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Motivation

Verify network of processes of unbounded size

Why to consider such networks?

o Classical distributed algorithms (mutual exclusion, leader
election,...)

Telecommunication protocols (routing,...)
Algorithms for ad-hoc networks

Model for biological systems

and many more applications ...
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Hypothesis

All the processes have the same behavior
In [Esparza, STACS’14], such networks are called crowd

More precisely:
e Each process will follow the same protocol
e Process can communicate
e Communication way:

e Message passing

e Shared variable

e Broadcast communication

o Multi-diffusion (selective broadcast)

Question:

Is there a network with N processes which allows to reach a goal
?
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Parameterized Networks with Broadcast

[Esparza et al., LICS’99]

Main characteristics

e No creation/deletion of processes

e Each process executes the same finite state protocol
e Synchronization through broadcast of a message

e All the processes receive the message

with




Broadcast Networks: syntax

A protocol P = (Q, X, R, Qo)

Finite state system whose transitions are labeled with:
© broadcast of messages - !!m
@ reception of messages - ??m
©® internal actions - 7

where m belongs to the finite alphabet ¥

m

T I'm Y 7m
p O—0O-

A protocol defines a Broadcast Network (BN)
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Broadcast Networks: configurations

A configuration is a multiset v : Q — N
e Same as for Rendez-vous Networks

@ O O
© O ©

e Initial configurations: v(q) > 0iffge

Remarks:
¢ The size of configurations is not bounded
o Infinite number of configurations

=- BN are infinite state systems
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Broadcast Networks: semantics

Transition system BN(P) = (C, —, o) associated to P
e C : set of configurations
e —: C x C : transition relation
e (p : initial configurations

The relation — respects the following rules during an execution:
e The number of processes in an execution does not change
e Processes can only change their state

¢ Two kind of transitions according to the given process

© local actions - one process performs an internal action
@ broadcast - one process emits a message with !!m, all the
processes that can receive it with ??m have to receive it
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Broadcast Networks: an example
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Reachability question

Parameters: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state g € Q;

Output: Does there exist v € Cp and v’ € C s.t. v —* v’ and
7(q) > 0?

Remarks:

e This problem considers an infinite number of possible initial
configurations

¢ Reachability of a configuration +/ is easier, the number of
processes is in fact fixed

with




WQO and upward closed sets

Well Quasi Ordering (wqo)

(X, <) is a well-quasi ordering if for all infinite sequences sy, s, ..
there exists / < j such that s; < s;.

Upward closed set

A set Y C X is upward closed w.r.t (X,<)if y € Y and y < y’ implies
yevy.

e Upwardclosureof Y C X: Yt={xec X |Iye Y A y<x}

Lemma

If (X,<)isawqgoandif Y C X is upward closed w.r.t. (X, <), then
there exists a finite set BC Xs.t. Y =B1.

with nication




Well structured transition systems everywhere

v <+ iff Vg € Q, we have v(q) < 7'(q)

(C, x) is a well-quasi-ordering.

with




Well structured transition systems everywhere

v <+ iff Vg € Q, we have v(q) < 7'(q)

(C, x) is a well-quasi-ordering.

For v4,71,72 € C, if
* 1= andy X2
then there exists v, € C s.t.
* 2= ppandy X

o BN are Well Structured Transition Systems
[Abdulla et al., LICS’96; Finkel & Schnoebelen, TCS’01]
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Deciding REACH in Broadcast Networks

Theorem [Esperza et al., LICS’99]
REACH is decidable for Broadcast Networks

Idea of the proof
e ForSCC,pre(S)={yeC|ly=+ N+ €S}
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Theorem [Esperza et al., LICS’99]
REACH is decidable for Broadcast Networks

Idea of the proof
e ForSCC,pre(S)={yeC|ly=+ N+ €S}
e if Sis upward-closed, then pre(S) is upward closed
eletlr :C—Cs.t.I(S)=SuUpre(S)

 For S upward-closed, there exists i € N s.t. I'+1(S) = I(S) and
given a finite basis B of S, one can compute a finite basis B’ of
r'(s)
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Deciding REACH in Broadcast Networks

Theorem [Esperza et al., LICS’99]
REACH is decidable for Broadcast Networks

Idea of the proof

e ForSCC,pre(S)={veC|yv=+ AN+ €S}
if Sis upward-closed, then pre(S) is upward closed
letl :C— Cs.t. T(S)=SUpre(S)
For S upward-closed, there exists i € N s.t. '*1(S) = (S) and
given a finite basis B of S, one can compute a finite basis B’ of
r'(s)
Take for S the configuration ~ such that v(q) = 1 and y(q’) =0
forall ¢’ # q
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Deciding REACH in Broadcast Networks

Theorem [Esperza et al., LICS’99]
REACH is decidable for Broadcast Networks

Idea of the proof

e ForSCC,pre(S)={yeC|ly=+ N+ €S}

e if Sis upward-closed, then pre(S) is upward closed

eletlr :C—Cs.t.I(S)=SuUpre(S)

 For S upward-closed, there exists i € N s.t. I'+1(S) = I(S) and
given a finite basis B of S, one can compute a finite basis B’ of
r'(s)
Take for S the configuration ~ such that v(q) = 1 and y(q’) =0
forall ¢’ # q

Theorem [Schmitz & Schnoebelen, CONCUR’13]
REACH for Broadcast Networks is Ackermann-complete.
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Ad Hoc Networks

Main characteristics of Ad Hoc Networks
¢ Nodes can be mobile
o Topology is not known a priori
o Messages are broadcasted to the neighbours

e Problems linked to communication (collision, loss of messages,
etc.)

Ad Hoc Networks



Defining a model for Ad Hoc Networks

Main characteristics [Delzanno et al., CONCUR’10]
No creation/deletion of nodes

Each node executes the same finite state process

Model based on the w-calculus

Broadcast of the messages to the neighbors

Static topology represented by a connectivity graph

Ad Hoc Networks



Ad Hoc Networks: syntax

A protocol P = (Q, X, R, Qo)

Finite state system whose transitions are labeled with:
© broadcast of messages - !!m
@ reception of messages - ??m
©® internal actions - 7

where m belongs to the finite alphabet ¥

m

T I'm Y 7m
p O—0O-

A protocol defines an Ad Hoc Network (AHN)

Ad Hoc Networks



Ad Hoc Networks: configurations

A configuration is a graph v = (V, E, L)
o V : finite set of vertices
e E:V x V:finite set of edges
e L:V — Q: labeling function

© ©

@@ @

Initial configurations: all vertices are labeled with initial states

Notation : L(~) all the labels present in ~

Remarks:
e The size of the considered graphs is not bounded
e Infinite number of configurations

= BN are infinite state systems

Ad Hoc Networks



Ad Hoc Networks: semantics

Transition system BN(P) = (C, —, o) associated to P
e (C : set of configurations
e —: C x C : transition relation
e (p : initial configurations

The relation — respects the following rules during an execution:
e The topology remains static

e The number of vertices does not change
e The edges do not change
e Only the labels of the vertices can evolve

¢ Two kind of transitions according to the given protocol

© local actions - one process performs an internal action 7
@ broadcast - one process emits a message with !!m, all its
neighbors that can receive it with ??m have to receive it

Ad Hoc Networks
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Ad Hoc Networks: an example
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Ad Hoc Networks: an example
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Ensuring the form of a topology
The Req/Ack/Ok-protocol

7?req T7ack (7

Properties

Ad Hoc Networks
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Undecidability result

Theorem [Delzanno et al, CONCUR’10]
REACH for Ad Hoc Networks is undecidable.

Ad Hoc Networks
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Undecidability result

Theorem [Delzanno et al, CONCUR’10]
REACH for Ad Hoc Networks is undecidable.

One way to regain decidability:
restrict the considered graphs

Ad Hoc Networks 23



Considered order on graphs

e Given v € C, G(v) is the associated graph

Induced subgraph relation

Given v1,72 € C, 71 = 72 if there exists a label preserving injection h
from nodes of G(y1) to nodes of G(v2) s.t.:
e (n,n")is an edge in G(v1) if and only if (h(n), h(n') is an edge in
G(2)

a'u B'B Laj{p] a'u
=< pa
c cd] d)
\51/ ?2/ Gs G

(a) (b)

a
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Bounded path configurations

o PK: set of configurations v € C s.t. the length of the longest
simple path in G(v) is smaller than K

Theorem [Ding, J. of Graph Theory’92]
For all K € N, (PX, <) is a well-quasi-ordering

Ad Hoc Networks
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Well structured transition systems everywhere

Monotonicity lemma

For 1,74, 72 € PX, if
e 1 =7;andy <2
then there exists 75 € PX s.t.
* 2= yandy; 27,

e AHN restricted to K-bounded path configurations are Well
Structured Transition Systems
Remark:
e This is true with induced subgraph but not with subgraph (Node ¢
broadcast a message received by node a and b)

Ad Hoc Networks 26



Well structured transition systems everywhere
Monotonicity lemma

For 1,74, 72 € PX, if
e 1 =7;andy <2
then there exists 75 € PX s.t.
* 2= yandy; 27,

e AHN restricted to K-bounded path configurations are Well
Structured Transition Systems
Remark:
e This is true with induced subgraph but not with subgraph (Node ¢
broadcast a message received by node a and b)

By
9
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Decidability result

Theorem [Delzanno et al., CONCUR’10]

REACH is decidable for AHN restricted to K-bounded path configura-
tions

Idea of the proof
e For SCPK, prex(S) ={ycPK|y=+" A+ €8}
if Sis upward-closed, then pre(S) is upward closed
letT : PK — PK st T(S) = SU prek(S)
For S upward-closed, there exists i € N s.t. '*1(S) = (S) and
given a finite basis B of S, one can compute a finite basis B’ of
r'(s)
Take for S the graph with a single node labelled with g

Ad Hoc Networks
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Conclusion

Complexity result for REACH in parameterized networks

Communication Complexity
Broadcast Ackermann-complete
Ad Hoc Undecidable
Ad Hoc over K-bounded path configurations Decidable

Conclusion
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