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Part I

Agents and MASs &
“traditional” approaches

to MAS verification



  

Weak notion

An agent is an hardware or software system
●     situated,
●     autonomous,
●     flexible
         - reactive
         - proactive
         - social.

N. Jennings, K. Sycara, M. Wooldridge, JAAMAS 1(1), 
1998.



  

Strong notion

A computer system either conceptualized or implemented 
using concepts that are more usually applied to humans.

- Mentalistic notions.
Y. Shoham. Agent-oriented programming. Artificial Intelligence, 
60(1):51–92, 1993.

- Emotional notions.
J. Bates. The role of emotion in believable agents. 
Communications of the ACM, 37(7):122–125, July 1994.



  

Multiagent system



  

Multiagent system

● each agent has incomplete information, or 
capabilities for solving the problem, thus each 
agent has a limited viewpoint;

● there is no global system control;
● data is decentralized; and
● computation is asynchronous.



  

Agent interaction protocols 
(we go crazy for them!)

G. Gutnik, G. A. Kaminka, JAIR 2006



  

Agent interaction protocols 
(we go crazy for them!)

F. Mokhati, B. Sahraoui, S. Bouzaher, M. T. 
Kimou, JoT 2010



  

Agent interaction protocols 
(we go crazy for them!)

V. Mascardi, D. Briola, D. Ancona, AI*IA 2013



  

Logic-based agents

mortal(X) :- human(X).
human(socrates).
?- mortal(socrates).
?- yes



  

Logic-based agents

“Traditional” approach to build artificial intelligent 
systems.

Logical formulae: symbolic representation of the agent 
environment and desired behavior.

Logical deduction or theorem proving: syntactical 
manipulation of this representation.



  

The Beliefs, Desires, Intentions 
(BDI) logic

Combination of:
- temporal logic (linear time in Cohen and Levesque, 
branching time in Rao and Georgeff)
- modal logic(s) of beliefs, desires & goals (intentions)

The modalities of Rao and Georgeff’s BDI logic are 
BEL(φ), GOAL(φ), INTEND(φ).

P.R. Cohen and H.J. Levesque. Intention is choice with 
commitment. Artificial Intelligence, 1990
A. S. Rao and M. P. Georgeff. Decision Procedures for BDI Logics. 
Journal of Logic and Computation, 1998



  

The BDI architecture

The BDI architecture is one of the best known and most 
studied architectures for cognitive agents.

AgentSpeak(L) is an elegant, logic-based programming 
language inspired by the BDI architecture.

Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical 
computable language. In Proc. of MAAMAW '96, pp. 42-55, 1996. 



  

The BDI architecture

Goals

Reasoner

Plans Intentions

Environment
Beliefs



  

Many works on static verification, 
both of programs and of interaction 

protocols...



  

Static verification of BDI MASs

2003



  

Static verification of BDI MASs

2006



  

Static verification of BDI MASs

2012



  

Static verification of 
Agent Interaction Protocols

2003



  

Static verification of 
Agent Interaction Protocols

2009



  

A few works on centralized 
runtime verification...



  

Runtime verification of
Agent Interaction Protocols

2004



  

Runtime verification of
Agent Interaction Protocols

Based on the notion of expectation, verified using 
abductive logic programming



  

Runtime verification of
Agent Interaction Protocols

Formalism used to 
express protocols: 
Dynamic LTL (the 
next state modality 
is indexed by 
action).

...but... the whole 
trace of exchanged 
messages needs to 
be kept in memory

2007



  

Part II

From centralized RV
to DRV (and beyond!)



  

From runtime verification to 
self-adaptive protocol-driven behavior

Centralized monitoring



  

From runtime verification to 
self-adaptive protocol-driven behavior

Some assumptions: 

- protocols are “well formed” 

- the monitor keeps track of the current state S of the interaction 
protocol (more in general, it could be any protocol involving not 
only communicative actions) and, as soon as it observes the 
event a, it is able to apply a “next” transition function to S and a, 
moving to S' (if possible!): next(S, a) = S'

- it is possible to project any well-formed protocol P onto any 
subset of agents {A1, A2, ..., An}, obtaining a new protocol P' (in 
the same formalism used for representing P) where interactions 
involving agents {A1, A2, ..., An} are kept, and the others are 
discarded



  

From runtime verification to 
self-adaptive protocol-driven behavior

Decentralized monitoring



  

From runtime verification to 
self-adaptive protocol-driven behavior

Ultra-decentralized monitoring



  

From runtime verification to 
self-adaptive protocol-driven behavior

Protocol driven-agent



  

From runtime verification to 
self-adaptive protocol-driven behavior



  

From runtime verification to 
self-adaptive protocol-driven behavior

sound by construction



  

From runtime verification to 
self-adaptive protocol-driven behavior

Self-adaptive protocol driven agent



  

From runtime verification to 
self-adaptive protocol-driven behavior

the controller



  

From runtime verification to 
self-adaptive protocol-driven behavior

the controller

Exceptional situation! 
The MAS must switch to 



  

From runtime verification to 
self-adaptive protocol-driven behavior

switch to

switch to

switch to



  

project

onto myself
project

onto myself

project

onto myself

From runtime verification to 
self-adaptive protocol-driven behavior



  

From runtime verification to 
self-adaptive protocol-driven behavior



  

sound by construction

From runtime verification to 
self-adaptive protocol-driven behavior



  

Trace expressions

D. Ancona, D. Briola, A.Ferrando, V. Mascardi + ...

Trace expressions are a compact and expressive formalism 
which can be employed to model complex protocols based on a 
set of operators to denote finite and infinite traces of events.

[D. Ancona, S. Drossopoulou and V. Mascardi, DALT 2012] 
[D. Ancona, M. Barbieri and V. Mascardi, SAC 2013] 
[D. Ancona and V. Mascardi, TPLP 2013] 
[D. Ancona, D. Briola, V. Mascardi, AI*IA 2014]
[D. Ancona, D. Briola, A. El Fallah-Seghrouchni, V. Mascardi, P. Taillibert, EMAS@AAMAS 2014]
[D. Ancona, D. Briola, V. Mascardi, IDC 2014]
[A. Ferrando, CILC 2015]
[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, AAMAS 2015] 
[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, WOA 2015]
[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, Intelligenza Artificiale 2015]
[D.Ancona, A. Ferrando and V. Mascardi, FdB60 2016]
[D.Ancona, A. Ferrando and V. Mascardi, EMAS@AAMAS 2016]



  

Event types

msg(S, R, tell, price(Good, Price))  price_inf_msg, ∈
for any sender S, receiver R, Good allowed good identifier, Price natural 
number in some range

msg(a, b, tell, msg1)  msg(1)∈
msg(a, b, tell, msg2)  msg(2)∈
msg(b, a, tell, ack1)   ack(1)∈
msg(b, a, tell, ack2)   ack(2)∈
msg(a, b, tell, msg1)  msg∈
msg(a, b, tell, msg2)  msg∈
msg(a, b, tell, msg1)  msg_ack(1)∈
msg(a, b, tell, msg2)  msg_ack(2)∈
msg(b, a, tell, ack1)   msg_ack(1)∈
msg(b, a, tell, ack2)   msg_ack(2)∈

Trace expressions



  

Syntax & (informal) semantics

● ε (empty trace), denoting the singleton set {ε} containing the 
empty event trace ε;
● θ:τ (prefix), denoting the set of all traces whose first event e 
matches the event type θ (e  θ), and the remaining part is a trace ∈
of τ;
● τ1 · τ2 (concatenation), denoting the set of all traces obtained by 
concatenating the traces of τ1 with those of τ2;
● τ1  τ2 (intersection), denoting the intersection of the traces of τ1 ∧
and τ2 ;
● τ1  τ2 (union), denoting the union of the traces of τ1 and τ2;∨
● τ1 | τ2 (shuffle), denoting the set obtained by shuffling the traces 
in τ1 with the traces in τ2.

● θ >> τ (filter - derived operator) denoting the set of all traces 
contained in τ, when deprived of all events that do not match θ.

Trace expressions



  

Trace expressions



  

Trace expressions

Compact implementation of these transition rules, which 
implement the “next” function, in SWI-Prolog: basically, 
we needed one clause for each rule.



  

Examples

Let us suppose that event a has type A and event 
b has type B  

● τ =  A:ε  denotes {a}

● τ = A:ε v B:ε denotes {a, b}

● τ = A:B:ε   denotes {ab}

● τ = A:τ   denotes the set {a} (coinductive 
interpretation of syntactic equations!)

Trace expressions



  

●  τ = A:τ v ε   denotes the set 
{an | n > 0} U {a}

Trace expressions



  

Trace expressions
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Trace expressions



  

Implementation
The interpreter for decentralized monitoring and protocol-
driven agents using trace expressions has been 
implemented using SWI-Prolog and runs on top of



  

Conclusions
● MASs are Distributed Systems

● Agents must interact (and, in 
general, behave) following 
some well known protocol: this 
calls for techniques to verify that 
they actually do that. A lot of 
work on a priori verification.

● The strong agent notion has 
been traditionally modeled 
using the same logics at the 
basis of model checking. A lot of 
work on model checking agent 
programs.



  

Conclusions

● Little work on MAS runtime verification. 

● Just initial works on MAS decentralized runtime verification.

● How to decide which subsets of the MAS should be grouped together to 
be monitored by the same monitor is still an open issue...

● ...but if we associate one monitor with each agent, we can then “push the 
monitor inside the agent” and obtain a “protocol driven agent”

● How to make protocols parametric is another open issue (looking forward 
this afternoon talks to learn more about it!)



  

The tutorial is over...

...thank you for your attention!
Questions?



  

Some pointers to 
works on trace 

expressions

2016

Davide Ancona, Angelo Ferrando, Viviana Mascardi: Comparing Trace 
Expressions and Linear Temporal Logic for Runtime Verification. Theory and 
Practice of Formal Methods 2016: 47-64

2015

Davide Ancona, Daniela Briola, Angelo Ferrando, Viviana Mascardi: Runtime 
verification of fail-uncontrolled and ambient intelligence systems: A uniform 
approach. Intelligenza Artificiale 9(2): 131-148 (2015)

Davide Ancona, Daniela Briola, Angelo Ferrando, Viviana Mascardi: Global 
Protocols as First Class Entities for Self-Adaptive Agents. AAMAS 2015: 1019-
1029



  

Some pointers to 
works on trace 

expressions

2015

Davide Ancona, Daniela Briola, Viviana Mascardi: Protocols with Exceptions, 
Timeouts, and Handlers: A Uniform Framework for Monitoring Fail-
Uncontrolled and Ambient Intelligence Systems. WOA 2015: 65-75

2014

Davide Ancona, Daniela Briola, Amal El Fallah-Seghrouchni, Viviana 
Mascardi, Patrick Taillibert: Efficient Verification of MASs with Projections. 
EMAS@AAMAS 2014: 246-270

Daniela Briola, Viviana Mascardi, Davide Ancona: Distributed Runtime 
Verification of JADE Multiagent Systems. IDC 2014: 81-91



  

Some pointers to 
works on trace 

expressions

2013

Viviana Mascardi, Davide Ancona: Attribute Global Types for Dynamic 
Checking of Protocols in Logic-based Multiagent Systems. TPLP 13(4-5-
Online-Supplement) (2013)

Viviana Mascardi, Daniela Briola, Davide Ancona: On the Expressiveness of 
Attribute Global Types: The Formalization of a Real Multiagent System 
Protocol. AI*IA 2013: 300-311

Davide Ancona, Matteo Barbieri, Viviana Mascardi: Constrained global types 
for dynamic checking of protocol conformance in multi-agent systems. SAC 
2013: 1377-1379

.



  

Some pointers to 
works on trace 

expressions

2012

Davide Ancona, Sophia Drossopoulou, Viviana Mascardi: Automatic 
Generation of Self-monitoring MASs from Multiparty Global Session Types in 
Jason. DALT 2012: 76-95

.



  

Two properties that our trace expressions should respect

Contractiveness
Definition 1. A trace expression τ is contractive if all its infinite paths from
the root contain the prefix operator.
In contractive trace expressions all recursive subexpressions must be 
guarded by the prefix operator; for instance, the trace expression defined by 
T1 = (epsilon (θ:T1 )) is contractive: its infinite path contains infinite ∨
occurrences of , but also of the : operator; conversely, the trace expression ∨
T2 = (epsilon  ((T2 |T2 ) (T2 ·T2 ))) is not contractive.∨ ∨
Trivially, every trace expression corresponding to a finite tree (that is, a non
cyclic term) is contractive.
For all contractive trace expressions, any path from their root must always
reach either a or a : node in a finite number of steps.

Determinism
Deterministic trace expressions. There are trace expressions τ for which the
problem of word recognition is less efficient because of non determinism. Non
determinism originates from the union, shuffle, and concatenation operators,
because for each of them two possibly overlapping transition rules are 
defined. We only consider deterministic trace expressions.
Definition 3. Let τ be a trace expression; τ is deterministic if for all finite
event traces σ, if τ σ→ τ' and τ σ→ τ'' are valid, then [[τ']] = [[τ'']] .
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