Communication et
Routage

IF309
c travers

Trivia

Two parts

e Algorithmique pour les gros volumes de données. Olivier
Beaumont olivier.beaumont@inria.fr

e Algorithmique pour la coordination dans les systemes
distribués. Corentin Travers ctravers@enseirb-matmeca.fr

webpage:

e http://ctravers.vvv.enseirb-matmeca.fr/IF306/

mailto:olivier.beaumont@inria.fr
mailto:ctravers@enseirb-matmeca.fr

Student seminar

~15/20mins presentation by pair of students
mini-course from a research paper, book chapter, etc.
audience is the class

December 14, everyone must be there

Suggestion of topics will be available soon

do not hesitate to contact Olivier or me while preparing
your talk

Distributed Systems

Dlstrlbuted Algorithms

E. Dijkstra (mutual exclusion) 60’s

e L. Lamport: “a distributed system is one that stops your
application because a machine you have never heard from
crashed” ~70’s

e J. Gray (transactions) ~70’s

* N. Lynch (consensus) ~80’s

e Birman, Schneider, Toueg (group membership) ~90’s

e P2P networks ~00’s

e Satoshi Nakamoto ~10’s

Distributed System

y “ u‘mﬂtk‘k kwkqmck r%%

mfnn’rfu
Queue, Uncore
& I/O

R UIE b

Shared

L3 Cache

e -E:—.:m -u-"“‘.'.‘is

padA]

Distributed System

- el - (-
L !!, S

1
l
ib-g) o

-
-
-
-
-
(L}
-y
-
ol
s
-
-
o

Green box is GK110, red lines are global memory

Distributed System

Distributed System

Distributed Systems

Distributed Systems

e . Yeorowr wodkey

, I 3 6

-
¢
.

Sensor network

Distributed Computing

Processus, thread

Processus, thread

Communication

Communication

ropT- §f- v -0
2 A

v
Y
7.

TR/
h\ :
7.. ! A !

%

A

.
\

\

" '
L 8

P
W

read/write shared memory

Communication

TEST-AND-SET

LL/SC

shared object

Fallures

« A distributed system is one that stops your application
because a machine you have never heard from crashed »

Leslie Lamport

Fallures

Process Crash: unexpectedly stop and subsequently do
nothing

Communication failures : faulty channel/shared object

Byzantine failure : faulty processes execute arbitrary
code

Time

Processes share a clock and run at the same speed

Synchronous

)

- -
)N

» 5
‘ > oy
00 S
- i-.- ™

Va N

¢ .!),;, S
. . -
24 . » - -
z - -

Time

Processes do not share a clock and run at their own speed

Asynchronous

Time

Processes share an approximately synchronized clock and
run at apprOX|mat|ver the same speed

Semi-synchronous

Many Models

» Communication

|tas || cas |+

Failures
. : >

Multicore Processor

Asynchronous
Wait-free % ,
Shared Memory BIEEERE=Ta=HIES =m0

Tl

T [k

(LY

{0 I
i
10 (TG A

Internet

Asynchronous
Message- e
Passing .

0%
No data

Parallel Computing

Synchronous
Message-
Passing /Shared E
Memory *’

08

1,/;,

i M&E 7/l

Consistency

[]

[]

[]
,J,J,\ ,,J,w,,\,w\ [N R) [N RN aoa ,J,\ g oaoa
a o a a a a @ o a j\ a @ @ a2 a L I R | d @ @ o a o g 2 @ a
Cu B B B B | ‘\‘\ﬂﬂﬂﬁﬁﬁl e e B B | Aaa A A A A moa A a A n a oA oA a
@ @ @ @ @ 9 @ @ @ 5 @ O @ @ @ @ @ @ O @@ O @ O @@ @ @E @ @ a o aa @ 9 aaaa @ o aa
aoaaa ,\ ,“ - S B B I | J\ U B I I} Q9 d a oaoa SN B S ,\ J\ ,\ o ,‘ SN B R
. Enter your message : : Enter your message ol

©Matthieu Perrin

Consistency

Coffee break?

G

= i e =
e

©Matthieu Perrin

Istency

Cons

[@ Enter yoUr message

1
a
a
a

Of course

@@ @ @08 aaa

]

s 8 ®

©Matthieu Perrin

Consistency

(

(@ Enter your message | J

No anwser...
Are you upset?

k. d =
A

©Matthieu Perrin

Consistency

1"a @

- Coffee break? i

(Alice :

(

©Matthieu Perrin

Consistency

(Alice :

‘‘‘‘‘‘‘‘‘‘‘

No anwser..
*i} Are you upset?

wwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwww

[@ Enter your message [|

"9 9 ® e @@ @@ Q@@ @@ ada

wwwwwwwwwwwwwwwww

® 9 @ 9 9 9 @ @@ @ @ @

The message could not be send... J

" ® ® ¥ § @ 99 9T 909099 T I DI T TP OIS T

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

No anwser..
X Are you upset?

"9 @ @@ adada@aadaaaaaaan

wwwwwwwwwwwwwww

9 @ @ 9 W@ @ @@ W

©Matthieu Perrin

Consistency

S >

 Coffeebreak? ~ Coffeebreak?
" Noanwser.. B T T — [:
- Areyou upset? 24 Rl
e e e % e e e ~ No anwser... SIIN
- Of e - Are you upset? s

©Matthieu Perrin

Consistency

® 00000000 ERE S

Coffee break’?

) @ @ 0 00 00O RNE0DPRDSPRR S

.

[Coffee break?

.
.
-~ No anwser... - INO anwser...
o 5 B o
ot Are you upset . 'uls! Are you upset*
F
|- .
- @ Enter yourlnessage B @ Enter yourlnessage

©Matthieu Perrin

Coordinated Attack

‘Attack at dawn ‘ ‘Attack at noon ‘

e Alice and Bob must agree on when to attack
e Message-passing

o Messages may be lost (intercepted by the ennemy)

Coordinated Attack

‘Attack at dawn ‘ ‘Attack at noon ‘

e Alice and Bob must agree on when to attack
o Message-passing

o Messages may be lost (intercepted by the ennemy)

Coordinated Attack

Theorem

There is no protocol that ensures that Alice and Bob
Attack simultaneously

Proof (Operational)

Bob receives "attack at dawn'

Proof (Operational)

Bob receives "attack at dawn"
Alice doesn't know if Bob has received "attack at dawn"

Proof (Operational)

Bob receives "attack at dawn"

Alice doesn't know if Bob has received "attack at dawn"
Bob sends an acknowledgment

Proof (Operational)

Bob receives "attack at dawn"

Alice doesn't know if Bob has received "attack at dawn"
Bob sends an acknowledgment

Bob doesn't know if Alice got that message

Proof (Operational)

Bob receives "attack at dawn"

Alice doesn't know if Bob has received "attack at dawn"

Bob sends an acknowledgment
Bob doesn't know if Alice got that message
Alice sends an acknowledgment

Proof (Operational)

Bob receives "attacl

Alice sends an acknowledgment

Client-Server

Client-Server

SN I Ny

Client-Server

I I I O + Availability
e Fault-Tolerance
488

* |Load-Balancing

Consistency?

Alice: give Bob 100$
Carol: give Alice 200$

Alice | Alice
50% 50%
250% -50%

150% 1503

Server as a State Machine
request (A)

e

o v
Clients result

State
Machine

Client request -> state transition, output

State Machine Replication

pEI \

Consistency: Process client requests in the same order

Blockchain

A: give Bob 100% C: give Alice 200$

A: give Carol 50%

Log of requests
Total order
Immutable

Current state : replay every request in order
Verifiable

_

Agreement

e Fundamental problem
e Agree on the order of client request

e Which algorithms ?

This course

Algorithms for Distributed agreement (aka consensus)
Message passing

From synchronous, simple failures ...

... to byzantine, open system

Consensus

Each process starts with an input value

Goal : agree on one of the initial value

e Validity: every decided value is an initial value
e Agreement: all decided values are the same

 Termination: every non-faulty process decides

State Machine Replication

0
<—>(Consensus)<—>°

i TN
© 0 ©

—
—

Client
— B
ﬁ Operation

©Guerraoui et al.

Consensus in
Synchronous Systems

Synchronous Model with
Crash Failures

NN

r—1 Round r Round »+1

Exercise

Design a synchronous, crash tolerant consensus algorithm
e Start with 3 processes
e |nitial values are integers

e Must tolerant at most t <n failures, (n is the number of
pProcesses)

Crash-tolerant Synchronous
Protocol

Protocol for n processes p1,p2,...,pn
Tolerate up to t < n failures

Decide in t+1 rounds

Code for process pi

propose(Vv) :
est <-v

forr=1,...,t+1 do

if 1 = r then broadcast(est) endif

If est’ is received then est <- est’ endif
endfor
return est

Broadcast by Faulty
Process

-
-
]
-
)
-
-

m received by
an arbitrary subset

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
“
|-

——

p: broadcast(m)

round r

Correctness

e Termination: t+1 rounds
e Validity: trivial

e Agreement : At most t failures => at least one round R
coordinated by a correct process.
At the end of round R, every non-crashed process has the
same estimate

Complexity (1)

e t+1 rounds

* n(t+1) messages, each message carries a value

Complexity (2)

* Protocol always costs t+1 rounds
e even Iif there is no failures

e can decision be reached faster ?

Theorem : every synchronous crash-tolerant consensus
protocol requires min(f+2,t+1) rounds

Byzantine Failures

e Processes may be corrupted : under the control of an
adversary

e Corrupted processes execute arbitrary codes

e Corrupted processes may coordinate to defeat the
protocol

Byzantine Agreement

 Termination: every correct process decides
* Agreement: no two correct processes decide differently

e Validity: if every correct process proposes the same value
v, then v is decided

Berman-Garay Protocol

* requirest < n/4
* t+1 phases, rotating coordinator
* A phase: 2 rounds

* round 1 : estimate exchange

* round 2 : commit to the value most frequently raved in
round 1 or adopt coordinator’s value

Berman Garay

operation propose(v;)
(1) est; < vy
(2) whenr =1,3,...,2t— 1,2t + 1do
begin synchronous round
(3) broadcast ESTI(est;);
(4) let rec; = multiset of values received during round r;
(5) most_freq; < most frequent value in rec;;
(6) occ_nb; < occurrence number of most_ fregq;
end synchronous round,;
(7) whenr =2,4,...,2t,2(t + 1) do
begin synchronous round
(8) if (i =r/2)then broadcast EST2(most_freq;) endif;
(9) if (avalue v is received from p,2) then coord_val; < v else coord_val; < v; end if;
(10) if(occ_nb; > n/2 +t) then est; < most_freq; else est; < coord_val; end if
(11) if(r =2(t + 1)) then return(est;) end if
end synchronous round.

©raynal 2010

Proof

Agreement persistance: if every correct has the same
estimate v at the beginning of phase k, they will never
change their estimate thereafter

Theorem: if t < n/4, the protocol solves byzantine
agreement in t+1 rounds

Improving Failures
Resilience

e Berman-Garay is simple, elegant and has constant size
message

e But tolerate up to t < n/4 byzantine processes

Can we do better ?

Theorem: there is no synchronous byzantine agreement
protocol that tolerates t >= n/3 failures

Impossibility n=3, t=1

Theorem: there is no synchronous consensus protocol for
3 processes tolerating 1 byzantine process

Impossibility n=3, t

P1

P2

P3

P1

P2

P3

r =72

Execution E3

P1

P2

P3

P1

P2

P3

r=1 r=72
—
%
—
| 1
0
—
Execution E2
r=1 r =72
—
%
—
| 1
0
—

Execution E4

1

Impossibility n < 3¢

Theorem: there is no synchronous consensus protocol for
n processes tolerating t >= n/3 byzantine processes

Proof
By contradiction and reduction
* Assume A solves consensus for n procs, t <= n/3 byz. procs

* Uses A to solve consensus among 3 process, 1 byz. procs

Impossibility n < 3¢

simulates

simulates

simulates

IS
N

Consensus In
Asynchronous Systems

Asynchronous Model with
Crash Failures

* Processes may fail-stop
e Reliable but asynchronous communication :
e Any message is eventually received

e Unpredictable time between send and receive

Exercise

Design a crash-tolerant asynchronous consensus algorithm
e For 2 processes
e |nitial values are 0 or 1

o Jolerate 1 failure

Bad News

Theorem [FLP] There is no asynchronous binary consensus
protocol for 2 processes that tolerates one crash failure

Consequences Asynchronous consensus requires

- Additional power, e.g., failure detection
 Relax the problem specification, e.g., liveness

 Randomization

* Any combination of the items above

(Unreliable) Leader

* leader_lI current leader according to proc. pi
e May change over time
e Different procs may have different leaders for a while

Eventual leadership after some time, every process has
the same non-faulty leader

Leader Based Consensus

IMRO1]

e Always safe, may not terminate while common leadership
does not hold

t<nl/?2

e Requires —

e Asynchronous stages. In stage k:

1.

try to select a common value (each proc. picks its
current leader’s value)

try to commit to their current value v. If v is
committed, no other value can be decided

Leader-based Consensus

upon propose (V) :
r <« 0 // current round

u + v // current estimate
while not decided do

r ~« r +1

send (PHASE1l, r, u) to all // phase 1

wait for (receive (PHASEl, r, v’) from p; s.t. l=leader;)

u <« v’

send (PHASE2, r, u) to all // phase 2

wait for (receive (PHASE2, r, u’) from majority of processes)

U & set of values u’ received in vote messages

if U = {u’'} for some u’ # 1 then aux < u’

else aux « L

send (PHASE3, r, aux) to all // phase 3

wait for (receive (PHASE3, r, aux’) from majority of processes)
if (received (PHASE3, r, aux’) with aux’ = v’ # 1) then u « v’
if (all (PHASE3, r, aux’) messages are such that aux’ # 1) then

broadcast (DECIDE, u); decided ¢« true
upon deliver (DECIDE, v):

decided ¢+ true

decide (v)

Ben Or Byzantine Consensus n > 9¢

1: z; € {0,1} < input bit

2: 1 =1 < round

3: decided = false

4: Broadcast propose(x;,r)

5: repeat

6: Wait until n — f propose messages of current round r arrived

7. if at least n — 2f propose messages contain the same value x then
8: x; = x, decided = true

9: else if at least n — 4f propose messages contain the same value x then
10: r; =X
11: else
12: choose z; randomly, with Pr{x; =0] = Prlz; = 1] =1/2
13: end if
14: r=r1r+1

15: Broadcast propose(z;,r)
16: until decided (see Line 8)
17: decision = x;

