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A little story about how static knowledge

can help solve unsolvable problems
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Introduction

Goal: Formalization of middleware services

Middleware

Event Channels

Middleware

Deadlock Avoidance

OS1 OS2 OS3

App App App
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Deadlocks

Deadlock is one of the classical problems in CS

One (common) approach is the ostrich approach

The other approaches are: detection, prevention and avoidance.

centralized distributed
detection OK OK

prevention OK OK
avoidance Banker’s impractical

Efficient dynamic resource allocation can have a big practical
impact.
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Distributed Dinning Philosophers
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Distributed Dinning Philosophers

A deadlock state
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Distributed Dinning Philosophers

Prevention:
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Distributed Dinning Philosophers

?

Avoidance:
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Distributed Dinning Philosophers

Distributed Avoidance:
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Deadlock Avoidance Problem Space

Centralized Distributed

Unsolvable Unsolvable
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Deadlock Avoidance Problem Space

Centralized Distributed

Unsolvable Unsolvable

[Dijkstra’65] [Singhal’95]

Max utilization

[de Alfaro+:05]

FMS ?
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Distributed Real-Time and Embedded
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Distributed Real-Time and Embedded

A B

C

DE

F

n1

n2

n3

n5

n4

Sequence of calls:

n2 Cn1 A n5 E

n3 B n1 A
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Distributed Real-Time Embedded Systems

Distributed Real-Time Embedded Systems:

I Asynchronous distributed system

I Limited Resources

I Wait-on-connection

I Arbitrary number of processes spawned

I All processes terminate

Problem: deadlocks are possible if no controller is used
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Two sites, with two resources each:
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Summary of Contributions

Contribution #1
Efficient deadlock Avoidance can is possible provided call-graphs
are know statically

Contribution #2
Optimal annotations can be efficiently computed.
If annotations are not followed anomalies can occurr.

Contribution #3
Distributed Deadlock Avoidance with (individual) liveness
guarantees can be efficiently achieved.
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Model of Computation

I Remote procedure call (with Wait-On-Connection)

I Asynchronous messages

I Finite resources: TA total number of threads
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Model of Computation

I Remote procedure call (with Wait-On-Connection)

I Asynchronous messages

I Finite resources: TA total number of threads

A B

C

DE

F

I All to all communication

I We seek a deadlock avoidance solution with
no extra communication
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Distributed Deadlock Avoidance Solution

Two parts:

1. Static:

2. Dynamic:
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Distributed Deadlock Avoidance Solution

Two parts:

1. Static:

2. Dynamic:

n2 Cn1 A n5 E

n3 B n1 A
00

001


when En do

In

}
entry section

n1()

}
method invocation

Out
}
exit section


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Annotations

Annotations are computed statically

Dependency edges n m whenever α(n) ≤ m for two calls in the
same node.

I n depends on m if there is a path from n to m containing a →
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Basic Solution Deadlock Avoidance


[
when α < tA do

tA−−

]
n1()
tA++



n1 A

αProtocol Basic-P:
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Basic Solution Deadlock Avoidance


[
when α < tA do

tA−−

]
n1()
tA++



n1 A

α

Theorem: If α has no cyclic dependencies, then Basic-P
guarantees absence of deadlock.

Protocol Basic-P:

Lemma: The following is an invariant:

The number of processes running methods with annotation i
or higher is at most TA − i.
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The Annotation Theorem

Theorem: If α has no cyclic dependencies, then Basic-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation i
or higher is at most TA − i.

annotation α Max num of procs
0 TA
1 TA − 1
. . . . . .
TA − 1 1
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The Annotation Theorem

Theorem: If α has no cyclic dependencies, then Basic-P
guarantees absence of deadlock.

Lemma: The following is an invariant:

The number of processes running methods with annotation i
or higher is at most TA − i.

Lemma: If a request is disabled, then
there is an active process running with α2 ≤ α.

n1 A

α

n2 A

α2
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Annotations

Two immediate questions:

1. How to compute acyclic annotations

2. What if annotations are not acyclic?
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Annotations

Two immediate questions:

1. How to compute acyclic annotations

2. What if annotations are not acyclic?

− Visit nodes following some reverse topological order.
− When visiting n, compute the set of nodes S previously visited
and reachable following ( ∪ )∗.
− Set α(n) to 1 plus the largest node in S that resides in the same
site.

n1 C

m1 C
0

0

n3 A

m3 B

0

0

n2 B

m2 A

0

0

TA = 1
TB = 1
TC = 1

FACT: Given enough resources,

a deadlock is reachable
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How about liveness?

Consider two nodes, with two resource each (TA = TB = 2):

A B

tA = 2 tB = 2

and the call graph:
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Revisiting the Invariant

Lemma: The following is an invariant:

The number of processes running methods with annotation i
or higher is at most TA − i.

actA,≥i ≤ TA − i for all notes A and i

where
actA,i : number of active processes in A with annotation i
actA,≥i =

∑
k≥i actA,i
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Revisiting the Invariant

Lemma: The following is an invariant:

The number of processes running methods with annotation i
or higher is at most TA − i.

actA,≥i ≤ TA − i for all notes A and i

where
actA,i : number of active processes in A with annotation i
actA,≥i =

∑
k≥i actA,i

ϕ′ =
∧
k

{
actA,≥k ≤ TA − k if k > i

actA,≥k + 1 ≤ TA − k if k ≤ i

The weakest precondition on allowing a request for n A

i
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The Protocol Live-P


[
when ϕ′ do

actA,i++

]
n()

actA,i−−



To execute :n A

i

Theorem (Deadlock Avoidance): If α is acyclic, then Live-P
guarantees absence of deadlock.

Theorem (Liveness): If α is acyclic, then Live-P guarantees that
every waiting process is eventually enabled.
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Live-P provides liveness
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Live-P provides liveness

Consider two nodes, with two resource each (TA = TB = 2):

A B

tA = 0 tB = 1

n1 A

m1 B
1

0
n2 B

m2 A

0

0

n1 A

m1 B
1

0
n2 B

m2 A

0

0

actB,≥0 actB,≥1
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Conclusions

I Distributed Deadlock Avoidance is possible
without communication

I . . . provided call-graphs are known

I Using static annotations + runtime protocols

I If cycles are allowed (e.g. by uncontrolled resource allocation),
then deadlocks are unavoidable, provided enough resources

I Individual liveness is also enforceable

I Future work:
is deadlock avoidance enforceable for any amount of initial
resources?
can this be adapted to composable conveyor systems?
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Distributed Dinning Philosphers

Distributed Avoidance:

?

?
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SOLUTION:
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Distributed Dinning Philosphers

Distributed Avoidance:

?

?

?

3

2

1

For your first pick,
do not the take last fork if going in increasing order.

For your second pick,
do as you wish.

SOLUTION:
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Questions

Thank you for your attention!


