
Communication et 
Routage

IF309

c travers



Trivia
Two parts 


• Algorithmique pour les gros volumes de données. Olivier 
Beaumont olivier.beaumont@inria.fr


• Algorithmique pour la coordination dans les systèmes 
distribués. Corentin Travers ctravers@enseirb-matmeca.fr


webpage:


• http://ctravers.vvv.enseirb-matmeca.fr/IF306/

mailto:olivier.beaumont@inria.fr
mailto:ctravers@enseirb-matmeca.fr


Student seminar
• ~15/20mins presentation by pair of students


• mini-course from a research paper, book chapter, etc. 


• audience is the class 


• December 14, everyone must be there 


• Suggestion of topics will be available soon


• do not hesitate to contact Olivier or me while preparing 
your talk



Distributed Systems



Distributed Algorithms
• E. Dijkstra (mutual exclusion) 60’s 


• L. Lamport: ‘‘a distributed system is one that stops your 
application because a machine you have never heard from 
crashed’’ ~70’s


• J. Gray (transactions) ~70’s 


• N. Lynch (consensus) ~80’s 


• Birman, Schneider, Toueg (group membership) ~90’s


• P2P networks ~00’s


• Satoshi Nakamoto ~10’s



Distributed System



Distributed System



Distributed System



Distributed System



Distributed Systems



Distributed Systems

Sensor network



Distributed Computing

Communication medium

Processes



Processus, thread



Processus, thread

= 



Communication

Message passing



Communication

read/write shared memory



Communication

TEST-AND-SET CASCAS

LL/SC

shared object



Failures

« A distributed system is one that stops your application 
because a machine you have never heard from crashed »

Leslie Lamport



Failures

• Process Crash: unexpectedly stop and subsequently do 
nothing


• Communication failures : faulty channel/shared object  


• Byzantine failure : faulty processes execute arbitrary 
code



Time

Processes share a clock and run at the same speed 


                                                                              Synchronous 



Time

Processes do not share  a clock and run at their own speed 


                                                                              Asynchronous 



Time

Processes share an approximately synchronized clock and 
run at approximatively the same speed                                                                                                  

Semi-synchronous 



Many Models
Many Models

Failures

Communication

Timecastas



Multicore Processor
Multicores

Asynchronous
Wait-free

Shared Memory



Internet
Internet

Asynchronous
Message-
Passing



Parallel Computing
Parallel Computing

Synchronous
Message-

Passing/Shared
Memory



Consistency
Introduction – Motivation

Bob

Enter your message©

Alice

Enter your message©

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29

©Matthieu Perrin



ConsistencyIntroduction – Motivation

Bob

Enter your message©

Coffee break?

Coffee break?

Alice

Enter your message©

Coffee break?

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29
©Matthieu Perrin



ConsistencyIntroduction – Motivation

Bob

Enter your message©

Coffee break?

Alice

Enter your message©

Coffee break?

Of course

Of course

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29
©Matthieu Perrin



Consistency
Introduction – Motivation

Bob

Enter your message©

Coffee break?

No anwser...
Are you upset?

No anwser...
Are you upset?

Alice

Enter your message©

Coffee break?

Of course

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29©Matthieu Perrin



Consistency

©Matthieu Perrin

Introduction – Motivation

Bob

Enter your message©

Coffee break?

No anwser...
Are you upset?

?

Alice

Enter your message©

Coffee break?

Of course

?

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29



Consistency

©Matthieu Perrin

Introduction – Motivation : Hangouts

Bob

Enter your message©

Coffee break?

No anwser...
Are you upset?

Alice

Enter your message©

Coffee break?

Of course
The message could not be send...

No anwser...
Are you upset?

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29



Consistency

©Matthieu Perrin

Introduction – Motivation : WhatsApp

Bob

Enter your message©

Coffee break?

No anwser...
Are you upset?

Of course

Alice

Enter your message©

Coffee break?

Of course

No anwser...
Are you upset?

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29



Consistency

©Matthieu Perrin

Introduction – Motivation : Skype

Bob

Enter your message©

Coffee break?

Of course

No anwser...
Are you upset?

Alice

Enter your message©

Coffee break?

Of course

No anwser...
Are you upset?

Matthieu PERRIN Specification of shared objects in wait-free distributed systems 1 / 29



Coordinated AttackCoordinated Attack

Attack at dawn Attack at noon

• Alice and Bob must agree on when to attack
• Message-passing
• Messages may be lost (intercepted by the ennemy)



Coordinated AttackCoordinated Attack

Attack at dawn Attack at noon

• Alice and Bob must agree on when to attack
• Message-passing
• Messages may be lost (intercepted by the ennemy)



Coordinated Attack

Theorem 

There is no protocol that ensures that Alice and Bob 

Attack simultaneously 




Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goe
s on

for
ev

er



Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goe
s on

for
ev

er



Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goe
s on

for
ev

er



Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goe
s on

for
ev

er



Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goe
s on

for
ev

er



Proof (Operational)

Bob receives "attack at dawn"

Alice doesn’t know if Bob has received "attack at dawn"

Bob sends an acknowledgment

Bob doesn’t know if Alice got that message

Alice sends an acknowledgment

Goe
s on

for
ev

er



Client-Server 



Client-Server



Client-Server

• Availability


• Fault-Tolerance


• Load-Balancing



Consistency?

Carol: give Alice 200$

Alice

50$

250$

150$

Alice: give Bob 100$

Alice

50$

-50$

150$



Server as a State Machine

August 29, 2016 The Raft Consensus Algorithm Slide 4 

State Machine 

● Responds to external stimuli 

● Manages internal state 

● Examples: many storage 
systems, services 
� Memcached 
� RAMCloud 
� HDFS name node 
� ... 

 

request 

result Clients 
State 

Machine 

Client request -> state transition, output



State Machine Replication

August 29, 2016 The Raft Consensus Algorithm Slide 4 

State Machine 

● Responds to external stimuli 

● Manages internal state 

● Examples: many storage 
systems, services 
� Memcached 
� RAMCloud 
� HDFS name node 
� ... 

 

request 

result Clients 
State 

Machine 

August 29, 2016 The Raft Consensus Algorithm Slide 4 

State Machine 

● Responds to external stimuli 

● Manages internal state 

● Examples: many storage 
systems, services 
� Memcached 
� RAMCloud 
� HDFS name node 
� ... 

 

request 

result Clients 
State 

Machine 

August 29, 2016 The Raft Consensus Algorithm Slide 4 

State Machine 

● Responds to external stimuli 

● Manages internal state 

● Examples: many storage 
systems, services 
� Memcached 
� RAMCloud 
� HDFS name node 
� ... 

 

request 

result Clients 
State 

Machine 

Consistency: Process client requests in the same order



Blockchain

A: give Bob 100$ C: give Alice 200$ A: give Carol 50$

Log of requests 
• Total order 
• Immutable 
• Current state : replay every request in order 
• Verifiable



Agreement

• Fundamental problem


• Agree on the order of client request


• Which algorithms ?



This course

• Algorithms for Distributed agreement (aka consensus)


• Message passing 


• From synchronous, simple failures …


• … to byzantine, open system 



Consensus

Each process starts with an input value 


Goal : agree on one of the initial value 

• Validity: every decided value is an initial value


• Agreement: all decided values are the same 

• Termination: every non-faulty process decides



State Machine Replication
such as ByzCoin [24], Bitcoin-NG [15], and Algorand [19].

In short, our general scheme builds upon two fundamental
components: a leader election subprotocol and a commitment
subprotocol. The goal of the first subprotocol is to elect a node
(or a set of nodes) to lead the task of ordering transactions. The
goal of the second subprotocol is to make sure the ordering is
global and the decision is unique, in case a new (or concurrent)
leader is elected and considers a di↵erent ordering. This intu-
itive decomposition helps describe the avenues for attack which
an adversary can take to subvert a blockchain protocol. It also
enables us to point out critical di↵erences between blockchain
protocols as well as draw parallels between protocols.

We point out the existence of two classes of protocols. A
protocol which represents the first class is Castro and Liskov’s
PBFT [11]. This class of protocols preserves its safety prop-
erty, namely, consistency, despite the harshest conditions of
the network (i.e., asynchrony). We say that this class is in-
dulgent towards asynchrony and call it asynchrony-indulgent
(or A-indulgent). A representative of the second class is Bit-
coin [27]. This protocol continues executing (i.e., preserves
liveness) despite an adversary mounting a Sybil attack, pol-
luting the system with many misbehaving nodes. We say that
this protocol is behavior-indulgent (or B-indulgent).

We organize the rest of this paper as follows. We discuss the
problem addressed by blockchain protocols through the lens
of distributed computing, and introduce the A-indulgent and
B-indulgent classes of blockchain protocols (§2). We then in-
troduce a general scheme which captures the essential behavior
of any blockchain protocol, and use this scheme to discuss two
notable blockchain protocols—PBFT and Bitcoin—showing
how each is a typical example of respectively the A-indulgent
and B-indulgent class (§3). We also relate a few other protocols
to our general scheme and discuss their indulgence (§4), and
then we conclude this paper (§5).

2. THE PROBLEM

2.1 State Machine Replication and Consensus
On-line services often employ replication to ensure their

availability despite failures in the underlying systems. A com-
mon method to achieve this is via state machine replication
(SMR) [32]. In SMR, a service, such as a financial ledger or an
online shopping cart, is modeled as a deterministic state ma-
chine. The service consists of (1) a service state, and (2) opera-
tions that can be applied on this state. Typically, each replica
(or node) of the system maintains its own local copy of the state,
and updates this state as a result of applying client operations.

In SMR, the operations have to be deterministic, i.e. the
operation result and the new state it produces are a function
of only the previous state and the operation itself. Any service
state can thus be uniquely defined by the initial state and a
sequence of operations applied on this initial state.

In order to keep the service state consistent, replicas need to
apply the same operations in the same order. In other words,
SMR requires that the sequence of operations applied at all
replicas is the same; the main challenge in implementing SMR
is ensuring this requirement. The challenge can be reduced to
the fundamental problem of consensus (agreement) in a dis-
tributed system, where all replicas need to agree on what the
n-th operation of the sequence will be, for an ever-increasing
n. In Figure 1 we sketch the typical architecture of an SMR
system as we have presented it so far. The system comprises
6 replicas, labeled from 0 to 5. At the heart of the system

Client

Replica

SMR

Consensus

Operation

1 2 N
…

State Operations

system

…

0

1

234

5

…
…

Figure 1: State Machine Replication in action.

lies a distributed consensus algorithm which the replicas use
to agree on the sequence of incoming client operations and
maintain the consistency of the replicated state.

A consensus algorithm must satisfy three essential properties:

• Validity: The agreed-upon operation must be the input
of one of the replicas (e.g., a client operation).

• Agreement: The agreed-upon operation is the same
for all correct replicas.

• Termination: The replicas will eventually agree on
some operation.

Validity and agreement are safety properties: they define
events that must never happen in a correct execution. Ter-
mination, on the other hand, is a liveness property, defining
that a correct execution must make some progress [5].

2.2 Replicated Ledgers
We focus on a specific type of service: a ledger. Without loss

of generality, we assume that a ledger describes the movement
of money across di↵erent bank accounts. Concretely, a ledger
is an ever-growing sequence of transactions, each of which
transfers money between the users (i.e., clients) of the system.

Replicating a ledger is non-trivial, and even the relation be-
tween a ledger and consensus is not immediate. To understand
this relation, we start from the simple observation that a ledger
is no di↵erent than a fetch-and-add object [20]. As shown by
Herlihy [23], such an object has consensus number 2. This
means that, in a shared memory model, up to two processes
(but not more) can solve consensus among themselves if they
have access to fetch-and-add, i.e., a ledger object. Any object
weaker than a ledger, such as simple read-write register, is
insu�cient to solve consensus in shared memory. In more prac-
tical terms, the problem of implementing a replicated ledger is
strictly more di�cult than that of implementing a file system or
a key-value store, both of which have a read-write interface [7].

Note, however, that we are not interested in the shared mem-
ory model, but in the message passing model (detailed in §2.4).
Interestingly, in a message passing system, Delporte-Gallet et
al. [13] showed that replicating any object that has a consensus
number greater than one—such as fetch-and-add—is equivalent
to solving consensus. In other words, replicating a ledger is
equivalent to solving consensus. We also know that solving
consensus allows us to replicate any object via the SMR ap-
proach. Thus, we conclude that in the message passing model
there is no object that is harder to replicate than a ledger.
In the following, we explain how the abstract notions of

consensus and SMR relate to distributed ledgers.

2

©Guerraoui et al.



Consensus in 
Synchronous Systems



Synchronous Model with 
Crash FailuresSynchronous Model: Example

Round rRound r − 1 Round r +1

Synchronous Consensus 8



Exercise

Design a synchronous, crash tolerant consensus algorithm


• Start with 3 processes 


• Initial values are integers


• Must tolerant at most t <n failures, (n is the number of 
processes)



Crash-tolerant Synchronous 
Protocol

Protocol for n processes p1,p2,…,pn 

Tolerate up to t < n failures 


Decide in t+1 rounds 



Code for process pi

propose(v) : 


     est <- v 


     for r = 1,…,t+1 do

           if i = r then broadcast(est) endif

           if est’ is received then est <- est’ endif 
    endfor

    return est 



Broadcast by Faulty 
Process

round r

p: broadcast(m)

m

m

m

m received by 
an arbitrary subset



Correctness

• Termination: t+1 rounds


• Validity: trivial


• Agreement : At most t failures => at least one round R 
coordinated by a correct process.    
At the end of round R, every non-crashed process has the 
same estimate 



Complexity (1)

• t+1 rounds 


• n(t+1) messages, each message carries a value 



Complexity (2)

• Protocol always costs t+1 rounds


• even if there is no failures


• can decision be reached faster ?

actual  number of 
failures

Theorem : every synchronous crash-tolerant consensus 
                  protocol requires min(f+2,t+1) rounds  
 



Byzantine Failures

• Processes may be corrupted  : under the control of an 
adversary


• Corrupted processes execute arbitrary codes


• Corrupted processes may coordinate to defeat the 
protocol



Byzantine Agreement 

• Termination: every correct process decides 


• Agreement: no two correct processes decide differently


• Validity: if every correct process proposes the same value  
v, then v is decided 



Berman-Garay Protocol
• requires t < n/4 

• t+1 phases, rotating coordinator


• A phase : 2 rounds 


• round 1 : estimate exchange


• round 2 : commit to the value most frequently raved in 
round 1 or adopt coordinator’s value 



Berman Garay

8.4. A SIMPLE CONSENSUS ALGORITHM WITH CONSTANT SIZE MESSAGES 139

• The second round of stage k (i.e., the round whose number is r = 2k) is an estimate adoption.
For each process pi , as indicated previously, if the occurrence number of the estimate v it
has seen the most often bypasses the threshold, pi adopts it as new estimate. The other case
is solved by the rotating coordinator paradigm as follows. During round r = 2k, process pk

acts a coordinator role: it broadcasts its most _ f reqk value to all processes pi (that saves it in
coord _ vali) in order they adopt it in case they cannot adopt their most _ f reqi value.

Let us notice that, as at most t processes are faulty, t + 1 stages necessarily include a stage
whose coordinator is correct. So, this coordinator will impose the same estimate value to the
correct processes if, up to this stage, no estimate value was “present enough” to bypass the
threshold.

operation propose(vi )
(1) esti ← vi ;
(2) when r = 1, 3, . . . , 2t −1, 2t + 1 do

begin synchronous round
(3) broadcast est1(esti );
(4) let reci = multiset of values received during round r ;
(5) most _ f reqi ← most frequent value in reci ;
(6) occ_ nbi ← occurrence number of most _ f reqi

end synchronous round;
(7) when r = 2, 4, . . . , 2t, 2(t + 1) do

begin synchronous round
(8) if (i = r/2) then broadcast est2(most _ f reqi) end if;
(9) if (a value v is received from pr/2) then coord _ vali ← v else coord _ vali ← vi end if;
(10) if (occ_ nbi > n/2 + t) then esti ← most _ f reqi else esti ← coord _ vali end if
(11) if (r = 2(t + 1)) then return(esti ) end if

end synchronous round.

Figure 8.7: Byzantine Consensus (code for pi , t < n/4)

The threshold value is n/2 + t . As shown by Lemma 8.6, this threshold value is required to
guarantee the agreement property of consensus despite up to t Byzantine processes. Let us notice
that

(n > 4t) ⇔ (2n > n + 4t) ⇔
(
n >

n

2
+ 2t

)
⇔

(
n −t >

n

2
+ t

)
.

The algorithm uses a multiset denoted reci . It is a set in which the same value can appear
several times (e.g., {a, b, a, c} is a multiset that contains three different values, a that appears twice
while b and c appear once).

8.4.3 PROOF AND PROPERTIES OF THE ALGORITHM

Lemma 8.6 Let t < n/4, and consider the situation where, at the beginning of stage k, the correct
processes have the same estimate value v. They will never change their estimate value, thereafter.

©raynal 2010



Proof

Agreement persistance: if every correct has the same 
estimate v at the beginning of phase k, they will never 
change their estimate thereafter 


Theorem: if t < n/4, the protocol solves byzantine 
agreement in t+1 rounds 



Improving Failures 
Resilience 

• Berman-Garay is simple, elegant and has constant size 
message


• But tolerate up to t < n/4 byzantine processes 


Can we do better ? 

Theorem: there is no synchronous byzantine agreement 

                 protocol that tolerates t >= n/3 failures 



Impossibility n=3, t=1

Theorem: there is no synchronous consensus protocol for                          
3 processes  tolerating  1 byzantine process  



Impossibility n=3, t=1

8.2. AN UPPER BOUND ON THE NUMBER OF BYZANTINE PROCESSES 129

8.2 AN UPPER BOUND ON THE NUMBER OF BYZANTINE
PROCESSES

This section presents a fundamental result related to Byzantine failures, namely, it is impossible
to solve the interactive consistency problem (and the consensus problem) in a synchronous system
made up of n processes where up to t can be Byzantine when t ≥ n/3.

This impossibility is proved in two steps. First, a lemma shows that there is no synchronous
consensus algorithm for n = 3 processes when one of them is Byzantine. Then, a theorem extends
the result to n processes where n ≤ 3t .This theorem is based on a classical simulation-based problem
reduction.

Preliminary remark Clearly, the processes have to exchange messages.The content of a message is
under the control of its sender. As the underlying network is fully connected (every pair of processes
is a bi-directional channel), a process can (only) check which is the sender of a message.

Lemma 8.2 There is no algorithm that solves the interactive consistency (or consensus) problem in a
synchronous system composed of 3 processes, where one of them can have a Byzantine behavior.

Proof The proof is by contradiction. Let us assume that there is an algorithm A that solves the
problem for 3 processes p1, p2 and p3, one of them being Byzantine. Without loss of generality,
let us also suppose that the values that can be proposed are 1 and 0. Moreover, to be as general as
possible, each process is assumed to have an “infinite” computational power in the sense that it is a
Turing machine that can execute any local computation in 0 time unit (only communication takes
times).

Execution E2

r = 1 r = 2

1

1 1

0
p3

p2

p1

Execution E1

p1

p2

p3

r = 1 r = 2

1

0

1

0

Figure 8.3: Impossibility of agreement for 3 processes one of which is Byzantine (1)

Let us consider the two executions depicted in Figure 8.3 where, considering the interactive
consistency problem, we focus on the value proposed by process p1.

• Execution E1. In that execution, process p1 and p3 are correct, while process p2 is Byzantine.
Moreover, p1 proposes value 1 and consequently sends that value to p2 and p3. During the
second round, each of p2 and p3 reports to the other what it has received from p1. Hence, p3

8.2. AN UPPER BOUND ON THE NUMBER OF BYZANTINE PROCESSES 129

8.2 AN UPPER BOUND ON THE NUMBER OF BYZANTINE
PROCESSES

This section presents a fundamental result related to Byzantine failures, namely, it is impossible
to solve the interactive consistency problem (and the consensus problem) in a synchronous system
made up of n processes where up to t can be Byzantine when t ≥ n/3.

This impossibility is proved in two steps. First, a lemma shows that there is no synchronous
consensus algorithm for n = 3 processes when one of them is Byzantine. Then, a theorem extends
the result to n processes where n ≤ 3t .This theorem is based on a classical simulation-based problem
reduction.

Preliminary remark Clearly, the processes have to exchange messages.The content of a message is
under the control of its sender. As the underlying network is fully connected (every pair of processes
is a bi-directional channel), a process can (only) check which is the sender of a message.

Lemma 8.2 There is no algorithm that solves the interactive consistency (or consensus) problem in a
synchronous system composed of 3 processes, where one of them can have a Byzantine behavior.

Proof The proof is by contradiction. Let us assume that there is an algorithm A that solves the
problem for 3 processes p1, p2 and p3, one of them being Byzantine. Without loss of generality,
let us also suppose that the values that can be proposed are 1 and 0. Moreover, to be as general as
possible, each process is assumed to have an “infinite” computational power in the sense that it is a
Turing machine that can execute any local computation in 0 time unit (only communication takes
times).

Execution E2

r = 1 r = 2

1

1 1

0
p3

p2

p1

Execution E1

p1

p2

p3

r = 1 r = 2

1

0

1

0

Figure 8.3: Impossibility of agreement for 3 processes one of which is Byzantine (1)

Let us consider the two executions depicted in Figure 8.3 where, considering the interactive
consistency problem, we focus on the value proposed by process p1.

• Execution E1. In that execution, process p1 and p3 are correct, while process p2 is Byzantine.
Moreover, p1 proposes value 1 and consequently sends that value to p2 and p3. During the
second round, each of p2 and p3 reports to the other what it has received from p1. Hence, p3

130 8. CONSENSUS DESPITE BYZANTINE FAILURES

sends to p2 a message saying “during the first round p1 told me that it has proposed value 1”.
As far as the Byzantine process p2 is concerned, it sends to p3 a message saying “during the
first round p1 told me that it has proposed value 0”. (Let us observe that no more round does
help because each process has already conveyed what it knows.) As p1 and p3 are correct, it
follows from the validity property of the algorithm A that we need to have view3[1] = 1.

• Execution E2. This execution is similar to execution E1, but it is now process p1 that is
Byzantine, while p2 and p3 are correct. Process p1 sends different values to p2 and p3. During
the second round, p2 and p3 exchange what they received form p1.

In both E1 and E2, process p3 has the same local state at the end of the second round (and,
as already indicated, no more round can help because each process has already conveyed what it
knows.) Hence, p3 has to decide view3[1] = 1 at the end of the second round of E2. Moreover, as
p2 is correct, due to the agreement property of A, we need to have view2[1] = 1 in execution E2.

Let us now consider the executions E3 and E4 depicted in Figure 8.4. Similarly to executions
E1 and E2, the Byzantine process is p1 in execution E3, while it is p1 in execution E4.

When looking execution E3, as p1 and p2 are correct it follows from the validity property of
A that p2 has to decide view2[1] = 0 (same reasoning as before). Let us now look at execution E4
in which the faulty process is p1. At the end of the second round, process p2 cannot distinguish if
the execution is E3 or E4. Hence as it decides view2[1] = 0 in E3, it has to decide the same in E4.

Execution E4

r = 1 r = 2

1

0
p3

p2

p1 p1

p2

p3

r = 1 r = 2

1

0

0

0

0 1

Execution E3

Figure 8.4: Impossibility of agreement for 3 processes one of which is Byzantine (2)

Let us finally consider the executions E2 and E4. It is easy to see that they are the very same
execution. But, we have shown that p2 decides view2[1] = 1 in E2 and decides view2[1] = 0 in
E4. As E2 and E4 are the same execution, this is clearly impossible, from which we conclude that
there is no algorithm A that solves interactive consistency for three processes, one of them being
Byzantine. (The same kind of reasoning holds for consensus). ✷Lemma8.2

Theorem 8.3 There is no algorithm that solves the interactive consistency (or consensus) problem in a
synchronous system composed of n processes, where t of them are Byzantine, when n ≤ 3t .

130 8. CONSENSUS DESPITE BYZANTINE FAILURES

sends to p2 a message saying “during the first round p1 told me that it has proposed value 1”.
As far as the Byzantine process p2 is concerned, it sends to p3 a message saying “during the
first round p1 told me that it has proposed value 0”. (Let us observe that no more round does
help because each process has already conveyed what it knows.) As p1 and p3 are correct, it
follows from the validity property of the algorithm A that we need to have view3[1] = 1.

• Execution E2. This execution is similar to execution E1, but it is now process p1 that is
Byzantine, while p2 and p3 are correct. Process p1 sends different values to p2 and p3. During
the second round, p2 and p3 exchange what they received form p1.

In both E1 and E2, process p3 has the same local state at the end of the second round (and,
as already indicated, no more round can help because each process has already conveyed what it
knows.) Hence, p3 has to decide view3[1] = 1 at the end of the second round of E2. Moreover, as
p2 is correct, due to the agreement property of A, we need to have view2[1] = 1 in execution E2.

Let us now consider the executions E3 and E4 depicted in Figure 8.4. Similarly to executions
E1 and E2, the Byzantine process is p1 in execution E3, while it is p1 in execution E4.

When looking execution E3, as p1 and p2 are correct it follows from the validity property of
A that p2 has to decide view2[1] = 0 (same reasoning as before). Let us now look at execution E4
in which the faulty process is p1. At the end of the second round, process p2 cannot distinguish if
the execution is E3 or E4. Hence as it decides view2[1] = 0 in E3, it has to decide the same in E4.

Execution E4

r = 1 r = 2

1

0
p3

p2

p1 p1

p2

p3

r = 1 r = 2

1

0

0

0

0 1

Execution E3

Figure 8.4: Impossibility of agreement for 3 processes one of which is Byzantine (2)

Let us finally consider the executions E2 and E4. It is easy to see that they are the very same
execution. But, we have shown that p2 decides view2[1] = 1 in E2 and decides view2[1] = 0 in
E4. As E2 and E4 are the same execution, this is clearly impossible, from which we conclude that
there is no algorithm A that solves interactive consistency for three processes, one of them being
Byzantine. (The same kind of reasoning holds for consensus). ✷Lemma8.2

Theorem 8.3 There is no algorithm that solves the interactive consistency (or consensus) problem in a
synchronous system composed of n processes, where t of them are Byzantine, when n ≤ 3t .



Proof 


By contradiction and reduction


• Assume A solves consensus for n procs, t <= n/3 byz. procs


• Uses A to solve consensus among 3 process, 1 byz. procs

Impossibility n ≤ 3t
Theorem: there is no synchronous consensus protocol for                          
n processes  tolerating  t >= n/3 byzantine processes 



Impossibility n ≤ 3t

p1

simulates

p2

simulates

p3

simulates



Consensus in 
Asynchronous Systems



Asynchronous Model with 
Crash Failures

• Processes may fail-stop 

• Reliable but asynchronous communication :


• Any message is eventually received 


• Unpredictable time between send and receive   



Exercise

Design a crash-tolerant asynchronous consensus algorithm


• For 2 processes 


• Initial values are  0 or 1


• Tolerate  1 failure



Bad News

Theorem [FLP] There is no asynchronous binary consensus 
protocol for 2 processes that tolerates one crash failure

Consequences Asynchronous consensus requires


• Additional power, e.g., failure detection


• Relax the problem specification, e.g., liveness


• Randomization 


• Any combination of the items above 



(Unreliable) Leader 

• leader_i current leader according to proc. pi


• May change over time


• Different procs may have different leaders for a while


Eventual leadership after some time, every process has 
the same non-faulty leader 



Leader Based Consensus 
[MR01]

• Always safe, may not terminate while common leadership 
does not hold 


• Requires 


• Asynchronous stages. In stage k:


1. try to select a common value (each proc. picks its 
current leader’s value)


2. try to commit to their current value v. If v is 
committed, no other value can be decided 

t ≤ n/2



Leader-based ConsensusFor Process pi

upon propose(v):

 r ← 0 // current round

 u ← v // current estimate

 while not decided do

  r ← r + 1 

  send(PHASE1, r, u) to all  // phase 1

  wait for (receive(PHASE1, r, v’) from pl s.t. l=leaderi )

  u ← v’

  send(PHASE2, r, u) to all      // phase 2

  wait for (receive(PHASE2, r, u’) from majority of processes)

  U ← set of values u’ received in vote messages

  if U = {u’} for some u’ ≠ ⊥ then aux ← u’

  else aux ← ⊥

  send(PHASE3, r, aux) to all    // phase 3

  wait for (receive(PHASE3, r, aux’) from majority of processes)

  if (received (PHASE3, r, aux’) with aux’ = v’ ≠ ⊥) then u ← v’

  if (all (PHASE3, r, aux’) messages are such that aux’ ≠ ⊥) then

   broadcast(DECIDE, u); decided ← true 

upon deliver(DECIDE, v):

 decided ← true

 decide(v)



17.5. ASYNCHRONOUS BYZANTINE AGREEMENT 195

Remarks:

• A general proof without the restriction to decide for the minimum
value exists as well.

• Since byzantine nodes can also just crash, this lower bound also holds
for byzantine agreement, so Algorithm 17.14 has an asymptotically
optimal runtime.

• So far all our byzantine agreement algorithms assume the synchronous
model. Can byzantine agreement be solved in the asynchronous model?

17.5 Asynchronous Byzantine Agreement

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/9)

1: xi 2 {0, 1} / input bit
2: r = 1 / round
3: decided = false
4: Broadcast propose(xi,r)
5: repeat

6: Wait until n� f propose messages of current round r arrived
7: if at least n� 2f propose messages contain the same value x then

8: xi = x, decided = true
9: else if at least n� 4f propose messages contain the same value x then

10: xi = x
11: else

12: choose xi randomly, with Pr[xi = 0] = Pr[xi = 1] = 1/2
13: end if

14: r = r + 1
15: Broadcast propose(xi,r)
16: until decided (see Line 8)
17: decision = xi

Lemma 17.22. Assume n > 9f . If a correct node chooses value x in Line 10,
then no other correct node chooses value y 6= x in Line 10.

Proof. For the sake of contradiction, assume that both 0 and 1 are chosen in Line
10. This means that both 0 and 1 had been proposed by at least n� 5f correct
nodes. In other words, we have a total of at least 2(n�5f)+f = n+(n�9f) > n
nodes. Contradiction!

Theorem 17.23. Algorithm 17.21 solves binary byzantine agreement as in Def-
inition 17.2 for up to f < n/9 byzantine nodes.

Proof. First note that it is not a problem to wait for n� f propose messages in
Line 6, since at most f nodes are byzantine. If all correct nodes have the same
input value x, then all (except the f byzantine nodes) will propose the same
value x. Thus, every node receives at least n�2f propose messages containing x,
deciding on x in the first round already. We have established all-same validity!

Ben Or Byzantine Consensus n > 9t


