
Distrib. Comput. (2008) 21:201–222
DOI 10.1007/s00446-008-0064-2

On the computability power and the robustness of set
agreement-oriented failure detector classes

Achour Mostefaoui · Sergio Rajsbaum ·
Michel Raynal · Corentin Travers

Received: 18 October 2006 / Accepted: 15 May 2008 / Published online: 12 June 2008
© Springer-Verlag 2008

Abstract Solving agreement problems deterministically,
such as consensus and k-set agreement, in asynchronous dis-
tributed systems prone to an unbounded number of process
failures has been shown to be impossible. To circumvent this
impossibility, unreliable failure detectors for the crash fai-
lure model have been widely studied. These are oracles that
provide information on failures. The exact nature of such
information is defined by a set of abstract properties that
a particular class of failure detectors satisfy. The weakest
class of such failure detectors that allow to solve consen-
sus is Ω . This paper considers failure detector classes from
the literature that solve k-set agreement in the crash failure
model, and studies their relative power. It shows that the
family of failure detector classes �Sx (1 ≤ x ≤ n), and
�ψ y (0 ≤ y ≤ n), can be “added” to provide a failure detec-
tor of the class Ω z (1 ≤ z ≤ n, a generalization of Ω). It
also characterizes the power of such an “addition”, namely,
�Sx+�ψ y � Ω z ⇔ x+ y+z > t+1, �ψ y can construct
Ω z iff y+ z > t , and �Sx can constructΩ z iff x+ z > t+1,
where t is the maximum number of processes that can crash in

An extended abstract of this paper has appeared in the proceedings of
PODC 2006 [20]. This work has been supported partially by a grant
from LAFMI (Franco-Mexican Lab in Computer Science), the
European Network of Excellence ReSIST and PAPIIT-UNAM.

A. Mostefaoui ·M. Raynal (B) · C. Travers
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
e-mail: raynal@irisa.fr

A. Mostefaoui
e-mail: achour@irisa.fr

S. Rajsbaum
Instituto de Matemáticas, UNAM, D. F. 04510 Mexico, Mexico
e-mail: rajsbaum@math.unam.mx

C. Travers
e-mail: ctravers@irisa.fr

a run. As an example, the paper shows that, while �St allows
solving 2-set agreement (but not consensus) and �ψ1 allows
solving t-set agreement (but not (t−1)-set agreement), a sys-
tem with failure detectors of both classes can solve consensus
for any value of t . More generally, the paper studies the fai-
lure detector classes �Sx , �ψ y and Ω z , and shows which
reductions among these classes are possible and which are
not. The paper also presents a message-passing Ωk-based
k-set agreement protocol and shows thatΩk is not enough to
solve (k− 1)-set agreement. In that sense, it can be seen as a
step toward the characterization of the weakest failure detec-
tor class that allows solving the k-set agreement problem.

Keywords Asynchronous system · Distributed algorithm ·
Fault-tolerance · Set-agreement · Unreliable failure detector

1 Introduction

Context of the work: failure detectors for agreement pro-
blems. Consensus is one of the most fundamental problems
in fault-tolerant distributed computing: each process pro-
poses a value, and every non-faulty process must decide a
value (termination) such that no two different values are deci-
ded (agreement) and the decided value is a proposed value
(validity). Despite the simplicity of its definition and its use
as a basic building block to solve distributed agreement pro-
blems, consensus cannot be solved in asynchronous systems
where even a single process can crash [9].

Several approaches have been investigated to circumvent
this impossibility result. One of them is the failure detec-
tor approach [4,26]. It consists in equipping the underlying
system with a distributed oracle that provides each process
with (possibly inaccurate) hints on process failures. Accor-
ding to the type and the quality of the hints, several classes

123

202 A. Mostefaoui et al.

of failure detectors can be defined. As far as consensus in the
crash failure model is concerned, two classes are particularly
important.

– The class of leader failure detectors [3], denotedΩ . This
class includes all the failure detectors that continuously
output at each process the identity of a process such
that, after some time, all the correct processes are pro-
vided with the same identity that is the identity of a
correct process (eventual leadership). Before that time,
different processes can be provided with distinct leaders
(that can also change over time), and there is no way for
the processes to know when this anarchy period is over.
Ω-based asynchronous consensus protocols can be found
in [10,16,24].1

– The class of eventually strong failure detectors [4], deno-
ted �S. A failure detector of that class provides each pro-
cess with a set of suspected processes such that this set
eventually includes all the crashed processes (strong com-
pleteness) and there is a correct process p and a time after
which no set contains the identity of p (eventual strong
accuracy). �S-based asynchronous consensus protocols
can be found in [4,10,21,28].

Two important results are associated with Ω and �S.
First, they are equivalent (which means that it is possible,
from any failure detector of any of these classes, to build a
failure detector of the other class) [3,6,19]. Second, as far
as information on failures is concerned, they are the weakest
classes of failure detectors that allow solving consensus in
asynchronous systems prone to crash failures where a majo-
rity of processes are correct [3].

The k-set agreement problem relaxes the consensus requi-
rement to allow up to k different values to be decided [5]
(consensus is 1-set agreement). This problem is solvable in
asynchronous systems despite up to k − 1 process crash fai-
lures, but has been shown to be impossible to solve as soon
as k or more processes can crash [1,15,27].

A weakened form of the failure detector class �S has
been first proposed in [11] and investigated to solve consen-
sus in [22]. It has then been considered in [13,23,29] with
the k-set agreement problem in mind. While the scope of the
accuracy property of �S spans the whole system (there is
a correct process that, after some time, is not suspected by
any process), the class �Sx is defined by the same complete-
ness property and a limited scope accuracy property, namely,
there is a correct process that, after some time, is not suspec-
ted by x processes. It is easy to see that �Sn (where n is the
total number of processes) is �S, while �S1 provides no

1 It is important to notice that the first version of the leader-based Paxos
protocol dates back to 1989, i.e., before the Ω formalism was introdu-
ced.

information on failures. Moreover, it is clear that any failure
detector that belongs to the class �Sx+1 satisfies also the
properties of the class �Sx . The notation �Sx+1 ⊆ �Sx

conveys this fact.2 It has been shown that, when we consider
the family (�Sx)1≤x≤n of failure detectors, �Sx is the wea-
kest class that allows solving k-set agreement in asynchro-
nous systems for k = t − x + 2 [13] (where t < n/2 is an
upper bound on the number of crashed processes). Hence, as
an immediate corollary, one has that �St and �St+1 are the
weakest classes that allow solving,respectively, 2-set agree-
ment and consensus. Furthermore, �St does not allow sol-
ving consensus. Another relevant class of failure detectors
is Sx ⊆ �Sx . It has the same completeness property but a
stronger accuracy property: it requires from the very begin-
ning a subset x of processes that never suspect one correct
process.

A family of failure detectors, denoted (φy)0≤y≤n , has
recently been introduced in [18] where it is used in conjunc-
tion with conditions [17] to solve set agreement problems.3

A failure detector of the class φy provides the processes
with a query primitive that has as parameter a set X of pro-
cesses, and returns a boolean answer. When |X | is too small
(or too big), the invocation query(X) by a process returns
systematically true (resp., false). Otherwise, namely, when
t − y < |X | ≤ t, 0 ≤ y ≤ t , query(X) returns true only
if all the processes in X have crashed; moreover, if all the
processes of X have crashed and a process repeatedly issues
query(X), it eventually obtains the answer true. We have
φy+1 ⊆ φy . Moreover, φ0 provides no information on fai-
lures, while, for y = t , φy is equivalent to a perfect failure
detector (one that never does a mistake [4]). The class �φy

has been introduced in [20]. A failure detector of that class
eventually satisfies the properties defining the class φy . It is
shown in [20] that, when we consider the family (�φy)0≤y≤t ,
�φy is the weakest class for solving the asynchronous k-set
agreement problem where k = t − y + 1.

The family of failure detector classes (Ω z)1≤z≤n [25] has
been introduced to augment the synchronization power of
object types in the wait-free hierarchy. A failure detector of
the classΩ z outputs at each process a set of at most z process
identities such that, after some time, the same set including
the identity of at least one correct process is output at all
correct processes. Clearly,Ω1 isΩ . Moreover,Ω z ⊆ Ω z+1.

Motivation and results Given that we know of three fami-
lies of failure detectors (�Sx)1≤x≤n , (�φy)0≤y<n , and

2 More generally, let F and G be two classes of failure detectors. F ⊆ G
means that any failure detector in the class F is also a failure detector
in the class G.
3 A condition is a restriction on the possible inputs to a distributed
problem. When a distributed problem is not solvable in a given system,
conditions that allow to solve it are considered.

123

On the computability power and the robustness of set agreement-oriented failure detector classes 203

(Ω z)1≤z≤n , we are interested in studying their relative power.
We have that the weakest class k-set agreement can be solved
with among the family

– (�Sx), 1 ≤ x ≤ n is �Sx for k = t − x + 2,

– (�φy), 0 ≤ y ≤ n is �φy for k = t − y + 1, and

– (Ω z), 1 ≤ z ≤ n is Ω z for k = z as we show in this
paper.

Thus, natural questions are the following:

Are the classes �Sx , �φy and Ω z that solve k-set
agreement, equivalent?
Is the hierarchy represented by these three families of
failure detectors, robust, or is it possible to use two or
more of them that cannot solve k-set agreement and
together solve it?
If so, which failure detector class do they produce? Etc.

In their seminal work on failure detectors, Chandra et al.
[3] and Chandra and Toueg [4] define the output of a fai-
lure detector query according to the failure pattern of the
corresponding run and the invocation time of that query. Dif-
ferently, the output of a query of φy or �φy depends also
on a parameter provided by the invoking process (the set of
processes that the invoking process inquiries about). In that
sense, the definition of this family (�φy)0≤y≤t does not fit
the Chandra and Toueg’s [4] failure detector definition fra-
mework. We start with the following.

– Contribution #1: The two new classes (ψ y)0≤y≤n and
(�ψ y)0≤y≤n .
The paper introduces two new classes of failure detectors
(denotedψ y and�ψ y) that are defined in the Chandra and
Toueg’s failure detector framework [4], i.e., the output of
a failure detector query depends only on the failure pattern
and the time at which the failure detector is queried. These
classes output an integer that approximates the number
of crashed processes.
More precisely, a query to a failure detector of the class
ψ y returns an integer that is always comprised between
t − y and the number of processes that crash during the
run. Furthermore, for any τ there is a time τ ′ ≥ τ from
which the outputs returned by the queries issued after τ ′
are≥ f τ , where f τ is the number of processes that have
crashed at time τ . The class �ψ y allows the properties
defining ψ y to be satisfied only eventually which means
that during an arbitrary (but finite) period, the integers
returned by the queries can be arbitrary.
A first result of the paper shows that the classes ψ y and
�ψ y are equivalent toφy and �φy , respectively. By equi-
valent it is meant that, given any failure detector of one
class (e.g., �φy), it is possible to build a failure detector

of the other class (e.g., �ψ y); both provide the same
information on failures.

In addition to the previous one, the paper has the three
following contributions. In the following, the notation A +
B � C means that, given as inputs a failure detector of
the class A and a failure detector of the class B, there is
an algorithm that constructs a failure detector of the class
C . The notation A + B �� C means that there is no such
transformation algorithm. The notations A � C and A �� C
have the same meaning considering a single failure detector
class as input.

– Contribution # 2: Reducibility, Irreducibility and
Minimality.

– Relations linking ψ y/�ψ y and Sx/�Sx :
– Let 1 ≤ x ≤ t + 1 and 1 ≤ y ≤ t . Sx �� �ψ y .

(Theorem 10.)
– Let 0 ≤ y < t and 1 < x ≤ t + 1. ψ y �� �Sx .

(Theorem 11.)
– Relations linking ψ y/�ψ y and Ω z :

– �ψ y � Ω z iff y + z > t . (Corollary 5.)
– Let 1 ≤ z ≤ t + 1 and 1 ≤ y ≤ t . Ω z �� �ψ y .

(Theorem 12.)
– Relations linking �Sx and Ω z :

– �Sx � Ω z iff x + z > t + 1. (Corollary 6.)
– Let 1 < x, z ≤ t . ∀z :Ω z �� �Sx . (Theorem 13.)

All these relations are depicted in Fig. 1 where the bold
arrows mean reducibility, and the dotted arrows mean
irreducibility. The class Sx is the subclass of �Sx where
the accuracy is perpetual (namely, there is a correct pro-
cess that is not suspected by x processes from the very
beginning). P is the class of perfect failure detectors [4]
(the ones that never do a mistake). Classes in a same gray
box are equivalent. The column at the right of the figure
concerns k-set agreement: all the failure detector classes
in the zth line allow solving z-set agreement. Moreover,
in the family of failure detectors defined by a column,
the class on the plan “z” is the weakest for solving z-set
agreement; and given a plan “z” of the figure, Ω z is the
weakest failure detector class of that line that allows sol-
ving z-set agreement. It is important to notice that, for
1 ≤ z ≤ t , we have (1) �St−z+2 and �ψ t−z+1 cannot
be compared, and (2) both are stronger than Ω z .

– Contribution # 3: Additivity. The paper addresses the
question of adding failure detectors of distinct classes.
This is an important issue as “additivity” is a crucial
concept as soon as modularity and scalability of distri-
buted systems are concerned.
As an example, assuming t > 1, let us consider the
class �St that allows solving 2-set agreement (but not

123

204 A. Mostefaoui et al.

Fig. 1 Grid of failure detector classes

Fig. 2 Additivity of �Sx and �ψ y

consensus), and the class �ψ1 that allows solving t-set
agreement (but not (t − 1)-set agreement). What about a
system with a failure detector in �St and one in �ψ1?
Which type of information on failures is provided by
their combination? The paper shows that �St + �ψ1

allows solving the consensus problem. More generally,
with respect to the grid described in the previous figure,
the paper characterizes which classes can be added and
which cannot. More explicitly, it shows the following

result: �Sx +�ψ y � Ω z ⇔ x + y + z > t + 1 (see

also Fig. 2). To that end, the paper presents a construc-
tion algorithm (sufficiency part, Figs. 7 and 8), and an
impossibility proof (necessity part, Theorem 9).
Intuitively, this shows that �Sx and �ψ y provide dif-
ferent types of information on failures to build Ω z . To
see the gain provided by such an addition, let us analyze
it as follows:

Fig. 3 Ωk -based k-set agreement algorithm (code for pi)

– As �Sx � Ω t−x+2, the previous addition shows that
adding �ψ y allows strengthening Ω t−x+2 to obtain
Ω z with z = (t − x + 2)− y.

– Similarly, as �ψ y � Ω t−y+1, the previous addition
shows that adding �Sx allows strengtheningΩ t−y+1

to Ω z with z = (t − y + 1)− (x − 1).

It is remarkable that the previous addition of failure detec-
tors (Fig. 2) shows that, when we consider both of them,
the failure detector classes �Sx and �ψ y are not robust:
adding them allows solving a problem (the (t + 2 −
(x+ y))-set agreement problem), that none of them taken
alone can solve (�Sx can solve only (t+2−x)-set agree-
ment, and �ψ y can solve only (t+1− y)-set agreement).

– Contribution # 4: Asynchronous Ωk-based k-set
agreement. This paper proposes such an algorithm. To our
knowledge, no previous work has addressed the design
of Ω z-based k-set agreement algorithms. The proposed
algorithm (Fig. 3) is very simple. The paper also esta-
blishes that, when one is interested in solving the k-set
agreement problem in an asynchronous message-passing
system equipped with a failure detector of the (Ω z)1≤z≤n

family, the bounds t < n/2 and z ≤ k are tight (Theo-
rem 4). Consequently, among all the classes described in
Fig. 1, Ωk is the weakest class for solving asynchronous
k-set agreement (hence, the algorithm is optimal in that
respect). This constitutes a step towards the characteri-
zation of the weakest failure detector class that allows
solving the k-set agreement problem.

Roadmap The paper is made up of 7 sections plus an appen-
dix. Section 2 describes the asynchronous computing model
and the classes of failure detectors we are interested in. Sec-
tion 3 presents the asynchronous Ωk-based k-set agreement
algorithm. Section 4 shows that the failure detector classes

123

On the computability power and the robustness of set agreement-oriented failure detector classes 205

ψ y and φy (resp., �ψ y and �φy) are equivalent. Then,
Sect. 5 presents an algorithm that builds a failure detector
of the class Ω z from a pair of underlying failure detectors,
one of the class �ψ y , the other of the class �Sx . Section 6
shows that x + y + z > t + 1 is a necessary requirement
for the previous construction, and establishes the irreducibi-
lity relations depicted by the grid of Fig. 1. Finally, Sect. 7
provides concluding remarks. From a methodology point of
view, as much as possible the paper uses reductions (striving
not to reinvent the wheel).

2 Computation model

2.1 Asynchronous system with process crash failures

We consider a system consisting of a finite set � of n ≥ 3
processes, namely, � = {p1, p2, . . . , pn}. When it is not
ambiguous we also use � to denote the set of the identities
1, . . . , n of the processes. A process can fail by crashing, i.e.,
by prematurely halting. It behaves correctly (i.e., according
to its specification) until it (possibly) crashes. By definition,
a process is correct in a run if it does not crash in that run;
otherwise it is faulty. As previously indicated, t denotes the
maximum number of processes that can crash in a run (1 ≤
t < n). The identity of the process pi is i , and each process
knows all the identities.

Processes communicate and synchronize by sending and
receiving messages through channels. Every pair of pro-
cesses is connected by a channel. Channels are assumed to be
reliable: they do not create, alter or lose messages. In particu-
lar, if pi sends a message to p j , then eventually p j receives
that message unless it fails. There is no assumption about the
relative speed of processes or message transfer delays (let us
observe that channels are not required to be fifo).

Broadcast(m) is an abbreviation for “for_each p j ∈ �
do send (m) to p j end_for”. Moreover, we assume (without
loss of generality) that the communication system provides
the processes with a reliable broadcast abstraction [12]. Such
an abstraction is made up of two primitives Broadcast() and
Deliver() that allow a process to broadcast and deliver mes-
sages (we say accordingly that a message is R_broadcast or
R_delivered by a process) and satisfy the following proper-
ties:

– Validity. If a process R_delivers m, then some process
has R_broadcast m. (No spurious messages.)

– Integrity. A process R_delivers a message m at most once.
(No duplication.)

– Termination. If a correct process R_broadcasts or
R_delivers a message m, then all the correct processes

R_deliver m. (No message R_broadcast or R_delivered
by a correct process is missed by a correct process.)

As we can see, the messages sent (resp., R_broadcast) by
a process are not necessarily received (resp., R_delivered)
in their sending order. Moreover, different processes can
R_deliver messages in different order. There is no assump-
tion on message transfer delays. The communication system
is consequently reliable and asynchronous.

2.2 The failure detector classes (Sx)1≤x≤n and (�Sx)1≤x≤n

As indicated in the Introduction, the failure detector classes
Sx and �Sx have been introduced and used in [11,22,23,29].
A failure detector of the class Sx or �Sx consists of a set of
modules, each one attached to a process: the module attached
to pi maintains a set (named suspectedi) of processes it
currently suspects to have crashed. As in other papers devoted
to failure detectors, we say “process pi suspects process p j

at some time τ”, if p j ∈ suspectedi at that time. Moreover,
(by definition) a crashed process suspects no process.

The failure detector �Sx class generalizes the class �S
defined in [4] (we have �Sn = �S). A failure detector
belongs to the class �Sx if it satisfies the following pro-
perties:

– Strong Completeness. Eventually, every process that
crashes is permanently suspected by every correct pro-
cess.

– Limited Scope Eventual Weak Accuracy. There is a
time after which there is a set Q of x processes such that
Q contains a correct process and that process is never
suspected by the processes of Q.

Similarly, the class Sx generalizes the class S [4] (and we
have Sn = S). A failure detector of the class Sx satisfies the
previous strong completeness property, plus the following
accuracy property:

– Limited Scope Perpetual Weak Accuracy. There is a
set Q of x processes such that (from the very beginning)
Q contains a correct process and that process is never
suspected by the processes of Q.

It is easy to see that Sx+1 ⊆ Sx , �Sx+1 ⊆ �Sx , and Sx ⊆
�Sx . It is also easy to see that the failure detectors of the
classes S1 and �S1 provide no information on failures. It is
shown in [13] that �Sx is the weakest failure detector class of
the family (�Sx)1≤x≤n that allows solving k-set agreement
for k = t− x+2, in asynchronous message-passing systems
with a majority of correct processes (t < n/2).

123

206 A. Mostefaoui et al.

2.3 The failure detector classes (Ω z)1≤z≤n

This family of failure detectors has been introduced in [25].
A failure detector of the class Ω z maintains at each process
pi a set of processes of size at most z (denoted trustedi) that
satisfies the following property:

– Eventual Multiple Leadership. There is a time after
which the sets trustedi of the correct processes contain
forever the same set of processes and at least one process
of this set is correct.

The family (Ω z)1≤z≤n generalizes the class of failure detec-
tors Ω defined in [3], with Ω1 = Ω .

Recently, another generalization of Ω has been studied
in [8] that considers ΩS , where S is a predefined subset of
the processes of the system. ΩS requires that all the correct
processes of S eventually agree on the same correct leader (it
is not required that their eventual common leader belongs to
S). Let X be the set of all the pairs of processes. It is shown
in [8] that, given all theΩx , x ∈ X , it is possible to buildΩ .

2.4 The failure detector classes (φy)0≤y<n and (�φy)0≤y<n

These failure detector classes have been introduced in
[18,20]. As noticed in the Introduction, their definition does
not comply with the Chandra and Toueg’s failure detector
framework that restricts the output of a failure detector to
depend only on the failure pattern and the invocation time.
Here, differently from the previous classes of failure detec-
tors that provide each process pi with a set (suspectedi or
trustedi) that pi can only read, a failure detector provides
the processes with a primitive query(X), where X is a set
of process identities supplied by the invoking process. Such
a primitive allows a process pi to query about the crash of a
region X of the system.

The classes (φy)0≤y<n A failure detector of the class φy is
defined by the following properties (recall that t is an upper
bound on the number of process crashes):

– Triviality property. If |X | ≤ t − y, queryy(X) returns
true. If |X | > t , query(X) returns false.

– Safety property. If t − y < |X | ≤ t and at least one
process in X has not crashed when query(X) returns,
the invocation returns false.

– Liveness property. Let X be such that t − y < |X | ≤ t .
Let τ be a time such that, at time τ , all the processes in
X have crashed. There a finite time τ ′ ≥ τ from which
all the invocations of query(X) return true.

The triviality property provides the invoking process with
a pre-determined output when the set X is too small (because
the failure detector is not powerful enough to give an answer)
or too big (because the answer is obvious). The safety pro-
perty states that if the output is true, then all the processes in
X have crashed. The liveness property states that query(X)
eventually outputs true when all the processes in X have cra-
shed. It is shown in [18] that (1) φy+1 ⊆ φy , and (2) φt and
the class P of perfect failure detectors are equivalent in any
system where at most t processes can crash. Moreover, it is
easy to see that φ0 provides no information on failures.

The classes (�φy)0≤y<n The failure detector class �φy is
the “eventual” counterpart of the class φy . More precisely, a
failure detector of the class �φy is defined by the following
properties (recall that t is an upper bound on the number of
process crashes):

– Triviality property. If |X | ≤ t − y, then queryy(X)
returns true. If |X | > t , then query(X) returns false.

– Eventual Safety property. Let X be such that t − y <
|X | ≤ t . Suppose that at least one correct process belongs
to X . There a finite time τ from which all the invocations
of query(X) return false.

– Liveness property. Let X be such that t − y < |X | ≤ t .
Let τ be a time such that, at time τ , all the processes in
X have crashed. There a finite time τ ′ ≥ τ from which
all the invocations of query(X) return true.

As for the classes (φy)0≤y≤t , it follows from these pro-
perties that (1) �φy+1 ⊆ �φy , and (2) �φt and the class
�P are equivalent in any system where at most t processes
can crash.

2.5 The failure detector classes (ψ y)0≤y<n and
(�ψ y)0≤y<n

The classes (ψ y)0≤y<n A failure detector of the class ψ y

provides each process with an integer nb_ci that pi can only
read. The current value of this number is an approximation of
the number of processes that have crashed (hence the name
nb_ci).

More precisely, let f denote the number of processes that
crash in a given run (0 ≤ f ≤ t), f τ denote the number of
processes that have crashed up to time τ , and nb_cτi denote
the value of the failure detector local variable nb_ci at time
τ .

– Safety property. ∀τ : t− y ≤ nb_cτi ≤ max(t− y, f τ).

– Liveness property. ∃τ : ∀τ ′ ≥ τ : nb_cτ
′

i = max(t− y,
f).

123

On the computability power and the robustness of set agreement-oriented failure detector classes 207

The safety property states that the failure detector outputs
a value that is never smaller than t − y, and is an unde-
restimate of the current number of crashes as soon as at
least t − y processes have crashed. The parameter y allows
defining a failure detector instance for the algorithms that
have to cope with failures only when there are more than
t − y crashes. The liveness property states that eventually
each nb_ci local variable converges towards the number of
processes that crash in the considered run.

The classes (�ψ y)0≤y<n That class is the eventual coun-
terpart of (ψ y)0≤y<n . It allows the previous safety property
not to be satisfied during an arbitrary but finite period. This
weakening combined with the liveness property can be com-
bined into the following property, where f denote the number
of processes that crash in a given run (0 ≤ f ≤ t). This single
property is formulated as follows.

– Eventual convergence property. ∃τ : ∀τ ′ ≥ τ : nb_cτ
′

i= max(t − y, f).

It is easy to see that, differently from the definitions of
(φy)0≤y<n and (�φy)0≤y<n , the definitions of (ψ y)0≤y<n

and (�ψ y)0≤y<n do comply with the Chandra and Toueg’s
failure detector definition framework.

2.6 Notation

Let F and G be any two classes among the previous classes of
failure detectors. The notation ASn,t [F] is used to represent
a message-passing asynchronous system made up of n pro-
cesses, where up to t may crash, equipped with a failure
detector of the class F . Similarly, ASn,t [F ,G] denotes a
system equipped with a failure detector of the class F and
a failure detector of the class G. Finally, ASn,t [∅] denotes a
“pure” asynchronous message-passing system (i.e., with no
failure detector).

3 Using Ωk to solve k-set agreement

This section presents an Ωk-based k-set agreement algo-
rithm, and lower bounds on when solving k-set agreement
with failure detector classes of the family (Ω z)1≤z≤n is pos-
sible. These lower bounds are t < n/2 and z ≤ k. Interes-
tingly, the proof of these bounds is based on a reduction to a
�Sx -based k-set agreement algorithm and a corresponding
lower bound [13].

3.1 A k-set agreement algorithm

The algorithm, described in Fig. 3, is a simple adaptation of
an Ω-based consensus algorithm described in [10] (which

is in turn inspired from a �S-based consensus algorithm
described in [21]); it assumes t < n/2. A process pi invokes
k-set_agreement(vi), where vi is the value it proposes. If
it does not crash, it terminates when it executes the statement
return(v), where v is then the value it decides.

The function k-set_agreement(vi) is made up of two
tasks. The task T 2 is used to disseminate a decided value
and prevent deadlock: due to the reliable broadcast, as soon
as a process decides, all the correct processes decide. In the
main task T 1, the processes proceed in consecutive asyn-
chronous rounds, each round being made up of two phases,
each including a communication step. When considering a
process pi , the local variable esti is the local estimate of the
decision value; ri is its current round number.

During the first phase of round r , pi first reads trustedi

(the set provided by its underlying failure detector module
of the class Ω z), stores its value in Li , and sends a message
phase1(ri , Li , esti) to all the processes. Then, pi waits until
it has received such round r messages from n − t processes
(i.e., from at least a majority) and it has either received such
a message from a process of its Li set or the set trustedi

has changed. Then, if a majority of processes have the same
leader set L , and pi has received an estimate value vL from a
process in this set L , it keeps vL in auxi , otherwise it sets auxi

to ⊥. Let us notice that we can conclude from the previous
statements (see the proof) that, at the end of the first phase
of each round, the set of the auxi local variables contains at
most |Li | = k distinct values different from ⊥.

The second phase of a round aims at allowing the pro-
cesses to decide, while ensuring that no more than k dif-
ferent values are decided, whatever the round during which
a process decides. To that end, each process pi broadcasts
a phase2(ri , auxi) message to all the processes, and then
waits until it has received such messages from n − t pro-
cesses. If it receives a non-⊥ value v, it adopts v as its new
estimate (if there are several such values, it takes one arbitra-
rily). Moreover, if none of the values it has received is ⊥, it
decides the estimate value v it has just adopted; this is done
by broadcasting v in a reliable way, and then returning that
value (in task T 2).

3.2 Short discussion

Below, we use the notions of perfection, oracle-efficiency and
zero-degradation that are straightforward generalizations of
the same notions introduced in [7,10] in the context of failure
detector-based consensus algorithms.

Let a failure detector of the classΩk be perfect if, from the
very beginning, it delivers to the processes the same set of at
most k processes including at least one correct process. A set
agreement algorithm is oracle-efficient if it terminates in two
communication steps (a single round) when its underlying
failure detector is perfect and there is no crash. It is easy to

123

208 A. Mostefaoui et al.

see that the previous algorithm is oracle-efficient. This algo-
rithm satisfies an even stronger property, namely, it is zero-
degrading. A set agreement algorithm is zero-degrading if it
terminates in two steps when its underlying failure detector
is perfect and there are only initial crashes (a crash is initial
if the corresponding process crashes before the algorithm
starts). The reader can easily check that the proposed algo-
rithm is zero-degrading. Zero-degradation is particularly
important when a set agreement algorithm is used repeatedly:
it means that future executions do not suffer from past process
failures as soon as the failure detector behaves perfectly.

3.3 Proof of the algorithm

The proof is similar to the proof of the Ω-based consensus
algorithm described in [10]. It assumes t < n/2 and z ≤ k
(see Theorem 4).

Lemma 1 No correct process blocks forever in a round.

Proof Let pi be a correct process. We have to show, whatever
the round number r , that pi cannot be blocked forever in the
wait statements (lines 04, 05 and 10) of round r . This follows
from (1) the fact that t being the maximum number of faulty
processes, (2) the termination and integrity properties of the
reliable broadcast primitive, as well as (3) the fact that the
leader set eventually permanently contains a correct process.
In more details, we have the following.

If a process decides, then by the termination property of the
reliable broadcast of the corresponding decision() message,
every correct process decides, and consequently no correct
process can block forever in a round. Assume by contradic-
tion that no process decides. Let r be the smallest round in
which some correct process pi blocks forever. So pi blocks
at line 04, 05 or 10. Consider the case of line 04. Since no cor-
rect process blocks in a round r ′ < r and no correct process
decides, all correct processes broadcast a phase1 (r, _, _)
message. As the maximum number of faulty processes is t ,
it follows from the integrity and termination of the broadcast
primitive that pi eventually delivers n − t such messages.
Consequently, pi cannot block at line 04. The fact that pi

cannot block forever at line 05 follows directly from the fact
that its local set trustedi eventually permanently contains
the identity of a correct process and the fact that all the cor-
rect processes broadcast a phase1(r_, _)message. Consider
line 10: as we have just shown that no correct process blocks
forever in phase 1 of round r , it follows that all correct pro-
cesses broadcast a phase2(r, _, _) message. Consequently
(as in line 04), pi does not block forever at line 10. �

Assuming pi completes line 08 during round r , let auxi [r]
be the value of auxi after it has been updated by pi at line
08. Moreover, let AUX[r] = {auxi [r] | pi completes phase
1 of r }.

Lemma 2 ∀r : |{v : v ∈ AUX[r] ∧ v �= ⊥}| ≤ k.

Proof Let pi be a process that completes phase 1 of round
r . Let us observe that pi sets auxi to a value v �= ⊥ only if it
sees that a majority of processes have the same leader set L
(lines 06–08). Moreover, v is a value proposed by a process
that belongs to L . Let us notice that there is at most one
set that is considered leader set by a majority of processes.
Consequently, all the values auxi �= ⊥ at the end of the round
r are estimate values of processes belonging to the same set L .
Since this set is of size k, it follows that |{auxi [r] : auxi [r] �=
⊥ ∧ pi completes phase 1 of round r}| ≤ k. �

Lemma 3 Suppose that no process decides.∃r: ⊥ /∈AUX[r].
Proof It follows from the eventual multiple leadership of the
class Ωk that there is a time τ after which all the processes
have permanently the same leader set L and this set contains
a correct process. Let r be a round that starts after that time
(i.e., the first process, say pi , that executes ri ← r does so
at time τ ′ > τ). As no correct process blocks in the round r
(Lemma 1), each correct process broadcasts phase1(r, _, _),
from which it follows that the condition of the if statement
of line 06–07 is satisfied for all the processes that complete
phase 1 of round r . Consequently, no process pi sets its auxi

variable to ⊥. �

Theorem 1 [Validity] Any decided value is a proposed value.

Proof The special value ⊥ cannot be decided (lines 12–13).
Moreover, it follows from the integrity and validity of the
broadcast primitive that the auxi and esti variables can only
contain proposed values or ⊥. �

Theorem 2 [Agreement] At most k distinct values are deci-
ded.

Proof If no process decides, the theorem is trivially true. So,
let us assume that a process decides and let r be the smallest
round during which some process decides (“decide v during
r” means “during r , execute line 13 with ⊥ /∈ reci ∧ esti =
v”). We first show that there is a set V of values, |V | ≤ k, such
that any process that decides during r decides a value from
V . We then show that any value decided during a subsequent
round belongs to V .

Let V = {v : v ∈ AUX[r]∧v �= ⊥}. Let us first notice that
|V | ≤ k (Lemma 2). Let pi be a process that decides during
round r . Let reci [r] be the value of the set reci computed
at line 11 of round r . Let us observe that reci [r] ⊆ AUX[r]
(lines 10–11). Since pi decides a value v �= ⊥ in reci [r], we
have v ∈ V .

Assuming that some process pi decides a value v ∈ V
during round r , we now prove that the estimate est j of any
process p j that progresses to r + 1 belongs to V . As there
are at least n − t phase2(r, _) messages carrying a value

123

On the computability power and the robustness of set agreement-oriented failure detector classes 209

aux �= ⊥ (these are the messages that allowed pi to decide
during round r) and n − t > n/2, it follows from the inte-
grity and validity properties of the broadcast primitive that p j

has received at least one of these phase2 messages. Conse-
quently, when p j executes line 12, it updates its estimate to a
value aux �= ⊥. Hence, from the definition of set V we have
est j ∈ V . It follows that estimate est j of all the processes
p j that start the round r + 1 belong to V . �

Theorem 3 [Termination] Every correct process eventually
decides.

Proof The proof is by contradiction. Assume that no correct
process decides. By Lemma 1, the correct processes progress
from round to round. Hence, due to Lemma 3, there is a
round r such that ⊥ /∈ AUX[r]. Consequently, any message
phase2(r, aux) that is broadcast is such that aux �= ⊥. Due
to the integrity and termination properties of the broadcast
primitive, we have ⊥ /∈ reci for any process pi executing
the second phase of round r . We can then conclude (line 13)
that the correct processes decide: a contradiction. �

3.4 A lower bound

Considering an asynchronous message-passing system
equipped with a failure detector of the class Ω z , 1 ≤ z ≤ n,
this section establishes that t < n/2 and z ≤ k are necessary
and sufficient conditions for solving the k-set agreement pro-
blem. As already noticed, this result is obtained by a reduction
to the problem of the weakest failure detector in the family
(�Sx)1≤x≤n that allows solving k-set agreement.

Theorem 4 The k-set agreement problem is solvable in a
system ASn,t [Ω z] if and only if t < n/2 and z ≤ k.

Proof [⇒ part] The proof is by contradiction. Let us assume
that there is an algorithm A that solves the k-set agreement
problem in ASn,t [Ω z] such that t ≥ n/2 or z > k. Due
to Corollary 6, there is an algorithm T that builds a failure
detector of the classΩ z in ASn,t [�St−z+2]. Moreover, there
are such transformation algorithms (e.g., the one presented
in Sect. 5 with y = 0) that are independent of the value
of t (i.e., t < n). Combining such a transformation T and
the algorithm A, we obtain an algorithm that solves the k-set
agreement problem in ASn,t [�St−z+2]. It then follows from
the lower bound established by Herlihy and Penso [13] for
solving the k-set agreement problem in ASn,t [�St−z+2] that
t < min(n/2, (t − z+ 2)+ k− 1), from which we conclude
t < n/2 and z ≤ k: a contradiction.
[⇐ part] This part follows directly from the very existence of
the Ωk-based k-set agreement algorithm described in
Sect. 3.1 and proved in Sect. 3.3. �

Fig. 4 From φy to ψ y (resp. From �φy to �ψ y), (code for pi)

4 The classes ψ y (�ψ y) and φ y (�φ y) are equivalent

This section shows that the failure detector classesφy andψ y

(resp., �φy and �ψ y) have the same computational power
as far as the information on failures is concerned.

Once we know that φy and ψ y (�φy and �ψ y) are equi-
valent, it becomes possible to use φy (�φy) instead of ψ y

(�ψ y) to prove lower bounds and (ir)reducibility results (as
done in Sect. 6).

4.1 From φy (�φy) to ψ y (�ψ y)

This section shows that, for any y, 1 ≤ y ≤ n, given any
failure detector of the class ψ y (resp., �ψ y) it is possible to
build a failure detector of the class ψ y (resp., �ψ y).

A transformation For each α, t − y + 1 ≤ α ≤ t , let
Sets(α)be the set including all the subsets of� that containα
processes. There are y such sets, namely, from Sets(t−y+1)
until Sets(t).

The algorithm described in Fig. 4 builds a failure detector
of ψ y (resp., �ψ y) from any failure detector of φy (resp.,
�φy). At each process pi , it consists in an infinite loop
that repeatedly updates the local variable nb_ci whose value
defines the current output of ψ y (resp., �ψ y). The primitive
φ-query(X), where X is a set of processes, allows a process
pi to query its underlying φy (resp., �φy) failure detector
that returns true or false according to the current state (alive
or crashed) of the processes of X .

The body of the loop for pi consists in invoking
φ-query(X) for each possible set X of α processes, with
α varying from t − y + 1 to t . If φ-query(X) answers true
for the current set X , pi concludes that the α processes of
X have crashed; accordingly, it keeps the current value of
α in a set Si . When it has probed all the possible sets, pi

updates nb_ci according the value of Si . (This algorithm can
be improved. We do not do it in order to keep it as simple as
possible.)

Theorem 5 Given any failure detector of the class φy (resp.,
�φy), the algorithm described in Fig. 4 builds a failure detec-
tor of the class ψ y (resp., �ψ y).

123

210 A. Mostefaoui et al.

Fig. 5 From ψ y to φy (resp.
From �ψ y to �φy), (code for
pi)

Proof The proof addresses simultaneously the case where
the underlying failure detector belongs to the class φy , and
the case where it belongs to �φy . Taking an arbitrary run, it
considers two cases according to the number f of processes
that crash in that run (0 ≤ f ≤ t).

– f < t− y+1. In that case, any set X , that belongs to a set
Sets(α) for some α (t− y+1 ≤ α ≤ t), contains at least
one correct process. It follows from the safety property of
the underlying failure detector that there is a finite time
τ (τ = 0 for φy and τ ≥ 0 for �φy) after which, for
any X as defined previously, φ-query(X) returns false.
Consequently, after time τ , for any process pi , we always
have Ai = ∅ at the end of the outer for_each loop. We
conclude from the text of the algorithm that, after τ , each
local variable nb_ci remains forever equal to t − y.

– f ≥ t − y + 1. Let E be the set of processes that crash
(so, |E | = f). Due to the definition of the sets Sets(t −
y + 1), . . . , Sets(t), there is a set X in one of these sets
such that E = X . According to the order in which the
processes of E crash, let τ be the time at which the last
process of E crashes.
Let us first observe that, when the underlying failure
detector belongs to the class φy , it follows from its safety
property that all the φ-query(E) invocations that return
before τ returns false. Differently, if it belongs to �φy , a
φ-query(E) invocation issued before τ can return true
or false. Moreover, it follows from the liveness property
of φy and �φy , that there is a time τ ′ ≥ τ after which all
the invocations φ-query(E) return true.

– Case 1: The underlying failure detector belongs to
�φy . There is a time τ ′′ ≥ τ ′ after which any φ-
query(X) issued by a process pi and such that |X | >
f returns false (eventual safety property of �φy), and
any φ-query(E) a returns true (liveness property of
�φy). It follows that, after time τ ′′, we always have
max(Ai) = f before executing the last if statement.
Consequently, after τ ′′, nb_ci keeps forever the value
f . As f > t − y, the eventual convergence property
of �φy follows.

– Case 2: The underlying failure detector belongs toφy .
During the period during which no more than t − y
processes crash, as all the sets X used in the algorithm
are such that |X | > t − y, it follows that all the invo-
cations φ-query(X) issued during that period return
false. The set Ai remains consequently empty, and
nb_ci = t − y during that period.
Let time τ(f ′) be a time at which exactly f ′ (t − y <
f ′ ≤ f) processes have crashed (i.e., the remaining
f − f ′ processes have not yet crashed). For notational
convenience, let τ(f + 1) = +∞.
It follows from the safety property of φy that any φ-
query(X) with |X | > f ′ returns false at least until
τ(f ′ + 1). Consequently, until τ(f ′ + 1), the greatest
value that Ai can contain is f ′, which proves the safety
property of ψ y .
To prove the liveness property of ψ y , it is sufficient
to show that there is a time after which nb_ci keeps
forever the value f . There is a finite time τ ′ ≥ τ(f)
after which φ-query(E) returns always true (live-
ness property of φ), and φ-query(X) with |X | > f
always return false (safety property of φ). It follows
from this observation that, after τ ′, we always have
max(Ai) = f = |E | before executing the last if sta-
tement. Consequently, from τ ′, nb_ci keeps forever
the value f = |E |. �

4.2 From ψ y (�ψ y) to φy (�φy)

A transformation The algorithm that builds a failure detec-
tor of the class φy (�φy) from a failure detector of the class
ψ y (�ψ y) is described in Fig. 5. Let φ-query(X) denote the
operation of the failure detector of the class φy (�φy). The
underlying failure detector of the class ψ y (�ψ y) provides
each process pi with an integer local variable nb_ci that pi

can only read.
When pi invokesφ-query(X), it first checks the size of X .

If X is too small (resp., too big), the value true (resp., false) is
returned. Otherwise, the size of X is such that t− y < |X | ≤
t . In that case, pi saves the current value of nb_ci in a local
variable est_ci , and sends an inquiry(sni)message (times-

123

On the computability power and the robustness of set agreement-oriented failure detector classes 211

tamped with the next sequence number) to every process. It
then waits (line 06) until either it has received “enough” cor-
responding responses (i.e., that carry the sequence number
sni) or the value of n−nb_ci has changed. “Enough” means
here n − nb_ci (while it is waiting, pi checks regularly the
condition; each time it checks it, it reads the (possibly new)
value of nb_ci). If the value of nb_ci has changed, pi starts
a new inquiry (line 04). Otherwise the inquiry timestamped
sni is successful and pi collects in reci the ids of the pro-
cesses that sent a response matching the inquiry. Finally, if
one process p j in X is also in reci , that process was not
crashed when pi sent the inquiry message. The value false
is then returned. Otherwise (reci ∩ X = ∅), the value true is
returned.

Theorem 6 Given any failure detector of the classψ y (resp.,
�ψ y), the algorithm described in Fig. 5 builds a failure
detector of the class φy (resp., �φy).

Proof Considering an arbitrary run, let f be the number of
processes that crash in that run. The proof is decomposed in
five parts.

– [Termination] Let us first show that each invocation of
φ-query(X) by a correct process terminates. If |X | ≤ t−
y or |X | > t , the operation trivially terminates. So, let us
assume that t−y < |X | ≤ t . Let us first consider the wait
until statement, and let us assume that pi remains blocked
forever. Let sn be the current value of sni . As channels
are reliable, pi eventually receives at least n− f messages
response(sn). As pi is blocked forever in the wait until
statement, we conclude that after some time, we always
have n− f < n−est_ci and est_ci = nb_ci (1). But, from
the liveness of ψ y , or the eventual convergence of �ψ y ,
there is a time after which nb_ci remains always equal to
max(t − y, f) (2). By combining assertions (1) and (2),
we obtain n − f < n −max(t − y, f): a contradiction.
Let us now consider the repeat statement. Its termination
follows from the liveness of ψ y , or the eventual conver-
gence of �ψ y , that states that there is a time after which
nb_ci remains constant. Consequently, after that time we
necessarily always have est_ci = nb_ci , which proves
the termination of the repeat statement.

– [Triviality property of φy and �φy] That property is
trivially guaranteed by the case statement.

– [Liveness property of φy and �φy] Let E , with |E | >
t − y, be a set of processes that crash. Let τ(E) be a time
after which all the processes of E have crashed. Moreo-
ver, due to the liveness property of ψ y or the eventual
convergence of �ψ y , there is a time τ after which nb_ci

remains forever equal to max(t − y, f).
Let τ ′ ≥ max(τ (E), τ). Let us consider an invocation
of φ-query(E) issued after τ ′ by some process pi . This
invocation terminates (see above). Let sn be a sequence

number with which pi tags an inquiry()message during
the invocation of φ-query(E). Process pi does not
receive response(sn)messages from the processes in E
as they have crashed before τ(E). It follows that reci ∩
E = ∅ when pi exits the repeat loop, from which we
conclude that φ-query(E) returns true.

We next establish that the transformation ensures the safety
property of �φy and φy . In the following, X denotes a set
of processes such that t − y < |X | ≤ t . pi is an arbitrary
process that invokes φ-query(X).

– [Eventual safety property of �φy] We have to show that
if X contains a correct process, there is a time after which
any φ-query(X) returns false. When φ-query(X) ter-
minates, the invoking process has received at least n −
nb_ci response() messages matching its last inquiry.
The set reci then contains the identities of the processes
that sent that response()messages. Moreover, it follows
from the eventual convergence property of �ψ y that there
is a time τ after which we always have est_ci = nb_ci =
max(t− y, f). Thus, at the end of a φ-query(X) invoked
after τ , we have |reci | ≥ n −max(t − y, f).
If max(t− y, f) ≥ t− y, reci ∩X �= ∅ since |X | > t− y,
and φ-query(X) returns false. In the other case, |reci | =
n− f . As there are n− f correct processes, there is a time
τ ′ after which every set reci is exactly the set of correct
processes ids. Hence reci ∩ X �= ∅ as X contains at least
one correct process. Consequently, a φ-query(X) issued
after that time returns the value false.

– [Safety property of φy] Let τ be a time at which at least
one process of X has not crashed. We have to show that
any φ-query(X) that returns before time τ returns false.
Considering the last execution of the repeat loop body
of a φ-query(X) invocation issued by a process pi , let
sn be the corresponding sequence number and τb be the
time at which pi reads the current value x of nb_ci at line
04. We have est_ci = x during this loop execution. Let
f τb be the number of processes that have crashed by time
τb.
Due to the safety property of φy , we have x ≤ max(t −
y, f τb). Moreover, pi has received n − x response(sn)
messages when it exits the wait until statement. The set
reci then contains the identities of the senders of these
messages. We consider two cases:

– Case 1: t − y ≥ f τb . In that case |reci | = n − x ≥
n − (t − y). As |X | ≥ t − y + 1, it follows that
X ∩ reci �= ∅.

– Case 2: t − y < f τb . In that case |reci | = n − x ≥
n − f τb . As no process crashed at time τb sends a
response(sn) message, it follows that reci includes
the identities of each process that has not crashed by

123

212 A. Mostefaoui et al.

time τ b. At least one process of X has not crashed by
time τ b, from which we conclude that X ∩ reci �= ∅.

In both cases, φ-query(X) returns false. �

A simpler transformation for the class �φy The proof of
the safety properties of Theorem 6 relies on a strong syn-
chronization realized by the repeat loop and the est_ci and
sni local variables (lines 04–07). This synchronization is
used to isolate an inquiry period during which nb_ci remains
constant.

Actually, this synchronization is stronger than necessary
to ensure the eventual safety property of �φy . A much less
synchronized transformation algorithm works for this class.
More precisely, the local variables est_ci an sni can be sup-
pressed, and the repeat statement (lines 04–07) can be repla-
ced by the two following lines:

for_each j ∈ {1, . . . , n} do send inquiry() to p j end_do;
wait until

(
response() received from n − nb_ci processes

)
.

The proof is left to the reader. (That proof has to consider the
fact that there is a time after which all the response messages
sent by a crashed process have arrived.)

5 Additivity of the failure detector classes �Sx and
�ψ y

This section presents an algorithm that, given as input any
pair of failure detectors of the classes �Sx and �ψ y ,
constructs a failure detector of the class Ω z , provided that
x + y + z > t + 1. (It is proved in Sect. 6.1 that this is a
necessary requirement for such a construction, thereby sho-
wing that the algorithm is optimal.)

The algorithm is made up of two components that we
call wheels because each “turns” like a gear-wheel until they
become synchronized and stop turning. The wheel that is the
first to eventually stop is the one whose progress depends on
the underlying �Sx failure detector (“lower” wheel). When
it stops, it provides a property that allows the second wheel in
turn to eventually stop (“upper” wheel). As we will see, the
wheel metaphor comes from the fact that each component is
made up of main tasks that “turn”, each scanning a sequence
until some property becomes satisfied.

Let us remind that 1 ≤ x ≤ n. Moreover, as the class �ψ t

is equivalent to the class of eventual perfect failure detectors
we consider only the cases 0 ≤ y ≤ t , from which we
conclude t − y + 1 > 0. Finally, as z ≥ t + 2 − (x + y)
is a necessary requirement and Ω1 is the strongest class in
the family (Ω z)1≤z≤n , the only interesting cases for the pair
(x, y) are when t+2− (x + y) ≥ 1. Hence, in the following
we consider that t − y + 1 > 0, z = t + 2 − (x + y) and
t + 2− (x + y) > 0.

Fig. 7 From �ψ y+�Sx toΩ z : lower wheel component (code for pi)

5.1 The lower wheel component

5.1.1 Description

The aim of this component is to provide each process pi with
a local variable repri intended to contain a process identity
such that the following property becomes eventually satis-
fied: there is a set X of x processes that either have crashed,
or the variables repri of the processes of X that have not cra-
shed contain the identity �x of one of them that is a correct
process. This process is their common representative (lea-
der). The variable repri of a process pi that does not belong
to X has to be equal to the identity i of pi .

To attain this goal the different processes use their local
sets suspectedi that collectively satisfy the completeness
and limited scope eventual accuracy properties defining the
class �Sx . Let X be the finite set of all the sets of x pro-
cesses that can be built from the set � = {p1, . . . , pn}. Let
nb_x denote the number of combinations of x elements in
a set of n elements. X has nb_x elements. Let us organize
X as a sequence, and let X [k] be its kth element, 1 ≤ k ≤
nb_x . Within X [k], let us arrange the x processes it is made
up of in some predefined (arbitrary) order: �k

1, . . . , �
k
x . This

means that the infinite sequence X [1], X [2], . . . , X [nb_x],
X [1], X [2], . . . , X [nb_x], X [1], . . . gives rise to an infi-
nite sequence of process identities, namely, �1

1, . . . , �
1
x , �

2
1,

. . . , �2
x , �

3
1, . . . (see Fig. 6). This sequence is assumed to be

initially known by all the processes in order they can scan it
in the same order.

In addition to its output repri, each process pi manages
a local set Xi and a local variable �xi . It starts with Xi ini-
tialized to X [1], and �xi initialized to �1

1 (the first process
of X [1]). Then, it uses the function Next(−,−) defined as
follows to progress along the infinite sequence of process
identities. Next(�k

y,X [k]) outputs the pair (�k
y+1,X [k]) if

y < x and the pair (�k+1
1 ,X [k + 1]) if y = x (with k + 1

being replaced by 1 when k = nb_x).
The behavior of the lower wheel component of a process

pi is described in Fig. 7. It is made up of two simple tasks. The
processes scan the infinite sequence of sets generated from X
until they stabilize. Xi represents the set of x processes that
are currently in charge of extracting a common representative

123

On the computability power and the robustness of set agreement-oriented failure detector classes 213

Fig. 6 The Next() function on the logical ring (�, X)

�xi from this set. To do it, each process pi that belongs to
Xi uses its set suspectedi provided by the underlying failure
detector of the class �Sx . If the processes of Xi succeed in
not suspecting one of them -whose identity is kept by pi in
�xi -, they stop sending x_move() messages. Differently, if
a process p j of the set Xi suspects its current “leader” �x j ,
it uses the reliable broadcast primitive to send the message
x_move(�x j , Xi) indicating that, from its point of view, �x j

cannot be their common representative. A process p j delivers
a message x_move(�x, X) only when �x = �xi and Xi = X ;
it then proceeds to the next process identity (according to
the infinite sequence), and possibly to the next candidate set
X [k+ 1] if Xi = X = X [k] and �x = �xi is the last process
of X [k].

Let us finally consider the case where the processes pro-
gress until they consider a set X such that the x processes
that constitute X have crashed. It is easy to see that each no-
crashed process pi continues looping inside task T 1 without
sending messages, and is such that repri = i .

5.1.2 Proof of the lower wheel component

The proof considers an arbitrary run of the algorithm descri-
bed in Fig. 7. C denotes the set of processes that are correct
in that run. Moreover, var τi denotes the value of the local
variable vari at time τ .

Lemma 4 ∀i ∈ C, there are a pair (λi , σi) and a time τi

such that ∀τ ≥ τi : (�xτi , X τi) = (λi , σi).

Proof We claim (Claim C1) that there is a pair (�, X) such
that the number of x_move

(
�, X) messages that are sent is

finite. Let us assume (by way of contradiction) that there is
no pair (λi , σi) such that after some time (�xi, Xi) = (λi , σi)

remains true forever. As the pairs (�x, X) are arranged in a
logical ring (see Fig. 6), it follows from the way pi updates its
local pair (�xi, Xi) that the sequence of the successive values
of the local variables (�xi, Xi) is (�1

1,X [1]), (�2
1,X [1]), . . . ,

(�nb_x
x ,X [nb_x]), (�1

1,X [1]), etc. Consequently, (�xi, Xi)

takes each values (�βα,X [β]), 1 ≤ α ≤ x, 1 ≤ β ≤ nb_x
infinitely often. In particular, pi executes (�xi, Xi)← Next
(�, X) infinitely often. But this contradicts the Claim C1 that
states that the number of x_move (�, X) messages that are
sent is finite. It follows that there are a pair (λi , σi) and a

time τi such that ∀τ ≥ τi : (�xτi , X τi) = (λi , σi).

Claim C1: There is a pair (�, X) such that the number of
x_move

(
�, X) messages that are sent is finite.

Proof of Claim C1. We consider two cases according to the
number f of actual process crashes.

– Case 1: f ≥ x . Let X be a set of x processes that are faulty
and � be the identity of an arbitrary process in X . As only
processes that belongs to X can send x_move

(
�, X)mes-

sages, it follows from the fact all these processes even-
tually stop taking steps that the number of x_move

(
�, X)

messages sent is finite.
– Case 2: f < x . Due to the limited scope eventual accu-

racy property of the class �Sx , there are a set X ⊆
� of size x and a correct process p� ∈ X such that,
after some time τ , no process that belongs to the set X
suspects p�. Since (1) only process that belongs to X
can send x_move

(
�, X) messages, and, (2) a process

pi ∈ X broadcasts a message x_move
(
�, X) only if

� ∈ suspectedi , it follows that after time τ , no mes-
sage x_move

(
�, X) can be broadcast, which implies that

the number of such messages is finite. �

Corollary 1 The protocol is quiescent (i.e., eventually all
the processes stop sending x_move messages).

Proof Let us assume (for contradiction) that there is a correct
process pi that never stop sending x_move messages. Due to
Lemma 4, there is a time τ after which (�xi , Xi) remains per-
manently equal to the constant pair (λi , σi). Consequently,
after time τ , pi keeps on broadcasting x_move(λi , σi). It
follows then from the validity and termination properties of
the reliable broadcast primitive that there is a time τ ′ > τ at
which pi executes (�xi, Xi) ← Next(λi , σi), contradicting
Lemma 4. �

Lemma 5 ∀i, j ∈ C : (λi , σi) = (λ j , σ j). (In the following,
(λ, σ) denotes that pair.)

Proof Due to the properties of the reliable broadcast primi-
tive, pi and p j deliver the same multiset of x_move(�, X)
messages. Moreover, it follows from Corollary 1 that this
multiset is finite. Due to the fact that pi and p j consume

123

214 A. Mostefaoui et al.

the messages according to the same ring order, and the fact
that the common multiset of delivered messages is finite, it
follows that (λi , σi) = (λ j , σ j). �

Lemma 6 (σ ∩ C �= ∅)⇒ (λ ∈ C).

Proof Let us assume (by contradiction) that σ ∩ C �= ∅
and λ is the identity of a faulty process. Let pi be a process
that belongs to σ ∩ C . Due to the strong completeness pro-
perty of the class �Sx , there exists a time τ1 after which the
local predicate λ ∈ suspectedi remains permanently satis-
fied. Moreover, it follows from Lemmas 4 and 5 that, from
some time τi , the predicate (�xi, Xi) = (λ, σ) remains per-
manently true. There is consequently a time τ ≥ max(τ1, τi)

at which pi broadcasts a message x_move(λ, σ). When pi

delivers this message, it executes (�xi, Xi) ← Next(λ, σ),
contradicting Lemma 4. �

Theorem 7 The algorithm described in Fig. 7 ensures the
existence of a set X and a time τ such that ∀τ ′ ≥ τ , the
following holds:

1. |X | = x,
2. i ∈ (�− X) ∩ C ⇒ repri = i ,
3. ∀i, j ∈ X ∩ C : repri = reprj = ρ ∈ C ∩ X.

Proof Let τ = max{τi : i ∈ �} where τi is the time intro-
duced in Lemma 4, and σ and λ be the set and the process
identity defined in Lemma 5. Let us first observe that due to
its definition (σ is a set Xi) we have |σ | = x (Item 1). Let
pi be a correct process. If i ∈ � − X , then as the value of
repri does not change after time τ (Lemma 4 and Task T 1), it
follows that repri = i is permanently true from time τ (Item
2). Moreover, it directly follows from Lemma 5 and task T 1
that all the correct processes p j belonging to the set σ have
permanently the same representative reprj = λ from time τ .
Finally, due to Lemma 6, λ is the identity of a correct process
(Item 3). Taking X = σ , τ = max{τi : i ∈ �} and ρ = λ
completes the proof of the theorem. �

5.2 The upper wheel component

5.2.1 Principles and description

The “upper wheel” component consists of four tasks T 3–T 6
(Fig. 8).4 Similarly to the lower wheel component, it uses a
sequence, that we call L, including all the possible sets of
size z = (t + 2) − (x + y) generated from the n processes
composing the system. L is known by all the processes. Let
nb_L be the length of this sequence, and L[k] its kth element.
The function Next(L[k]) returns L[k + 1] when k < nb_L ,
and L[1] when k = nb_L .

4 A version of this component, based on �φy , is described in [20]. It
is much more involved than the one presented in Fig. 8.

Fig. 8 From �ψ y+�Sx toΩ z : upper wheel component (code for pi)

The transformation, described in Fig. 8, relies on the fol-
lowing principles. (Let us recall that nb_ci is the read-only
local variable that pi is provided with by the underlying fai-
lure detector of the class �ψ y .) The aim is for pi to com-
pute the value of the set trustedi provided to the upper
layer (Task T 6), namely, a set of z processes that eventually
includes (at least) one correct process. So, starting from the
set Li = L[1], the processes scan (in the same order) the
infinite sequence of sets L[1],L[2], . . . ,L[nb_L],L[1], . . .
(tasks T 3 and T 4). When pi is working with a set Li , it
proceeds as follows.

– First, pi strives to know if Li contains a correct process.
To that end, it repeatedly broadcasts an inquiry message
(task T 3, line 02). When a process p j receives such a
message it sends back to pi the identity of its representa-
tive as defined by the lower wheel component (task T 5).

– Then, pi waits for responses from n − nb_ci processes.
Let us observe that, as eventually nb_ci = max(t− y, f)
(where f is the number of faulty processes in the consi-
dered run), pi eventually receives n − max(t − y, f)
response messages (the value nb_ci provided by the fai-
lure detector of the class �ψ y is repeatedly read until the
waiting condition becomes true).

– Finally, when it has received enough responses, pi defines
rec_ f romi as the set of process ids carried by the res-
ponses it has received (line 04). If one of these ids belongs
to the current set Li , pi keeps the current value of Li .
Otherwise, it considers that the processes of Li are faulty,
and broadcasts consequently a message l_move(Li) to
inform all the processes that they have to proceed to the
next set for Li .

To capture the intuition that underlies the fact that the
two wheels synchronize and the processes stabilize on the
same set L , let us observe that, due to the property even-
tually ensured on the reprj local variables by the lower wheel
component, there is a time after which all the response(id)
messages carry identities of correct processes. It follows that
if the set Li currently investigated by the processes does not

123

On the computability power and the robustness of set agreement-oriented failure detector classes 215

change, that set includes at least one correct process and we
have obtained the property required by trustedi .

5.2.2 Proof of the upper wheel component

The proof is very similar to the proof of the lower wheel
algorithm. Its structure is the same, and some of its parts are
also the same. This is a direct consequence of the fact that
both components are based on the same “wheel” principle.
The proof considers an arbitrary run of the algorithm. As
before, C denotes the set of processes that are correct in that
run, and var τi denotes the value of the local variable vari of
at time τ .

Lemma 7 ∀i ∈ C, there is a set �i and a time τi such that
∀τ ≥ τi : Lτi = �i .

Proof We claim (Claim C2) that there is a set L such that the
number of l_move(L) messages that are sent is finite. This
claim, used to prove the lemma, is proved later.

Let pi be a correct process and let us assume (by way of
contradiction) that there is no set�i such that after some time
Li = �i remains true forever. It follows from the way that
each pi updates its local variable Li , that the sequence of suc-
cessive values taken by each Li is L[1],L[2], . . . ,L[nb_L],
L[1], . . .(5). Consequently, Li takes each value L[α], 1 ≤
α ≤ nb_L infinitely often. In particular, pi executes Li ←
Next(L) infinitely often. Since this occurs when pi delivers
a l_move(L) message, this contradicts the Claim C2 that
states that a finite number of such messages are sent. It fol-
lows that there is a set �i and a time τi such that ∀τ ≥ τi :
Lτi = �i .

Claim C2: There is a set L such that the number of
l_move(L) messages that are sent is finite.

Proof of Claim C2. Let us consider the time τ at which the
lower wheel stops turning. More precisely, there is a time τ , a
set X ⊆ �, |X | = x and a process identity �x ∈ X (Theorem
7) such that:

1. ∀i ∈ �− X,∀τ ′ ≥ τ : reprτ
′

i = i and,
2. 1. X ∩ C �= ∅: ∃�x ∈ C ∩ X such that ∀i ∈ X,∀τ ′ ≥

τ : reprτ
′

i = �x or,
2. X ∩ C = ∅: all processes that belong to X have

crashed by time τ .

Let us consider a set L of z = (t + 2)− (x + y) processes
defined as follows (see Fig. 9): (1) |X∩L| = 1, (2) if X∩C �=
∅ then, X ∩ L = {�x } and (3) L contains the identity of a

5 This follows from the fact that each process visits the sets of L accor-
ding to the same deterministic order defined from a logical ring, as in
Fig. 6, where X [β] is replaced by L[β ′], 1 ≤ β ′ ≤ nb_L.

Fig. 9 When the upper wheel stops looking for a new Li set

correct process. It is easy to see that such a set L does exist.
Moreover, let us observe that there is �, � ∈ L , such that p�
is a correct process and eventually repr� = �.

We examine two cases according to the actual number f
of process crashes. In each case, we show that, after some
time defined by the case assumption, no l_move(L)message
is sent.

– Case 1: f ≥ t − y + 1. Due to the eventual convergence
property of the class �ψ y , there is a time τ ′ after which
nb_ci = n − f remains forever true at each correct pro-
cess pi . Let τ ′′ be a time at which the f faulty processes
have crashed and the messages they sent to the correct
processes have been received and processed.
Let τ0 = max(τ, τ ′, τ ′′), i.e., after τ0, no process crashes
and the outputs of both the lower wheel component and
the �ψ y failure detector do no longer change. Let pi be
a correct process. After time τ0, each time pi updates
rec_fromi , we have rec_ f romi = C (this is because,
after τ0, pi waits for n− f response messages and the f
processes that are faulty have crashed before τ0).
As L contains the identity of a correct process p� such
that repr� = �, it follows that L ∩ rec_fromi �= ∅. Conse-
quently, no message l_move(L) can be sent after time
τ0, which implies that the number of these messages is
finite.

– Case: f < t − y + 1.
In that case, due to the eventual convergence property
of the class �ψ y , there is a time τ ′ after which at each
process pi , nb_ci = t − y remains forever true. Let τ0 be
a time after which the outputs of both the failure detector
of the class �ψ y and the lower wheel component do not
change at each process.
Let us consider an execution of the repeat loop started
after τ0 by a correct process pi . We first show that after pi

has updated rec_ f romi at line 04, there is j ∈ L∪X such
that repr j ∈ rec_fromi ∩ L . To update rec_ f romi , pi

waits for n−nb_ci = n−(t−y) responses. Moreover, due
to the definition of L , we have |L∪ X | = |L|+|X |−1 =
1+(t−y). Consequently, among the n−(t−y) responses
taken into account by pi to update rec_fromi , there is a
response sent by a process p j such that j ∈ L ∪ X .

123

216 A. Mostefaoui et al.

We show that repr j ∈ L . If j ∈ X , repr j = �x ∈ L .
Otherwise, j ∈ L− X , from which we have repr j = j ∈
L .
Hence, after time τ0, a process that is waiting for
responses always receives such a message from a pro-
cess p j that belongs to L ∪ X and this message carries
a process identity repr j such that reprj ∈ L . It then fol-
lows from lines 04-05 that, after some time, no process
can broadcast a message l_move(L). �

Corollary 2 Eventually all processes stop sending l_move
messages.

Proof Let us assume (by contradiction) that there exists a cor-
rect process pi that never stops sending l_move messages.
Due to Lemma 7, there is a time τi after which Li remains
permanently equal to the constant set�i . Consequently, after
time τi , pi keeps on broadcasting l_move(�i). It follows
then from the validity and the termination properties of the
reliable broadcast primitive that there is a time τ ′ > τi at
which pi executes Li ←Next(�i), contradicting Lemma 7.

�

Remark The fact that there is a time after which no
l_move(L)messages are exchanged, does not imply that the
algorithm is quiescent. This is because the correct processes
keep on sending forever inquiry() messages, and answering
them by sending back response() messages. Differently, the
lower wheel component uses only x_move() messages.

Lemma 8 ∀i, j ∈ C : �i = � j . (In the following, �
denotes that set.)

Proof Due to the properties of the reliable broadcast pri-
mitive, pi and p j deliver the same multiset of l_move(L)
messages. Moreover, it follows from Corollary 2 that this
multiset is finite. Due to the fact that pi and p j consume
the messages according to the same ring order, and the fact
that the common multiset of delivered messages is finite, it
follows that �i = � j . �

Theorem 8 The sets trustedi implemented by the algorithm
described in Fig. 8 satisfy the property defining the classΩ z .

Proof Due to Lemma 8, there is a time after which all the
processes have permanently the same set �, |�| = z = t +
2− (x + y). It remains to show that � ∩ C �= ∅.

Let us assume for contradiction that � ∩ C = ∅. Let pi

be a correct process. Due to the properties ensured by the
lower wheel (Theorem 7), there is a time after which any
message response(repr) contains the identity of a correct
process. From the assumption that � contains only faulty
processes, it follows that there is a time τ1 after which pi

cannot receive a response message that carries the identity
of a process belonging to�. Moreover, there is a time τi after

which the predicate Li = � is permanently true (Lemma 7).
Consequently, there is a time τ ≥ max(τ1, τi) at which the
predicate in the if statement of line 05 is not satisfied (i.e., at
time τ , we have rec_fromi ∩� = ∅). It follows then that pi

broadcasts a message l_move(�). When pi delivers such a
message, it executes Li ←Next(�). The fact that this occurs
after the time τi contradicts Lemma 7. �

6 Lower bounds and (Ir)reducibility results

This section states first a lower bound related to the addi-
tion of failure detector classes (Fig. 2). It then proves the
(ir)reducibility results stated in the grid depicted in Fig. 1.
As the classes ψ y and φy (�ψ y and �φy) are equivalent
(Sect. 4), we sometimes use φy (�φy) instead of ψ y (�ψ y)
in the proofs.

6.1 A lower bound when adding �Sx and �ψ y

This section shows that (x + y+ z > t +1) is a lower bound
when one wants to add failure detectors of the class �Sx and
�ψ y to build a failure detector of the class Ω z .

Theorem 9 Let us consider any system ASn,t [�Sx ,�ψ
y].

(�Sx +�ψ y � Ω z)⇔ (x + y + z > t + 1).

Proof [⇐ part] This part follows directly from the two
wheels algorithm previously described in Sects. 5.1.1 and
5.2.1, and proved in Sects. 5.1.2 and 5.2.2.

[⇒ part] The proof of this part is by contradiction and consi-
ders the stronger system ASn,t [Sx , ψ

y]. As we have Sx ⊆
�Sx and ψ y ⊆ �ψ y , any impossibility result established in
ASn,t [Sx , ψ

y] holds in ASn,t [�Sx ,�ψ
y].

Let us assume that there is an algorithm T that builds a
failure detector of the class Ω z in ASn,t [Sx , ψ

y] with x +
y + z ≤ t + 1. The contradiction is based on the following
observation:
Observation O1: Let f be the number of actual failures.
When f ≤ t − y, the only information that a failure detector
of the class ψ y can provide is the fact that the number of
failures is ≤ t − y.

Proof of 01. Consider a run where f ≤ t − y. Let E ⊆ �.
Due to the safety property of the classψ y , at each process pi ,
the value of nb_ci is always t − y. Consequently the value
of nb_ci does not depend on which processes have crashed.

�

Let us now consider the transformation T . In any run

where f ≤ t − y, it follows from O1 that T can rely on
ψ y only to know that the number of failures is ≤ t − y. This
implies that T can be used to build a failure detector of the
class Ω z in ASn,t ′ [Sx], where t ′ = t − y.

123

On the computability power and the robustness of set agreement-oriented failure detector classes 217

We build an infinite run R of T in system ASn,t ′ [Sx]
in which all processes are correct, but T fails to implement
a failure detector of the class Ω z . More precisely, in this
run, there is at least one process whose set leader changes
infinitely often.

Let us first fix the output of the underlying failure detec-
tor Sx . To that end, let A = {p1, . . . , pn−x+1} and B =
{pn−x+2, . . . , pn}. For the ease of the exposition, we define
the sets trustedi of processes that are not suspected by the
failure detector, i.e., trustedi = � − suspectedi . The out-
put of the failure detector Sx never changes and is defi-
ned as follows: (1) ∀pi ∈ A : trustedi = {i} and, (2)
∀pi ∈ B : trustedi = {1, . . . , n − x + 1}. Note that the
properties of the class Sx are satisfied in failure-free runs
and runs in which processes in B ∪ S fail, where S is an
arbitrary strict subset of A. In both cases, there is a process
pα ∈ A, α /∈ S that is never suspected by all processes, until
they possibly fail, in the set X = {pα} ∪ B of x processes.

We build the run R inductively. Suppose that we have built
a finite prefix Rm such that

1. Every process has taken at least m steps6 of T in Rm .
2. For every process, the output of T is the same “leader

set” Lm at the end of Rm , with |Lm | ≤ z.
3. The system is in a “clean state” at the end of Rm : all

messages sent in Rm have been delivered in Rm . There
is no message pending in the buffers of the processes or
in transit in the network.

The extension Rm+1 we build has the following additional
property: there is a process pi such that, at some time in the
execution fragment Rm+1 − Rm , the leader set Li of pi is
not equal to Lm .

Let us first partition the set of processes into two sets �d

and�a as follows. The subscripts a and d stand for “active”
and “delayed” respectively. We set�d = Lm ∪ B and�a =
�−�d . Observe that |�d | ≤ |Lm | + |B| ≤ z+ x − 1 ≤ t ′,
as we assume that x + z ≤ t − y + 1 = t ′ + 1.

Let τm
e be the ultimate time instant of Rm . Let R′ be an

infinite run such that (1) up to time τm
e , run Rm and R′ are

the same, (2) all processes in �d fail at time τm
e + 1 (3)

processes in �a are correct. At each process, the output of
the underlying failure detector Sx is fixed, as defined above.

The number of failures in R′ is |�d |, which is smaller
than or equal to t ′. We next check that the output of the
failure detector is compatible with the failure pattern of R′.
Let pi ∈ �a . As �a ⊆ A, we always have trustedi = {i},
from which the strong completeness property is verified. For
perpetual limited scope accuracy, let X = {pi } ∪ B. In R′,

6 The notion of step used here is only required to express the progress
of a process. A step is any non-empty finite sequence of base operations.

each process in X trusts pi until it possibly fails, and we have
|X | = |{pi } ∪ B| = x .

As R′ is an admissible run of model ASn,t ′ [Sx], it follows
that T builds a failure detectorΩ z in R′. Consequently, there
is a time τm+1

� > τm
e at which the output of T at every process

in �a is the same set L ′, and this set contains the identity of
a correct process, i.e., L ′ ∩�a �= ∅.

We now describe the construction of Rm+1.

– Up to time τm
e , run Rm+1 is exactly run Rm .

– Between times τm
e + 1 and τm+1

� , the behavior of the
processes in �a is exactly the same in R′ and Rm+1.
Processes in �d do not fail but are delayed until time
τm+1
� . In particular, no message from processes in �d

are sent between τm
e + 1 and τm+1

� . Therefore, for every
pi ∈ �a , run R′ and Rm+1 are indistinguishable up to
time τm+1

� . Consequently, for such a process, the output
of T in Rm+1 at time τm+1

� is L ′. As L ′ ∩�a �= ∅ and,
by construction Lm ⊆ �d and �a ∩�d = ∅, it follows
that L ′ �= Lm .

– At time τm+1
� , every process in �d restarts its activity. It

receives the messages sent to it between times τm
e +1 and

τm+1
� .

– We then schedule processes steps and messages delivery
in any “fair” order, that guarantees that each process takes
infinitely many steps and each message sent is eventually
delivered. For simplicity, we may choose a “synchro-
nous” schedule in which some consecutive times form
a round. In each round, each process sends at most one
message that is delivered and processed within the same
round. The infinite run R′′ we obtain is a legal execution
of T in model ASn,t ′ [Sx]. Consequently, there is a time
τ at which the output of T is the same at each process and
no longer changes. Moreover, we can choose τ such that
τ > τm+1

� , every process takes at least one step between
τm

e and τ and, every message sent before τ is received
before τ . We set Rm+1 to be the prefix of R′′ that ends at
time τ .

By iterating the construction described above, we build
an infinite run R of T in which every process takes infini-
tely many steps, every message is eventually delivered and
the output of the underlying failure detector Sx satisfies its
specification. In addition, the construction ensures that, at
some process, the leader set output by T changes infinitely
many often, contradicting the assumption that T implements
a failure detector Ω z in ASn,t ′ [Sx]. �

The following corollary is an immediate consequence of
the proof of Theorem 9.

Corollary 3 Let us consider any system ASn,t [Sx ,�ψ
y],

ASn,t [�Sx , ψ
y] or ASn,t [Sx , ψ

y]. In any of these systems,

123

218 A. Mostefaoui et al.

there exists an algorithm that builds a failure detector of the
class Ω z if and only if (x + y + z) > t + 1.

The following corollary is a consequence of Theorem 9.

Corollary 4 The two wheels algorithm described in Figs. 7
and 8 is optimal with respect to the possible values of x, y
and z.

As �S1 (case x = 1) provides no information on failures,
we directly obtain the following corollary from the two wheel
algorithm and Theorem 9.

Corollary 5 It is possible to build a failure detector of the
classΩ z in ASn,t [ψ y] or ASn,t [�ψ y] if and only if y+ z >
t .

Similarly, as �ψ0 (case y = 0) provides no information
on failures, we also have:

Corollary 6 It is possible to build a failure detector of the
class Ω z in ASn,t [�Sx] if and only if x + z > t + 1.

6.2 Relations between Sx/�Sx and ψ y/�ψ y

Theorem 10 Let 1 ≤ x ≤ t + 1 and 1 ≤ y ≤ t . It is not
possible to build a failure detector of the class ψ y or �ψ y

in ASn,t [�Sx] or in ASn,t [Sx].
Proof For convenience, the result is proved using the classes
φy/�φy . The proof considers the “stronger” system ASn,t

[Sx]. As Sx ⊆ �Sx , the proof remains valid for a system
ASn,t [�Sx]. Similarly, as φy ⊆ �φy the proof considers
only the “weaker” class �φy . The proof is by contradiction.
Let us assume that there is a failure detector F of the class Sx

and an algorithm A that transforms F into a failure detector
of the class �φy . We exhibit an infinite run R in which the
eventual safety property of the class �φy is not satisfied.

Let E ⊆ �, |E | = t − y + 1 and pc be a process that
does not belong to E . In all runs considered in the following,
we assume that pc is never suspected by F . We build R
inductively. Suppose that we have built a prefix Rm of R
with the following properties. τm

e denotes the final time in
Rm .

1. Every process takes at least m steps in Rm .
2. Every message sent in Rm is delivered before time τm

e .
3. There exists a sequence of strictly increasing times sq(m)
= (τ 1

q , . . . , τ
m
q) at which query(E) return true.

To build prefix Rm+1, we consider two auxiliary runs R′
and R′′ defined as follows:

– R′ is an infinite execution in which every process is cor-
rect. pc is never suspected by F in R′ and Rm is a prefix

of R′. In R′, there is a time τ0 > τm
e at which query(E)

returns false. Such a time must exist due to the even-
tual safety property of the class �φy and the fact that E
contains only correct process in R′.

– Runs R′ and R′′ are indistinguishable by all processes
until time τ0. In particular, the output of F is the same at
every process until τ0. Moreover, pc is never suspected
by F after τ0. A time τ0 + 1, every process that belongs
to E crashes. Since pc /∈ E , the accuracy property of
F is satisfied. Let τ1 > τ0 be a time at which a process
pi ∈ � − E returns from a call query(E) and obtains
the value true. Such a time must exist due to the liveness
property of the class �φy .

We now describe Rm+1:

– Rm+1 is identical to R′ until τ0. In particular, this implies
that Rm is a prefix of Rm+1.

– Between τ0+1 and τ1, the processes that belong to�−E
behave exactly as in run R′′. Each process in E does not
crash but is delayed until time τ1 + 1. Let us notice that
whatever the output of F in R′′, the output of F can be
exactly the same between times τ0 + 1 and τ1 in Rm+1,
without violating the properties of the class Sx . As pc is
correct in R′′, does not crash in Rm+1 and is never sus-
pected in R′′, limited scope perpetual accuracy is ensu-
red. Since strong completeness is an eventual property, it
is always satisfied in any finite prefix of any execution.

– At time τ1 + 1, every process in E resumes its activity.
We then schedule steps of A, delaying processes appro-
priately, until (1) every process takes at least one step
after time τ1+1 and, (2) every messages sent is delivered
and no message is pending in the process buffers or the
communication channels.

The last item of the construction guarantees that Rm+1 satis-
fies properties 1 and 2. For property 3, it is clear that, up to
time τ1, each process pi ∈ �− E cannot distinguish the run
Rm+1 from the run R′′ until time τ1. It follows that, in the
run Rm+1, the invocation of query(E) by pi at time τ1 > τ0

returns the value true. Hence we set τm+1
q = τ1.

By iterating infinitely many often this construction, we
build an infinite execution of A in ASn,t [Sx] in which every
process is correct. However, there is a set E of t − y + 1
processes such that infinitely many query(E) invocations
return false. It follows that the eventual safety property of
the class �φy is not satisfied. �

Theorem 11 Let 0 ≤ y < t , 1 < x ≤ t + 1 and 3 ≤ n. It is
not possible to build a failure of the class Sx or �Sx neither
in ASn,t [�ψ y] nor in ASn,t [ψ y].
Proof Let us first observe that �S2 andψ t−1 are the weakest
and the strongest classes in the families (Sx/�Sx)1≤x≤t+1

123

On the computability power and the robustness of set agreement-oriented failure detector classes 219

and (ψ y/�ψ y)1≤y≤t−1 respectively. We need to prove only
the impossibility to build a failure detector of the class �S2

in ASn,t [ψ t−1].
The proof is by contradiction and uses the following

observations.

– Observation O1: Let f be the number of actual failures.
When f ≤ t − (t − 1) = 1, the only information that a
failure detector of the class ψ t−1 can provide is the fact
that the number of failures is ≤ 1. (This observation has
already been stated and proved in Theorem 9.)

– Observation O2: There are algorithms that solve the k-set
agreement problem in ASn,t [�S2]. All these algorithms
require t ≤ k + 2 − x = k + 2 − 2 = k and t < n

2 .
(Examples of such algorithms can be found in [13,23].
The lower bound on t is established in [13].)

– Observation O3: The 1-set agreement, i.e., the consensus
problem cannot be solved in ASn,1[∅] (The proof of this
observation is the seminal FLP result [9].)

Let us suppose that there is an algorithm A that builds a
failure detector of the class �S2 from a failure detector of the
class ψ t−1. In any run where f ≤ 1, it follows from O1 that
A can rely on ψ t−1 only to know that the number of failures
is ≤ 1. Consequently, A can build a failure detector of the
class �S2 in a system ASn,t ′ [∅], with t ′ = 1. As n ≥ 3, we
have t ′ < n

2 . This means that one can use A to solve the k-set
agreement problem with k = t ′ = 1, using any algorithm
listed in observation O2 in a system ASn,1[∅], contradicting
observation O3. �

6.3 From Ω z to ψ y/�ψ y or Sx/�Sx

It has been shown (Corollaries 5 and 6) that it is possible
to build a failure detector of the class Ω z from any failure
detector of the classes ψ y/�ψ y (resp., Sx/�Sx) if and only
if x + z > t + 1 (resp., y + z > t). This section shows
that it is not possible to build a failure detector of the classes
ψ y/�ψ y (resp., Sx/�Sx) from any failure detector of the
class Ω z . The proofs of these impossibilities are based on
Theorems 10 and 11.

Theorem 12 Let 1 ≤ y ≤ t and 1 ≤ z ≤ t + 1. It is
impossible to build a failure detector of a class ψ y/�ψ y in
ASn,t [Ω z].
Proof The proof is by contradiction. Let us assume that there
is an algorithm A that builds a failure detector of a class �ψ y ,
1 ≤ y ≤ t , from any failure detector of a classΩ z , 1 ≤ z ≤
t + 1. Due to Corollary 6, it is possible to build a failure
detector of a class Ω z in ASn,t [�Sx] when x + z > t + 1.
Combining this construction with the algorithm A we obtain
an algorithm B that builds a failure detector of the class ψ y ,

1 ≤ y ≤ t from a failure detector of the class �Sx . But such
an algorithm B contradicts Theorem 10 that states that there
is no such algorithm when 1 ≤ x ≤ t + 1 and 1 ≤ y ≤ t .

�

Theorem 13 Let 1 < x, z ≤ t . It is impossible to build a
failure detector of the class Sx/�Sx in ASn,t [Ω z].
Proof The proof is similar to the proof of Theorem 12. It is
left to the reader. �

6.4 Optimality in the grid of Fig. 1

It follows from all the previous theorems and lemmas that,
when we consider all the failure detector classes depicted in
Fig. 1, Ωk is the weakest class that allows solving the k-set
agreement problem. This constitutes a first step towards the
characterization of the weakest failure detector class for sol-
ving that problem. A corresponding Ωk-based k-set agree-
ment protocol has been described in Sect. 3.

7 Conclusion

Considering two objects of two types, O1 that allows solving
the k1-set agreement problem and does not allow solving the
(k1− 1)-set agreement problem, and O2 that allows solving
the k2-set agreement problem and does not allow solving the
(k2 − 1)-set agreement problem, is it possible to combine
them so as to solve a stronger version of the k-set agreement
problem, i.e., such that k < min(k1, k2)?

Considering the previous question as a guideline, and base
objects that are failure detectors, the paper has investiga-
ted three classes of failure detectors, namely, (�Sx)1≤x≤n ,
(�ψ

y
0≤x≤n) and (Ω z)1≤z≤n . Among these classes, it has

shown which ones are equivalent and which ones are not. As
an example, the paper has shown that any class in the sub-
family (�Sx)t<x≤n and the class Ω1 are equivalent (given
any failure detector of one class, it is possible to build a failure
detector of the other class). It has also shown that it is impos-
sible to build a failure detector of the class (�Sx)1<x≤n from
a failure detector of any class in the sub-family (Ω1<z≤n).
A main result of the paper is the theorem “�Sx + �ψ y �

Ω z ⇔ x + y + z > t + 1” that states that it is possible
to combine any failure detector of the class �Sx and any
failure detector of the class �ψy to obtain a failure detector
belonging to the class Ω z where z = (t + 2)− (x + y).

The paper has also presented a k-set agreement protocol
for message-passing asynchronous systems equipped with
Ωk , and established that the resilience bound t < n/2 and
the failure detector bound z ≤ k are tight for such systems.

The theorem “�Sx +�ψ y � Ω z ⇔ x + y+ z > t + 1”
shows that, in a system equipped with failure detectors of both
classes �Sx and �ψy , these failure detector classes are not

123

220 A. Mostefaoui et al.

Fig. 10 From φy +Sx to S (resp., �φy +�Sx to �S), (algorithm for
pi)

robust. Their combination allows solving the k-set agreement
problem with z = (t + 2) − (x + y), while each of them
taken separately cannot. Apparently, this seems to contradict
the results on base object composition stated in [2,14]. There
is no contradiction: both these papers consider base objects
that have a sequential specification (and are consequently
linearizable), while our base objects are failure detectors that
have no sequential specification. This shows an interesting
difference according to the fact that the base objects have or
not a sequential specification.

Acknowledgements The authors want to acknowledge the referees
for their constructive comments that helped improve the presentation
and the content of the paper.

Appendix: A simple addition �Sx + �φ y � �Sn (x +
y > t)

This appendix presents a simple algorithm that adds the
power of φy and the power of Sx (resp., �φy and �Sx) to
provide a failure detector of the class Sn (resp., �Sn). (Let
us remind that Sn = S and �Sn = �S.) The algorithm is
described in Fig. 10. As the failure detector classesΩ1 = Ω
and �Sn = �S are equivalent (they have the same compu-
tational power as far as failures are concerned) [3,6,19], it
follows from Theorem 9 that the algorithm requires x+y > t
(which becomes a necessary and sufficient requirement for
such a transformation).

To show the versatility of the approach, the algorithm
is expressed in the shared memory model. It can be easily
translated in the message-passing model without adding any
requirement on t . Each process pi has the following local
variables:

– suspectedi is a local variable that pi can only read. It
contains the set of processes provided to pi by its under-
lying failure detector module of the class Sx (resp., �Sx).
These sets satisfy the properties defining the class Sx

(resp., �Sx): they eventually includes all crashed pro-
cesses and x of these sets do not include the same correct

process from the very beginning in the case of Sx (or after
some unknown but finite time in the case of �Sx).

– SUSPECTEDi is the local set of processes built by the
algorithm. The sets SUSPECTEDi of all the processes
have to satisfy the properties defining S (resp., �S).
Initially, SUSPECTEDi = ∅.

– newi and previ are two auxiliary variables. Each is an
array of size n initialized to the zero vector.

The shared memory is made up of two arrays denoted
alive[1 : n] and suspect[1 : n]. Each of their entries is a
single writer/multi reader atomic variable. The alive[i] and
suspect[i] variables are repeatedly updated by pi until it
(possibly) crashes (see task T 1 in Fig. 10). Their meaning is
the following:

– alive[i] is only increased by pi to indicate it has not
crashed. This means that, after a process pi crashes, the
value of alive[i] does not change.7

– suspect[i] is used by pi to inform the other processes
about the value of its local suspectedi set.

The task T 2 of a process pi repeats forever a set of state-
ments whose aim is to compute the current value of the local
set SUSPECTEDi (line 07) whose value is used by the upper
layer protocol. To carry out this computation, pi first reads
the shared array alive[1 : n] to know which processes have
progressed (the reading of the whole array is not atomic).
It reads this array until it knows that all the processes that
have not progressed have crashed (lines 02–05). Then, trus-
ting the processes it considers as not crashed (the set live), it
updates its local set SUSPECTEDi according to the current
suspicions made public by these processes.

Theorem 14 Let x+y > t . If the underlying failure detector
belongs to the class Sx (resp., �Sx), the sets SUSPECTEDi

built by the φy-based (resp., �φy-based) algorithm descri-
bed in Fig. 10 define a failure detector of the class S (resp.,
�S).

Proof Let us first show that the inner loop always terminates.
Proving this termination is required to claim that the variable
SUSPECTEDi is updated at line 07. We consider three cases
according to the size of the set parameter X when pi invokes
query (X) at line 05.

– |X | > t . In that case, due to the triviality property, the
query returns false, and pi enters again the loop. But,

7 It is possible to have a bounded implementation for each shared
variable alive[i]. We do not elaborate on this for two reasons: on one
side it would make the protocol much more involved, on another side
this is not necessary to prove our goal.

123

On the computability power and the robustness of set agreement-oriented failure detector classes 221

as there are at most t faulty processes, each correct pro-
cess p j infinitely often increases alive[j] (task T 1), and
previ [j] remains constant within the inner loop, there is
a time after which every query issued by pi is such that
|X | ≤ t . We are then in one of the cases that follow.

– |X | ≤ t − y. In that case, due to the triviality property,
the query returns true and pi exits the inner loop.

– t − y < |X | ≤ t . If the query returns false, pi enters
again the loop. We show that the query eventually returns
true. Let us consider a process p j that belongs to S (this
means that alive[j] = previ [j] at line 03 of the task
T 2 executed by pi). If p j is correct, there is eventually
an inner loop such that alive[j] > previ [j] because p j

increases forever alive[j] and previ [j] remains constant
within the inner loop. This means that eventually such
a p j will disappear from the set X defining the query
parameter. It follows that, eventually, the set X used as
a query parameter (1) contains only faulty processes or
(2) has a size smaller than or equal to t − y. Due to the
liveness (case 1) or triviality (case 2) property, there is
then a query that eventually returns true.

Let us now show that, if the sets suspectedi satisfy the
strong completeness property, this property is also satisfied
by the sets SUSPECTEDi . If a process pk crashes, due to
the strong completeness of the sets suspectedi , it eventually
belongs to the set suspected j of each non-crashed process
p j . Due to line 01, after some finite time, pk is always in
suspect j (until p j possibly crashes). Moreover, as after some
time pk no longer increases alive[k], there is a finite time
after which it never belongs to the live set computed by any
process. Due to line 07, it eventually belongs to (and remains
permanently in) the set SUSPECTEDi of any non-crashed
process pi .

The last part of the proof concerns the weak accuracy
property. We formulate the proof for going from the class
Sx to the classes S. (The proof for going from the class
�Sx and �φy to the class �S is similar, and is consequently
omitted.) So, we have to show that, if x + y > t and the sets
suspectedi satisfy the limited scope perpetual weak accuracy
property (namely, there is a correct process, say p�, that is not
suspected by at least x -correct or faulty- processes), then the
sets SUSPECTEDi satisfy perpetual weak accuracy (there is
a correct process -namely, p� again in our transformation-
that is no suspected by any process). We consider two cases,
according to the size of the set X when a process pi exits the
inner loop.

– |X | ≤ t − y.
In that case, the exit of the inner loop was due to the
triviality property. As t− y < x , we have |X | < x , which
(due the limited scope perpetual weak accuracy) means

that at least one process pk of the set live of pi is such
that p� never belongs to suspectedk , and consequently
p� never belongs to suspect[k]. It then follows that p�
can never belong to the intersection computed at line 07,
which proves the case.

– t − y < |X | ≤ t .
In that case, due to the safety property, all the processes
in X have crashed. We examine two subcases.

– t − y < |X | < x . The proof of this case (|X | < x) is
the same as the previous one.

– t− y < x ≤ |X |. In that case, it is possible that all the
processes that do not suspect p� have crashed, and all
the remaining processes p j do suspect p� (i.e., p� ∈
suspected j). But in that case (noticing that X and
live define a partition of the whole set of processes),
a process that is not in the live set of pi has necessarily
crashed (safety and non-triviality properties). So, p�
necessarily belongs to the set live of pi . It follows
from line 07 that p� cannot belong to SUSPECTEDi ,
which proves the case. �

References

1. Borowsky, E., Gafni, E.: Generalized FLP impossibility results
for t-resilient asynchronous computations. In: Proceedings of the
25th ACM Symposium on Theory of Computing (STOC’93), pp.
91–100. ACM Press, San Diego (1993)

2. Borowsky, E., Gafni, E.: The Implication of the Borowsky–Gafni
Simulation on the set consensus hierarchy. Technical Report 93-
0021. Computer Science Department, University of California at
Los Angeles (1993)

3. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detec-
tor for solving consensus. J. ACM 43(4), 685–722 (1996)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

5. Chaudhuri, S.: More choices allow more faults: set consensus
problems in totally asynchronous systems. Inf. Comput. 105, 132–
158 (1993)

6. Chu, F.: Reducing Ω to �W . Inf. Process. Lett. 76(6), 293–298
(1998)

7. Dutta, P., Guerraoui, R. : Fast indulgent consensus with zero
degradation. In: Grandoni, F., Thévenod-Fosse, P. (eds.) Procee-
dings of the 4th European Dependable Computing Conference
(EDCC’02), Toulouse. LNCS, vol. 2485, pp. 191–208. Springer,
Heidelberg (2002)

8. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R. : (Almost)
All Objects are Universal in Message Passing Systems. In: Frai-
gniaud, P. (ed.) Proceedings of the 19th Symposium on Distributed
Computing (DISC’05), Cracow. LNCS, vol. 3724, pp. 184–198.
Springer, Heidelberg (2005)

9. Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of distri-
buted consensus with one faulty process. J. ACM 32(2), 374–382
(1985)

10. Guerraoui, R., Raynal, M.: The information structure of indulgent
consensus. IEEE Trans. Comput. 53(4), 453–466 (2004)

11. Guerraoui, R., Schiper, A. : Gamma-accurate failure detec-
tors. In: Babaoglu, Ö., Marzullo, K. (eds.) Proceedings of 10th

123

222 A. Mostefaoui et al.

Workshop on Distributed Algorithms (WDAG’96), Bologna.
LNCS, vol. 1151, pp. 269–286. Springer, Heidelberg (1996)

12. Hadzilacos, V., Toueg, S.: Reliable Broadcast and Related Pro-
blems. Distributed Systems. ACM Press, New York (1993)

13. Herlihy, M.P., Penso, L.D.: Tight bounds for k-set agreement
with limited scope accuracy failure detectors. Distrib. Com-
put. 18(2), 157–166 (2005)

14. Herlihy, M.P., Rajsbaum, S.: Set consensus using arbitrary objects.
In: Proceedings of the 13th ACM Symposium on Principles of
Distributed Computing (PODC’94), pp. 324–333. ACM Press,
Los Angeles (1994)

15. Herlihy, M.P., Shavit, N.: The topological structure of asynchro-
nous computability. J. ACM 46(6), 858–923 (1999)

16. Lamport, L.: The part-time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998)

17. Mostefaoui, A., Rajsbaum, S., Raynal, M.: Conditions on input
vectors for consensus solvability in asynchronous distributed sys-
tems. J. ACM 50(6), 922–954 (2003)

18. Mostefaoui, A., Rajsbaum, S., Raynal M.: The combined power of
conditions and failure detectors to solve asynchronous set agree-
ment. In: Proceedings of 24th ACM Symposium on Principles
of Distributed Computing (PODC’05), pp. 179–188. ACM Press,
Las Vegas (2005)

19. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: From �W
toΩ: a simple bounded quiescent reliable broadcast-based trans-
formation. J. Parallel Distrib. Comput. 67(1), 125–129 (2007)

20. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C. : Irredu-
cibility and additivity of set agreement-oriented failure detector
classes (extended abstract). In: Ruppert, E., Malkhi, D. (eds.)
Proceedings of the 25th ACM Symposium on Principles of
Distributed Computing (PODC’06), pp. 153–162. ACM Press,
Denver (2006)

21. Mostefaoui, A., Raynal, M.: Solving consensus using chandra-
toueg’s unreliable failure detectors: a general quorum-based

approach. In: Jayanti, P. (ed.) Proceedings of 13th Symposium
on Distributed Computing (DISC’99), Bratislava. LNCS, vol.
1693, pp. 49–63. Springer, Heidelberg (1999)

22. Mostefaoui, A., Raynal, M. : Unreliable failure detector with
limited scope accuracy and an application to consensus. In: Pandu
Rangan, C., Raman, V., Ramanujam, R. (eds.) Proceedings
of 19th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FST&TCS’99),
Chennai. LNCS, vol. 1738, pp. 329–340. Springer, Heidelberg
(1999)

23. Mostefaoui, A., Raynal, M. : k-set agreement with limited accu-
racy failure detectors. In: Neiger, G. (ed.) Proceedings of the
19th ACM Symposium on Principles of Distributed Computing
(PODC’00), Portland, pp. 143–152. ACM Press, New York (2000)

24. Mostefaoui, A., Raynal, M.: Leader-based consensus. Parallel
Process. Lett. 11(1), 95–107 (2001)

25. Neiger, G.: Failure detectors and the wait-free hierarchy. In:
Aguilera, M.K., Aspnes, J. (eds.) Proceedings of the 14th
ACM Symposium on Principles of Distributed Computing
(PODC’95), pp. 100–109. ACM Press, Las Vegas (1995)

26. Raynal, M.: A short introduction to failure detectors for asynchro-
nous distributed systems. ACM SIGACT News Distrib. Comput.
Column 36(1), 53–70 (2005)

27. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible:
the topology of public knowledge. SIAM J. Comput. 29(5), 1449–
1483 (2000)

28. Schiper, A.: Early consensus in an asynchronous system with a
weak failure detector. Distrib. Comput. 10(3), 149–157 (1997)

29. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus
algorithms for failure detectors. In: Proceedings of the 17th ACM
Symposium on Principles of Distributed Computing (PODC’98),
pp. 297–308. Puerto Vallarta (1998)

123

	On the computability power and the robustness of set agreement-oriented failure detector classes
	Abstract
	1 Introduction
	2 Computation model
	2.1 Asynchronous system with process crash failures
	2.2 The failure detector classes (Sx)1xn and (Sx)1xn
	2.3 The failure detector classes (z)1zn
	2.4 The failure detector classes (y)0y < n and (y)0y < n
	2.5 The failure detector classes (y)0y < n and (y)0y < n
	2.6 Notation

	3 Using k to solve k-set agreement
	3.1 A k-set agreement algorithm
	3.2 Short discussion
	3.3 Proof of the algorithm
	3.4 A lower bound

	4 The classes y (y) and y (y) are equivalent
	4.1 From y (y) to y (y)
	4.2 From y (y) to y (y)

	5 Additivity of the failure detector classes Sx and y
	5.1 The lower wheel component
	5.2 The upper wheel component

	6 Lower bounds and (Ir)reducibility results
	6.1 A lower bound when adding Sx and y
	6.2 Relations between Sx/Sx and y/y
	6.3 From z to y/y or Sx/Sx
	6.4 Optimality in the grid of Fig. 1

	7 Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

