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Weak notion

An agent is an hardware or software system
e Situated,
e autonomous,
« flexible
- reactive
- proactive
- social.

N. Jennings, K. Sycara, M. Wooldridge, JAAMAS 1(1),
1998.
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Strong notion @:*\

A computer system either conceptualized or |mplemented
using concepts that are more usually applied to humans.

- Mentalistic notions.

Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51-92, 1993.

- Emotional notions.
J. Bates. The role of emotion in believable agents.
Communications of the ACM, 37(7):122—-125, July 1994.



Multiagent system

Organization =
Agent 12
Inter-agent _ =g
communication Agent

ﬁ Access to the
environment




Multiagent system
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* each agent has incomplete information, or
capabillities for solving the problem, thus each
agent has a limited viewpoint;

* there is no global system control;

 data Is decentralized; and

e cCOmputation Is asynchronous.



Agent Interaction protocols
(we go crazy for them!)
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Agent Interaction protocols
we go crazy for them!)

FIPA-ContractMel-Protoocal /J
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F. Mokhati, B. Sahraoui, S. Bouzaher, M. T.
Kimou, JoT 2010




Agent Interaction protocols
(we go crazy for them!)

Sd FYPA Reservation)

n: Node

owner: Train
|

train: Train
I
loop

(o0h )

query_if(free)
|

}I

altfl rnat. J

[Node freg]

| inform(free)

[Nllde already reserved]‘l

Deadlines: reservations
should be made within
a given timeout

option Ref

[Request late]

| FYPA Cancel |

| | otherwise thieaquired
. option will be lost
|nf[3rm (reserved)
== 7'y | |
o thi on |
- |
request(reserve)

option Ref ,| |

[Previous reservation exists]

FYPA Cancel

ND_QUERY = msg(Train, N, nd_query_if(free(infinity, T1, T2, From)), cid(CId))?!
D_QUERY = msg(Train, N, d_query_if(free(MyPr, T1, T2, From)), cid(CId))*
CONSTR.ON_PATH{List,(Train, MyPr,N,T1, T2, From,CId)} =

((msg(Train, N, nd_query_if(free(MyPr,T1, T2, From)), cid(CId)) :
CONSTR.ON_PATH{[(Train, MyPr, N, T1, T2, From, CId)|List],, +\))+

(msg(Train, N, d_query_if(free(MyPr,T1, T2, From)), cid(CI1d)) :
CONSTR.ON_PATH{[(Train, MyPr, N, T1, T2, From, CId)|List],, +})))

[the tuple (Train, MyPr, N, T1, T2, From, CId) forms a consistent path with the elements in List]
ND_RESERVED{T2, NextT3} = (msg(N, Train, in form(nd_reserved(Ow, Ow Pr, Arc, From,
NextT3, NextT4), expires(.T0)), eid(CId))? : \)[NextT3 > T2

D_RESERVED{T2, NextT3} = (msg(N, Train, inform(d_reserved(Ow, OwPr, Are, From,
NextT3, _NextT4), expires(.TO)), cid(CId))" : \)[NextT3 > T2

DISASTER = msg(N, _HumanOperator, inform(disaster(Ow, Train, T1, T2)), eid(CId))"
STEAL ON_TIME = (msg(Train, N, request(reserve_on_time(Are, MyPr, Ow, OwPr,T1,T2),
expired(AbsTime)), cid(CId))® : REFUSE_.NODE_ROBBED_TRAIN)

STEAL_LATE = ((msg(Train, N, request(reserve_late(Arc, MyPr, Ow, OwPr,T1,T2),
expired(AbsTime)), cid(CI1d))? : (REFUSE_NODE_SAME_TRAIN + X))+ A)

RESERVE_ ON_TIME = (msg(Train, N, request(reserve_on_time(Are, MyPr,none, 0,T1,T2),
expired(AbsTime)), cid(CId))" : \)

RESERVE_LATE = (msg(Train, N, request(reserve_late(Arc, MyPr,none, 0,71, T2),
expired(AbsTime)), cid(CI1d))? : REFUSE_NODE_SAME_TRAIN)
REFUSE_NODE_SAME_TRAIN = (msg(N, Train, refuse(reserve), eid(CId))" : \)
REFUSE_NODE_ROBBED_TRAIN = (msg(N, Ow, refuse(reserve), cid(_.CIdX))" : X)
FREE = (msg(N, Train, inform(free(Are, From), expires(-T0)), cid(CId))" : X)
NONDISP.NONDISP = (ND_.RESERVED - (DISASTER : X))

WT_DISP = (D_.RESERVED{T2,NextT3} - (STEAL ON_TIME + STEAL_LATE)+ \))
DISP_.NONDISP = ND_RESERVED{T2, NextT3}

FREE NODE = (FREE - (RESERVE. ON_.TIME + RESERVE_LATE) + X))

V. Mascardi, D. Briola, D. Ancona, AI*IA 2013



Logic-based agents

mortal(X) :- human(X).
human(socrates).
?- mortal(socrates).




Logic-based agents

“Traditional” approach to build artificial intelligent
systems.

Logical formulae: symbolic representation of the agent
environment and desired behavior.

Logical deduction or theorem proving: syntactical
manipulation of this representation.



The Beliefs, Desires, Intentions 4
(BDI) logic o
Combination of: *gi

- temporal logic (linear time in Cohen and Levesque,
branching time in Rao and Georgeff)

- modal logic(s) of beliefs, desires & goals (intentions) %

The modalities of Rao and Georgeff's BDI logic are
BEL (o), GOAL (@), INTEND(®). o
e

P.R. Cohen and H.J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 1990

A. S. Rao and M. P. Georgeff. Decision Procedures for BDI Logics.
Journal of Logic and Computation, 1998



The BDI architecture

The BDI architecture i1s one of the best known and most
studied architectures for cognitive agents.

AgentSpeak(L) Is an elegant, logic-based programming
language inspired by the BDI architecture.

Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proc. of MAAMAW '96, pp. 42-55, 1996.



The BDI architecture

Intentions

Environment

Beliefs



Many works on static verification,
both of programs and of interaction
protocols...




Static verification of BDI MASs

Model Checking AgentSpeak

Rafael H. Bordini Michael Fisher

Carmen Pardavila

Michael Wooldridge

Department of Computer Science, University of Liverpool,
Liverpool L69 7ZF, U.K.

{R.Bordini, M.Fisher, C.Pardavila, M.J.Wooldridge } @csc.liv.ac.uk

ABSTRACT

This paper introduces AgentSpeak(F), a variation of the BDI
logic programming language AgentSpeak(L) intended to permit
the model-theoretic verification of multi-agent systems. After
briefly introducing AgentSpeak(F) and discussing its relationship
to AgentSpeak(L), we show how AgentSpeak(F) programs can be
transformed into Promela, the model specification language for the
Spin model-checking system. We also describe how specifications
written in a simplified form of BDI logic can be transformed into
Spin-format linear temporal logic formula. With our approach, it
is thus possible to automatically verify whether or not multi-agent
systems implemented in AgentSpeak(F) satisfy specifications ex-
pressed as BDI logic formula. We illustrate our approach with a

2003

systems start to be applied to safety-critical applications such as
autonomous spacecraft control [12, 7].

Currently, the most successful approach to the verification of
computer systems against formally expressed requirements is that
of model checking [4]. Model checking is a technique that was orig-
inally developed for verifying that finite state concurrent systems
implement specifications expressed in temporal logic. Although
model checking techniques have been most widely applied to the
verification of hardware systems, they have increasingly been used
in the verification of software systems and protocols [9].

Our aim in this paper is to present model checking tech-
niques for verifying systems implemented in AgentSpeak(L). The
AgentSpeak(L) BDI logic programming language was created by

Dam 121 anmnd wwae latar dAovmloamnad ifmdes 2 moars aractioeal  mem



Static verification of BDI MASs

Verifying multi-agent programs by model checking

Rafael H. Bordini - Michael Fisher -
Willem Visser - Michael Wooldridge

2006

FPublished online: 24 February 2006
Springer Science + Busmess Media, Inc. 2006

Abstract This paper gives an overview of our recent work on an approach to verifying
multi-agent programs. We automatically translate multi-agent systems programmed in the
logic-based agent-oriented programming language AgentSpeak into either Promela or Java,
and then use the associated Spin and JPF model checkers to verify the resulting systems. We
also describe the simplified BDI logical language that is used to write the properties we want
the systems to satisfy. The approach is illustrated by means of a simple case study.



Static verification of BDI MASs

Model Checking Agent Programming Languages™

Louise A. Dennis® Michael Fisher® Matthew P. Webster? Rafael H. Bordini”

¢ : Department of Computer Science, University of Liverpool, Liverpool L69 3BX, United Kingdom.
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Published as Automated Software Engineering Journal 19(1):3-63, Mar. 2012 ‘

Abstract

In this paper we describe a verification system for multi-agent programs. This is the first comprehen-
sive approach to the verification of programs developed using programming languages based on the BDI
(belief-desire-intention) model of agency. In particular, we have developed a specific layer of abstrac-
tion, sitting between the underlying verification system and the agent programming language, that maps
the semantics of agent programs into the relevant model-checking framework. Crucially, this abstraction
layer 1s both flexable and extensible; not only can a variety of different agent programming languages be
implemented and verified, but even heterogeneous multi-agent programs can be captured semantically.
In addition to describing this layer, and the semantic mapping inherent within it, we describe how the



Static verification of
Agent Interaction Protocols

Logic-based Agent Communication Protocols

Ulle Endriss', Nicolas Maudet?, Fariba Sadri!, and Francesca Toni's®

! Department of Computing, Imperial College London
180 Queen’s Gate, London SWT 2AZ (UK)
Email: {ue,fs,ft}@doc.ic.ac.uk
2 LAMSADE, Université Paris 9 Dauphine
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Email: maudet@lamsade . dauphine. fr
3 Dipartimento di Informatica, Universita di Pisa
Via F. Buonarroti 2, 56127 Pisa (Italy)

Email: toni@di.unipi.it

Abstract. An agent communication protocol specifies the rules of in-
teraction governing a dialogue between agents in a multiagent system. In
non-cooperative interactions (such as negotiation dialogues) ocourring in
open societies, the problem of checking an agent’s conformance to such
a protocol is a central issue. We identify different levels of conformance
(weak, exhaustive, and robust conformance) and explore, for a specific
class of logic-based agents and an appropriate class of protocols, how to
check an agent’s conformance to a protocol a priori, purely on the basis
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Static verification of
Agent Interaction Protocols

Choice, Interoperability, and Conformance in Interaction
Protocols and Service Choreographies
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ABSTRACT

Many real-world applications of multiagent systems require inde-
pendently designed (heterogeneous) and operated (autonomous) a-
gents to interoperate. We consider agents who offer business ser-
vices and collaborate in interesting business service engagements.
We formalize notions of inferoperability and conformance, which
appropriately support agent heterogeneity and autonomy. With re-
spect to autonomy, our approach considers the choices that each
agent has, and how their choices are coordinated so that at any time
one agent feads and its counterpart follows, but with initiative flu-

The accomplishment of a complex task often requires interac-
tions among a set of parties. For instance, in a business process
scenario, a seller may need to interact with a payment service and
a shipper in order to support a purchase. These partners must coor-
dinate their executions and must be able to interact with each other.
There is broad agreement on the importance of describing such in-
teractions formally. The agents community refers to such a specifi-
cation as an inferacfion profocel, whereas the services community
refers to it as a choreography. In deference to the services literature
and because we do not study higher-level notions such as commit-
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A few works on centralized
runtime verification...




Runtime verification of
Agent Interaction Protocols

3 SCALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
.. 2004 Volume 8, Number 1, pp. 1-13. http://www.scpe.org (©) 2007 SWPS

SPECIFICATION AND VERIFICATION OF AGENT INTERACTION PROTOCOLS IN A
LOGIC-BASED SYSTEM"

MARCO ALBERTI, FEDERICO CHESANIL, DAVIDE DAOLIO, MARCO GAVANELLI, EVELINA LAMMA, PAOLA
MELLO AND PAOLO TORRONI

Abstract.

A mumber of information systems can be described as a set of interacting entities, which must follow interaction protocols.
These protocols determine the behaviour and the properties of the overall system, hence it is of the uttermost importance that the
entities behave in a conformant manner.

A typical case is that of multi-agent systems, composed of a plurality of agents without a centralized control. Compliance
to protocols can be hardwired in agent programs; however, this requires that only “certified” agents interact. In open systems,
composed ol autonomous and heterogeneous entities whose internal structure is, in general, nol accessible {open agent societies
being, again, a prominent example) interaction protocols should be specified in terms of the observable behaviour, and compliance
should be verified by an external entity.

In this paper, we propose a Java-Prolog- CHHR system for verification of compliance of computational entities to protocols
specified in a logic-based formalism ( Secial Integrity Constraints). We also show the application of the formalism and the system
to the specification and wverification of three different scenarios: two specifications show the feasibility of our approach in the
context of Multi Agent Systems (FIPA Contract-Net Protocol and Semi-Open societies), while a third specification applies to the
specification of a lower level protocol {Open-Connection phase of the TCP protocol).



Runtime verification of
Agent Interaction Protocols

Based on the notion of expectation, verified using
abductive logic programming

Table 3.4 Integrity Constraints and Knowledge Base for the query_ref specifica-
tion.

IC: H(tell A, B, query_ref( Info), D), T) N gqr_deadline( TD)
— E(tell( B, A, inform(Info, Answer), D), T1) : T1 < T + TD
vV E(tell( B, A, refuse(Info), D), T1) : T1 < T + TD

H(tell( A, B, inform(Info, Answer), D), T%)
— EN{(tell( A, B, refuse(Info), D), TTr)
KB : gqr_deadline(10).




Runtime verification of
Agent Interaction Protocols
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Logic-Based Agent Verification

Specifying and verifying interaction protocols in a temporal
action logic

Laura Giordano™ - &, Alberto Martelli™ & - &, Camilla Schwind= &
Show more
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Abstract

In this paper we develop a logical framework for specifying and verifying systems of
communicating agents and interaction protocols. The framework is based on Dynamic
Linear Time Temporal Logic (DLTL), which extends LTL by strengthening the until
operator by indexing it with the regular programs of dynamic logic. The framework
provides a simple formalization of the communicative actions in terms of their effects
and preconditions and the specification of an interaction protocol by means of temporal

2007

Formalism used to
express protocols:
Dynamic LTL (the
next state modality
IS iIndexed by
action).

...but... the whole
trace of exchanged
messages needs to
be kept In memory



Part i

From centralized RV
to DRV (and beyond!)



From runtime verification to
self-adaptive protocol-driven behavior

Global Protocol
Definition

Centralized monitoring



From runtime verification to
self-adaptive protocol-driven behavior

Some assumptions:

- protocols are “well formed”

- the monitor keeps track of the current state S of the interaction
protocol (more in general, it could be any protocol involving not
only communicative actions) and, as soon as it observes the
event a, it is able to apply a “next” transition function to S and a,
moving to S' (if possible!): next(S, a) = S'

- it Is possible to project any well-formed protocol P onto any
subset of agents {Al, A2, ..., An}, obtaining a new protocol P’ (in
the same formalism used for representing P) where interactions
Involving agents {Al, A2, ..., An} are kept, and the others are
discarded



From runtime verification to
self-adaptive protocol-driven behavior

Monitor Monitor

Global Protocol
Definition

Decentralized monitoring



From runtime verification to
self-adaptive protocol-driven behavior

Agentl

Agent2

next

ne Xt

Monitor

Monitor

next / Global Protocol next
‘ Definition

Monitor

Ultra-decentralized monitoring




From runtime verification to
self-adaptive protocol-driven behavior

ne Xt

PDAgentl

PDAgent2

Global Protocol
Definition
l next

PDAgent3 PDAgent4

Local protocol

Protocol driven-agent



From runtime verification to
self-adaptive protocol-driven behavior
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From runtime verification to

self-adaptive protocol-driven behavior




From runtime verification to
self-adaptive protocol-driven behavior

ne Xt

PDAgentl

ne xt

PDAgent2

switch

Global Protocol
Definition
l next

PDAgent3 Controller

Self-adaptive protocol driven agent



From runtime verification to
self-adaptive pratocol-driven behavior

the controller




From runtime verifir

Exceptional situation!
The MAS must switch to



From runtime verification to
self-adaptive pratocol-driven behavior

switch to

switch to




From runtime verification to
self-adaptive pratocol-driven behavior

project

B>

project

)

onto myself

project

B2

a o




From runtime verification to
self-adaptive pratocol-driven behavior




From runtime verification to
self-adaptive pratocol-driven behavior




Trace expressions

D. Ancona, D. Briola, A.Ferrando, V. Mascardi + ...

Trace expressions are a compact and expressive formalism
which can be employed to model complex protocols based on a
set of operators to denote finite and infinite traces of events.

[D. Ancona, S. Drossopoulou and V. Mascardi, DALT 2012]

[D. Ancona, M. Barbieri and V. Mascardi, SAC 2013]

[D. Ancona and V. Mascardi, TPLP 2013]

[D. Ancona, D. Briola, V. Mascardi, AlI*IA 2014]

[D. Ancona, D. Briola, A. El Fallah-Seghrouchni, V. Mascardi, P. Taillibert, EMAS@AAMAS 2014]
[D. Ancona, D. Briola, V. Mascardi, IDC 2014]

[A. Ferrando, CILC 2015]

[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, AAMAS 2015]

[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, WOA 2015]

[D. Ancona, D. Briola, A. Ferrando and V. Mascardi, Intelligenza Artificiale 2015]
[D.Ancona, A. Ferrando and V. Mascardi, FdB60 2016]

[D.Ancona, A. Ferrando and V. Mascardi, EMAS@AAMAS 2016]



Trace expressions

Event types

msg(S, R, tell, price(Good, Price)) &€ price_inf_msqg,
for any sender S, receiver R, Good allowed good identifier, Price natural
number in some range

msg(a, b, tell, msgl) € msg(l)
msg(a, b, tell, msg2) € msg(2)
msg(b, a, tell, ackl) & ack(1)
msg(b, a, tell, ack?2) & ack(2)
msg(a, b, tell, msgl) € msg

msg(a, b, tell, msg2) € msg

msg(a, b, tell, msgl) € msg_ack(1)
msg(a, b, tell, msg2) € msg_ack(2)
msg(b, a, tell, ackl) € msg_ack(1)
msg(b, a, tell, ack2) & msg_ack(2)



Trace expressions

Syntax & (informal) semantics

« £ (empty trace), denoting the singleton set {€} containing the
empty event trace &;

 0:1 (prefix), denoting the set of all traces whose first event e
matches the event type 0 (e &€ 0), and the remaining part is a trace
of T;

* 11 - 12 (concatenation), denoting the set of all traces obtained by
concatenating the traces of 11 with those of 12;

* T1 A T2 (intersection), denoting the intersection of the traces of 11
and 12 ;

* T1 v 12 (union), denoting the union of the traces of 11 and 12;

11 | 12 (shuffle), denoting the set obtained by shuffling the traces
In Tl with the traces in T2.

» O >> 1 (filter - derived operator) denoting the set of all traces
contained in T, when deprived of all events that do not match 0.
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€(T1) ) £(T2) e(11) €(12)

(e-empty) (£-or-1) (£-or-r (£-shuffle)
e(e) e(T1V12) e(T1V12) e(11]72)
EWT EVT ELT ELT EVT
e )@ () e(m) (@)
E(T1:7T2) e(T1AT2) e(O>1)

Compact implementation of these transition rules, which
Implement the “next” function, in SWI-Prolog: basically,
we needed one clause for each rule.



Trace expressions

Examples

Let us suppose that event a has type A and event
b has type B

 T= A:e denotes {a}
 T= A:e v B:e denotes {a, b}
 T=A:B:e denotes {ab}

 T=A:T denotes the set {a”} (coinductive
Interpretation of syntactic equations!)



Trace expressions

e T= A:TVv e denotes the set
{a" | n>0} U {a”}

Non-context-free language {a"b"c"” | n > 0}

la] = {a}
b] = b}

c] = {c}

Trace expression
T = (a.or.b>AB)A(b.or_c>BC)

AB = ev(a:i(AB:(b)))
BC = eV(b:(BC(c:)))
Examples

aabbcc € [T]

aabcc ¢ | T]




Trace expressions

Alternating bit protocol [DeniélouYoshidai2]

msg(/): A sends to B message of kind i (/ € {1,2})
ack(i): B sends to A ack of message of kind i (i € {1,2})
msg: msg(1) or msg(2)

msg-ack(i): msg(i) or ack(i)

Protocol specification

msg(1)" < msg(2)" < msg(1)™ ! forall ne N
msg(1)" < ack(1)" < msg(1)"! forall n € N
msg(2)" < ack(2)" < msg(2)"*! forall n € N

Trace expression

AltBit = (msg>MM)A(msg_ack(1)>MAqs)A(msg_ack(2)>MA;)
MM = msg(1):msg(2):MM
MA; = msg(i):ack(i):MA; (i€ {1,2})




average CPU time (ms)

Trace expressions

== ABP2
=P Stacks
3 ABP3
== ABP3x0r
=t ABP30r
ABP3and
=== NoNnCF

100 200 300 400 500 600 700 800 900 1000 1100

trace length



Implementation

The interpreter for decentralized monitoring and protocol-
driven agents using trace expressions has been
Implemented using SWI-Prolog and runs on top of

3501] " B

Agent Programming —_ =

SWI Prolog SWI Prolog



Conclusions

« MASSs are Distributed Systems

» Agents must interact (and, in
general, behave) following
some well known protocol: this
calls for technigues to verify that
they actually do that. A lot of
work on a priori verification.

* The strong agent notion has
been traditionally modeled
using the same logics at the
basis of model checking. A lot of
work on model checking agent
programs.




Conclusions

Little work on MAS runtime verification.
Just initial works on MAS decentralized runtime verification.

How to decide which subsets of the MAS should be grouped together to
be monitored by the same monitor is still an open issue...

...but if we associate one monitor with each agent, we can then “push the
monitor inside the agent” and obtain a “protocol driven agent”

How to make protocols parametric is another open issue (looking forward
this afternoon talks to learn more about it!)




The tutorial I1s over...

...thank you for your attention!
Questions?
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Two properties that our trace expressions should respect

Contractiveness

Definition 1. A trace expression T is contractive if all its infinite paths from
the root contain the prefix operator.

In contractive trace expressions all recursive subexpressions must be
guarded by the prefix operator; for instance, the trace expression defined by
T1 = (epsilon v(0:T1)) is contractive: its infinite path contains infinite
occurrences of v, but also of the : operator; conversely, the trace expression
T2 = (epsilon v ((T2 |T2)v(T2 -T2))) is not contractive.

Trivially, every trace expression corresponding to a finite tree (that is, a non
cyclic term) is contractive.

For all contractive trace expressions, any path from their root must always
reach either a or a : node in a finite number of steps.

Determinism

Deterministic trace expressions. There are trace expressions 1 for which the
problem of word recognition is less efficient because of non determinism. Non
determinism originates from the union, shuffle, and concatenation operators,
because for each of them two possibly overlapping transition rules are
defined. We only consider deterministic trace expressions.

Definition 3. Let T be a trace expression; T is deterministic if for all finite
eventtraces o,ifto- 1T and to- T"are valid, then [[T]] = [[T"]] .
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