
Synthesis and Control:
a Distributed Perspective

Anca Muscholl

Distributed Runtime Verification, Bertinoro 2016

joint work with I. Walukiewicz

LaBRI Bordeaux and TUM-IAS Munich

Motivation

Computing paradigms

 High performance

Data: intrinsically distributed

multi-core processors

mobile systems, robots,…

cloud

Concurrent programs

Hard to write…

shared data dependencies

synchronization side-effects

corner-case errors, testing has low coverage

traditional exploration: too many interleavings

… and to verify

Motivation

Error-free programs are rare…

 Error recovery: accept the reality

Monitoring = knowledge for recovery

Control = recovery from bad states

Motivation

Specific challenges for concurrent programs:

states are distributed

error recovery (strategy) must be distributed

Question: what is “distributed”?

Mazurkiewicz trace theory:

 A mathematical framework for
distributed monitoring and control

This talk:

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

❖ Conclusions

Programs

Multi-threaded programs with shared variables:

Synchronization operations:

Locks or atomic read/writes, e.g. CAS = compare-and-swap

r(T,x) thread T reads variable x

w(T,x) thread T writes variable x

Questions

Atomicity violations: interference from other threads

Order violations: unintended order between threads

97% of concurrency bugs (not counting deadlocks):

e.g. race conditions

Learning from mistakes - a comprehensive study on real world concurrency
bug characteristics [Lu et al., ASPLOS’08]

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

head

!
#

unprotected access to shared data

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

head

!
#

"
t1

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

!

head

#

"
t1

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

!

head

"

delete failed

What are races?

Happens-before order [Lamport,1978]

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

1

2
#

3
#

#
4
#
5
#
6

7
#
8

9

10
#

#

 �

unordered

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Monitoring

❖ Control

❖ Conclusions

Traces [Mazurkiewicz 1977]

Finite alphabet of actions ⌃

Conflict relation D ✓ ⌃⇥ ⌃

Word

total order

(symmetric)

Trace

partial order �⇤

 iff

 and in conflictai, aj

i < ji � ja1a2 · · · an
1 < 2 < · · · < n

Traces

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

Word (total order)

21

1 3 4 5 6

7 8 9 10

!
! ! !

!!!!
%

Trace (partial order)

2

3 7 8 9 10 4 5 6

1 2 7 8 39 10 4 5 6

Conflict: same thread or same lockrace

Traces

1 3 4 5 6

7 8 9 10

!
! ! !

!!!!
%

Trace (partial order)

2

Word (total order)

21 3 7 8 9 10 4 5 6

1 2 7 8 39 10 4 5 6

 Trace language:

all linearizations of a set of trace partial orders

word language closed under ab = ba ,
a, b not in conflict

=

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

❖ Conclusions

Monitors

❖ Synthesis of monitors

turn a property into a monitor that should detect
possible violations at runtime

❖ From monitoring to control

monitor information towards error recovery

Monitoring

Centralized?
Decentralized?

Monitoring

Decentralized!

no global synchronization
required

localized failure detection
and recovery: more efficient

Monitoring

Synchronization
between local monitors?

❖ communication channels

❖ shared memory

It depends on the architecture

Monitors with shared memory: Zielonka automata

Zielonka???

Zielonka automata [Zielonka 1989]

monitor finite-state automaton=

 shared actions +

 exchange of information

synchronization:

Example
compare-and-swap CAS (T,x,old,new)

 T is a thread, x a shared variable

if the value of x is old, then replace it by new;

 otherwise do nothing

returns 1 if the value was replaced, 0 otherwise

Example

compare-and-swap CAS (T,x,old,new)
if the value of x is old, then replace it by new;
otherwise do nothing

y = CAS (T,x,old,new)

T x

s old

news’

s v

v

y = CAS (T,x,old,new)

T x

s’’
v old6=

Zielonka automaton

❖ fixed set of processes
❖ one finite-state automaton per process

❖ each shared action a synchronizes a fixed set of
processes:

dom(a) ✓ P

P

Upon executing a , processes in exchange
information about their states.

dom(a)

Zielonka’s theorem

Construction of deterministic Zielonka automaton for
every regular trace language.

Crux: finite gossiping

Complexity: from several exponentials down to

From a DFA of size s, constructs equivalent Zielonka
automaton on p processes with states.4p

4

· sp
2

[Genest-Gimbert-M.-Walukiewicz, 2010]

[Zielonka, 1989]

Zielonka construction
1 2

4 3

a

b

c

d

dom(a) = {1, 2}

dom(b) = {2, 3}

dom(c) = {3, 4}

dom(d) = {4, 1}

not alloweda d c ad

d

b

[(a+ c)(b+ d)]⇤

Zielonka construction
1 2

4 3

a

b

c

d

What should each process remember?

[(a+ c)(b+ d)]⇤

Each process remembers its last action: not sufficient

a

c
b process 2:

process 3:
a

b
b

c
(after
(after)

)

Zielonka construction
1 2

4 3

a

b

c

d

Each process remembers its last action and the last action of its synchronization partner.

[(a+ c)(b+ d)]⇤

Not sufficient.

a c
b

d
aa d b c

3

4

3

4

2

2

1

1

Gossip
1 2

4 3

a

b

c

d [(a+ c)(b+ d)]⇤

Solution here: each process keeps the order of the last occurrences of all symbols.

General solution: each process keeps latest information about other
processes (gossip).

… as complicated as …

Gossip = kind of vector clock algorithm, but finite.

Zielonka going practical

Construction of deterministic Zielonka
automata for regular trace languages:
quadratic-time when the communication
between processes is acyclic.

Is quadratic-time good enough?

Not if we start with very large DFA.

[Krishna-M., 2013]

a b,c
e

d f,g

Zielonka going practical

1 3 4 5 6

7 8 9 10

!
! ! !

!!!!
%

2
Example: races r(T1,x)

w(T2,x)

Apply Zielonka to properties stated by patterns.

Pattern =
DAG with vertices corresponding to monitored actions

Zielonka going practical

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

Processes: thread1, thread2, lock

lock

thread1
thread2

acq(thread1,lock)
rel(thread1,lock) acq(thread2,lock)

rel(thread2,lock)

Efficient race monitoring if communication is acyclic.

Monitoring: summary

❖ Zielonka’s construction: general-purpose solution for distributed
runtime monitoring with finite memory.

❖ The general construction requires polynomial memory on each process.

❖ Lightweight construction for acyclic architectures.

❖ Efficiency depends on what we start with. (Boolean combinations of)
patterns are better than DFA.

❖ Zielonka’s construction: also used for other kinds of synchronization,
e.g. messages.

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

 Pnueli-Rosner

 Ramadge-Wonham

❖ Conclusion

Error recovery: control

monitoring control

error detection restrict program execution
prevent error propagation

…

Control: basics

input output
C

C: device reacting continuously

function C : {0, 1}⇤ ! {0, 1}

Church (1957)

Given: specification
relating inputs/outputs

Compute C that satisfies

S ✓ {0, 1}! ⇥ {0, 1}!

S

for all w 2 {0, 1}! : (w,C(w)) 2 S

[Rabin, 1972] If S is omega-regular the existence of a controller can
be decided. If “yes”, then there exists a finite-state controller C.

Distributed control

input1 output1
C1

input2 output2
C2

msg

synchronous behavior

input1

input2

msg

output1

output2

1

0 1

1

1

0

00

1

1

0
0 1

1

0

0

0

Given an architecture and an omega-regular specification S, construct
controllers C1, C2,… such that all controlled behaviors belong to S.

[Pnueli-Rosner, 1990] Distributed reactive systems are hard to synthesize.

Pnueli-Rosner

Distributed synthesis is in general undecidable. It is decidable iff the
architecture is a pipeline (non-elementary complexity).

Undecidability comes from partial information:

[Peterson-Reif,1979] Multi-person alternation

Basic problem: Specification may talk about inputs that are not seen by
some process.

[Pnueli-Rosner, 1990]

Pnueli-Rosner

Undecidability: a problem with specifications?

For local specifications, the only decidable architecture is basically
the pipeline. [Madhusudan-Thiagarajan, 2001]

Local specifications: conjunction of requirements on each process.

undecidable

Pnueli-Rosner : summary
❖ Simple extension of the Church setting

❖ Very few cases are decidable

❖ Even local specifications do not help

❖ Unsolved problem: define specifications that are compatible

with the architecture

❖ Open: decidable architectures when controllers can add

information to messages

[Finkbeiner-Schewe, 2005] Uniform distributed synthesis

[Kupferman-Vardi, 2001] Synthesizing distributed systems

[Gastin-Sznajder, 2013] External specifications

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

 Pnueli-Rosner

 Ramadge-Wonham

❖ Conclusion

Distributed control: a different approach

Approach based on

❖ Zielonka automata

❖ Ramadge-Wonham control setting

[Ramadge-Wonham,1989] The control of discrete-event systems

❖ Given: Plant (automaton) A with controllable (system) actions
and uncontrollable (environment) actions, and specification S.

❖ Compute controller C such that A x C satisfies S.
C must allow all uncontrollable actions.

Zielonka automata

❖ fixed set of processes

❖ one finite-state automaton per process

❖ each shared action a is located on a fixed set of processes

dom(a) ✓ P

P

Upon executing a , processes in exchange
information about their states.

dom(a)

Distributed control

❖ Given: Zielonka automaton A with controllable (system)
actions and uncontrollable (environment) actions, and
specification S.

❖ Compute another Zielonka automaton (controller) C such
that A x C satisfies S.

 C must allow all uncontrollable actions.

Controllers are local and exchange information in order to satisfy S.

Distributed control and synthesis

req

r(g), w(g)

enter

exit

CS
int

r(g), w(g)

requests req: uncontrollable actions

mutual exclusion

mutual exclusion algorithm: distributed controller for n+1 processes

n processes + 1 process for the shared variable

Control & Zielonka automata

Setting:

❖ A controller for each process.

❖ Controller of process p can disallow some of p’s controllable
actions.

❖ Control decisions for p depend on information in the causal
past of p, i.e., including communication with other controllers.

Decidability status is open. No hidden information.

Control & Zielonka automata

Some partial decidability results:

[Madhusudan-Thiagarajan-Yang, 2005] Decidability for restricted Zielonka
automata: every process misses only bounded knowledge. MSO specifications.

[Gastin-Lerman-Zeitoun, 2004] Decidability for restricted automata: series-parallel
systems. Reachability specifications.

[Genest-Gimbert-M-Walukiewicz, 2013] Decidability for acyclic process
communication. Local reachability (blocking). Complexity is Tower(2,n)-complete.

[M-Walukiewicz, 2014] Decidability for acyclic process communication. Local
parity specifications. Complexity is Tower(2,n)-complete.

Control & Zielonka automata

Control is decidable (EXPTIME-complete).

…

This architecture is undecidable in the Pnueli-Rosner setting.

Control & Zielonka automata

Why is control for Zielonka automata still open?

❖ Control for Zielonka automata reduces to satisfiability of
monadic second-order (MSO) formula over the event structure
of the automaton.

❖ These event structures can be rather complicated (grids), so
MSO satisfiability is undecidable in general.

Control & Zielonka automata

words, trees…

…traces, event structures

Control & Zielonka automata: summary

❖ Simple extension of the Ramadge-Wonham control setting

❖ More cases are decidable: acyclic communication, local parity

specifications

❖ Open: cyclic architectures

❖ Unsolved: understanding event structures of Zielonka automata

❖ Mazurkiewicz traces: automata-theoretic reasoning about concurrent
programs is in reach.

❖ Distributed monitoring: synthesis of monitors through Zielonka
construction.

❖ Distributed control: synthesis of controllers that can alter behavior.

Conclusion

Error recovery for concurrent programs
requires distributed monitoring and control

❖ Synthesis of distributed monitors using Lamport’s vector clocks?

❖ Synthesis of distributed monitors if the set of (active) processes in

the system is unknown?

❖ Our monitor/synthesis algorithm is conservative (no additional

synchronizations). If we allow additional synchronizations, how
should they be quantified?

Outlook

Thank you!

