Parameterized Verification of Systems with Broadcast Communication

Arnaud Sangnier

IRIF - Université Paris Diderot-Paris 7

joint work with Giorgio Delzanno & Gianluigi Zavattaro

DRV - Bertinoro - 19th May 2016

Motivation

Verify network of processes of unbounded size

Why to consider such networks?

- Classical distributed algorithms (*mutual exclusion, leader election,...*)
- Telecommunication protocols (routing,...)
- Algorithms for ad-hoc networks
- Model for biological systems
- and many more applications ...

Hypothesis

All the processes have the same behavior

In [Esparza, STACS'14], such networks are called crowd

More precisely:

- · Each process will follow the same protocol
- Process can communicate
- · Communication way:
 - Message passing
 - Shared variable
 - Broadcast communication
 - Multi-diffusion (selective broadcast)

Question:

Is there a network with N processes which allows to reach a goal ?

Outline

1 Systems with broadcast communication

2 Ad Hoc Networks

Outline

1 Systems with broadcast communication

2 Ad Hoc Networks

3 Conclusion

Parameterized Networks with Broadcast

[Esparza et al., LICS'99]

Main characteristics

- No creation/deletion of processes
- Each process executes the same finite state protocol
- Synchronization through broadcast of a message
- All the processes receive the message

Broadcast Networks: syntax

A protocol $P = \langle Q, \Sigma, R, Q_0 \rangle$

Finite state system whose transitions are labeled with:

1 broadcast of messages - !!m

- 2 reception of messages ??m
- \bigcirc internal actions τ

where m belongs to the finite alphabet Σ

A protocol defines a Broadcast Network (BN)

Broadcast Networks: configurations

A configuration is a multiset $\gamma : \mathbf{Q} \mapsto \mathbb{N}$

Same as for Rendez-vous Networks

Initial configurations: γ(q) > 0 iff q ∈ Q₀

Remarks:

- The size of configurations is not bounded
- Infinite number of configurations

\Rightarrow BN are infinite state systems

Broadcast Networks: semantics

Transition system $BN(P) = \langle C, \rightarrow, C_0 \rangle$ associated to P

- C : set of configurations
- $\rightarrow: \mathcal{C} \times \mathcal{C}$: transition relation
- C_0 : initial configurations

The relation \rightarrow respects the following rules during an execution:

- The number of processes in an execution does not change
- Processes can only change their state
- Two kind of transitions according to the given process
 - 1 local actions one process performs an internal action τ
 - 2 broadcast one process emits a message with !!m, all the processes that can receive it with ??m have to receive it

Reachability question

Parameters: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state $q \in Q$; **Output:** Does there exist $\gamma \in C_0$ and $\gamma' \in C$ s.t. $\gamma \to^* \gamma'$ and $\gamma(q) > 0$?

Remarks:

- This problem considers an infinite number of possible initial configurations
- Reachability of a configuration γ' is easier, the number of processes is in fact fixed

WQO and upward closed sets

Well Quasi Ordering (wqo)

 (X, \leq) is a well-quasi ordering if for all infinite sequences s_1, s_2, \ldots , there exists i < j such that $s_i \leq s_j$.

Upward closed set

A set $Y \subseteq X$ is upward closed w.r.t (X, \leq) if $y \in Y$ and $y \leq y'$ implies $y' \in Y$.

• Upward closure of $Y \subseteq X$: $Y \uparrow = \{x \in X \mid \exists y \in Y \land y \leq x\}$

Lemma

If (X, \leq) is a wqo and if $Y \subseteq X$ is upward closed w.r.t. (X, \leq) , then there exists a finite set $B \subseteq X$ s.t. $Y = B \uparrow$.

Well structured transition systems everywhere

 $\gamma \preceq \gamma'$ iff $\forall q \in Q$, we have $\gamma(q) \leq \gamma'(q)$

Theorem

 (\mathcal{C}, \preceq) is a well-quasi-ordering.

Well structured transition systems everywhere

 $\gamma \preceq \gamma'$ iff $\forall q \in Q$, we have $\gamma(q) \leq \gamma'(q)$

Theorem

 (\mathcal{C}, \preceq) is a well-quasi-ordering.

Monotonicity lemma

For $\gamma_1, \gamma'_1, \gamma_2 \in \mathcal{C}$, if

• $\gamma_1 \Rightarrow \gamma'_1$ and $\gamma_1 \preceq \gamma_2$

then there exists $\gamma'_2 \in \mathcal{C}$ s.t.

- $\gamma_2 \Rightarrow \gamma'_2$ and $\gamma'_1 \preceq \gamma'_2$
- BN are Well Structured Transition Systems
 [Abdulla et al., LICS'96; Finkel & Schnoebelen, TCS'01]

Theorem

[Esperza et al., LICS'99]

REACH is decidable for Broadcast Networks

Idea of the proof

• For $S \subseteq C$, $pre(S) = \{\gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$

Theorem

[Esperza et al., LICS'99]

REACH is decidable for Broadcast Networks

Idea of the proof

• For $S \subseteq C$, $pre(S) = \{\gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$

• if S is upward-closed, then pre(S) is upward closed

Theorem

[Esperza et al., LICS'99]

REACH is decidable for Broadcast Networks

- For $S \subseteq C$, $pre(S) = \{\gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$
- if S is upward-closed, then pre(S) is upward closed
- let $\Gamma : \mathcal{C} \mapsto \mathcal{C}$ s.t. $\Gamma(S) = S \cup pre(S)$

Theorem

[Esperza et al., LICS'99]

REACH is decidable for Broadcast Networks

- For $S \subseteq C$, $pre(S) = \{\gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$
- if S is upward-closed, then pre(S) is upward closed
- let $\Gamma : \mathcal{C} \mapsto \mathcal{C}$ s.t. $\Gamma(S) = S \cup pre(S)$
- For *S* upward-closed, there exists $i \in \mathbb{N}$ s.t. $\Gamma^{i+1}(S) = \Gamma^{i}(S)$ and given a finite basis *B* of *S*, one can compute a finite basis *B'* of $\Gamma^{i}(S)$

Theorem

[Esperza et al., LICS'99]

REACH is decidable for Broadcast Networks

- For $S \subseteq C$, $pre(S) = \{\gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$
- if S is upward-closed, then pre(S) is upward closed
- let $\Gamma : \mathcal{C} \mapsto \mathcal{C}$ s.t. $\Gamma(S) = S \cup pre(S)$
- For S upward-closed, there exists i ∈ N s.t. Γⁱ⁺¹(S) = Γⁱ(S) and given a finite basis B of S, one can compute a finite basis B' of Γⁱ(S)
- Take for S the configuration γ such that $\gamma(q) = 1$ and $\gamma(q') = 0$ for all $q' \neq q$

Theorem

[Esperza et al., LICS'99]

REACH is decidable for Broadcast Networks

Idea of the proof

- For $S \subseteq C$, $pre(S) = \{\gamma \in C \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$
- if S is upward-closed, then pre(S) is upward closed
- let $\Gamma : \mathcal{C} \mapsto \mathcal{C}$ s.t. $\Gamma(S) = S \cup pre(S)$
- For *S* upward-closed, there exists $i \in \mathbb{N}$ s.t. $\Gamma^{i+1}(S) = \Gamma^{i}(S)$ and given a finite basis *B* of *S*, one can compute a finite basis *B'* of $\Gamma^{i}(S)$
- Take for S the configuration γ such that γ(q) = 1 and γ(q') = 0 for all q' ≠ q

Theorem [Schmitz & Schnoebelen, CONCUR'13]

REACH for Broadcast Networks is Ackermann-complete.

Outline

1 Systems with broadcast communication

2 Ad Hoc Networks

3 Conclusion

Ad Hoc Networks

Main characteristics of Ad Hoc Networks

- Nodes can be mobile
- Topology is not known a priori
- Messages are broadcasted to the neighbours
- Problems linked to communication (collision, loss of messages, etc.)

Defining a model for Ad Hoc Networks

Main characteristics

[Delzanno et al., CONCUR'10]

- No creation/deletion of nodes
- Each node executes the same finite state process
- Model based on the ω -calculus
- Broadcast of the messages to the neighbors
- Static topology represented by a connectivity graph

Ad Hoc Networks: syntax

A protocol $P = \langle Q, \Sigma, R, Q_0 \rangle$

Finite state system whose transitions are labeled with:

1 broadcast of messages - !!m

- 2 reception of messages ??m
- \bigcirc internal actions τ

where m belongs to the finite alphabet Σ

A protocol defines an Ad Hoc Network (AHN)

Ad Hoc Networks: configurations

A configuration is a graph $\gamma = \langle V, E, L \rangle$

- V : finite set of vertices
- E : V × V : finite set of edges
- $L: V \rightarrow Q$: labeling function

- Initial configurations: all vertices are labeled with initial states
- Notation : $L(\gamma)$ all the labels present in γ

Remarks:

- The size of the considered graphs is not bounded
- Infinite number of configurations

\Rightarrow BN are infinite state systems

Ad Hoc Networks

Ad Hoc Networks: semantics

Transition system $BN(P) = \langle C, \rightarrow, C_0 \rangle$ associated to P

- C : set of configurations
- $\rightarrow: \mathcal{C} \times \mathcal{C}$: transition relation
- C_0 : initial configurations

The relation \rightarrow respects the following rules during an execution:

- The topology remains static
 - The number of vertices does not change
 - The edges do not change
 - Only the labels of the vertices can evolve
- Two kind of transitions according to the given protocol
 - local actions one process performs an internal action τ
 broadcast one process emits a message with !!m, all its neighbors that can receive it with ??m have to receive it

Undecidability result

Theorem

[Delzanno et al, CONCUR'10]

REACH for Ad Hoc Networks is undecidable.

Undecidability result

Theorem

[Delzanno et al, CONCUR'10]

REACH for Ad Hoc Networks is undecidable.

One way to regain decidability: restrict the considered graphs

Considered order on graphs

• Given $\gamma \in C$, $G(\gamma)$ is the associated graph

Induced subgraph relation

Given $\gamma_1, \gamma_2 \in C$, $\gamma_1 \preceq \gamma_2$ if there exists a label preserving injection *h* from nodes of $G(\gamma_1)$ to nodes of $G(\gamma_2)$ s.t.:

• (n, n') is an edge in $G(\gamma_1)$ if and only if (h(n), h(n')) is an edge in $G(\gamma_2)$

Bounded path configurations

P^K: set of configurations *γ* ∈ *C* s.t. the length of the longest simple path in *G*(*γ*) is smaller than *K*

Theorem

[Ding, J. of Graph Theory'92]

For all $K \in \mathbb{N}$, $(\mathcal{P}^{K}, \preceq)$ is a well-quasi-ordering

Well structured transition systems everywhere

Monotonicity lemma

For $\gamma_1, \gamma_1', \gamma_2 \in \mathcal{P}^{\mathcal{K}}$, if

• $\gamma_1 \Rightarrow \gamma'_1$ and $\gamma_1 \preceq \gamma_2$

then there exists $\gamma'_2 \in \mathcal{P}^{\mathcal{K}}$ s.t.

- $\gamma_2 \Rightarrow \gamma'_2$ and $\gamma'_1 \preceq \gamma'_2$
- AHN restricted to K-bounded path configurations are Well Structured Transition Systems

Remark:

• This is true with induced subgraph but not with subgraph (*Node c* broadcast a message received by node a and b)

Well structured transition systems everywhere

Monotonicity lemma

For $\gamma_1, \gamma_1', \gamma_2 \in \mathcal{P}^{\mathcal{K}}$, if

• $\gamma_1 \Rightarrow \gamma'_1$ and $\gamma_1 \preceq \gamma_2$

then there exists $\gamma'_2 \in \mathcal{P}^{\mathcal{K}}$ s.t.

- $\gamma_2 \Rightarrow \gamma'_2$ and $\gamma'_1 \preceq \gamma'_2$
- AHN restricted to K-bounded path configurations are Well Structured Transition Systems

Remark:

• This is true with induced subgraph but not with subgraph (*Node c* broadcast a message received by node a and b)

Decidability result

Theorem

[Delzanno et al., CONCUR'10]

REACH is decidable for AHN restricted to *K*-bounded path configurations

- For $S \subseteq \mathcal{P}^{K}$, $pre_{K}(S) = \{\gamma \in \mathcal{P}^{K} \mid \gamma \Rightarrow \gamma' \land \gamma' \in S\}$
- if S is upward-closed, then $pre_{K}(S)$ is upward closed
- let $\Gamma : \mathcal{P}^{K} \mapsto \mathcal{P}^{K}$ s.t. $\Gamma(S) = S \cup pre_{K}(S)$
- For S upward-closed, there exists i ∈ N s.t. Γⁱ⁺¹(S) = Γⁱ(S) and given a finite basis B of S, one can compute a finite basis B' of Γⁱ(S)
- Take for S the graph with a single node labelled with q

Outline

1 Systems with broadcast communication

2 Ad Hoc Networks

Conclusion

Complexity result for REACH in parameterized networks

Communication	Complexity
Broadcast	Ackermann-complete
Ad Hoc	Undecidable
Ad Hoc over <i>K</i> -bounded path configurations	Decidable