# Verification of parametrised shared-memory asynchronous systems

Igor Walukiewicz

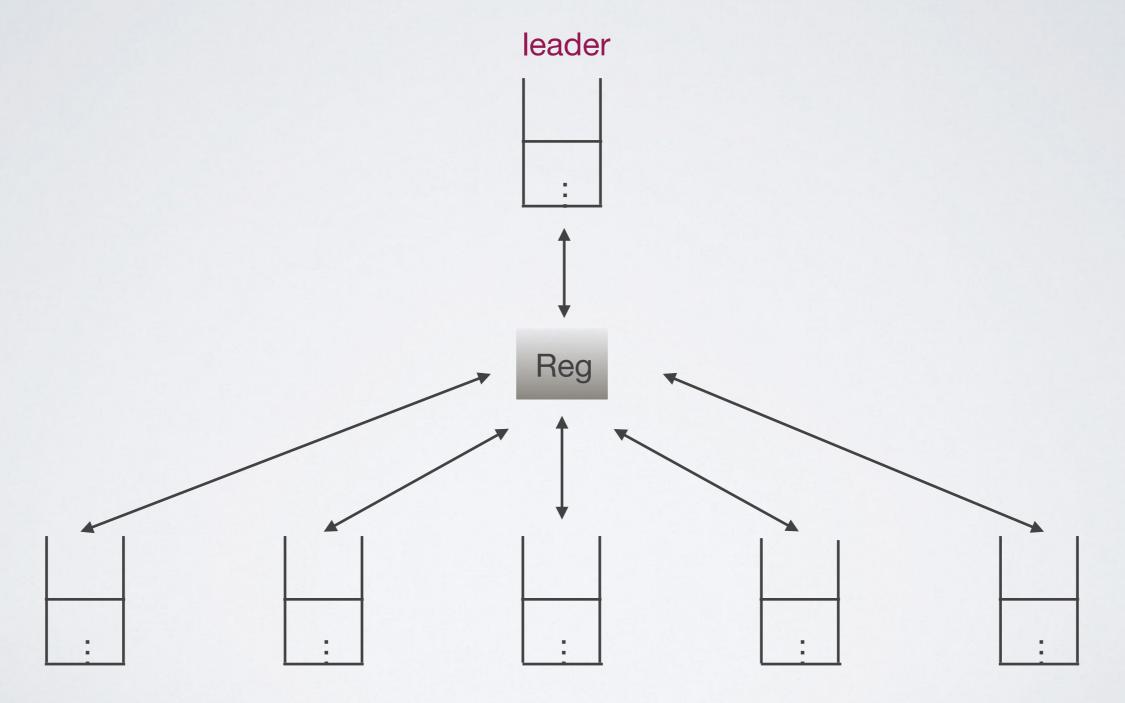
CNRS, Bordeaux University IAS, TU Munich

Joint work with: M. Fortin, S. LaTorre, A. Muscholl

# Model: asynchronous, shared memory

Hague, 2011

Esparza, Ganty, Majumdar, 2013 Durand-Gasselin, Esparza, Ganty, Majumdar, 2015



contributors

# Model: asynchronous, shared memory

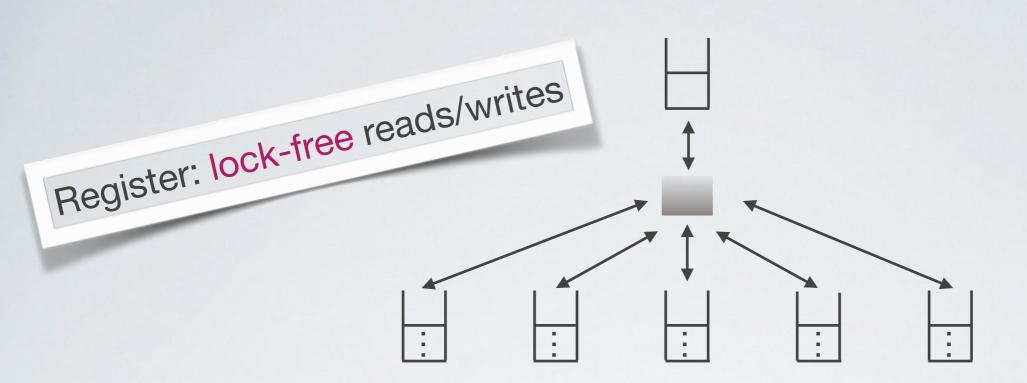
leader

Hague, 2011

Esparza, Ganty, Majumdar, 2013 Durand-Gasselin, Esparza, Ganty, Majumdar, 2015

Register: lock-free reads/writes Reg

contributors



- \* Leader and contributors are pushdown processes.
- \* If there is only one contributor: leader+contributor can simulate a Turing machine.
- \* For unknown number of contributors the model becomes surprisingly manageable.

# Semantics

 $C = \langle S, \delta \subseteq S \times \Sigma_C \times S, s_{\text{init}} \rangle \qquad D = \langle T, \Delta \subseteq T \times \Sigma_D \times T, t_{\text{init}} \rangle.$ 

G: a finite set of register values

A configuration is (M, t, g), where  $M \in \mathbb{N}^S$ ,  $t \in T$ ,  $g \in G$ .

 $(M, t, q) \xrightarrow{w(h)} (M, t', h)$ if  $(M, t, q) \xrightarrow{r(h)} (M, t', h)$  if  $(M, t, g) \xrightarrow{\bar{w}(h)} (M', t, h)$  if  $(M, t, q) \xrightarrow{\bar{r}(h)} (M', t, h)$ if

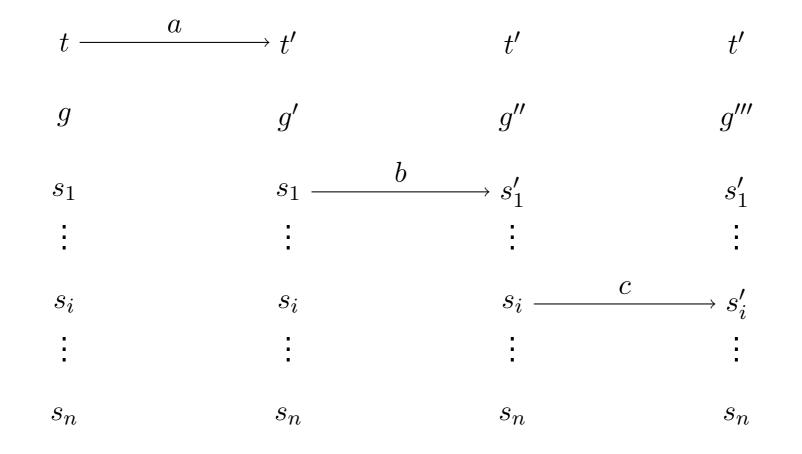
f 
$$t \xrightarrow{w(h)} t'$$
 in  $\Delta$ ,  
f  $t \xrightarrow{r(h)} t'$  in  $\Delta$  and  $h = g$ ,  
f  $M \xrightarrow{\bar{w}(h)} M'$  in  $\delta$ ,  
f  $M \xrightarrow{\bar{r}(h)} M'$  in  $\delta$  and  $h = g$ 

where  $M \xrightarrow{a} M'$  in  $\delta$  if  $s \xrightarrow{a} s'$  in  $\delta$  and M' = M - [s] + [s'], for some  $s, s' \in S$ .  $(M, t, g) \xrightarrow{w(h)} (M, t', h)$  $(M, t, g) \xrightarrow{\bar{r}(h)} (M, t', h)$  $(M, t, g) \xrightarrow{\bar{w}(h)} (M', t, h)$  $(M, t, g) \xrightarrow{\bar{r}(h)} (M', t, h)$ 

$$\begin{split} & \text{if } t \xrightarrow{w(h)} t' \text{ in } \Delta \,, \\ & \text{if } t \xrightarrow{r(h)} t' \text{ in } \Delta \text{ and } h = g \,, \\ & \text{if } M \xrightarrow{\bar{w}(h)} M' \text{ in } \delta \,, \\ & \text{if } M \xrightarrow{\bar{r}(h)} M' \text{ in } \delta \text{ and } h = g \end{split}$$

where

 $M \xrightarrow{a} M'$  in  $\delta$  if  $s \xrightarrow{a} s'$  in  $\delta$  and M' = M - [s] + [s'], for some  $s, s' \in S$ .



# Set semantics

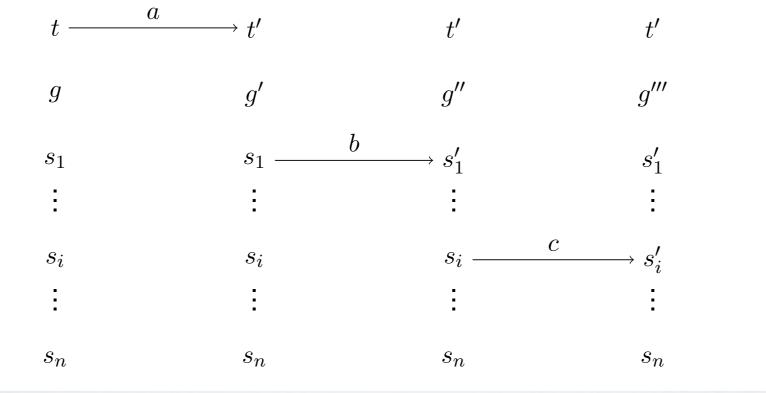
$$\begin{array}{ll} (B,t,g) \xrightarrow{w(h)} (B,t',h) & \text{if } t \xrightarrow{w(h)} t' \text{ in } \Delta \,, & B \subseteq S \\ (B,t,g) \xrightarrow{r(h)} (B,t',h) & \text{if } t \xrightarrow{r(h)} t' \text{ in } \Delta \text{ and } h = g \,, \\ (B,t,g) \xrightarrow{\bar{w}(h)} (B',t,h) & \text{if } B \xrightarrow{\bar{w}(h)} B' \text{ in } \delta \,, \\ (B,t,g) \xrightarrow{\bar{r}(h)} (B',t,h) & \text{if } B \xrightarrow{\bar{r}(h)} B' \text{ in } \delta \text{ and } h = g \,. \end{array}$$

 $B \xrightarrow{a} B'$  in  $\delta$  if  $s \xrightarrow{a} s'$  in  $\delta$  and  $B' = B \cup \{s'\}$ , for some  $s, s' \in S$ .

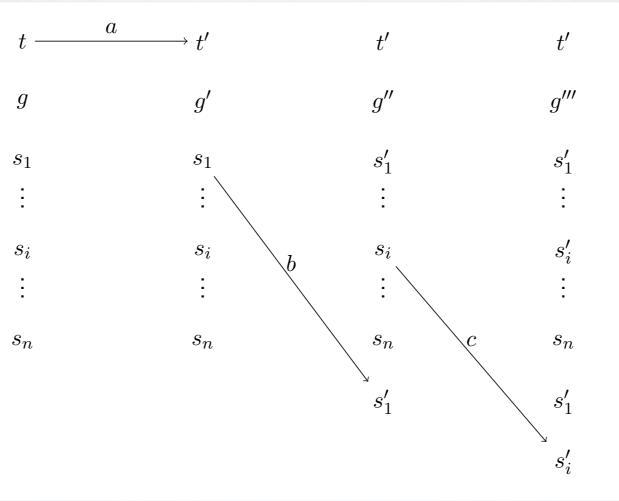
$$\begin{array}{ll} (M,t,g) \xrightarrow{w(h)} (M,t',h) & \text{if } t \xrightarrow{w(h)} t' \text{ in } \Delta \,, \\ (M,t,g) \xrightarrow{r(h)} (M,t',h) & \text{if } t \xrightarrow{r(h)} t' \text{ in } \Delta \, \text{and } h = g \,, \\ (M,t,g) \xrightarrow{\bar{w}(h)} (M',t,h) & \text{if } M \xrightarrow{\bar{w}(h)} M' \text{ in } \delta \,, \\ (M,t,g) \xrightarrow{\bar{r}(h)} (M',t,h) & \text{if } M \xrightarrow{\bar{r}(h)} M' \text{ in } \delta \, \text{and } h = g \,. \end{array}$$

 $M \xrightarrow{a} M'$  in  $\delta$  if  $s \xrightarrow{a} s'$  in  $\delta$  and M' = M - [s] + [s'], for some  $s, s' \in S$ .





Set



# C,D may be infinite state

 $C = \langle S, \delta \subseteq S \times \Sigma_C \times S, s_{\textit{init}} \rangle \qquad D = \langle T, \Delta \subseteq T \times \Sigma_D \times T, t_{\textit{init}} \rangle .$ 

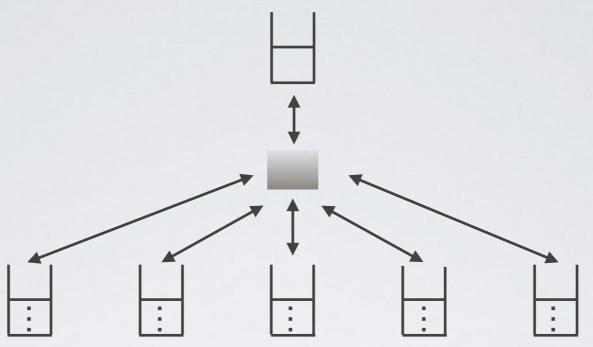
 $(M, t, g) \xrightarrow{w(h)} (M, t', h)$  $(M, t, g) \xrightarrow{r(h)} (M, t', h)$  $(M, t, g) \xrightarrow{\bar{w}(h)} (M', t, h)$  $(M, t, g) \xrightarrow{\bar{r}(h)} (M', t, h)$ 

$$\begin{array}{l} \text{if }t \xrightarrow{w(h)} t' \text{ in } \Delta \,, \\ \text{if }t \xrightarrow{r(h)} t' \text{ in } \Delta \text{ and } h = g \,, \\ \text{if }M \xrightarrow{\bar{w}(h)} M' \text{ in } \delta \,, \\ \text{if }M \xrightarrow{\bar{r}(h)} M' \text{ in } \delta \text{ and } h = g \,. \end{array}$$

Transition systems C and D need not to be finite. In our case they are given by pushdown systems:

$$\mathcal{A}_C = \langle P, \Sigma_C, \Gamma_C, \delta, p_{\textit{init}}, A_{\textit{init}}^C \rangle \qquad \mathcal{A}_D = \langle Q, \Sigma_D, \Gamma_D, \Delta, q_{\textit{init}}, A_{\textit{init}}^D \rangle.$$

So  $S = \{q\alpha : q \in P, \alpha \in \Gamma_C^*\}$ 



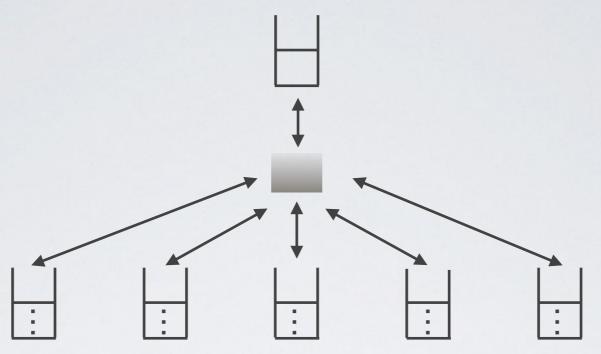
- \* Every contributor proposes a value
- \* Leader chooses one of these values
- The rest of the protocol uses the chosen value

### Example properties: (for every n, for every run)

- \* Leader eventually decides on a value
- \* If the leader decides on the value,

contributors use only this value.

On runs where only one value is used i.o.
 the protocol is correct



- Contributors proposes values.
- \* Leader chooses one of these values.
- The rest of the protocol uses the chosen value.

# Example properties:

(for every n, for every run)

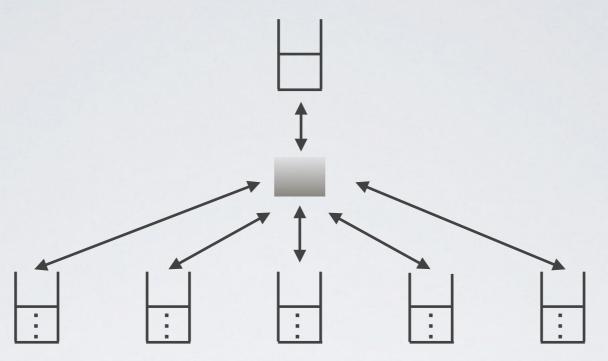
- \* Leader eventually decides on a value
- ★ If the leader decides on the value,

contributors use only this value.

\* On runs where only one value is used i.o. the protocol is correct

There is a run where the leader has decided on some value and afterwards a contributor is using a different value.

reachability



- Contributors proposes values.
- \* Leader chooses one of these values.
- The rest of the protocol uses the chosen value.

## Example properties:

- (for every n, for every run)
- \* Leader eventually decides on a value
- $\rightarrow$  \* If the leader decides on the value,

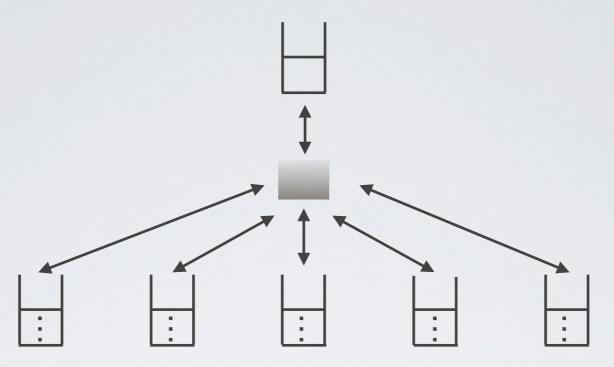
contributors use only this value.

\* On runs where only one value is used i.o. the protocol is correct

There is a maximal run where the leader does not decide on a value.

safety

reachability



- \* Contributors proposes values.
- \* Leader chooses one of these values.
- The rest of the protocol uses the chosen value.



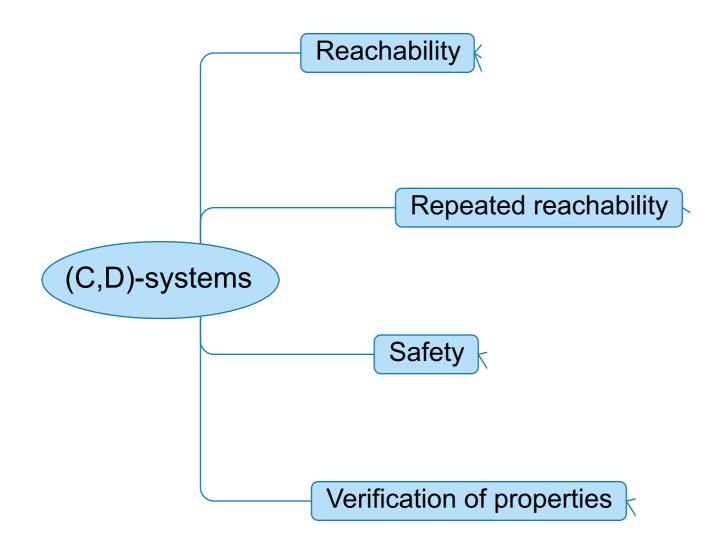
### Example properties:

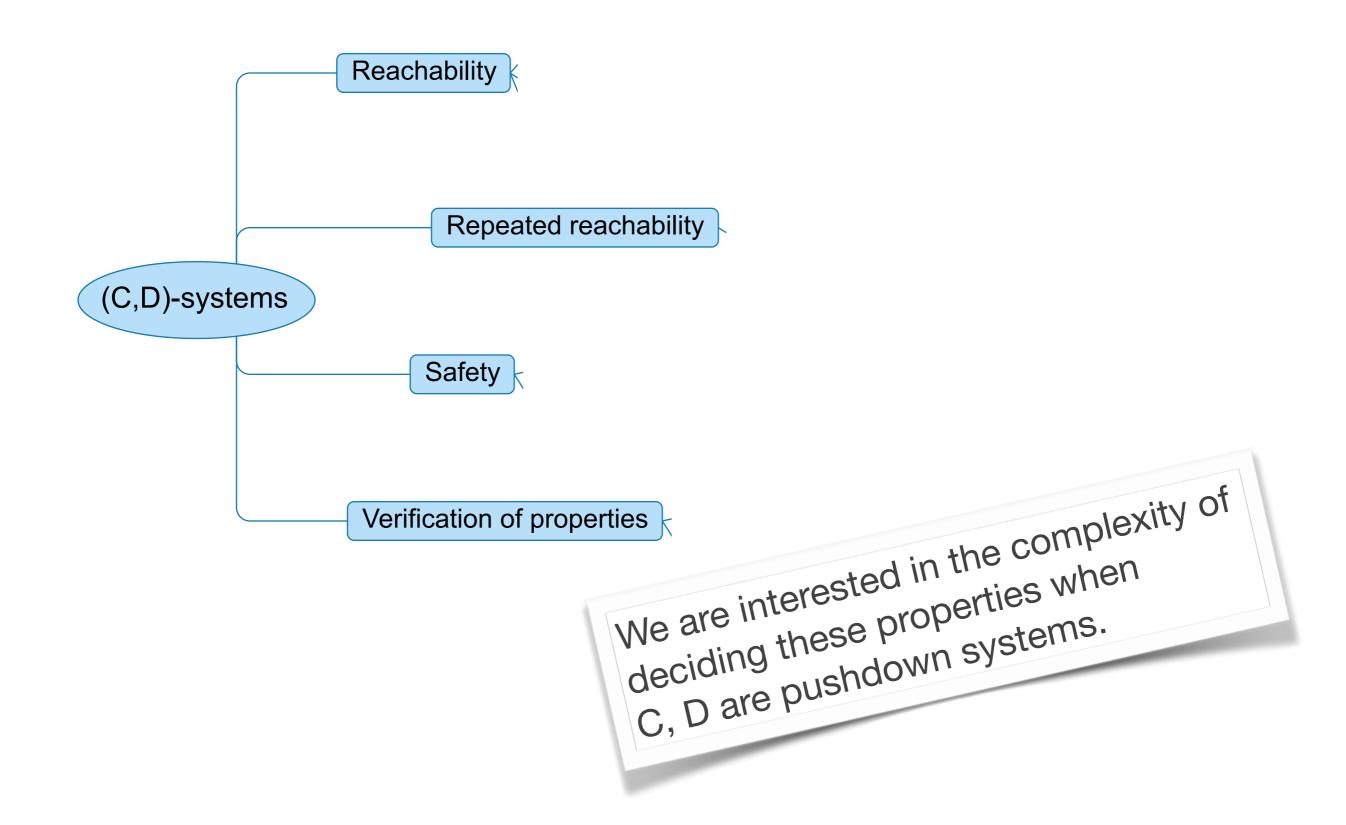
- (for every n, for every run)
- \* Leader eventually decides on a value
- $\rightarrow$  \* If the leader decides on the value,

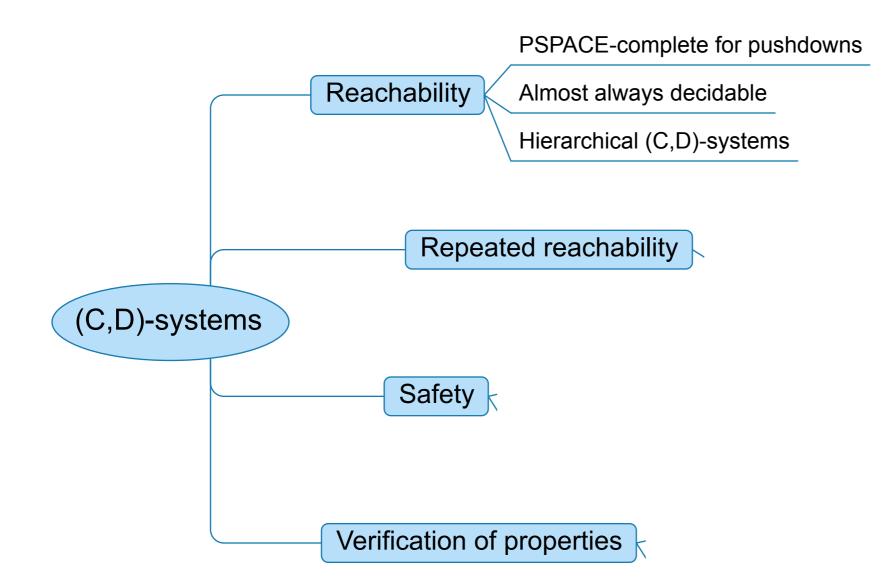
contributors use only this value.

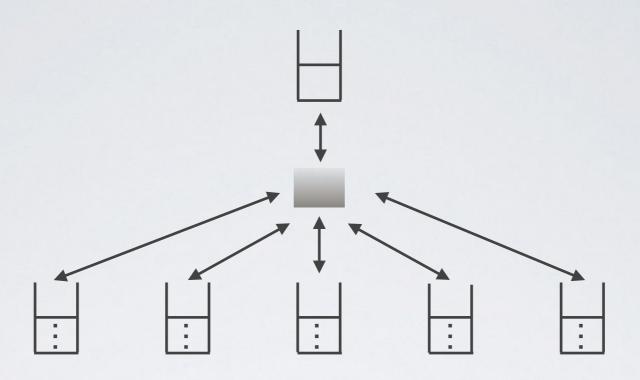
On runs where only one value is used i.o.

the protocol is correct







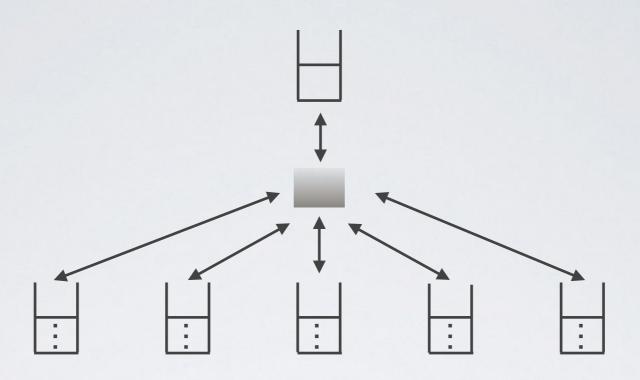


### Reachability in (C,D)-systems

Given a leader D from some class of systems  $\mathcal{D}$  and a contributor C from some class  $\mathcal{C}$ , is there some value n such that  $D||C|| \dots ||C|$  (*n*-times) have a run writing some particular value into the register?

### Fact

When C and D are the class of pushdown systems and n is fixed then the problem is undecidable.

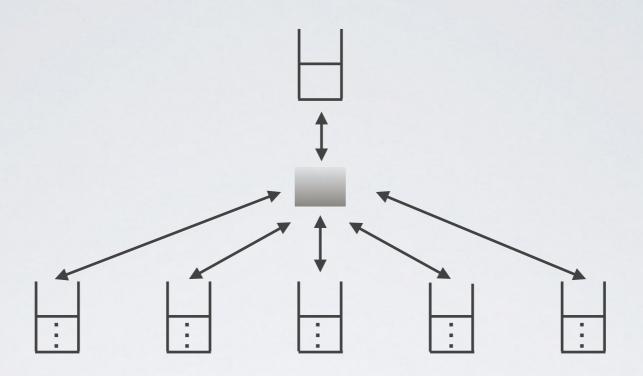


### Reachability in (C,D)-systems

Given a leader D from some class of systems  $\mathcal{D}$  and a contributor C from some class  $\mathcal{C}$ , is there some value n such that  $D||C|| \dots ||C|$  (*n*-times) have a run writing some particular value into the register?

### Thm [Hague, Esparza et al.]

When C and D are the class of pushdown systems then the reachability problem is decidable, and PSPACE-complete.



### Thm

Let C and D be both effectively closed under synchronised product with finite automata.

If *C* has decidable reachability problem and  $\mathcal{D}$  has effective downward closure, then reachability for (*C*,  $\mathcal{D}$ )-systems is decidable.

### Thm

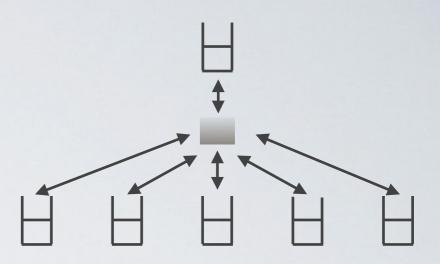
Let C and D be both effectively closed under synchronised product with finite automata.

If *C* has decidable reachability problem and  $\mathcal{D}$  has effective downward closure, then reachability for (*C*,  $\mathcal{D}$ )-systems is decidable.

*C* is effectively closed under synchronized product with finite automata: given M from *C* and a finite automaton A, the synchronized product of M and A belongs to *C* and can be effectively constructed.

#### $\mathcal{D}$ has effective downward closure:

given M from  $\mathcal{D}$ , the finite automaton accepting all (scattered) subwords of traces of M can be constructed effectively.



Effective downward closure:

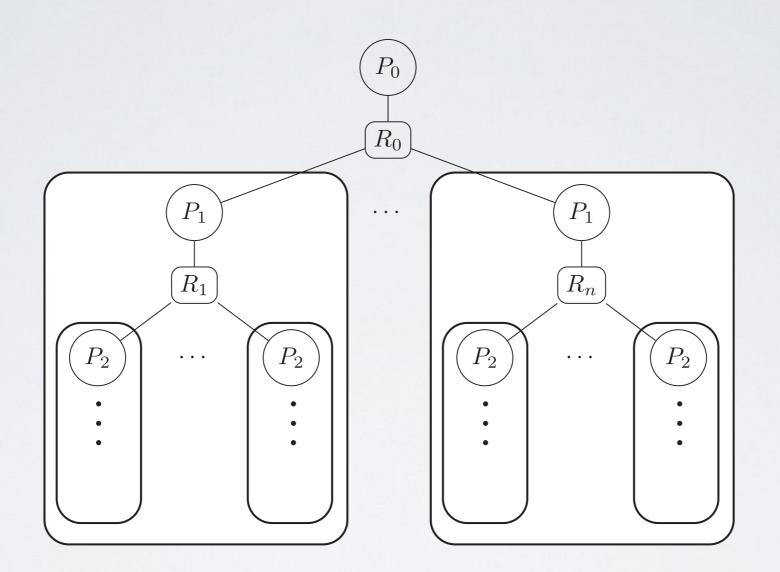
- pushdown automata [Courcelle 1991]
- Petri nets [Habermehl et al. 2010]
- stacked counter automata [Zetzsche 2015]
- higher-order pushdown with collapse automata [Clemente, Parys, Salvati, W. 2016]

Theorem applies to

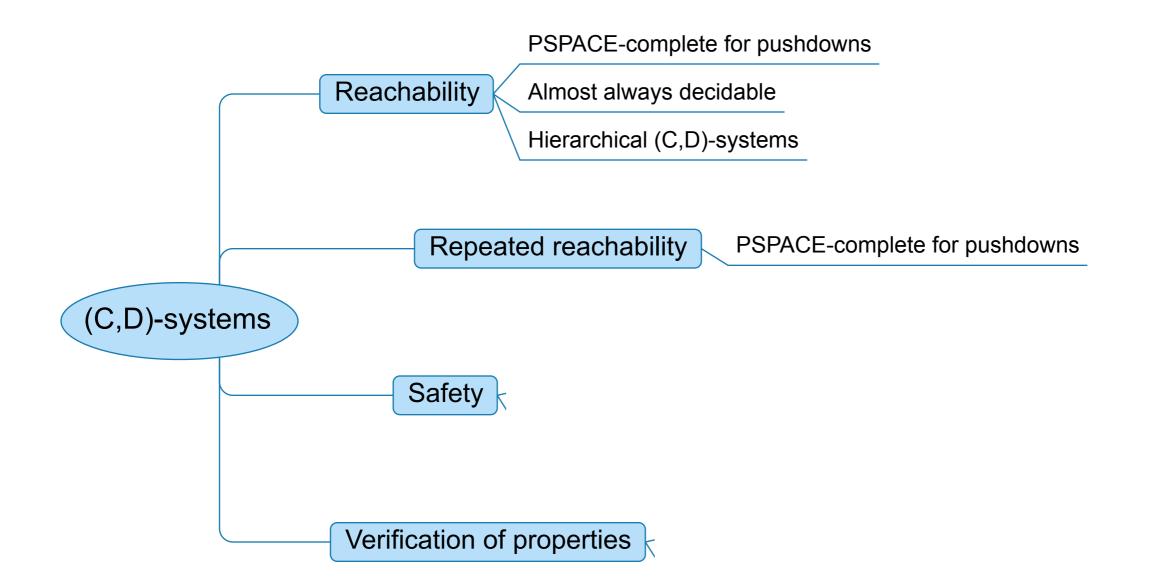
leader: pushdown automata, Petri nets, decidable subclasses of multi-stack, stacked counter automata.

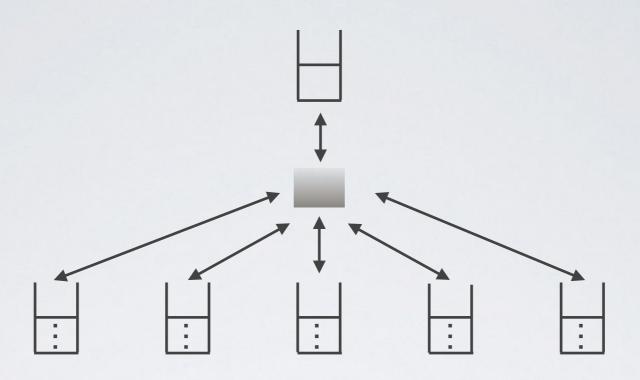
contributors: any of the above, lossy channel systems, hierarchical composition of (C,D)-systems.

# Hierarchical composition of (C,D)-systems



leader  $P_0$  and each subtree (*C*, *D*)-system is contributor



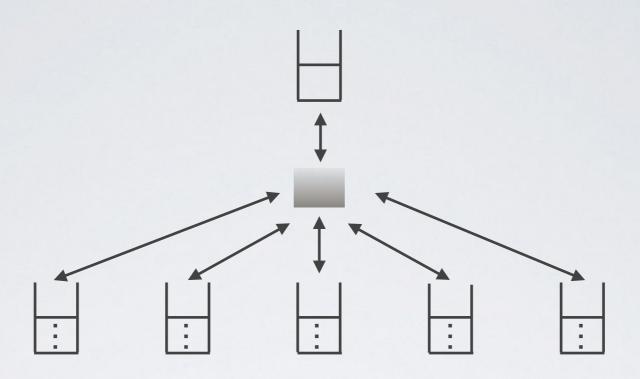


### Repeated reachability in (C,D)-systems

Given a leader *D* from some class of systems  $\mathcal{D}$  and contributors  $C_1, \ldots, C_n, \ldots$  from some class *C*, is there some value *n* such that  $D \parallel C_1 \parallel \cdots \sim C_n$  write some particular value into the register infinitely often?

#### Thm [Durand-Gasselin, Esparza, Ganty, Majumdar 2015]

When C and D are the class of pushdown systems then the liveness problem is decidable is PSPACE-hard and in NEXPTIME.

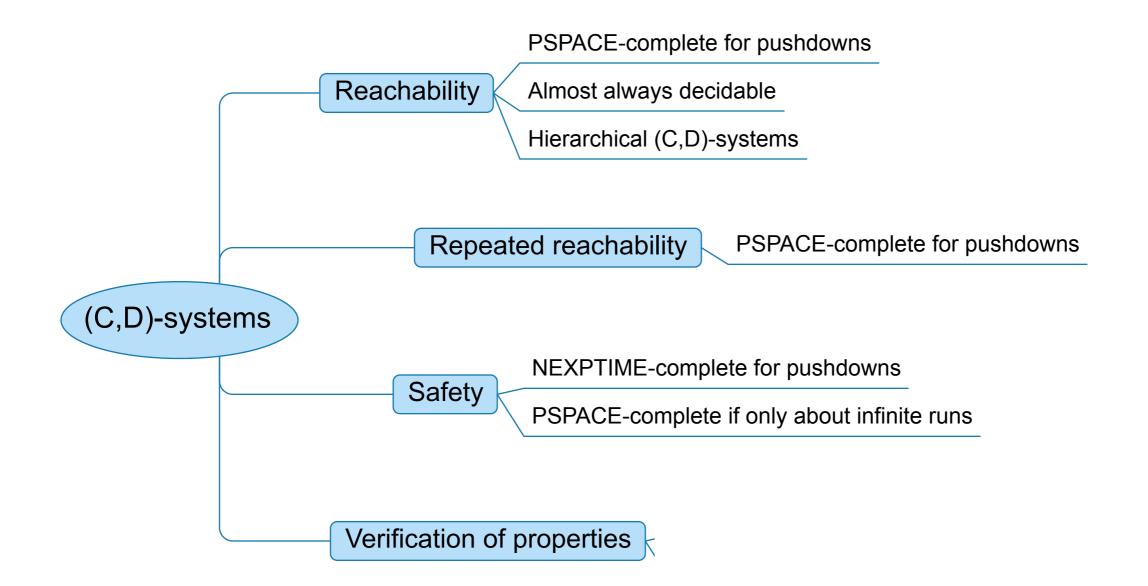


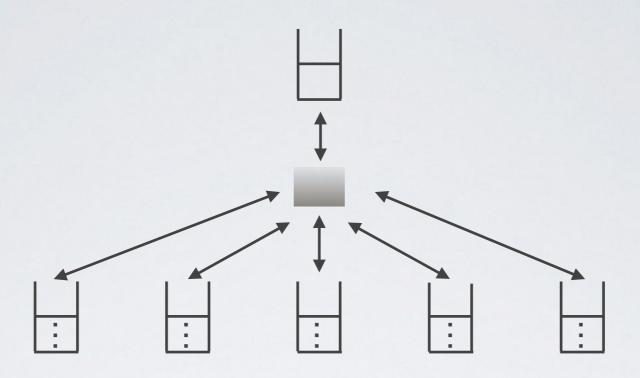
### Liveness in (C,D)-systems

Given a leader *D* from some class of systems  $\mathcal{D}$  and contributors  $C_1, \ldots, C_n, \ldots$  from some class *C*, is there some value *n* such that  $D \parallel C_1 \parallel \cdots \sim C_n$  write some particular value into the register infinitely often?

### Thm

When C and D are the class of pushdown systems then the liveness problem is decidable is PSPACE-complete.





### Safety in (C,D)-systems

Given a leader *D* from some class of systems  $\mathcal{D}$  and contributors  $C_1, \ldots, C_n, \ldots$  from some class *C*, is there some value *n* such that  $D \parallel C_1 \parallel \cdots \sim C_n$  has a maximal run that does not write some particular value into the register?

### Thm

When C and D are the class of pushdown systems then the safety problem is NEXPTIME-complete.

### Thm

When C and D are the class of pushdown systems then the safety problem is NEXPTIME-complete.

### Thm

Let C and D be the class of pushdown systems. Knowing if there is some infinite safe run in PSPACE-complete. Knowing if there is some maximal finite safe run in NEXPTIME-complete.

### Thm

If *C* is a class of finite systems and D be the class of pushdown systems then the problems are coNP-complete.

### Prop

When C and D are the class of pushdown systems then the existence of a maximal finite safe run is NEXPTIME-hard.

Reduction of a tiling problem: Find a tiling with letters from  $\Sigma$  of a 2<sup>n</sup>x2<sup>n</sup> square. The tiling should respect neighbourhood relations H,V  $\subseteq \Sigma x \Sigma$ .

Leader writes:  $A_{1,1}, \overline{A_{1,1}}, A_{1,2}, \overline{A_{1,2}}, \dots, A_{1,2^n}, \overline{A_{1,2^n}}, \dots, A_{2^n,2^n} \overline{A_{2^n,2^n}}$  (\$\$)<sup>2<sup>n</sup></sup>  $\diamond$ .

and checks the horizontal dependencies.

### Prop

When C and D are the class of pushdown systems then the existence of a maximal finite safe run is NEXPTIME-hard.

Reduction of a tiling problem: Find a tiling with letters from  $\Sigma$  of a 2<sup>n</sup>x2<sup>n</sup> square. The tiling should respect neighbourhood relations H,V $\subseteq \Sigma x \Sigma$ .

Leader writes:  $A_{1,1}, \overline{A_{1,1}}, A_{1,2}, \overline{A_{1,2}}, \dots, A_{1,2^n}, \overline{A_{1,2^n}}, \dots, A_{2^n,2^n} \overline{A_{2^n,2^n}}$  (\$\$)<sup>2<sup>n</sup></sup>  $\diamond$  .

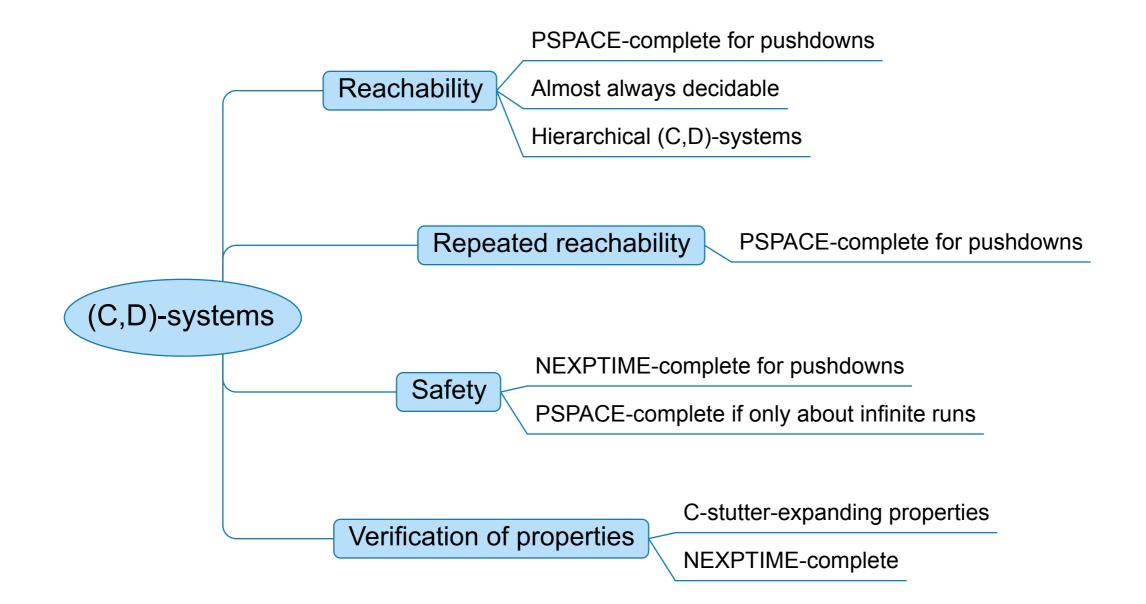
and checks the horizontal dependencies.

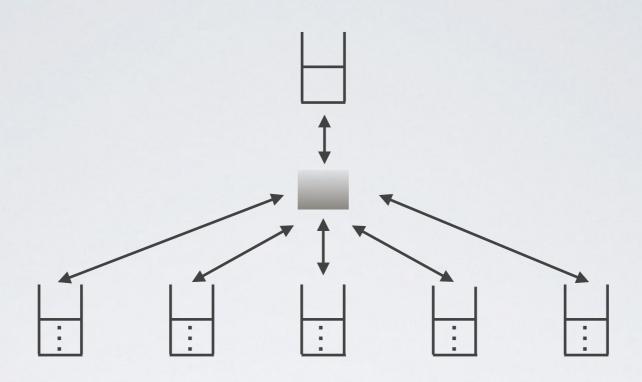
Contributors check vertical dependencies.

We can ensure that contributors

\* read all the symbols, and

\* every vertical dependency is checked by some contributor.





A trace is a sequence of register operations during a run. A maximal trace comes from a maximal run (finite or infinite).

A property of traces is  $P \subseteq (\Sigma_{\mathcal{D}} \cup \Sigma_{\mathcal{C}})^{\infty}$ .

A property is C-stutter-expanding if it is closed under duplicating actions of contributors.

If  $x \bar{w}(g) y \in P$  then  $x \bar{w}(g) \bar{w}(g) y \in P$ 

### Verification of properties of (C,D)-systems

Given a C-stutter-expanding property P. Given a leader *D* from some class of systems  $\mathcal{D}$  and contributors  $C_1, \ldots, C_n, \ldots$  from some class *C*, is there some value *n* such that  $D \parallel C_1 \parallel \cdots \sim C_n$  has a maximal trace in P.

### Verification of properties of (C,D)-systems

Given a C-stutter-expanding property P. Given a leader D from some class of systems  $\mathcal{D}$  and contributors  $C_1, \ldots, C_n, \ldots$  from some class C, is there some value n such that  $D \parallel C_1 \parallel \cdots \sim C_n$  has a maximal trace in P.

All previously considered properties are special instances:

reachability: P is the set of traces containing the special action.
repeated reachability: P is the set of traces containing the special action infinitely often.
safety: P is the set of traces without the special action.

### Verification of properties of (C,D)-systems

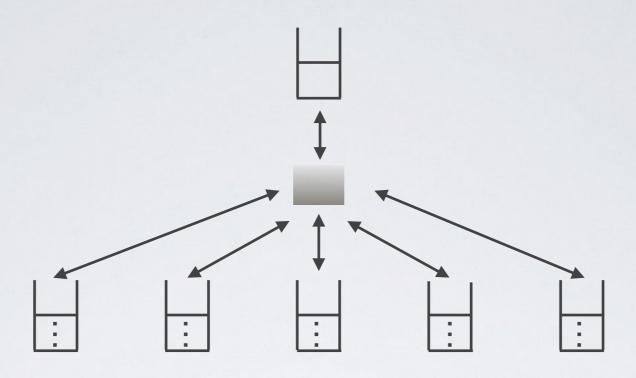
For a Buchi automaton for C-stutter-expanding property P. Given a leader *D* from some class of systems  $\mathcal{D}$  and contributors  $C_1, \ldots, C_n, \ldots$  from some class *C*, is there some value *n* such that  $D \parallel C_1 \parallel \cdots \sim C_n$  has a maximal trace in P.

Verification for arbitrary regular properties is undecidable, as with a property we can require that there is only one copy of a contributor.

A property of traces is  $P \subseteq (\Sigma_{\mathcal{D}} \cup \Sigma_{\mathcal{C}})^{\infty}$ . A property is C-stutter-expanding if it is closed under duplicating actions of contributors. If  $x \bar{w}(g) y \in P$  then  $x \bar{w}(g) \bar{w}(g) y \in P$ 

### Thm

When C and D are the class of pushdown systems then verification of properties of (C,D)-systems is decidable and NEXPTIME-complete.



Changing from one two arbitrary many contributors turns the problem from undecidable to manageable.

(C,D)-systems of pushdown process have very good algorithmic properties

- Verification of C-stutter-expanding properties is decidable in NEXPTIME
- For some relevant subclasses it is PSPACE.

The NEXPTIME-hardness argument shows that they can exhibit quite a nontrivial behaviour.