Distributed Deadlock-Avoidance

César Sánchez

IMDEA Software Institute, Spain

DRV Workshop, Bertinoro
19-May, 2016

Distributed Deadlock \wedge,

A little story about unsolvable problems can help solve unsolv

César Sánchez

IMDEA Software Institute, Spain

> Fivedea

Introduction

Goal: Formalization of middleware services

Deadlocks

Deadlock is one of the classical problems in CS

One (common) approach is the ostrich approach
The other approaches are: detection, prevention and avoidance.

	centralized	distributed
detection	OK	OK
prevention	OK	OK
avoidance	Banker's	impractical

Efficient dynamic resource allocation can have a big practical impact.

Distributed Dinning Philosophers

Distributed Dinning Philosophers

A deadlock state

Distributed Dinning Philosophers

Detection:

Distributed Dinning Philosophers

Prevention:

Distributed Dinning Philosophers

Avoidance:

Distributed Dinning Philosophers

Distributed Avoidance:

Deadlock Avoidance Problem Space

Distributed Real-Time and Embedded

(B)
(F)
(C)
(E)
(D)

Distributed Real-Time and Embedded

$$
\begin{equation*}
n_{1-}(A \tag{B}
\end{equation*}
$$

Distributed Real-Time and Embedded

Distributed Real-Time and Embedded

Distributed Real-Time and Embedded

Distributed Real-Time and Embedded

Sequence of calls:

Distributed Real-Time Embedded Systems

Distributed Real-Time Embedded Systems:

- Asynchronous distributed system
- Limited Resources
- Wait-on-connection
- Arbitrary number of processes spawned
- All processes terminate

Problem: deadlocks are possible if no controller is used

Example of Deadlock

Two sites, with two resources each:

and the call graph:

Example of Deadlock

Two sites, with two resources each:

and the call graph:

Example of Deadlock

Two sites, with two resources each:

and the call graph:

Example of Deadlock

Two sites, with two resources each:

and the call graph:

Example of Deadlock

Two sites, with two resources each:

and the call graph:

Example of Deadlock

Two sites, with two resources each:

and the call graph:

Example of Deadlock

Two sites, with two resources each:

and the call graph:

Summary of Contributions

Contribution \#1
Efficient deadlock Avoidance can is possible provided call-graphs are know statically

Summary of Contributions

Contribution \#1
Efficient deadlock Avoidance can is possible provided call-graphs are know statically

Contribution \#2
Optimal annotations can be efficiently computed.
If annotations are not followed anomalies can occurr.

Summary of Contributions

Contribution \#1
Efficient deadlock Avoidance can is possible provided call-graphs are know statically

Contribution \#2
Optimal annotations can be efficiently computed.
If annotations are not followed anomalies can occurr.

Contribution \#3

Distributed Deadlock Avoidance with (individual) liveness guarantees can be efficiently achieved.

Model of Computation

- Remote procedure call (with Wait-On-Connection)
- Asynchronous messages
- All to all communication
- Finite resources: T_{A} total number of threads

Model of Computation

- Remote procedure call (with Wait-On-Connection)
- Asynchronous messages
- All to all communication
- Finite resources: T_{A} total number of threads

- We seek a deadlock avoidance solution with no extra communication

Distributed Deadlock Avoidance Solution

Two parts:

1. Static:
2. Dynamic:

Distributed Deadlock Avoidance Solution

Two parts:

1. Static:

2. Dynamic:

Distributed Deadlock Avoidance Solution

Two parts:

1. Static:

0
2. Dynamic:

Annotations

Annotations are computed statically

Annotations

Annotations are computed statically

Dependency edges $n \cdots m$ whenever $\alpha(n) \leq m$ for two calls in the same node.

Annotations

Annotations are computed statically

Dependency edges $n \cdots m$ whenever $\alpha(n) \leq m$ for two calls in the same node.

Annotations

Annotations are computed statically

Dependency edges $n \cdots m$ whenever $\alpha(n) \leq m$ for two calls in the same node.

- n depends on m if there is a path from n to m containing a \rightarrow
- A dependency cycle is close path with a \rightarrow

Annotations

Annotations are computed statically

Dependency edges $n \cdots m$ whenever $\alpha(n) \leq m$ for two calls in the same node.

- n depends on m if there is a path from n to m containing a \rightarrow
- A dependency cycle is close path with a \rightarrow

Annotations

Annotations are computed statically

Dependency edges $n \cdots m$ whenever $\alpha(n) \leq m$ for two calls in the same node.

- n depends on m if there is a path from n to m containing a \rightarrow
- A dependency cycle is close path with a \rightarrow

Annotations

Annotations are computed statically

Dependency edges $n \cdots m$ whenever $\alpha(n) \leq m$ for two calls in the same node.

- n depends on m if there is a path from n to m containing a \rightarrow
- A dependency cycle is close path with a \rightarrow

Basic Solution Deadlock Avoidance

Protocol Basic-P:

$$
\left[\begin{array}{ll}
{\left[\begin{array}{ll}
\text { when } \alpha<t_{A} & \text { do } \\
& t_{A}--
\end{array}\right]} \\
n_{1}() \\
t_{A}++ &
\end{array}\right]
$$

Basic Solution Deadlock Avoidance

Protocol Basic-P:

$$
\left[\begin{array}{l}
{\left[\begin{array}{ll}
\text { when } \alpha<t_{A} & \text { do } \\
& t_{A}--
\end{array}\right]} \\
n_{1}() \\
t_{A}++
\end{array}\right]
$$

Theorem: If α has no cyclic dependencies, then BASIc-P guarantees absence of deadlock.

Basic Solution Deadlock Avoidance

Protocol Basic-P:

$$
\left[\begin{array}{l}
{\left[\begin{array}{ll}
\text { when } \alpha<t_{A} & \text { do } \\
& t_{A}--
\end{array}\right]} \\
n_{1}() \\
t_{A}++
\end{array}\right]
$$

Theorem: If α has no cyclic dependencies, then BASIC-P guarantees absence of deadlock.

Lemma: The following is an invariant:
The number of processes running methods with annotation i or higher is at most $T_{A}-i$.

The Annotation Theorem

Theorem: If α has no cyclic dependencies, then Basic-P guarantees absence of deadlock.

Lemma: The following is an invariant:
The number of processes running methods with annotation i or higher is at most $T_{A}-i$.

annotation α	Max num of procs
0	T_{A}
1	$T_{A}-1$
\ldots	\ldots
$T_{A}-1$	1

The Annotation Theorem

Theorem: If α has no cyclic dependencies, then Basic-P guarantees absence of deadlock.

Lemma: The following is an invariant:
The number of processes running methods with annotation i or higher is at most $T_{A}-i$.

Lemma: If a request $\sqrt{n_{1} A}$ is disabled, then there is an active process running $n_{2}{ }^{\alpha_{2}}$ with $\alpha_{2} \leq \alpha$.

Annotations

Two immediate questions:

1. How to compute acyclic annotations
2. What if annotations are not acyclic?

Annotations

Two immediate questions:

1. How to compute acyclic annotations

- Visit nodes following some reverse topological order.
- When visiting n, compute the set of nodes S previously visited and reachable following $(\rightarrow \cup-->)^{*}$.
- Set $\alpha(n)$ to 1 plus the largest node in S that resides in the same site.

2. What if annotations are not acyclic?

Annotations

Two immediate questions:

1. How to compute acyclic annotations

- Visit nodes following some reverse topological order.
- When visiting n, compute the set of nodes S previously visited and reachable following $(\rightarrow \cup-->)^{*}$.
- Set $\alpha(n)$ to 1 plus the largest node in S that resides in the same site.

2. What if annotations are not acyclic?

$$
\begin{align*}
& T_{A}=1 \tag{0}\\
& T_{B}=1 \\
& T_{C}=1
\end{align*}
$$

Annotations

Two immediate questions:

1. How to compute acyclic annotations

- Visit nodes following some reverse topological order.
- When visiting n, compute the set of nodes S previously visited and reachable following $(\rightarrow \cup-->)^{*}$.
- Set $\alpha(n)$ to 1 plus the largest node in S that resides in the same site.

2. What if annotations are not acyclic?

How about liveness?

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

and the call graph:

How about liveness?

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

and the call graph:

How about liveness?

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

and the call graph:

How about liveness?

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

and the call graph:

How about liveness?

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

and the call graph:

How about liveness?

Consider two nodes, with two resource each ($T_{A}=T_{B}=2$):

and the call graph:

How about liveness?

Consider two nodes, with two resource each ($T_{A}=T_{B}=2$):

and the call graph:

How about liveness?

Consider two nodes, with two resource each ($T_{A}=T_{B}=2$):

and the call graph:

How about liveness?

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

and the call graph:

Revisiting the Invariant

Lemma: The following is an invariant:
The number of processes running methods with annotation i or higher is at most $T_{A}-i$.

$$
\operatorname{act}_{A, \geq i} \leq T_{A}-i \quad \text { for all notes } A \text { and } i
$$

where
$\operatorname{act}_{A, i}$: number of active processes in A with annotation i $\operatorname{act}_{A, \geq i}=\sum_{k \geq i} a c t_{A, i}$

Revisiting the Invariant

Lemma: The following is an invariant:
The number of processes running methods with annotation i or higher is at most $T_{A}-i$.

$$
\operatorname{act}_{A, \geq i} \leq T_{A}-i \quad \text { for all notes } A \text { and } i
$$

where
$\operatorname{act}_{A, i}$: number of active processes in A with annotation i $\operatorname{act}_{A, \geq i}=\sum_{k \geq i} a^{c t_{A, i}}$

The weakest precondition on allowing a request for

$$
\varphi^{\prime}=\bigwedge_{k} \begin{cases}a c t_{A, \geq k} & \leq T_{A}-k \\ \text { if } k>i \\ a c t_{A, \geq k}+1 \leq T_{A}-k & \text { if } k \leq i\end{cases}
$$

The Protocol Live-P

To execute

$n A$	$:$
	$\left[\begin{array}{c}{\left[\begin{array}{c}\text { when } \varphi^{\prime} \text { do } \\ a c t_{A, i}++\end{array}\right]} \\ n() \\ \operatorname{act}_{A, i}--\end{array}\right]$

Theorem (Deadlock Avoidance): If α is acyclic, then Live-P guarantees absence of deadlock.

Theorem (Liveness): If α is acyclic, then Live-P guarantees that every waiting process is eventually enabled.

Live-P provides liveness

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

Basic-P

Live-P provides liveness

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

Live-P

BASIC-P

Live-P provides liveness

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

Live-P

BASIC-P

Live-P provides liveness

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

Basic-P

Live-P provides liveness

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

Live-P

Basic-P

Live-P provides liveness

Consider two nodes, with two resource each $\left(T_{A}=T_{B}=2\right)$:

Live-P

Basic-P

Conclusions

- Distributed Deadlock Avoidance is possible without communication
- ... provided call-graphs are known
- Using static annotations + runtime protocols
- If cycles are allowed (e.g. by uncontrolled resource allocation), then deadlocks are unavoidable, provided enough resources
- Individual liveness is also enforceable
- Future work:
- is deadlock avoidance enforceable for any amount of initial resources?
- can this be adapted to composable conveyor systems?

Conclusions

- Distributed Deadlock Avoidance is possible without communication
- ... provided call-graphs are known
- Using static annotations + runtime protocols
- If cycles are allowed (e then deadlocks are une
- Individual liveness is al
- Future work:
- is deadlock avoidan resources?
- can this be adapted to composable conveyor systems?

Distributed Dinning Philosphers

Distributed Avoidance:

Distributed Dinning Philosphers

Distributed Avoidance:

SOLUTION:

Distributed Dinning Philosphers

Distributed Avoidance:

SOLUTION:
For your first pick, do not the take last fork if going in increasing order.
For your second pick, do as you wish.

Questions

Thank you for your attention!

