2010 ; Clément et al., 2011
- Use interactive theorem provers (Coq) to prove correctness of a specific protocol Deng et al., 2009 and 2011

Verifying population protocols: Previous work

- For each input, the semantics of the protocol is a finite-state Markov chain
- The semantics for all inputs is an infinite collection of finite-state Markov chain
- Use model-checkers (SPIN, PRISM , ...) to verify correctness for some inputs
Pang et al., 2008 ; Sun et al., 2009
Chatzigiannakis et al., 2010 ; Clément et al., 2011
- Use interactive theorem provers (Coq) to prove correctness of a specific protocol Deng et al., 2009 and 2011

Not complete or not automatic.

Main results

Are the well-specification and correctness problems decidable?

Main results

Are the well-specification and correctness problems decidable?
Open for about 10 years.

Main results

Are the well-specification and correctness problems decidable?
Open for about 10 years.

Theorem: The well-specification and correctness problems can be reduced to the reachability problem for Petri nets, and are thus decidable.

Main results

Are the well-specification and correctness problems decidable?
Open for about 10 years.

Theorem: The well-specification and correctness problems can be reduced to the reachability problem for Petri nets, and are thus decidable.

Theorem: The reachability problem for Petri nets can be reduced to the well-specification and correctness problems for PPs.

From PPs to Petri nets

Population protocols Petri nets
State
Place

From PPs to Petri nets

Population protocols Petri nets

Place
Transition with input places q_{1}, q_{2} output places $q_{1}^{\prime}, q_{2}^{\prime}$

From PPs to Petri nets

Population protocols Petri nets

State
 Interaction
 $\left(q_{1}, q_{2}\right) \mapsto\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$

PP-scheme

Place
Transition with input places q_{1}, q_{2} output places $q_{1}^{\prime}, q_{2}^{\prime}$

Net without marking

From PPs to Petri nets

Population protocols Petri nets

State

Interaction
$\left(q_{1}, q_{2}\right) \mapsto\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$

PP-scheme
Configuration

Place
Transition with input places q_{1}, q_{2} output places $q_{1}^{\prime}, q_{2}^{\prime}$

Net without marking
Marking

From PPs to Petri nets

Population protocols Petri nets

State	Place
Interaction $\left(q_{1}, q_{2}\right) \mapsto\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$	Transition with input places q_{1}, q_{2} output places $q_{1}^{\prime}, q_{2}^{\prime}$
PP-scheme	Net without marking
Configuration	Marking
Configuration graph	Reachability graph

From PPs to Petri nets

Population protocols Petri nets

State	Place
Interaction $\left(q_{1}, q_{2}\right) \mapsto\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$	Transition with input places q_{1}, q_{2} output places $q_{1}^{\prime}, q_{2}^{\prime}$
PP-scheme	Net without marking
Configuration	Marking
Configuration graph	Reachability graph
PP	Net + family of initial markings

Some results from Petri net theory

Theorem [Mayr, Kosaraju, Lambert, Leroux]: The reachability problem for Petri nets is decidable.

Best known algorithms are non-primitive recursive.

Some results from Petri net theory

Theorem [Mayr, Kosaraju, Lambert, Leroux]: The reachability problem for Petri nets is decidable.

Best known algorithms are non-primitive recursive.
A Presburger set of markings is a set of markings expressible in Presburger arithmetic.

$$
\mathcal{M}(x, y)=3 x+y \geq 6 \wedge y-x \leq 2
$$

Some results from Petri net theory

Theorem [Mayr, Kosaraju, Lambert, Leroux]: The reachability problem for Petri nets is decidable.

Best known algorithms are non-primitive recursive.
A Presburger set of markings is a set of markings expressible in Presburger arithmetic.

$$
\mathcal{M}(x, y)=3 x+y \geq 6 \wedge y-x \leq 2
$$

Theorem [Easy generalization]: Given two Presburger sets of markings $\mathcal{M}_{1}, \mathcal{M}_{2}$, it is decidable if some marking of \mathcal{M}_{2} is reachable from some marking of \mathcal{M}_{1}

Well-specification is decidable

Fact: Every execution of a PP gets eventually trapped in a bottom SCC of its configuration graph with probability 1.

Well-specification is decidable

Fact: Every execution of a PP gets eventually trapped in a bottom SCC of its configuration graph with probability 1.

Our main technical result: The set of all configurations belonging to all bottom SCCs of a PP, for all initial configurations, is effectively Presburger.

Well-specification is decidable

Fact: Every execution of a PP gets eventually trapped in a bottom SCC of its configuration graph with probability 1.

Our main technical result: The set of all configurations belonging to all bottom SCCs of a PP, for all initial configurations, is effectively Presburger.
Fact: A PP is ill-specified iff there is an initial configuration C and

- a bottom SCC reachable from C with agents in both 0 - and 1-states; or
- two bottom SCCs, one with only 0 -states and the other with only 1 -states, both reachable from C.

Well-specification is decidable

Given a PP, let

- \mathcal{N} : Petri net for the PP
- I: markings corresponding to initial configurations
- B: markings corresponding to bottom configurations

Well-specification is decidable

Given a PP, let

- \mathcal{N} : Petri net for the PP
- I: markings corresponding to initial configurations
- \mathcal{B} : markings corresponding to bottom configurations

Decision procedure:

Well-specification is decidable

Given a PP, let

- \mathcal{N} : Petri net for the PP
- I: markings corresponding to initial configurations
- \mathcal{B} : markings corresponding to bottom configurations

Decision procedure:

- Partition \mathcal{B} into $\mathcal{B}_{\text {true }}, \mathcal{B}_{\text {false }}, \mathcal{B}_{\text {neither }}$

Well-specification is decidable

Given a PP, let

- \mathcal{N} : Petri net for the PP
- I: markings corresponding to initial configurations
- \mathcal{B} : markings corresponding to bottom configurations

Decision procedure:

- Partition \mathcal{B} into $\mathcal{B}_{\text {true }}, \mathcal{B}_{\text {false }}, \mathcal{B}_{\text {neither }}$
- Check if $\mathcal{B}_{\text {neither }}$ is reachable from \mathcal{I} (using reachability in Petri nets)

Well-specification is decidable

Given a PP, let

- \mathcal{N} : Petri net for the PP
- I: markings corresponding to initial configurations
- \mathcal{B} : markings corresponding to bottom configurations

Decision procedure:

- Partition \mathcal{B} into $\mathcal{B}_{\text {true }}, \mathcal{B}_{\text {false }}, \mathcal{B}_{\text {neither }}$
- Check if $\mathcal{B}_{\text {neither }}$ is reachable from \mathcal{I} (using reachability in Petri nets)
- Construct the net $N \| N$ (two copies of N side by side).

Well-specification is decidable

Given a PP, let

- \mathcal{N} : Petri net for the PP
- I: markings corresponding to initial configurations
- B: markings corresponding to bottom configurations

Decision procedure:

- Partition \mathcal{B} into $\mathcal{B}_{\text {true }}, \mathcal{B}_{\text {false }}, \mathcal{B}_{\text {neither }}$
- Check if $\mathcal{B}_{\text {neither }}$ is reachable from \mathcal{I} (using reachability in Petri nets)
- Construct the net $N \| N$ (two copies of N side by side).
- Construct the set $\mathcal{I}_{2}=\{(M, M) \mid M \in \mathcal{I}\}$.

Well-specification is decidable

Given a PP, let

- \mathcal{N} : Petri net for the PP
- I: markings corresponding to initial configurations
- B: markings corresponding to bottom configurations

Decision procedure:

- Partition \mathcal{B} into $\mathcal{B}_{\text {true }}, \mathcal{B}_{\text {false }}, \mathcal{B}_{\text {neither }}$
- Check if $\mathcal{B}_{\text {neither }}$ is reachable from \mathcal{I} (using reachability in Petri nets)
- Construct the net $N \| N$ (two copies of N side by side).
- Construct the set $\mathcal{I}_{2}=\{(M, M) \mid M \in \mathcal{I}\}$.
- Check if $\mathcal{B}_{\text {true }} \times \mathcal{B}_{\text {false }}$ is reachable from \mathcal{I}_{2} (using reachability in Petri nets)

Further results

- Elementary decision procedure for immediate observation protocols

Further results

- Elementary decision procedure for immediate observation protocols
- Decidability extends to all properties expressible in LTL

Further results

- Elementary decision procedure for immediate observation protocols
- Decidability extends to all properties expressible in LTL
- Quantitative verification (probability exceeds given threshold) is undecidable

Further results

- Elementary decision procedure for immediate observation protocols
- Decidability extends to all properties expressible in LTL
- Quantitative verification (probability exceeds given threshold) is undecidable

Thank You

