

Davide Ancona, Daniela Briola,
Angelo Ferrando, Viviana Mascardi

DRV Workshop, Bertinoro 2016

Runtimeverification of multiagentsystems

Part I

Agents and MASs &
“traditional” approaches

to MAS verification

Weak notion

An agent is an hardware or software system
● situated,
● autonomous,
● flexible
 - reactive
 - proactive
 - social.

N. Jennings, K. Sycara, M. Wooldridge, JAAMAS 1(1),
1998.

Strong notion

A computer system either conceptualized or implemented
using concepts that are more usually applied to humans.

- Mentalistic notions.
Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

- Emotional notions.
J. Bates. The role of emotion in believable agents.
Communications of the ACM, 37(7):122–125, July 1994.

Multiagent system

Multiagent system

● each agent has incomplete information, or
capabilities for solving the problem, thus each
agent has a limited viewpoint;

● there is no global system control;
● data is decentralized; and
● computation is asynchronous.

Agent interaction protocols
(we go crazy for them!)

G. Gutnik, G. A. Kaminka, JAIR 2006

Agent interaction protocols
(we go crazy for them!)

F. Mokhati, B. Sahraoui, S. Bouzaher, M. T.
Kimou, JoT 2010

Agent interaction protocols
(we go crazy for them!)

V. Mascardi, D. Briola, D. Ancona, AI*IA 2013

Logic-based agents

mortal(X) :- human(X).
human(socrates).
?- mortal(socrates).
?- yes

Logic-based agents

“Traditional” approach to build artificial intelligent
systems.

Logical formulae: symbolic representation of the agent
environment and desired behavior.

Logical deduction or theorem proving: syntactical
manipulation of this representation.

The Beliefs, Desires, Intentions
(BDI) logic

Combination of:
- temporal logic (linear time in Cohen and Levesque,
branching time in Rao and Georgeff)
- modal logic(s) of beliefs, desires & goals (intentions)

The modalities of Rao and Georgeff’s BDI logic are
BEL(φ), GOAL(φ), INTEND(φ).

P.R. Cohen and H.J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 1990
A. S. Rao and M. P. Georgeff. Decision Procedures for BDI Logics.
Journal of Logic and Computation, 1998

The BDI architecture

The BDI architecture is one of the best known and most
studied architectures for cognitive agents.

AgentSpeak(L) is an elegant, logic-based programming
language inspired by the BDI architecture.

Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proc. of MAAMAW '96, pp. 42-55, 1996.

The BDI architecture

Goals

Reasoner

Plans Intentions

Environment
Beliefs

Many works on static verification,
both of programs and of interaction

protocols...

Static verification of BDI MASs

2003

Static verification of BDI MASs

2006

Static verification of BDI MASs

2012

Static verification of
Agent Interaction Protocols

2003

Static verification of
Agent Interaction Protocols

2009

A few works on centralized
runtime verification...

Runtime verification of
Agent Interaction Protocols

2004

Runtime verification of
Agent Interaction Protocols

Based on the notion of expectation, verified using
abductive logic programming

Runtime verification of
Agent Interaction Protocols

Formalism used to
express protocols:
Dynamic LTL (the
next state modality
is indexed by
action).

...but... the whole
trace of exchanged
messages needs to
be kept in memory

2007

Part II

From centralized RV
to DRV (and beyond!)

From runtime verification to
self-adaptive protocol-driven behavior

Centralized monitoring

From runtime verification to
self-adaptive protocol-driven behavior

Some assumptions:

- protocols are “well formed”

- the monitor keeps track of the current state S of the interaction
protocol (more in general, it could be any protocol involving not
only communicative actions) and, as soon as it observes the
event a, it is able to apply a “next” transition function to S and a,
moving to S' (if possible!): next(S, a) = S'

- it is possible to project any well-formed protocol P onto any
subset of agents {A1, A2, ..., An}, obtaining a new protocol P' (in
the same formalism used for representing P) where interactions
involving agents {A1, A2, ..., An} are kept, and the others are
discarded

From runtime verification to
self-adaptive protocol-driven behavior

Decentralized monitoring

From runtime verification to
self-adaptive protocol-driven behavior

Ultra-decentralized monitoring

From runtime verification to
self-adaptive protocol-driven behavior

Protocol driven-agent

From runtime verification to
self-adaptive protocol-driven behavior

From runtime verification to
self-adaptive protocol-driven behavior

sound by construction

From runtime verification to
self-adaptive protocol-driven behavior

Self-adaptive protocol driven agent

From runtime verification to
self-adaptive protocol-driven behavior

the controller

From runtime verification to
self-adaptive protocol-driven behavior

the controller

Exceptional situation!
The MAS must switch to

From runtime verification to
self-adaptive protocol-driven behavior

switch to

switch to

switch to

project

onto myself
project

onto myself

project

onto myself

From runtime verification to
self-adaptive protocol-driven behavior

From runtime verification to
self-adaptive protocol-driven behavior

sound by construction

From runtime verification to
self-adaptive protocol-driven behavior

Trace expressions

D. Ancona, D. Briola, A.Ferrando, V. Mascardi + ...

Trace expressions are a compact and expressive formalism
which can be employed to model complex protocols based on a
set of operators to denote finite and infinite traces of events.

[D. Ancona, S. Drossopoulou and V. Mascardi, DALT 2012]
[D. Ancona, M. Barbieri and V. Mascardi, SAC 2013]
[D. Ancona and V. Mascardi, TPLP 2013]
[D. Ancona, D. Briola, V. Mascardi, AI*IA 2014]
[D. Ancona, D. Briola, A. El Fallah-Seghrouchni, V. Mascardi, P. Taillibert, EMAS@AAMAS 2014]
[D. Ancona, D. Briola, V. Mascardi, IDC 2014]
[A. Ferrando, CILC 2015]
[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, AAMAS 2015]
[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, WOA 2015]
[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, Intelligenza Artificiale 2015]
[D.Ancona, A. Ferrando and V. Mascardi, FdB60 2016]
[D.Ancona, A. Ferrando and V. Mascardi, EMAS@AAMAS 2016]

Event types

msg(S, R, tell, price(Good, Price)) price_inf_msg, ∈
for any sender S, receiver R, Good allowed good identifier, Price natural
number in some range

msg(a, b, tell, msg1) msg(1)∈
msg(a, b, tell, msg2) msg(2)∈
msg(b, a, tell, ack1) ack(1)∈
msg(b, a, tell, ack2) ack(2)∈
msg(a, b, tell, msg1) msg∈
msg(a, b, tell, msg2) msg∈
msg(a, b, tell, msg1) msg_ack(1)∈
msg(a, b, tell, msg2) msg_ack(2)∈
msg(b, a, tell, ack1) msg_ack(1)∈
msg(b, a, tell, ack2) msg_ack(2)∈

Trace expressions

Syntax & (informal) semantics

● ε (empty trace), denoting the singleton set {ε} containing the
empty event trace ε;
● θ:τ (prefix), denoting the set of all traces whose first event e
matches the event type θ (e θ), and the remaining part is a trace ∈
of τ;
● τ1 · τ2 (concatenation), denoting the set of all traces obtained by
concatenating the traces of τ1 with those of τ2;
● τ1 τ2 (intersection), denoting the intersection of the traces of τ1 ∧
and τ2 ;
● τ1 τ2 (union), denoting the union of the traces of τ1 and τ2;∨
● τ1 | τ2 (shuffle), denoting the set obtained by shuffling the traces
in τ1 with the traces in τ2.

● θ >> τ (filter - derived operator) denoting the set of all traces
contained in τ, when deprived of all events that do not match θ.

Trace expressions

Trace expressions

Trace expressions

Compact implementation of these transition rules, which
implement the “next” function, in SWI-Prolog: basically,
we needed one clause for each rule.

Examples

Let us suppose that event a has type A and event
b has type B

● τ = A:ε denotes {a}

● τ = A:ε v B:ε denotes {a, b}

● τ = A:B:ε denotes {ab}

● τ = A:τ denotes the set {a} (coinductive
interpretation of syntactic equations!)

Trace expressions

● τ = A:τ v ε denotes the set
{an | n > 0} U {a}

Trace expressions

Trace expressions

100 200 300 400 500 600 700 800 900 1000 1100

0

1

2

3

4

5

6

ABP2

Stacks

ABP3

ABP3xor

ABP3or

ABP3and

NonCF

trace length

a
ve

ra
g

e
 C

P
U

 ti
m

e
 (

m
s)

Trace expressions

Implementation
The interpreter for decentralized monitoring and protocol-
driven agents using trace expressions has been
implemented using SWI-Prolog and runs on top of

Conclusions
● MASs are Distributed Systems

● Agents must interact (and, in
general, behave) following
some well known protocol: this
calls for techniques to verify that
they actually do that. A lot of
work on a priori verification.

● The strong agent notion has
been traditionally modeled
using the same logics at the
basis of model checking. A lot of
work on model checking agent
programs.

Conclusions

● Little work on MAS runtime verification.

● Just initial works on MAS decentralized runtime verification.

● How to decide which subsets of the MAS should be grouped together to
be monitored by the same monitor is still an open issue...

● ...but if we associate one monitor with each agent, we can then “push the
monitor inside the agent” and obtain a “protocol driven agent”

● How to make protocols parametric is another open issue (looking forward
this afternoon talks to learn more about it!)

The tutorial is over...

...thank you for your attention!
Questions?

Some pointers to
works on trace

expressions

2016

Davide Ancona, Angelo Ferrando, Viviana Mascardi: Comparing Trace
Expressions and Linear Temporal Logic for Runtime Verification. Theory and
Practice of Formal Methods 2016: 47-64

2015

Davide Ancona, Daniela Briola, Angelo Ferrando, Viviana Mascardi: Runtime
verification of fail-uncontrolled and ambient intelligence systems: A uniform
approach. Intelligenza Artificiale 9(2): 131-148 (2015)

Davide Ancona, Daniela Briola, Angelo Ferrando, Viviana Mascardi: Global
Protocols as First Class Entities for Self-Adaptive Agents. AAMAS 2015: 1019-
1029

Some pointers to
works on trace

expressions

2015

Davide Ancona, Daniela Briola, Viviana Mascardi: Protocols with Exceptions,
Timeouts, and Handlers: A Uniform Framework for Monitoring Fail-
Uncontrolled and Ambient Intelligence Systems. WOA 2015: 65-75

2014

Davide Ancona, Daniela Briola, Amal El Fallah-Seghrouchni, Viviana
Mascardi, Patrick Taillibert: Efficient Verification of MASs with Projections.
EMAS@AAMAS 2014: 246-270

Daniela Briola, Viviana Mascardi, Davide Ancona: Distributed Runtime
Verification of JADE Multiagent Systems. IDC 2014: 81-91

Some pointers to
works on trace

expressions

2013

Viviana Mascardi, Davide Ancona: Attribute Global Types for Dynamic
Checking of Protocols in Logic-based Multiagent Systems. TPLP 13(4-5-
Online-Supplement) (2013)

Viviana Mascardi, Daniela Briola, Davide Ancona: On the Expressiveness of
Attribute Global Types: The Formalization of a Real Multiagent System
Protocol. AI*IA 2013: 300-311

Davide Ancona, Matteo Barbieri, Viviana Mascardi: Constrained global types
for dynamic checking of protocol conformance in multi-agent systems. SAC
2013: 1377-1379

.

Some pointers to
works on trace

expressions

2012

Davide Ancona, Sophia Drossopoulou, Viviana Mascardi: Automatic
Generation of Self-monitoring MASs from Multiparty Global Session Types in
Jason. DALT 2012: 76-95

.

Two properties that our trace expressions should respect

Contractiveness
Definition 1. A trace expression τ is contractive if all its infinite paths from
the root contain the prefix operator.
In contractive trace expressions all recursive subexpressions must be
guarded by the prefix operator; for instance, the trace expression defined by
T1 = (epsilon (θ:T1)) is contractive: its infinite path contains infinite ∨
occurrences of , but also of the : operator; conversely, the trace expression ∨
T2 = (epsilon ((T2 |T2) (T2 ·T2))) is not contractive.∨ ∨
Trivially, every trace expression corresponding to a finite tree (that is, a non
cyclic term) is contractive.
For all contractive trace expressions, any path from their root must always
reach either a or a : node in a finite number of steps.

Determinism
Deterministic trace expressions. There are trace expressions τ for which the
problem of word recognition is less efficient because of non determinism. Non
determinism originates from the union, shuffle, and concatenation operators,
because for each of them two possibly overlapping transition rules are
defined. We only consider deterministic trace expressions.
Definition 3. Let τ be a trace expression; τ is deterministic if for all finite
event traces σ, if τ σ→ τ' and τ σ→ τ'' are valid, then [[τ']] = [[τ'']] .

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

