Distributed Deadlock-Avoidance

César Sanchez

IMDEA Software Institute, Spain

dea

DRV Workshop, Bertinoro 19-May, 2016

César Sanchez

IMDEA Software Institute, Spain

DRV Workshop, Bertinoro 19-May, 2016

Introduction

Goal: Formalization of middleware services

App App App

Middleware
Middleware

Event Channels
Deadlock Avoidance

ON ONY 0S3

Deadlocks

Deadlock is one of the classical problems in CS

One (common) approach is the ostrich approach

The other approaches are: detection, prevention and avoidance.

Efficient dynamic resource allocation can have a big practical

Impact.

centralized | distributed
detection OK OK
prevention OK OK
avoidance Banker's | impractical

Distributed Dinning Philosophers

x

Q\.

.g

A deadlock state

Distributed Dinning Philosophers

Detection:

Distributed Dinning Philosophers

Prevention:

Distributed Dinning Philosophers

Avoidance:

Distributed Dinning Philosophers
Distributed Avoidance:

Deadlock Avoidance Problem Space

Centralized Distributed

Unsolvable Unsolvable

Deadlock Avoidance Problem Space

Centralized Distributed

Unsolvable Unsolvable

Max utilization

Deadlock Avoidance Problem Space

Centralized Distributed

Unsolvable Unsolvable

Max utilization
[Dijkstra’65]| [Singhal'95]

Deadlock Avoidance Problem Space

Centralized

Distributed

Unsolvable

Max uf
[Dijkstra’'65]

FMS

[de AIfaro—l—:OE]

Unsolvable

ilization
[Singhal’95]

Deadlock Avoidance Problem Space

Centralized

Distributed

Unsolvable

Max uf
[Dijkstra’'65]

FMS

[de AIfaro—l—:O’S]

Unsolvable

ilization
[Singhal’95]

?

Distributed Real-Time and Embedded

&)

Distributed Real-Time and Embedded

nl@

&) ©

Distributed Real-Time and Embedded

M)

~
~
~
~
~
~
~
~
~
~
~
~
~
~
2 P

Distributed Real-Time and Embedded

e
T3

Distributed Real-Time and Embedded

Distributed Real-Time and Embedded

Sequence of calls:

Tnl A] {ng C’w)[715 E]
S

Distributed Real-Time Embedded Systems
Distributed Real-Time Embedded Systems:

» Asynchronous distributed system

» Limited Resources
» Wait-on-connection

» Arbitrary number of processes spawned
» All processes terminate

Problem: deadlocks are possible if no controller is used

Example of Deadlock

Two sites, with two resources each:

GO 6D

and the call graph:

T A—{ 5)

Ton B—(m 4

Example of Deadlock

Two sites, with two resources each:

GO 6D

and the call graph:

oo

T A 8)

T B—(m 4

Example of Deadlock

Two sites, with two resources each:

GO G

and the call graph:

o

Lo A)—{w B)

T B—(m 4

Example of Deadlock

Two sites, with two resources each:

GO GD

and the call graph:

oo

T A—{ B)

T B—(m 4

Example of Deadlock

Two sites, with two resources each:

GO G

and the call graph:

oo

T A—{ B)

T B—(m 4

Example of Deadlock

Two sites, with two resources each:

< &

and the call graph:

oo

T A—{ B)

T B—(m 4

Example of Deadlock

Two sites, with two resources each:

< &

and the call graph:

T Ay—{m B)

oo

Ton B—{m 4

Summary of Contributions

Efficient deadlock Avoidance can is possible provided call-graphs
are know statically

Summary of Contributions

Efficient deadlock Avoidance can is possible provided call-graphs
are know statically

Optimal annotations can be efficiently computed.
If annotations are not followed anomalies can occurr.

Summary of Contributions

Efficient deadlock Avoidance can is possible provided call-graphs
are know statically

Optimal annotations can be efficiently computed.
If annotations are not followed anomalies can occurr.

Distributed Deadlock Avoidance with (individual) liveness
guarantees can be efficiently achieved.

Model of Computation

» Remote procedure call (with Wait-On-Connection)

» Asynchronous messages

» All to all communication

» Finite resources: T4 total number of threads

A B

Model of Computation

» Remote procedure call (with Wait-On-Connection)

» Asynchronous messages

» All to all communication

» Finite resources: T4 total number of threads

A B

» We seek a deadlock avoidance solution with
no extra communication

Distributed Deadlock Avoidance Solution

Two parts:

1. Static:

2. Dynamic:

Distributed Deadlock Avoidance Solution

Two parts:

1. Static:
1

0 0
Tnl A] {ng C’W)[7?,5 EJ
0
e

2. Dynamic:

Distributed Deadlock Avoidance Solution

Two parts:

1. Static:

1

r

T 4]

2. Dynamic:

(L

C’W {n5 E] ’

when En do
In

/
4

n1()

0
s B] {nl A]

> entry section

> method invocation

/

} exit section

0

Annotations

Annotations are computed statically
0

0
T A—(3)

0 0
T B—(ma)

Annotations

Annotations are computed statically
0

0

T A—(3)
0 0

T B—(ma)

Dependency edges n---sm whenever a(n) < m for two calls in the
same node.

Annotations

Annotations are computed statically
0

0

T A—(3)
0 0

T B—(ma)

Dependency edges n---sm whenever a(n) < m for two calls in the

same node.
Tw Al B) "

T Bp—{mz 4]

Annotations

Annotations are computed statically
0

0

T A—(3)
0 0

T B—(ma)

Dependency edges n---sm whenever a(n) < m for two calls in the

same node.
Tw Al B) "

T Bp—{mz 4]

» n depends on m if there is a path from n to m containing a —

» A dependency cycle is close path with a —

Annotations

Annotations are computed statically
0

0

T A—(3)
0 0

T B—(ma)

Dependency edges n---sm whenever a(n) < m for two calls in the
same node.

» n depends on m if there is a path from n to m containing a —

» A dependency cycle is close path with a —

Annotations

Annotations are computed statically
0

0

T A—(3)
0 0

T B—(ma)

Dependency edges n---sm whenever a(n) < m for two calls in the

same node.
A —{m s

T Bf—{m 4] ©

» n depends on m if there is a path from n to m containing a —

» A dependency cycle is close path with a —

Annotations

Annotations are computed statically
0

0

T A—(3)
0 0

T B—(ma)

Dependency edges n---sm whenever a(n) < m for two calls in the

same node.
A —{m s

T By 4) ©

» n depends on m if there is a path from n to m containing a —

» A dependency cycle is close path with a —

Basic Solution Deadlock Avoidance

o
o
i [When a<tap do] |

ta——
n1()
| ta++

Protocol BASIC-P:

Basic Solution Deadlock Avoidance

o
o
i [when a<tap do] |

ta——
n1()
| ta++

Protocol BASIC-P:

Theorem: If a has no cyclic dependencies, then BASIC-P
guarantees absence of deadlock.

Basic Solution Deadlock Avoidance

o
o
i [when a<tap do] |

ta——
n1()
| ta++

Protocol BASIC-P:

Theorem: If a has no cyclic dependencies, then BASIC-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

The Annotation Theorem

Theorem: |f o has no cyclic dependencies, then BAsSic-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

annotation o | Max num of procs

0 T4
1 Ty —1

Ty —1 1

The Annotation Theorem

Theorem: |f o has no cyclic dependencies, then BAsSic-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

Lemma: If a request m is disabled, then
there is an active process runnlng - “With s < .

Annotations

Two immediate questions:

1. How to compute acyclic annotations

2. What if annotations are not acyclic?

Annotations

Two immediate questions:

1. How to compute acyclic annotations

— Visit nodes following some reverse topological order.

— When visiting n, compute the set of nodes S previously visited
and reachable following (—U --»*.

— Set a(n) to 1 plus the largest node in S that resides in the same
Site.

2. What if annotations are not acyclic?

Annotations

Two immediate questions:

1. How to compute acyclic annotations

— Visit nodes following some reverse topological order.

— When visiting n, compute the set of nodes S previously visited
and reachable following (—U --»*.

— Set a(n) to 1 plus the largest node in S that resides in the same
Site.

2. What if annotations are not acyclic?

0 0 0

TMAC’] {nQ Bl\ ing A] Ty =

: e TB —
o0 W" RN 0
Tml C] {mg AJ 0 ;[mg Bj

T =

Annotations

Two immediate questions:

1. How to compute acyclic annotations

— Visit nodes following some reverse topological order.

— When visiting n, compute the set of nodes S previously visited
and reachable following (—U --»*.

— Set a(n) to 1 plus the largest node in S that resides in the same
Site.

2. What if annotations are not acyclic?

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

ta =2 tp = 2

and the call graph:

0 0
T A—(3)

1
T B—(ma 4]

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

ta =2 tp = 2

and the call graph:

o0 0 0
Tnl A] {”2 B]

1
T B—(ma 4]

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

ta =20 tg = 2

and the call graph:

ool) 0
Tnl A] {”2 B]

1
T B—(ma 4]

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

ta =20 tg = 2

and the call graph:

0 0o 0
Tnl A] {”2 B]

0 1
T B—(ma)

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

ta =20 tg =0

and the call graph:

0 Ooo
Tnl A] {”2 B]

X 1
T ()

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

tA:O tB:1

and the call graph:

o () 0 o
Tnl A] {”2 B]

X 1
T ()

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

tA:1 tB:1

and the call graph:

o 0 0 o
Tnl A] {”2 B]

X 1
T ()

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

tA:O tB:1

and the call graph:

o () 0 o
Tnl A] {”2 B]

X 1
T ()

How about liveness?

Consider two nodes, with two resource each (T4 = Tp = 2):

ta =20 tg =0

and the call graph:

0 Ooo
Tnl A] {”2 B]

X 1
T ()

Revisiting the Invariant

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

acta>; <Tq —1 for all notes A and ¢

where
act 4 ; : number of active processes in A with annotation ¢

ACtA,>i = D p>; CtA

Revisiting the Invariant

Lemma: The following is an invariant:

The number of processes running methods with annotation 1
or higher is at most T’y — 1.

acta>; <Tq —1 for all notes A and ¢

where
act 4 ; : number of active processes in A with annotation ¢

act A, >; = ZkZi act A,
)

The weakest precondition on allowing a request for

, /\ act Ao >k <Tr—k itk >1
acta>r+1<Ty—Fk if k<1

The Protocol Live-P

[/

To execute
" |when ¢’ do]
act o ;++

n()

act ;——

Theorem (Deadlock Avoidance): If a is acyclic, then LIVE-P
guarantees absence of deadlock.

Theorem (Liveness): If « is acyclic, then LIVE-P guarantees that
every waiting process Is eventually enabled.

Live-P provides liveness

Consider two nodes, with two resource each (T4 = Tp = 2):

A, B .

ta =2 tp = 2
Live-P BAsic-P

0 0 0 0
ny A ny B np A ny B

1 0 1 0
my, B mo A m1 B ma A

Live-P provides liveness

Consider two nodes, with two resource each (T4 = Tp = 2):

A, B .
ta =2 tp = 2
Live-P BAsic-P
(010 O O 010 O O
ny A ny B np A ny B
1 0 1 0
my, B mo A m1 B ma A

Live-P provides liveness

Consider two nodes, with two resource each (T4 = Tp = 2):

GO s

tqg =20 tp = 2
Live-P BAsic-P
ool) 0 ool) 0
1 0 1 0
my, B mo A m1 B ma A

Live-P provides liveness

Consider two nodes, with two resource each (T4 = Tp = 2):

GO s

tqg =20 tp = 2
LIVE-P BAsic-P
O 0]©) O O 00 O
O 1 O O 1 O
my, B mo A m1 B ma A

Live-P provides liveness

Consider two nodes, with two resource each (T4 = Tp = 2):

0
o

ta =20 tg =0
LIvE-P BAsic-P

O 000 O OOO
ny A ny B np A ny B

1 0 X 1 0
my, B mo A m1 B ma A

Live-P provides liveness

Consider two nodes, with two resource each (T4 = Tp = 2):

0
b

tA =0 tB =1
LIvE-P Basic-P
ol OO o() oO
ny A ny B np A ny B
. 1 0 X 1 0
my, B mo A m1 B ma A

Conclusions

» Distributed Deadlock Avoidance is possible
without communication

» . .provided call-graphs are known

» Using static annotations + runtime protocols

> If cycles are allowed (e.g. by uncontrolled resource allocation),
then deadlocks are unavoidable, provided enough resources

» Individual liveness is also enforceable

» Future work:
» is deadlock avoidance enforceable for any amount of initial
resources?
» can this be adapted to composable conveyor systems?

Conclusions

>

Distributed Deadlock Avoidance is possible
without communication

. provided call-graphs are known

Using static annotations 4 runtime protocols

——

If cycles are allowed (e
then deadlocks are ung

Individual liveness is alE—

ﬂ/flfmmﬂ aflmiis ; : :
Future work: _ i |

—_—

LELLLLEL PP ERA . r 1 % — |

» Is deadlock ’Z”Zf}’}’}’?r_.m_,_
resources?

» can this be adapted to composable conveyor systems7

Distributed Dinning Philosphers

Distributed Avoidance:

Distributed Dinning Philosphers

Distributed Avoidance:

SOLUTION:

Distributed Dinning Philosphers

Distributed Avoidance:

SOLUTION:
For your first pick,

do not the take last fork if going in increasing order.
For your second pick,
do as you wish.

Questions

Thank you for your attention!

