
Blockchain
IF306 2018-2019

Bitcoin
• Classic 2008 Nakamoto paper « Bitcoin: A Peer-to-Peer

Electronic Cash System »

• Motivation: replace credit card for internet payments

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online

payments to be sent directly from one party to another without going through a

financial institution. Digital signatures provide part of the solution, but the main

benefits are lost if a trusted third party is still required to prevent double-spending.

We propose a solution to the double-spending problem using a peer-to-peer network.

The network timestamps transactions by hashing them into an ongoing chain of

hash-based proof-of-work, forming a record that cannot be changed without redoing

the proof-of-work. The longest chain not only serves as proof of the sequence of

events witnessed, but proof that it came from the largest pool of CPU power. As

long as a majority of CPU power is controlled by nodes that are not cooperating to

attack the network, they'll generate the longest chain and outpace attackers. The

network itself requires minimal structure. Messages are broadcast on a best effort

basis, and nodes can leave and rejoin the network at will, accepting the longest

proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as

trusted third parties to process electronic payments. While the system works well enough for

most transactions, it still suffers from the inherent weaknesses of the trust based model.

Completely non-reversible transactions are not really possible, since financial institutions cannot

avoid mediating disputes. The cost of mediation increases transaction costs, limiting the

minimum practical transaction size and cutting off the possibility for small casual transactions,

and there is a broader cost in the loss of ability to make non-reversible payments for non-

reversible services. With the possibility of reversal, the need for trust spreads. Merchants must

be wary of their customers, hassling them for more information than they would otherwise need.

A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties

can be avoided in person by using physical currency, but no mechanism exists to make payments

over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,

allowing any two willing parties to transact directly with each other without the need for a trusted

third party. Transactions that are computationally impractical to reverse would protect sellers

from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In

this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed

timestamp server to generate computational proof of the chronological order of transactions. The

system is secure as long as honest nodes collectively control more CPU power than any

cooperating group of attacker nodes.

1

• No trust, no central authority

• Irreversible transactions : seller point of view

Bitcoin today

BTC/$ exchange rate

Deflation ?

• BTC supply is bounded (~21 millions)

• Krugman’s co-op baby-sitting story:

• 500 coupons 1h babysitting

• Soon people were preferring to save rather to spend

Scandals

the DAO hack

Still every current blockchain technology
originated from Nakamoto’s paper

Cryptocurrencies

Blockchain promises

How does it work?
2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the

next by digitally signing a hash of the previous transaction and the public key of the next owner

and adding these to the end of the coin. A payee can verify the signatures to verify the chain of

ownership.

The problem of course is the payee can't verify that one of the owners did not double-spend

the coin. A common solution is to introduce a trusted central authority, or mint, that checks every

transaction for double spending. After each transaction, the coin must be returned to the mint to

issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent.

The problem with this solution is that the fate of the entire money system depends on the

company running the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any earlier

transactions. For our purposes, the earliest transaction is the one that counts, so we don't care

about later attempts to double-spend. The only way to confirm the absence of a transaction is to

be aware of all transactions. In the mint based model, the mint was aware of all transactions and

decided which arrived first. To accomplish this without a trusted party, transactions must be

publicly announced [1], and we need a system for participants to agree on a single history of the

order in which they were received. The payee needs proof that at the time of each transaction, the

majority of nodes agreed it was the first received.

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a

hash of a block of items to be timestamped and widely publishing the hash, such as in a

newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the

time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in

its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

2

Block

Item Item ...

Hash

Block

Item Item ...

Hash

Transaction

Owner 1's
Public Key

Owner 0's
Signature

Hash

Transaction

Owner 2's
Public Key

Owner 1's
Signature

Hash

 Verify

Transaction

Owner 3's
Public Key

Owner 2's
Signature

Hash

 Verify

Owner 2's
Private Key

Owner 1's
Private Key

Sig
n

Sign

Owner 3's
Private Key

Cryptographic Hash

easy

hard

Preimage resistance

• Given H(x), computationally hard to find x

Cryptographic Hash

hard to find

given

Cryptographic Hash

• 2nd preimage resistance Given H(x), computationally
hard to find x’ such that H(x) = H(x’)

• Collision resistance computationally hard to find any
x,x’ such that H(x) = H(x’)

Signature

Alice
private key

• Only Alice can sign

• Everybody knowing Alice’s public key can verify

Blockchain Abstraction:
Distributed Ledger

Append-only list of events
Not just financial

Everyone agrees on content

Tamper-proof

Everyone agrees on
content?

Consensus!

Each thread has a private input and must decide a value

• Agreement : they decide the same value

• Validity : decision is one of the proposal

• Agreement : non-faulty process decide

Universal Construction

This happened

consensus

This happened

This happened

This happened

This happened

This happened

Universal Construction:
Shared Memory

This happened

CAS

This happened

This happened

This happened

This happened

This happened

Ledger part is
sequential, simple

In shared memory
CAS = consensus

Concurrency,
fault-tolrance

Atomic Broadcast

consensus

Parallel Universes
Traditionnal DC Blockchain

Consensus, Universal
construction, Atomic

Broadcast
Distributed Ledger

Ids Pseudonymous

Paxos, PBFT,
zzyyvva, and hundred

more

Nakamoto
consensus, PoS,

PoA

Huge peer-reviewed
academic literature White papers

Chubby, Raft,
Zookeeper

Many flaws, Bugs,
Hacks

Bitcoin Transaction

In
1782352eab45

Out
123,456 4b35147fc

123,456 btc

Sig
3050122eaa90

refs to previous
unspent TXs whose

recipient is alice

Amount

Bob’s public key

Alice’s signature

Tamper-proof

Each TXs block contain the hash
of the previous block

Transactions
Hash

Transactions
Hash

Transactions
Hash

Transactions
Hash

H()

H()

H()

How does it work?
2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the

next by digitally signing a hash of the previous transaction and the public key of the next owner

and adding these to the end of the coin. A payee can verify the signatures to verify the chain of

ownership.

The problem of course is the payee can't verify that one of the owners did not double-spend

the coin. A common solution is to introduce a trusted central authority, or mint, that checks every

transaction for double spending. After each transaction, the coin must be returned to the mint to

issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent.

The problem with this solution is that the fate of the entire money system depends on the

company running the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any earlier

transactions. For our purposes, the earliest transaction is the one that counts, so we don't care

about later attempts to double-spend. The only way to confirm the absence of a transaction is to

be aware of all transactions. In the mint based model, the mint was aware of all transactions and

decided which arrived first. To accomplish this without a trusted party, transactions must be

publicly announced [1], and we need a system for participants to agree on a single history of the

order in which they were received. The payee needs proof that at the time of each transaction, the

majority of nodes agreed it was the first received.

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a

hash of a block of items to be timestamped and widely publishing the hash, such as in a

newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the

time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in

its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

2

Block

Item Item ...

Hash

Block

Item Item ...

Hash

Transaction

Owner 1's
Public Key

Owner 0's
Signature

Hash

Transaction

Owner 2's
Public Key

Owner 1's
Signature

Hash

 Verify

Transaction

Owner 3's
Public Key

Owner 2's
Signature

Hash

 Verify

Owner 2's
Private Key

Owner 1's
Private Key

Sig
n

Sign

Owner 3's
Private Key

Tamper-Proofing

New owners id

Old-owner signature

9

Problem: Double Spending

dbea25daf536 dbea25daf536

©Maurice Herlihy

11
dbea25daf536 dbea25daf536

Public
ledger

Nakamoto Solution

©Maurice Herlihy

13

Every node keeps a copy of every transaction

Widely considered reckless at the time

Still a scalability issue

©Maurice Herlihy

Traditionnal DC Consensus
A Common Design Pattern

Phase 1 : Conciliation

Select a (block of) proposal

Phase 2 : Conciliation

Adopt/Commit a proposal

Leader Collect and
Chose a proposal

Vote

Iterate if do not succeed

Let’s vote

Sybil Attack
a voté

a voté

a voté

a voté

a voté

a voté

a voté

Id = public key

Single malicious player
may control many ids

Proof of Work

Dwokr and Naor 1993

Expensive to fake

Adpated to PoW consensus

PoW Consensus

• Miners compete to append block to the chain

• Entry ticket is expansive

• Multiplie winners possible

PoW

TXS

Hash(previous
block) Nonce

Block

• Find Nonce such that Hash(Block) has k leading 0’s

• Randomized leader election !

• Chance of winning ~ hashing power

Reward & Incentive to
behave

• Reward: newly minted coins

• Winner also collects TXs fees

TXS

Hash(previous
block) Nonce

Block

null 12,5 4b35147fc xxx

miner public keyreward

no input Txs!

Multiple Winners ?

• Multiple near simultaneous winners create « forks »

• Infrequent but does happen

• Subsequent winners decide which fork wins

• Differs from classical consensus

Honest Majority Hypothesis

19

Honest miners build on
longest chain …

… longest chain reflects will of
honest miners

Dishonest miners would have to out-
compute all honest miners

©Herlihy

Limited Throughput is
Feature, not Bug

20

Number of blocks/time kept
approximately constant

By varying PoW difficulty

This will become a problem as Bitcoin
becomes successful

©Herlihy

Parallel Universes

Classical Consensus PoW Consenus

Unique winner Multiple winners possible

Once a decision is reached,
it is final

Agreement emerges
over time

Permissioned
number of threads fixed

No cheating on Ids

Permissionless
Anyone can participate

Faking id is cheap

21

22

Clients send
transactions to

miners

Does anyone ever talk
about the Bitcoin P2P

layer?

Rumor: mining cartels use faster side-
channels

23

Empirical Study of Bitcoin
P2P network as of 2013

24

Miners assemble transactions
into blocks

Economy of scale: single
transaction too expensive

Block size becomes major
headache later on!

25

Miners race to do Proof of Work

Today, consumes lots of energy

Cartels with access to cheap power and ASICs
control most of hashing power

26

If multiple winners at the same time …

the blockchain forks …

Result: high latency because need to wait until
your transaction deep enough in chain

27

Sanity check: malformed txns rejected

Incentive for miners to behave …

Double spending filter

28

Successors build on recent well-formed blocks

Pick longest chain if there is a fork

Break ties arbitrarily

Crime doesn’t Pay

32

Suppose dishonest party acquires
lots of hashing power …

Unlimited double spending?

Or collect all the rewards?

Vandalism destroys coin values!

Calculation

45

Back of the envelope calculation

How likely dishonest miner can overtake
honest miner to reverse transaction?

Exponentially small in gap size

Calculation naïve but probably mostly right

More Precise Calculations

• Garay et. al The Bitcoin Protocol: Analysis and
Applications

• R Pass and E Shi. The Sleepy Model of Consensus

https://eprint.iacr.org/2016/918

Bitcoin Today Problems

• Long and unpredictable completion times

• Block size limit (not a technical problem)

• High transaction fees

• Volatility

Fail as a medium of exchange

Bombastic success for investment/speculation

Research Directions

Permisionless consensus
protocol

• Eventual consensus: agreement on a prefix of the
blockchain

• Exponential convergence: probability of fork of depth k is
1/2^k

• Liveness : new block as a reasonable rate

• Correctness : blocks in the correct chain are valid

• Fairness: miner success rate proportional to hash power

Power of the adversary

• Honest majority assumption

• But what if collusion of miner somewhat control network
delay ?

• Selfish mining strategy / Mining cartel

Bitcoin interface

• Bitcoin wallet (lot of attacks)

• Swap with other (crypto)currency

Privacy

• Transaction are public

• User = Public key

• Analysis of transaction network leaks private data

• Cash

Alternative to PoW
consensus

• PoW is bad for the planet

• Alternatives PoS, PoA, Proof of Space/Time, ASICs
resistant, Useful computation

