Algorithms and Lower Bounds for the

Number of Opinions in Wait-free RV

P. Fraigniaud: S. Rajsbaumz M. Roy: C. Travers:

ILIAFA, CNRS France
2UNAM, Mexico
3 LAAS, CNRS France

3LaBRI, France

DRV — Bertinoro May 2016

Distributed monitoring

Distributed monitoring

. state S
2

11

.

Distributed monitoring

Distributed monitoring

Distributed monitoring

maybe
mapping:{ok,ok,nok,maybe,maybe} — {YES, NO}

Distributed languages

A distributed language £ C |J,., A’ is a collection of vectors
[a1, ..., ac] representing the valid states of the system

Distributed languages

A distributed language £ C |J,., A’ is a collection of vectors

[a1,. .., a] representing the valid states of the system
AGREEMENT

[a1,...,a] € AGREEMENT <= a; = a;Vi,j
CONSENSUS

[(va,d1),...,(v,d;)] € CONSENSUS

— l.agreement d; =d; =dVi,j
2.validity di:vi=d

Monitoring some language £

A monitor for a language L consists in 3 components
e A set of opinions U
e A mapping 1 : multiset of U — {YES,NO}

e A distributed monitoring protocol

Monitoring protocol

Let v € A’ be the state of the system
Each monitors i gets as input a partial vector v/ € ({ L} UA):

e VIl # L = vilj] = vl
o foreach j,1 <j </(3i:v[j] = v[]

Monitoring protocol

Let v € A’ be the state of the system
Each monitors i gets as input a partial vector vi € ({ L} UA)"

o VIT# L = v[j] = vl]

e for each j,1 <j </ 3i:v/[j]=v[]
communicates with the others, and emits an opinion u;.
(1) —— maybe

(v2) | ———— definitively
: ael

ag¢ L

(V') — sure

Simplified settings

e Number of monitors n = ¢ number of state components

e Each monitor i gets as intput v|i]

Indulgent algorithms

Systems are synchronous ...
with arbitrary asynchronous period

ANANNA :

J——— asynchrony] synchrony =————

Wait-free shared memory

@Qg@@@@
OOEHOEE

Shared memory

e 1 Processes {pi, ..., pn}

Wait-free shared memory

Shared memory
e n Processes {p1,...,p,}

e Asynchronous communications

e read() from/write() to any memory cell
e finite but unbounded delay between steps

Wait-free shared memory

Shared memory
e n Processes {p1,...,p,}

e Asynchronous communications

e read() from/write() to any memory cell
e finite but unbounded delay between steps

e Each process is subject to crash-failure

Shared memory models

SRSW safe bit
MRSW safe bit
MRSW regular bit
MRSW regular
MRSW atomic
MRMW atomic
Atomic snapshot

Shared memory models

SRSW safe bit

MRSW safe bit

MRSW regular bit
MRSW regular Wait-free construction
MRSW atomic
e MRMW atomic
Atomic snapshot <«

Atomic snapshot

an array A of SWMR registers
e update(i, v) : writes v to A[/]

e scan() : takes instantaneous snapshot of A

Shared memory vs. Message passing

Atomic registers can be simulated in the asynchronous
message-passing model when a majority of the processes are
correct

Monitoring agreement

Opinions = {0, 1}

Monitoring protocol at monitor i with input a;:
update (i, a;)
scan() memory to get set a’
if agree(a’) then decide 1
else decide 0.

Interpretation on input multiset S C {0, 1} : AND(S)

AND interpretation: characterization

Not every distributed language can be monitored with
e two opinions
e AND interpretation

Theorem (Fraigniaud, Rajsbaum, T. disc'11)

L has a monitor with AND interpretation
<= L is projection-closed.

Let £ be a distributed language. How many
opinions are needed to wait-free monitor L7

Let £ be a distributed language. How many
opinions are needed to wait-free monitor L7

#opinions(L£) = number of opinions necessary and sufficient to
wait-free monitor £

On the number of opinions

Theorem (Fraigniaud, Rajsbaum, T. RV '14)

Every distributed language on n processes can be monitored
with n + 1 opinions

On the number of opinions

Theorem (Fraigniaud, Rajsbaum, T. RV '14)

Every distributed language on n processes can be monitored
with n + 1 opinions

Theorem (Fraigniaud, Rajsbaum, T. RV '14)

For every 1 < k < n, there is a n-process language L\ such
that #opinions(Ly) = k + 1

Monitoring CONSENSUS

CONSENSUS

(s1,t1),...,(se, t;) € CONSENSUS
1.agr.ee.ment t,-.: ti=1tVi,j
2.validity di:si=t

Monitoring CONSENSUS

CONSENSUS
(s1,t1),...,(se, t;) € CONSENSUS
— l.agreement t; =t =tVi,j
2.validity di:si=t

Examples:

e (1,1),(2,1),(3,2) ¢ £

* (1,3),(2,3)¢ L

° (1,2),(2,2),(3,2) €

Monitoring CONSENSUS

CONSENSUS

(s1,t1),...,(se, t;) € CONSENSUS
1.agr.ee.ment t,-.: ti=1tVi,j
2.validity di:si=t

Examples:

* (1,1),(2,1),
° (1,3),(2,3)
* (1,2),(2,2)

(3,2) ¢ L
3) ¢ L
2),(3,2) €

Theorem
#opinions(CONSENSUS) = 3

Traffic-light monitor

Set of opinions = {green, orange, red}

Traffic-light monitor

Set of opinions = {green, orange, red}

Monitoring-protocol at monitor i with input (s;, t;):
update(i, (s;, t;))
snapshot() to get (s, t')
case agree(t’) and valid(s’, t') then decide green
agree(t') but not valid(s’, t')then decide orange
not agree(t’) then decide red
end case

Traffic-light monitor

Set of opinions = {green, orange, red}

Monitoring-protocol at monitor i with input (s;, t;):
update(i, (s;, t;))
snapshot() to get (s, t')
case agree(t’) and valid(s’, t') then decide green
agree(t') but not valid(s’, t')then decide orange
not agree(t’) then decide red
end case

Interpretation on multiset S C {red, orange, green}
if red € S or green ¢ S then return NO
else return YES

Traffic-light monitor: correctness

Interpretation
p: multiset C {red, orange, green} — {YES, NO}

Traffic-light monitor: correctness

Interpretation
p: multiset C {red, orange, green} — {YES, NO}

Interpretation p on multiset S C {red, orange, green}
if red € S or green ¢ S then return NO
else return YES

Traffic-light monitor: correctness

Interpretation
p: multiset C {red, orange, green} — {YES, NO}

Interpretation p on multiset S C {red, orange, green}
if red € S or green ¢ S then return NO
else return YES

Traffic-light monitor: correctness

Interpretation
p: multiset C {red, orange, green} — {YES, NO}

Interpretation p on multiset S C {red, orange, green}
if red € S or green ¢ S then return NO
else return YES

e Monitor i decides red whenever it sees disagreement.
This cannot be fixed even if a} C a.

Traffic-light monitor: correctness

Interpretation
p: multiset C {red, orange, green} — {YES, NO}

Interpretation p on multiset S C {red, orange, green}

if red € S or green ¢ S then return NO
else return YES

e Monitor i decides red whenever it sees disagreement.
This cannot be fixed even if a} C a.

e No red means agreement. No green however indicates
validity violation.

Traffic-light monitor: correctness

Interpretation
p: multiset C {red, orange, green} — {YES, NO}

Interpretation p on multiset S C {red, orange, green}
if red € S or green ¢ S then return NO
else return YES

e Monitor i decides red whenever it sees disagreement.
This cannot be fixed even if a} C a.

e No red means agreement. No green however indicates
validity violation.

e green and no red imply agreement and validity.

#opinions(CONSENSUS) > 3

Assume for contradiction that CONSENSUS can be monitored
with 2 opinions {green, red}

#opinions(CONSENSUS) > 3

Assume for contradiction that CONSENSUS can be monitored
with 2 opinions {green, red}

¢ L eL ¢ L

0D e 1 ¢r 02

o~
[J

#opinions(CONSENSUS) > 3

Assume for contradiction that CONSENSUS can be monitored
with 2 opinions {green, red}

Solo executions

¢ L el ¢ L
©1) er L) ¢r (02
r i 1
¢ 8 b
red green red

#opinions(CONSENSUS) > 3

Assume for contradiction that CONSENSUS can be monitored
with 2 opinions {green, red}

Solo executions

¢ L el ¢ L
01 e @) ¢r (02
r ? 1
1 1 1

red green red

#opinions(CONSENSUS) > 3

Assume for contradiction that CONSENSUS can be monitored
with 2 opinions {green, red}

¢ L el ¢ L
01) e (L) ¢ (0.2

Solo executions

r ; !

#opinions(CONSENSUS) > 3

Assume for contradiction that CONSENSUS can be monitored
with 2 opinions {green, red}

¢ L eL ¢ L
(071) eL (1 ¢£

[y
~—
—~
=

N
~

———m—————O
—————————e

Solo executions

!

Contradiction : u({green,red}) = YES,NO

K-SET-AGREEMENT

K-SET AGREEMENT

{(idy, (51, t1)), ..., (ide, (s¢, tr)} € K-SET-AGREEMENT
1.k-agreement |[{t1,... t;}| < k
2.validity {t1,...,te} C{s1,...,5}

—

K-SET-AGREEMENT

K-SET AGREEMENT

{(idy, (s1, t1)), ..., (ids, (s¢, tr)} € K-SET-AGREEMENT
1.k-agreement |{t,...,t;}| < k
2.validity {t1,...,te} C{s1,...,s}

Examples:

e {(1,1),(2,1),(3,2)} € 2-SET-AGREEMENT

1)
e {(1,1),(2,1),(3,0)} ¢ 2-SET-AGREEMENT
e {(1,1),(2,2),(3,3)} ¢ 2-SET-AGREEMENT

How many opinions for K-SET-AGREEMENT?

e 1-SET-AGREEMENT (CONSENSUS) : #opinions = 3

How many opinions for K-SET-AGREEMENT?

e 1-SET-AGREEMENT (CONSENSUS) : #opinions = 3
e K-SET-AGREEMENT : #opinions = 777

How many opinions for K-SET-AGREEMENT?

e 1-SET-AGREEMENT (CONSENSUS) : #opinions = 3
e K-SET-AGREEMENT : #opinions = 777

Theorem
#opinions(K-SET-AGREEMENT) = min(2K, n) + 1

Assume :
e k<n/2

e There is a monitoring protocol M and
an interpretation p that use x opinions

We show that x > 2k +1

#opinions > 2k + 1

®

—~~
(]
—

~

#opinions > 2k + 1

S

—

0,1)

{01} ¢ L p({e}) = No

#opinions > 2k + 1

S

&y

—

0,1)

—~
—
—

~—

{01} ¢ L p({e}) = No

#opinions > 2k + 1

S

(0,1) (1,1)
c {(0,1)} ¢ L 1({}) = No
e {(L)}eL p({e}) = Yes

#opinions > 2k + 1

S @ &

(0,1)(Py) (p2)(1.1)

O} ¢L u(

* {
{,D}reL u(

#opinions > 2k + 1

D

S &
(0, 1) (P)-O—0—0—0—0—0—0—0-(P2) (1. 1)

O} ¢L u(

e {
° {(1, 1)} el M(

#opinions > 2k + 1

O} ¢L u(
(LDyel u(

°{
°{

#opinions > 2k + 1

« {(0,1)} ¢ L 1({e}) = No
e {(L}eL wu({e}) = Yes
e {(0,1),(L1)} €L p({e,o}) = Yes

#opinions > 2k + 1 (cont')

odd number of (e, e)-colored segments

#opinions > 2k + 1 (cont')

odd number of (e, e)-colored segments

S o &

(0.2)(p3) (p2)(1,1)

#opinions > 2k + 1 (cont')

odd number of (e, e)-colored segments

S S &
©0.2)@-0—e—0-0-e—-o0-e-e@
\ \/ /

0 (e,)-colored segments

#opinions > 2k + 1 (cont')

#opinions > 2k + 1 (cont')

#opinions > 2k + 1 (cont')

(1,1) o

odd number of
(e,@)-colored g
segments

0 (e, e)-colored
© segments

(0,1)
> = g
0 (e, ®)-colored segments

#opinions > 2k + 1 (cont')

(1,1) o

odd number of
(e,@)-colored g
segments

0 (e, e)-colored
© segments

(0,1)
> = g
0 (e, ®)-colored segments

(A Variant of) Sperner lemma

(0,2)

ziﬁ%\‘x&

colored simplex

i Ea SN

0, @A‘ \.‘m
\

V7 AR\

#opinions > 2k + 1 (end)

#opinions > 2k + 1 (end)

set C of opinions,
€] >3

(1,2)

#opinions > 2k + 1 (end)

set C of opinions,
IC| >3

(1,2)

#opinions > 2k + 1 (end)

set C of opinions,
IC| >3

(1,2)

(set C' of opinions,
| — |C/| Z 3

#opinions > 2k + 1 (end)

(0.1)
set C of opinions,
IC| >3
(1,2)
(set C' of opinions,
| — |C/| Z 3

(2,2)

1(C) # u(C') = #opinions > |C| + 1

)
O
C
3}
=
o
Q
(7]
a0

=

i)
(g0}
C
p -
3}
=
<

AN AN AN AN/

S N N N

Alternating sequence

+1 opinion

+1 opinion

+1 opinion

+1 opinion

) Y

{(0,1)
{(0,1)
2k+1<¢ {(0,1),
{(0,1)
{(0,1)

Opinions for k-SET-AGREEMENT

Opinions =
{red} U {(orange, £): 1 < ¢ < k}U{(green,?) 1 </¢ <k}

#Opinions = 2k + 1

Monitor for k-SET-AGREEMENT

Monitoring protocol at monitor i with input (s;, t;):
update(i, (s, t;))
snapshot() to get (s, t')

case

endcase

Monitor for k-SET-AGREEMENT

Monitoring protocol at monitor i with input (s;, t;):
update(i, (s, t;))
snapshot() to get (s, t')
d <#decided values(t)
case

endcase

Monitor for k-SET-AGREEMENT

Monitoring protocol at monitor i with input (s;, t;):
update(i, (s, t;))
snapshot() to get (s, t')
d <#decided values(t)
case d < k and valid(s', t') then decide (d, green)

endcase

Monitor for k-SET-AGREEMENT

Monitoring protocol at monitor i with input (s;, t;):
update(i, (s, t;))
snapshot() to get (s, t')
d <#decided values(t)
case d < k and valid(s', t') then decide (d, green)
d < k and not valid(s’, t') then decide (d, orange)

endcase

Monitor for k-SET-AGREEMENT

Monitoring protocol at monitor i with input (s;, t;):

update(i, (s, t;))

snapshot() to get (s, t')

d <#decided values(t)

case d < k and valid(s', t') then decide (d, green)
d < k and not valid(s’, t') then decide (d, orange)
d>k then decide (red);

endcase

Interpretation 1

Opinions =
{red} U {(orange, ?) : 1 < ¢ < k}U{(green,?) : 1< (< k}

Interpretation 1

Opinions =
{red} U {(orange, ?) : 1 < ¢ < k}U{(green,?) : 1< (< k}

Let S a multiset of opinions.
Define level(c,S) = max{d : (c,d) € S}

Interpretation 1

Opinions =
{red} U {(orange, ?) : 1 < ¢ < k}U{(green,?) : 1< (< k}

Let S a multiset of opinions.
Define level(c,S) = max{d : (c,d) € S}

erede S u(S) = NO

Interpretation 1

Opinions =
{red} U {(orange, ?) : 1 < ¢ < k}U{(green,?) : 1< (< k}

Let S a multiset of opinions.
Define level(c,S) = max{d : (c,d) € S}

erede S u(S) = NO

e red ¢ S A level(orange, S) > level(green, S)
u(S) = NO

Interpretation 1

Opinions =
{red} U {(orange, ?) : 1 < ¢ < k}U{(green,?) : 1< (< k}

Let S a multiset of opinions.
Define level(c,S) = max{d : (c,d) € S}

erede S u(S) = NO
e red ¢ S A level(orange, S) > level(green, S)

u(S) = NO
e red ¢ S A level(orange, S) < level(green, S)

u(S) = YES

Alternation number

Definition

The alternation number #altern(L) of a language L is
the largest integer k for which there exists a; C a, C ... a,
such that for every i either

a;€Land a1 ¢ Lora; ¢ Landa ;€L

Universal Monitor

Theorem
There exists a protocol which, for every k > 1, monitors every
language with alternation number k, by using at most k + 1
opinions.

Universal Monitor

Theorem
There exists a protocol which, for every k > 1, monitors every
language with alternation number k, by using at most k + 1
opinions.

Theorem

For any n > 1, and every k, 1 < k < n, there are some
languages on n processes with alternation number k, for
which monitoring requires (k) opinions.

Some open problems

e Non anonymous monitoring: The outputs of the monitors
are opinions. The interpretation does not use who
expresses which opinion.

e Monitors received one input and collectively check
whether the set of inputs satisfied some property. What if
monitors receive instead a sequence of inputs?

Thanks!

