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Introduction

Goal: Formalization of middleware services
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Deadlocks

Deadlock is one of the classical problems in CS

One (common) approach is the ostrich approach

The other approaches are: detection, prevention and avoidance.

Efficient dynamic resource allocation can have a big practical

Impact.

centralized | distributed
detection OK OK
prevention OK OK
avoidance Banker's | impractical
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Distributed Real-Time and Embedded

Sequence of calls:

Tnl A] {ng C’w )[715 E]
S




Distributed Real-Time Embedded Systems
Distributed Real-Time Embedded Systems:

» Asynchronous distributed system

» Limited Resources
» Wait-on-connection

» Arbitrary number of processes spawned
» All processes terminate

Problem: deadlocks are possible if no controller is used
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Summary of Contributions

Efficient deadlock Avoidance can is possible provided call-graphs
are know statically

Optimal annotations can be efficiently computed.
If annotations are not followed anomalies can occurr.

Distributed Deadlock Avoidance with (individual) liveness
guarantees can be efficiently achieved.
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» Remote procedure call (with Wait-On-Connection)

» Asynchronous messages

» All to all communication

» Finite resources: T4 total number of threads
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» We seek a deadlock avoidance solution with
no extra communication
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Distributed Deadlock Avoidance Solution

Two parts:

1. Static:

1

r

T 4]

2. Dynamic:

(L

C’W {n5 E] ’

when En do
In

/
4

n1()

0
s B] {nl A]

> entry section

> method invocation

/

} exit section
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Basic Solution Deadlock Avoidance

o
o
i [when a<tap do] |

ta——
n1()
| ta++

Protocol BASIC-P:

Theorem: If a has no cyclic dependencies, then BASIC-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.



The Annotation Theorem

Theorem: |f o has no cyclic dependencies, then BAsSic-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

annotation o | Max num of procs

0 T4
1 Ty —1

Ty —1 1



The Annotation Theorem

Theorem: |f o has no cyclic dependencies, then BAsSic-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

Lemma: If a request m is disabled, then
there is an active process runnlng - “With s < .
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Revisiting the Invariant

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.
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Revisiting the Invariant

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

acta>; <Tq —1 for all notes A and ¢

where
act 4 ; : number of active processes in A with annotation ¢

act A, >; = ZkZi act A,
)

The weakest precondition on allowing a request for

, /\ act Ao >k <Tr—k itk >1
acta>r+1<Ty—Fk if k<1



The Protocol Live-P

[/

To execute
" |when ¢’ do ]
act o ;++

n()

act ;——

Theorem (Deadlock Avoidance): If a is acyclic, then LIVE-P
guarantees absence of deadlock.

Theorem (Liveness): If « is acyclic, then LIVE-P guarantees that
every waiting process Is eventually enabled.



Live-P provides liveness
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Consider two nodes, with two resource each (T4 = Tp = 2):
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Live-P provides liveness

Consider two nodes, with two resource each (T4 = Tp = 2):

0
b

tA =0 tB =1
LIvE-P Basic-P
ol OO o() oO
ny A ny B np A ny B
. 1 0 X 1 0
my, B mo A m1 B ma A




Conclusions

» Distributed Deadlock Avoidance is possible
without communication

» . .provided call-graphs are known

» Using static annotations + runtime protocols

> If cycles are allowed (e.g. by uncontrolled resource allocation),
then deadlocks are unavoidable, provided enough resources

» Individual liveness is also enforceable

» Future work:
» is deadlock avoidance enforceable for any amount of initial
resources?
» can this be adapted to composable conveyor systems?
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Distributed Avoidance:

SOLUTION:
For your first pick,

do not the take last fork if going in increasing order.
For your second pick,
do as you wish.



Questions

Thank you for your attention!



