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Motivation

Verify network of processes of unbounded size

Why to consider such networks?

• Classical distributed algorithms (mutual exclusion, leader

election,...)

• Telecommunication protocols (routing,...)

• Algorithms for ad-hoc networks

• Model for biological systems

• and many more applications ...
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Hypothesis

All the processes have the same behavior

In [Esparza, STACS’14], such networks are called crowd

More precisely:

• Each process will follow the same protocol

• Process can communicate

• Communication way:

• Message passing
• Shared variable
• Broadcast communication
• Multi-diffusion (selective broadcast)

Question:
Is there a network with N processes which allows to reach a goal

?
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Parameterized Networks with Broadcast

[Esparza et al., LICS’99]

Main characteristics

• No creation/deletion of processes

• Each process executes the same finite state protocol

• Synchronization through broadcast of a message

• All the processes receive the message
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Broadcast Networks: syntax

A protocol P = 〈Q,Σ,R,Q0〉

Finite state system whose transitions are labeled with:

1 broadcast of messages - !!m

2 reception of messages - ??m

3 internal actions - τ

where m belongs to the finite alphabet Σ

τ

??m

!!m ??m

A protocol defines a Broadcast Network (BN)
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Broadcast Networks: configurations

A configuration is a multiset γ : Q 7→ N

• Same as for Rendez-vous Networks

• Initial configurations: γ(q) > 0 iff q ∈ Q0

Remarks:

• The size of configurations is not bounded

• Infinite number of configurations

⇒ BN are infinite state systems
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Broadcast Networks: semantics

Transition system BN(P) = 〈C,→, C0〉 associated to P

• C : set of configurations

• →: C × C : transition relation

• C0 : initial configurations

The relation → respects the following rules during an execution:

• The number of processes in an execution does not change

• Processes can only change their state

• Two kind of transitions according to the given process

1 local actions - one process performs an internal action τ

2 broadcast - one process emits a message with !!m, all the

processes that can receive it with ??m have to receive it
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Broadcast Networks: an example
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Reachability question

Parameters: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state q ∈ Q;

Output: Does there exist γ ∈ C0 and γ′ ∈ C s.t. γ →∗ γ′ and

γ(q) > 0?

Remarks:

• This problem considers an infinite number of possible initial

configurations

• Reachability of a configuration γ′ is easier, the number of
processes is in fact fixed
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WQO and upward closed sets

Well Quasi Ordering (wqo)

(X ,≤) is a well-quasi ordering if for all infinite sequences s1, s2, . . .,

there exists i < j such that si ≤ sj .

Upward closed set

A set Y ⊆ X is upward closed w.r.t (X ,≤) if y ∈ Y and y ≤ y ′ implies

y ′ ∈ Y .

• Upward closure of Y ⊆ X : Y ↑= {x ∈ X | ∃y ∈ Y ∧ y ≤ x}

Lemma

If (X ,≤) is a wqo and if Y ⊆ X is upward closed w.r.t. (X ,≤), then

there exists a finite set B ⊆ X s.t. Y = B ↑.
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Well structured transition systems everywhere

γ � γ′ iff ∀q ∈ Q, we have γ(q) ≤ γ′(q)

Theorem

(C,�) is a well-quasi-ordering.
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Well structured transition systems everywhere

γ � γ′ iff ∀q ∈ Q, we have γ(q) ≤ γ′(q)

Theorem

(C,�) is a well-quasi-ordering.

Monotonicity lemma

For γ1, γ
′

1, γ2 ∈ C, if

• γ1 ⇒ γ′

1 and γ1 � γ2

then there exists γ′

2 ∈ C s.t.

• γ2 ⇒ γ′

2 and γ′

1 � γ′

2

• BN are Well Structured Transition Systems
[Abdulla et al., LICS’96; Finkel & Schnoebelen, TCS’01]
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Deciding REACH in Broadcast Networks

Theorem [Esperza et al., LICS’99]

REACH is decidable for Broadcast Networks

Idea of the proof

• For S ⊆ C, pre(S) = {γ ∈ C | γ ⇒ γ′ ∧ γ′ ∈ S}
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Deciding REACH in Broadcast Networks

Theorem [Esperza et al., LICS’99]

REACH is decidable for Broadcast Networks

Idea of the proof

• For S ⊆ C, pre(S) = {γ ∈ C | γ ⇒ γ′ ∧ γ′ ∈ S}

• if S is upward-closed, then pre(S) is upward closed

• let Γ : C 7→ C s.t. Γ(S) = S ∪ pre(S)

• For S upward-closed, there exists i ∈ N s.t. Γi+1(S) = Γi(S) and

given a finite basis B of S, one can compute a finite basis B′ of

Γi(S)

• Take for S the configuration γ such that γ(q) = 1 and γ(q′) = 0

for all q′ 6= q

Theorem [Schmitz & Schnoebelen, CONCUR’13]

REACH for Broadcast Networks is Ackermann-complete.
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Ad Hoc Networks

Main characteristics of Ad Hoc Networks

• Nodes can be mobile

• Topology is not known a priori

• Messages are broadcasted to the neighbours

• Problems linked to communication (collision, loss of messages,

etc.)
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Defining a model for Ad Hoc Networks

Main characteristics [Delzanno et al., CONCUR’10]

• No creation/deletion of nodes

• Each node executes the same finite state process

• Model based on the ω-calculus

• Broadcast of the messages to the neighbors

• Static topology represented by a connectivity graph
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Ad Hoc Networks: syntax

A protocol P = 〈Q,Σ,R,Q0〉

Finite state system whose transitions are labeled with:

1 broadcast of messages - !!m

2 reception of messages - ??m

3 internal actions - τ

where m belongs to the finite alphabet Σ

τ

??m

!!m ??m

A protocol defines an Ad Hoc Network (AHN)
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Ad Hoc Networks: configurations

A configuration is a graph γ = 〈V ,E , L〉

• V : finite set of vertices

• E : V × V : finite set of edges

• L : V → Q : labeling function

• Initial configurations: all vertices are labeled with initial states

• Notation : L(γ) all the labels present in γ

Remarks:

• The size of the considered graphs is not bounded
• Infinite number of configurations

⇒ BN are infinite state systems
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Ad Hoc Networks: semantics

Transition system BN(P) = 〈C,→, C0〉 associated to P

• C : set of configurations

• →: C × C : transition relation

• C0 : initial configurations

The relation → respects the following rules during an execution:

• The topology remains static

• The number of vertices does not change
• The edges do not change
• Only the labels of the vertices can evolve

• Two kind of transitions according to the given protocol

1 local actions - one process performs an internal action τ

2 broadcast - one process emits a message with !!m, all its

neighbors that can receive it with ??m have to receive it
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Ad Hoc Networks: an example

τ

??m

!!m ??m
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Ensuring the form of a topology
The Req/Ack/Ok-protocol

ErrA0

??req ??ack

A1

!!req

A2

??ack
??ack

A3

!!ok

B0
??ack

B1

??req

??ack??req

??ok

B2

!!ack

B3

??ok

Properties

B3
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Undecidability result

Theorem [Delzanno et al, CONCUR’10]

REACH for Ad Hoc Networks is undecidable.
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Undecidability result

Theorem [Delzanno et al, CONCUR’10]

REACH for Ad Hoc Networks is undecidable.

One way to regain decidability:
restrict the considered graphs
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Considered order on graphs

• Given γ ∈ C, G(γ) is the associated graph

Induced subgraph relation

Given γ1, γ2 ∈ C, γ1 � γ2 if there exists a label preserving injection h

from nodes of G(γ1) to nodes of G(γ2) s.t.:

• (n,n′) is an edge in G(γ1) if and only if (h(n),h(n′) is an edge in

G(γ2)

a b

c

�

a b

c d

G1

(a)

G2

(b)

G3 G2

a b

c

6�

a b

c d
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Bounded path configurations

• PK : set of configurations γ ∈ C s.t. the length of the longest

simple path in G(γ) is smaller than K

S
a

b

S

b

a

b

S

a

a

a

S
a

b

b

b

S
a

b a

S

a

a

b

Theorem [Ding, J. of Graph Theory’92]

For all K ∈ N, (PK ,�) is a well-quasi-ordering
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Well structured transition systems everywhere

Monotonicity lemma

For γ1, γ
′

1, γ2 ∈ PK, if

• γ1 ⇒ γ′

1 and γ1 � γ2

then there exists γ′

2 ∈ PK s.t.

• γ2 ⇒ γ′

2 and γ′

1 � γ′

2

• AHN restricted to K -bounded path configurations are Well
Structured Transition Systems

Remark:
• This is true with induced subgraph but not with subgraph (Node c

broadcast a message received by node a and b)
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Decidability result

Theorem [Delzanno et al., CONCUR’10]

REACH is decidable for AHN restricted to K -bounded path configura-

tions

Idea of the proof

• For S ⊆ PK , preK (S) = {γ ∈ PK | γ ⇒ γ′ ∧ γ′ ∈ S}

• if S is upward-closed, then preK (S) is upward closed

• let Γ : PK 7→ PK s.t. Γ(S) = S ∪ preK (S)

• For S upward-closed, there exists i ∈ N s.t. Γi+1(S) = Γi(S) and

given a finite basis B of S, one can compute a finite basis B′ of

Γi(S)

• Take for S the graph with a single node labelled with q
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Conclusion

Complexity result for REACH in parameterized networks

Communication Complexity

Broadcast Ackermann-complete

Ad Hoc Undecidable

Ad Hoc over K -bounded path configurations Decidable
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