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Distributed languages

A distributed language L ⊆
⋃

i≤ℓ
Ai is a collection of vectors

[a1, . . . , aℓ] representing the valid states of the system

agreement

[a1, . . . , aℓ] ∈ agreement ⇐⇒ ai = aj ∀i , j

consensus

[(v1, d1), . . . , (vℓ, dℓ)] ∈ consensus

⇐⇒

{

1.agreement di = dj = d ∀i , j
2.validity ∃i : vi = d



Monitoring some language L

A monitor for a language L consists in 3 components

• A set of opinions U

• A mapping µ : multiset of U→ {YES,NO}

• A distributed monitoring protocol



Monitoring protocol

Let v ∈ Aℓ be the state of the system
Each monitors i gets as input a partial vector v ′

i ∈ ({⊥}∪A)ℓ:

• v ′
i [j ] 6= ⊥ =⇒ v ′

i [j ] = v [j ]

• for each j , 1 ≤ j ≤ ℓ, ∃i : v ′
i [j ] = v [j ]
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Let v ∈ Aℓ be the state of the system
Each monitors i gets as input a partial vector v ′

i ∈ ({⊥}∪A)ℓ:

• v ′
i [j ] 6= ⊥ =⇒ v ′

i [j ] = v [j ]

• for each j , 1 ≤ j ≤ ℓ, ∃i : v ′
i [j ] = v [j ]

communicates with the others, and emits an opinion ui.
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Simplified settings

• Number of monitors n = ℓ number of state components

• Each monitor i gets as intput v [i ]



Indulgent algorithms

Systems are synchronous ...
with arbitrary asynchronous period

asynchrony synchrony
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Shared memory

• n Processes {p1, . . . , pn}

• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

• Each process is subject to crash-failure
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Shared memory models

• SRSW safe bit

• MRSW safe bit

• MRSW regular bit

• MRSW regular

• MRSW atomic

• MRMW atomic

• Atomic snapshot

Wait-free construction



Atomic snapshot

an array A of SWMR registers

• update(i , v ) : writes v to A[i ]

• scan() : takes instantaneous snapshot of A



Shared memory vs. Message passing

Atomic registers can be simulated in the asynchronous
message-passing model when a majority of the processes are
correct



Monitoring agreement

Opinions = {0, 1}

Monitoring protocol at monitor i with input ai :
update (i , ai)
scan() memory to get set a′

if agree(a′) then decide 1

else decide 0.

Interpretation on input multiset S ⊆ {0, 1} : AND(S)



AND interpretation: characterization

Not every distributed language can be monitored with

• two opinions

• AND interpretation

Theorem (Fraigniaud, Rajsbaum, T. disc’11)
L has a monitor with AND interpretation
⇐⇒ L is projection-closed.



Main question

Let L be a distributed language. How many
opinions are needed to wait-free monitor L?



Main question

Let L be a distributed language. How many
opinions are needed to wait-free monitor L?

#opinions(L) = number of opinions necessary and sufficient to
wait-free monitor L



On the number of opinions

Theorem (Fraigniaud, Rajsbaum, T. RV ’14)
Every distributed language on n processes can be monitored
with n + 1 opinions
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Theorem (Fraigniaud, Rajsbaum, T. RV ’14)
Every distributed language on n processes can be monitored
with n + 1 opinions

Theorem (Fraigniaud, Rajsbaum, T. RV ’14)
For every 1 ≤ k ≤ n, there is a n-process language Lk such
that #opinions(Lk) = k + 1



Monitoring consensus

consensus

(s1, t1), . . . , (sℓ, tℓ) ∈ consensus

⇐⇒

{

1.agreement ti = tj = t ∀i , j
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Monitoring consensus

consensus

(s1, t1), . . . , (sℓ, tℓ) ∈ consensus

⇐⇒

{

1.agreement ti = tj = t ∀i , j
2.validity ∃i : si = t

Examples:

• (1, 1), (2, 1), (3, 2) /∈ L

• (1, 3), (2, 3) /∈ L

• (1, 2), (2, 2), (3, 2) ∈ L

Theorem
#opinions(consensus) = 3



Traffic-light monitor

Set of opinions = {green, orange, red}



Traffic-light monitor
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Monitoring-protocol at monitor i with input (si , ti):
update(i , (si , ti))
snapshot() to get (s ′, t ′)
case agree(t ′) and valid(s ′, t ′) then decide green

agree(t ′) but not valid(s ′, t ′)then decide orange

not agree(t ′) then decide red

end case



Traffic-light monitor

Set of opinions = {green, orange, red}

Monitoring-protocol at monitor i with input (si , ti):
update(i , (si , ti))
snapshot() to get (s ′, t ′)
case agree(t ′) and valid(s ′, t ′) then decide green

agree(t ′) but not valid(s ′, t ′)then decide orange

not agree(t ′) then decide red

end case

Interpretation on multiset S ⊆ {red, orange, green}
if red ∈ S or green 6∈ S then return NO

else return YES
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This cannot be fixed even if a′i ( a.
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Traffic-light monitor: correctness

Interpretation
µ: multiset ⊆ {red, orange, green} −→ {YES,NO}

Interpretation µ on multiset S ⊆ {red, orange, green}
if red ∈ S or green 6∈ S then return NO

else return YES

• Monitor i decides red whenever it sees disagreement.
This cannot be fixed even if a′i ( a.

• No red means agreement. No green however indicates
validity violation.

• green and no red imply agreement and validity.
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#opinions(consensus) ≥ 3

Assume for contradiction that consensus can be monitored
with 2 opinions {green, red}

∈ L /∈ L(0, 1)
/∈ L

(1, 1)
∈ L

(0, 2)
/∈ L

Solo executions

red green red

green,red green,red

Contradiction : µ({green, red}) = YES,NO



k-set-agreement

k-set agreement

{(id1, (s1, t1)), . . . , (idℓ, (sℓ, tℓ)} ∈ k-set-agreement

⇐⇒

{

1.k-agreement |{t1, . . . , tℓ}| ≤ k
2.validity {t1, . . . , tℓ} ⊆ {s1, . . . , sℓ}



k-set-agreement

k-set agreement

{(id1, (s1, t1)), . . . , (idℓ, (sℓ, tℓ)} ∈ k-set-agreement

⇐⇒

{

1.k-agreement |{t1, . . . , tℓ}| ≤ k
2.validity {t1, . . . , tℓ} ⊆ {s1, . . . , sℓ}

Examples:

• {(1, 1), (2, 1), (3, 2)} ∈ 2-set-agreement

• {(1, 1), (2, 1), (3, 0)} /∈ 2-set-agreement

• {(1, 1), (2, 2), (3, 3)} /∈ 2-set-agreement



How many opinions for k-set-agreement?

• 1-set-agreement (consensus) : #opinions = 3
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How many opinions for k-set-agreement?

• 1-set-agreement (consensus) : #opinions = 3

• k-set-agreement : #opinions = ???

Theorem
#opinions(k-set-agreement) = min(2k, n) + 1



Lower bound

Assume :

• k < n/2

• There is a monitoring protocol M and
an interpretation µ that use x opinions

We show that x ≥ 2k + 1
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(0, 1) p2 (1, 1)

⊕
p1 p2

odd number of (•, •)-colored segments

• {(0, 1)} /∈ L µ({•}) = No

• {(1, 1)} ∈ L µ({•}) = Yes

• {(0, 1), (1, 1)} ∈ L µ({•, •}) = Yes
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(A Variant of) Sperner lemma

p1 p3

p2

p0, 1q

p0, 2q

p1, 1q

‘ a

a

odd number of

C-colored simplex

|C| “ 2

0 C-colored simplex

0 C-colored simplex

Sperner Lemma ùñ
odd number of 3-

colored simplex
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#opinions > 2k + 1 (end)

p1

p2

p3

(0, 1)

⊖

(1, 1)

⊕

(1, 2)⊖⊕

⊖

⊖

⊖

set C of opinions,
|C | ≥ 3

p4 (2, 2)

⊖

⊕⊕
set C′ of opinions,
|C ′| ≥ 3

µ(C) 6= µ(C′) =⇒ #opinions ≥ |C |+ 1
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{(0, 1), (1, 1), (1, 2), (2, 2)}
{(0, 1), (1, 1), (1, 2), (2, 2), (2, 3)}
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+1 opinion
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Opinions for k-set-agreement

Opinions =
{red} ∪ {(orange, ℓ) : 1 ≤ ℓ ≤ k} ∪ {(green, ℓ) : 1 ≤ ℓ ≤ k}

#Opinions = 2k+ 1
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update(i , (si , ti))
snapshot() to get (s ′, t ′)

case

endcase
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Monitor for k-set-agreement

Monitoring protocol at monitor i with input (si , ti):
update(i , (si , ti))
snapshot() to get (s ′, t ′)
d ←#decided values(t ′)
case d ≤ k and valid(s ′, t ′) then decide (d , green)

d ≤ k and not valid(s ′, t ′) then decide (d , orange)
d > k then decide (red);

endcase
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Interpretation µ

Opinions =
{red} ∪ {(orange, ℓ) : 1 ≤ ℓ ≤ k} ∪ {(green, ℓ) : 1 ≤ ℓ ≤ k}

Let S a multiset of opinions.
Define level(c,S) = max{d : (c, d) ∈ S}

• red ∈ S µ(S) = NO

• red /∈ S ∧ level(orange, S) > level(green, S)
µ(S) = NO



Interpretation µ

Opinions =
{red} ∪ {(orange, ℓ) : 1 ≤ ℓ ≤ k} ∪ {(green, ℓ) : 1 ≤ ℓ ≤ k}

Let S a multiset of opinions.
Define level(c,S) = max{d : (c, d) ∈ S}

• red ∈ S µ(S) = NO

• red /∈ S ∧ level(orange, S) > level(green, S)
µ(S) = NO

• red /∈ S ∧ level(orange, S) ≤ level(green, S)
µ(S) = YES



Alternation number

Definition
The alternation number #altern(L) of a language L is
the largest integer k for which there exists a1 ⊂ a2 ⊂ . . . ak
such that for every i either
ai ∈ L and ai+1 /∈ L or ai /∈ L and ai+1 ∈ L.



Universal Monitor

Theorem
There exists a protocol which, for every k ≥ 1, monitors every
language with alternation number k, by using at most k + 1
opinions.



Universal Monitor

Theorem
There exists a protocol which, for every k ≥ 1, monitors every
language with alternation number k, by using at most k + 1
opinions.

Theorem
For any n ≥ 1, and every k, 1 ≤ k ≤ n, there are some
languages on n processes with alternation number k, for
which monitoring requires Ω(k) opinions.



Some open problems

• Non anonymous monitoring: The outputs of the monitors
are opinions. The interpretation does not use who
expresses which opinion.

• Monitors received one input and collectively check
whether the set of inputs satisfied some property. What if
monitors receive instead a sequence of inputs?



Thanks!


