Parallel Processing Letters,
(© World Scientific Publishing Company

A TIME-FREE ASSUMPTION TO IMPLEMENT EVENTUAL LEADERSHIP

ACHOUR MOSTEFAOUI
IRISA, Université de Rennes, Campus de Beaulieu, France

and

ERIC MOURGAYA
IRISA, Université de Rennes, Campus de Beaulieu, France

and

MICHEL RAYNAL
IRISA, Université de Rennes, Campus de Beaulieu, France

and

CORENTIN TRAVERS
IRISA, Université de Rennes, Campus de Beaulieu, France

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

Leader-based protocols rest on a primitive able to provide the processes with the
same unique leader. Such protocols are very common in distributed computing to solve
synchronization or coordination problems. Unfortunately, providing such a primitive
is far from being trivial in asynchronous distributed systems prone to process crashes.
(It is even impossible in fault-prone purely asynchronous systems.) To circumvent this
difficulty, several protocols have been proposed that build a leader facility on top of
an asynchronous distributed system enriched with synchrony assumptions. This paper
introduces a novel approach to implement an eventual leader protocol, namely a time-
free behavioral assumption on the flow of messages that are exchanged. It presents a
very simple leader protocol based on this assumption. It then presents a second leader
protocol combining this timeless assumption with eventually timely channels. As it
considers several assumptions, the resulting hybrid protocol has the noteworthy feature
to provide an increased overall assumption coverage. A probabilistic analysis shows that
the time-free assumption is practically always satisfied.

Keywords: Asynchronous system, Distributed algorithm, Fault tolerance, Hybrid Algo-
rithm, Leader election, Process crash, Time-free Protocol, Timely Channel.

1. Introduction

Context of the study The design and implementation of reliable applications on
top of asynchronous distributed systems prone to process crashes is a difficult and

2 Parallel Processing Letters

complex task. A main issue lies in the impossibility of correctly detecting crashes in
the presence of asynchrony. In such a context, some problems become very difficult
or even impossible to solve. The most famous of those problems is the Consensus
problem for which there is no deterministic solution in asynchronous distributed
systems where processes (even only one) may crash [8].

While consensus is considered as a “theoretical” problem, middleware design-
ers are usually interested in the more practical Atomic Broadcast problem. That
problem is both a communication problem and an agreement problem. Its commu-
nication part specifies that the processes can broadcast and deliver messages in such
a way that each correct process delivers at least the messages sent by the correct
processes (a correct process is a process that does not crash). Its agreement part
specifies that there is a single delivery order (so, the correct processes deliver the
same sequence of messages, and a faulty process delivers a prefix of this sequence of
messages). It has been shown that consensus and atomic broadcast are equivalent
problems in asynchronous systems prone to process crashes [4]: in such a setting,
any protocol solving one of them can be used as a black box on top of which the
other problem can be solved. Consequently, in asynchronous distributed systems
prone to process crashes, the impossibility of solving consensus extends to atomic
broadcast.

When faced to process crashes in an asynchronous distributed system, the main
problem comes from the fact that it is impossible to safely distinguish a crashed
process from a process that is slow or with which communication is very slow [14].
To overcome this major difficulty, Chandra and Toueg have introduced the concept
of Unreliable Failure Detector [4]. A failure detector is a device that outputs failure
related information according to the current failure pattern. Among all the classes
of failure detectors, we are interested here in the class of failure detectors denoted
2, and called the class of eventual leader oracles. Such an oracle offers a primitive
leader() that satisfies the following leadership property: a unique correct leader is
eventually elected, but there is no knowledge on when this common leader is elected
and, before this occurs, several distinct leaders (possibly conflicting) can co-exist.
Interestingly, it is possible to solve consensus (and related agreement problems) in
asynchronous distributed system equipped with such a “weak” oracle (as soon as
these systems have a majority of correct processes) [5,18]. It has also been shown
that, as far as failure detection is concerned, €2 is the weakest failure detector class
that allows solving consensus [5]. €2 is the oracle that is (implicitly) used to ensure
the termination property in Lamport’s Paxos protocol [12].

Unfortunately, 2 cannot be implemented in pure (time-free) asynchronous sys-
tems (its implementation would contradict the consensus impossibility result [8]).
Nevertheless, such an oracle allows the protocols that use it to benefit from a very
nice property, namely indulgence [9,10]. More precisely, let P be an oracle-based
protocol, and PS be the safety property satisfied by its outputs. P is indulgent with

A Time-free Assumption to Implement Eventual Leadership 3

respect to its underlying oracle if, whatever the behavior of the oracle, its outputs
never violate the safety property PS. This means that each time P produces out-
puts, those are correct. Moreover, P always produces outputs when the underlying
oracle meets its specification. The only case where P can be prevented from pro-
ducing outputs is when the underlying oracle does not meet its specification. (Let
us notice that it is still possible that P produces outputs despite the fact that its
underlying oracle does not work correctly.)

Interestingly, 2 defines a class of oracles that allow the design of indulgent
consensus protocols [10]. It is important to notice that indulgence is a first class
property that makes valuable the design of “approximate” protocols that do their
best to implement Q on top of the asynchronous system itself. The periods during
which their best effort succeeds in producing a correct implementation of the oracle
are called “good” periods, the upper layer oracle-based protocol P then produces
outputs and those are correct. During the other periods (sometimes called “bad”
periods), P does not produce erroneous outputs. The only bad thing that can
happen in a bad period is that P can be prevented from producing outputs. It is
important to notice that neither the occurrence, nor the length of the good/bad
periods (sometimes called stable vs unstable periods) can be known by the upper
layer protocol P that uses the underlying oracle. The only thing that is known is
that a result produced by P is always correct.

The fact that the safety property of an Q2-based protocol P can never be violated,
and the fact that its liveness property (outputs are produced) can be ensured in
“good” periods, make attractive the design of indulgent Q-based protocols, and
motivate the design of underlying “best effort” protocols that implement an €2 oracle
within the asynchronous distributed system itself. A challenge is then to identify
properties that, when satisfied by the asynchronous system, ensure that it evolves
in a good period.

Related work Several works have considered the implementation of failure detec-
tors of the class 2 (e.g., [1,7,13]). Basically, all these works consider that, eventually,
the underlying system (or a part of it) behaves in a synchronous way. More precise-
ly, some of these implementations consider the partially synchronous system model
[4] which is a generalization of the models proposed in [6]. A partially synchronous
system assumes there are bounds on process speeds and message transfer delays,
but these bounds are not known and hold only after some finite but unknown time
(called Global Stabilization Time). The protocols implementing failure detectors in
such systems obey the following principle: using successive approximations, each
process dynamically determines a value A that eventually becomes an upper bound
on transfer delays and processing speed.

The protocol described in [1] considers weaker synchrony assumptions, namely
it requires synchronous processes (process speed is bounded) and the existence of at
least one correct process whose output links are eventually timely (i.e., there are a
bound ¢ and a time ¢, such that, after ¢, each message sent on such a link is received

4 Parallel Processing Letters

within § time). The Q protocol described in [2] improves on the previous one as it
requires that only f output links of a correct process be eventually timely (where
f is the upper bound on the number of faulty processes).

Content of the paper Another approach to implement failure detectors, that
differently from the previous ones does not rely on the use of timeouts, has recently
been introduced in [15]. This approach, which uses explicitly the values of n (the
total number of processes) and f (the maximal number of processes that can crash),
consists in stating a property on the message exchange pattern that, when satisfied,
allows implementing some classes of failure detectors.

Assuming that each process can broadcast queries and then, for each query,
wait for the corresponding responses, we say that a response to a query is a winning
response if it arrives among the first (n — f) responses to that query (the other
responses to that query are called losing responses). Let MP be the following be-
havioral property on the query /response exchange pattern (MP stands for Message
Pattern): “There are a correct process p; and a set @ of (f + 1) processes such
that eventually the response of p; to each query issued by any p; € @ is always a
winning response (until -possibly- the crash of p;)”. It is shown in [15,16,19] that
some failure detector classes can be implemented when this property is satisfied.

The paper investigates MP and shows how it can be used to implement a leader
oracle. It is important to notice that the MP property is time-free: it does not
involve timing assumptions. It that sense, the first protocol presented in this paper
shows that, as soon as the MP property is satisfied by the message exchange pattern,
the eventual leader election problem can be solved in asynchronous systems prone
to process crashes without requiring dependable timeout values. The paper presents
also a second protocol, namely a hybrid leader protocol that benefits from the best
of both worlds: it elects a leader as soon as MP is satisfied or some channels are
eventually timely. In that sense, this protocol is practically appealing as it can
provide a better assumption coverage [20] than a leader protocol based on a single

property.

2. System Model

Asynchronous distributed system with process crash failures We consider
a system consisting of a finite set IT of n > 3 processes, namely, II = {p1,p2,...,pn}-
A process can fail by crashing, i.e., by prematurely halting. It behaves correctly (i.e.,
according to its specification) until it (possibly) crashes. By definition, a correct
process is a process that does not crash. A faulty process is a process that is not
correct. As previously indicated, f denotes the maximum number of processes that
can crash (1 < f < n). This means that 1 < f < n is an assumption on the system
behavior. More precisely, in all the executions where at most f processes crash, the
upper layer protocol we are interested in has to work correctly (eventually elect a
common leader). Oun the contrary, in the executions where more than f processes

A Time-free Assumption to Implement Eventual Leadership 5

crash, there is no guarantee on the the upper layer protocol (as we will see, if more
than f processes crash, the proposed leader protocol can block).

Processes communicate by sending and receiving messages through channels.
Every pair of processes is connected by a channel. Channels are assumed to be
reliable: they do not create, alter or lose messages. In particular, if p; sends a
message to pj, then eventually p; receives that message unless it fails. There is no
assumption about the relative speed of processes or message transfer delays (let us
observe that channels are not required to be FIFO).

A process p; has local variables, and consists of one or several local tasks. When
a process is made up of several local tasks, it is implicitly assumed that these tasks
access the local variables in mutual exclusion. So, the local variables have the
atomicity semantics with respect to the local tasks.

We assume the existence of a global discrete clock. This clock is a fictional device
which is not known by the processes; it is only used to state specifications or prove
protocol properties. The range T of clock values is the set of natural numbers.

Query-response mechanism For our purpose (namely, the implementation of
a leader oracle) we consider that each process is provided with a query-response
mechanism. Such a query-response mechanism can easily be implemented in a
time-free distributed asynchronous system. More specifically, any process p; can
broadcast a QUERY _ALIVE() message and then wait for corresponding RESPONSE()
messages from (n — f) processes (these are the winning responses for that query).
The other RESPONSE() messages associated with a query, if any, are systematically
discarded (these are the losing responses for that query).

Both a QUERY ALIVE() message and a RESPONSE() message can be used to
piggyback values. This allows the querying process to disseminate a value to all the
processes, and to obtain a value from each process.

A query issued by p; is terminated if p; has received the (n — f) corresponding
responses it was waiting for. We assume that a process issues a new query only
when the previous one has terminated. Without loss of generality, the response
from a process to its own queries is assumed to always arrive among the first (n — f)
responses it is waiting for. Moreover, QUERY _ALIVE() and RESPONSE() are assumed
to be implicitly tagged in order not to confuse RESPONSE() messages corresponding
to different QUERY ALIVE() messages. It is assumed that (until it possibly crash)
a process p; issues forever sequential queries.

Figure 1 depicts a query-response mechanism in a system made up of n = 6
processes, and f = 2. After p3 broadcasts QUERY ALIVE(), the n — f = 4 first
RESPONSE() messages it receives are from ps, ps (itself), ps and ps. These responses
are the winning responses for that query. Notice that p, has crashed.

In the following AS,, ¢[0] denotes an asynchronous distributed system made up
of n processes among which up to f < n can crash.

6 Parallel Processing Letters

P =
/ Tt~ RESPONSE()

P2

UER\;AL\}VE()

m N

Da v
\('msh //

Ps \ - &

Po .

Winning responses from {p2, ps, ps, pe }

Losing responses from {p1,ps}

Figure 1: Query/Response Mechanism

3. A Behavioral Property on the Message Exchange Pattern

As implementing a leader oracle in an asynchronous system is impossible (see
Theorem 1), we consider the following additional assumption that we call MP (that,
as already indicated, is a shortcut for Message Pattern):

“There are a time t, a correct process p; and a set @ of (f + 1) processes
(t, p; and @ are not known in advance) such that, after ¢, each process
pj € @ gets a winning response from p; to each of its queries (until p;
possibly crashes).”

The intuition that underlies this property is the following. Even if the system
never behaves synchronously during a long enough period, it is possible that its
behavior has some “regularity” that can be exploited to build a leader oracle. This
regularity can be seen as some “logical synchrony” (as opposed to “physical” syn-
chrony). More precisely, MP states that, eventually, there is a cluster @ of (f + 1)
processes that (until some of them possibly crash) receive winning responses from p;
to their queries. This can be interpreted as follows: among the n processes, there is a
process that has (f +1) “favorite neighbors” with which it communicates faster than
with the other processes. When we consider the particular case f = 1, MP boils
down to a simple channel property, namely, there is channel (p;,p;) that is never
the slowest among the channels connecting p; to the other processes (it is shown in
[15] that the probability that this property be satisfied in practice is very close to 1).

In the following, AS,, [MP] denotes an asynchronous distributed system made
up of n processes among which up to f can crash, and satisfying the property MP.
The appendix studies the case f = 1 and shows that MP is then practically always
satisfied.

A Time-free Assumption to Implement Eventual Leadership 7

4, A Leadership Facility

Definition and use A leader oracle is a distributed entity that provides the
processes with a function leader() that returns a process name each time it is invoked.
A unique correct leader is eventually elected but there is no knowledge of when the
leader is elected. Several leaders can coexist during an arbitrarily long period of
time, and there is no way for the processes to learn when this “anarchy” period is
over. The leader oracle (denoted (2) satisfies the following property (his property
refers to a notion of global time that is not accessible to the processes):

e Eventual Leadership: There is a time ¢ and a correct process p such that, after
t, every invocation of leader() by any correct process returns p.

)-based consensus algorithms are described in [10,12,18]"for systems where a ma-
jority of processes are correct (f < m/2). Such consensus algorithms can then be
used as a subroutine to implement atomic broadcast protocols (e.g., [4,12,17]).

An impossibility result As consensus can be solved in an asynchronous system
with a majority of correct processes, and equipped with a leader oracle, and as
consensus cannot be solved in purely asynchronous systems [8], it follows that a
leader oracle cannot be implemented in an asynchronous system AS,, ([0] with f <
n/2. The theorem that follows shows a more general result in the sense that it does
not state a constraint on f.

Theorem 1 No leader oracle can be implemented in AS, ¢[0] with f < n.

Proof (This proof is close to the proof we give in [3] where we show that there is no
protocol implementing an eventually weak failure detector in AS,, ¢[0] with f < n.)
The proof is by contradiction. Assuming that there is a protocol implementing
a leader oracle, we construct a crash-free execution in which there is an infinite
sequence of leaders such that any two consecutive leaders are different, from which
it follows that the eventual leadership property is not satisfied.

e Let R; be a crash-free execution, and ¢; be the time after which some process
Dy, is elected as the definitive leader.

Moreover, let R} be an execution identical to R; until ¢; + 1, and where py,
crashes at t; + 2.

e Let Ry be a crash-free execution identical to R} until ¢; + 1, and where the
messages sent by py, after ¢; + 1 are arbitrarily delayed (until some time that
we will specify later).

*The Paxos protocol [12] is leader-based and considers a more general model where processes can
crash and recover, and links are fair lossy. (Its first version dates back to 1989, i.e., before the 2
formalism was introduced.)

8 Parallel Processing Letters

As, for any process p, # pg,, R2 cannot be distinguished from Rj, it follows
that some process pg, # pe, is elected as the definitive leader at some time
ta > t1. After py, is elected, the messages from py, can be received.

Moreover, let R, be an execution identical to Ry until ¢; + 1, and where py,
crashes at to + 2.

e Let R3 be a crash-free execution identical to R}, until ¢; + 1, and where the
messages from ¢ are delayed (until some time that we will specify later).

Some process py, # pe, is elected as the definitive leader at some time ¢35 >
ta > t1. After py, is elected, the messages from py, are received. Etc.

This inductive process, repeated indefinitely, constructs a crash-free execution in

which an infinity of leaders are elected at times t; < t; < t3 < --- and such that
no two consecutive leaders are the same process. Hence, the eventual leadership
property we have assumed is not satisfied. O heorem 1

5. An MP-based Asynchronous Leader Protocol

5.1. Underlying Principles

The protocol is made up of three tasks executed by each process. Its underlying
principles are relatively simple. It is based on the following heuristic: each process
elects as a leader the process it suspects the less. To implement this idea, each
process p; manages an array count;[1..n] in such a way that count;[j] counts the
number of times p; suspects p; to have crashed. Then, if count;[j] never stops
increasing, p; heuristically considers that p; has crashed.

According to this management of the count; array, the role of the Task 7'3 of
p; is to define its current leader. More explicitly, the current leader of p; is the
process pe such that the pair (¢,count;[f]) is the smallest pair over all the pairs
(z, count;[z]), for 1 < x < n. This is the classical lexicographical order, namely,
(81,01) < (ZQ,CQ) if (Cl < 02) or (C]. =Nl < gz)

The aim of the tasks T'1 and T2 is to manage the array count; such that the
previous heuristic used to define the current leader be consistent, i.e., satisfies the
eventual leadership property. To benefit from the MP property, the task 11 uses
the underlying query-response mechanism. Periodically, each p; issues a query and
waits for the (n — f) corresponding winning responses (lines 1-2). The response
from p; carries the set of processes that sent winning responses to its last query
(this set is denoted rec_ from;). Then, according to the rec_ from; sets it has
received, p; updates accordingly its count; array.

The QUERY _ALIVE() messages implementing the query-response mechanism are
used as a gossiping mechanism to disseminate the value of the count; array of each
process p;. The aim of this gossiping is to ensure that eventually all correct processes
can elect the same leader.

A Time-free Assumption to Implement Eventual Leadership 9

Let us observe that all the tasks that define p; access a single local variable,
namely, count;[1..n]. It follows that they cannot deadlock (assuming a deadlock-
free underlying locking mechanism).

init: rec_ from; < II; count; < [0,...,0];
Launch in parallel the tasks 71,72 and T'3 (they access count; in mutual exclusion)

task T'1:
repeat
(1) for each j do send QUERY _ ALIVE(count;) to p; end do;
(2) wait__until (corresponding RESPONSE(rec_ from) received from (n — f) proc.);
(3) let REC_FROM; = U of all the rec_ fromy, received at line 2;
(4) let not _rec_from; =11 — REC_FROM;;
(5) for each j € not_rec_ from; do count;[j] < count;[j]+ 1 end _do;
(6) let rec_ from; = the set of processes from which p; received a RESPONSE at line 2
end repeat

task T'2: upon reception of QUERY_ ALIVE(c;) from p;:
(7) for _each k ¢ II do count;[k] < max(c;[k], count;[k]) end _do;
(8) send RESPONSE(rec_ from;) to p;

task 7'3: when leader() is invoked by the upper layer:
9) let £ such that (count;[{],£) = minken{(counti [k],k)},
(10) return ()

Figure 2: MP-based Module (for Process p;)

5.2. Correctness Proof

Given an execution, let C' denote the set of processes that are correct in that
execution. Let us consider the following set definitions (PL stands for “Potential
Leaders”):

PL={p, | 3p; € C : count;[z] is bounded},

For any correct process p; : PL; = {p, | count;[z] is bounded}.

The proof is decomposed into four lemmas. It assumes that at most f processes
crash, and that a process regularly issues queries (until it possibly crashes).

The first lemma shows that the additional assumption MP ensures that the set
PL cannot be empty.
Lemma 1 MP = PL# .
Proof Due to the MP assumption, there are a time ¢, a correct process p; and a
set) including at least f + 1 processes such that, after ¢, Vp; € @, until it possibly
crashes, p; receives from p; only winning responses to its queries. Let us notice that
@ includes at least one correct process.

Let us consider a time t' after which no more process crashes, and let 7 =
max(t,t'). Let pg be any correct process. As py waits for RESPONSE() messages from
(n — f) processes and, after 7, at most n — (f + 1) processes do not receive winning

10 Parallel Processing Letters

responses from p;, it follows that there is a time 7, after which p; always belongs
to REC _FROMj. From which we conclude that, after 7, pp never increments
county[i] at line 5. As this is true for any correct process p,, it follows that there
is a time T > max,, cc(7;) after which, due to the gossiping of the count, arrays,
we have count,[i] = count,s[i] = M; (a constant value), for any pair of correct
processes p;1 and pzo. The lemma follows. OLemma 1

The second lemma shows that the set of potential leaders PL contains only

correct processes.

Lemma 2 PL CC.

Proof We show the contrapositive, i.e., if p, is a faulty process, then each correct
process p; is such that count;[z] increases forever. Thanks to the gossiping mech-
anism (realized by the QUERY ALIVE() messages) used to periodically broadcast
the counter arrays, it is actually sufficient to show that there is a correct process p;
such that count;[z] increases forever if p, is faulty.

Let tg be a time after which all the faulty processes have crashed, and all the
messages they have previously sent are received. Moreover, let ¢ > £y, be a time
such that each correct process has issued and terminated a query-response between
to and ¢ (the aim of this query-response invocation is to “clean up” -eliminate faulty
processes from- the rec_ from; set sent by every correct process p;). Let p, be
a faulty process (it crashed before t) and p; be a correct process. We have the
following;:

e All the query-response invocations issued by p; after t define a rec_ from; set
(computed at line 6) that does not include p;.

o It follows that, after ¢, the set REC _FROM; computed at line 3 can never
include p,. This means that, after ¢, the set not _rec_ from; (computed at
line 4) always includes p,. Hence, after ¢, count;[z] is increased each time p;
issues a query-response. As p; is correct it never stops invoking the query-
response mechanism, and the lemma follows.

IjLemma 2

Finally, the third lemma shows that no two processes can see different sets of
potential leaders.
Lemma 3 p; € C = PL; = PL.
Proof Let us first observe that PL = [_inec
the definition of PL). Consequently, PL; C PL.
To show the inclusion in the other direction, let us consider p, € PL (i.e., p, is a

PL; (this follows immediately from

correct process such that there is a correct p; such that count;[z] is bounded). Let
M, be the greatest value taken by count;[x]. We show that count;[z] is bounded.
As after some time count;[z] remains forever equal to M, it follows from the fact
that p; and p; are correct and the perpetual gossiping from p; to p; (lines 1 and
7) that we always have count;[z] < M,, from which we conclude that count;[z] is
bounded. OLemma 3

A Time-free Assumption to Implement Eventual Leadership 11

The last lemma shows that, due to the gossiping mechanism, if a counter value
remains bounded, it eventually takes the same value at all the correct processes.

Lemma 4 Let p; and p; be any pair of correct processes. If, after some time,
count;[k] remains forever equal to some constant value My, then there is a time
after which count;[k] remains forever equal to the same value Mj,.

Proof The proof is by contradiction. let us assume that (1) p; and p; are correct,
(2) from some time t1, count;[k] stays constant at the value My, and (3) there is a
time ¢, > t; after which count;[k] becomes equal to M; > M.

As p; is correct, it sends query messages carrying the value count;[k] = M,
after time to. As p; is correct, it receives such a message and updates consequently
count;[k] to M;, > My, contradicting the assumption stating that, after t;, count;[k]
remains forever equal to M. OLemma 4

Theorem 2 The protocol described in Figure 2 implements a leader facility in
AS,, f[MP].

Proof The proof follows directly from the lemmas 1, 2 and 3 which state that
all the correct processes have the same non-empty set of potential leaders, which
includes only correct processes. Moreover, due to Lemma 4, all the correct process
have the same counter values for the processes of PL (and those values are the only
ones to be bounded). It follows that the correct processes elect the same leader that
is the correct process with the smallest counter value. O7heorem 2

This protocol uses unbounded counters. This property can be useful for some
classes of applications (e.g., [11]). It is nevertheless possible to obtain a MP-based
leader protocol that uses only finite memory [19].

6. A Hybrid Protocol

This section shows that the previous approach (based on a property satisfied by
the message exchange pattern) and the more classical approach that relies on the use
of timeouts are not antagonistic and can be combined to produce a hybrid protocol
implementing an eventual leader oracle. The resulting protocol benefits from the
best of both worlds in that it converges as soon as some synchrony assumption is
satisfied, or the required message exchange pattern occurs. We consider here the
synchrony assumption and the corresponding leader protocol defined in [2].

6.1. Synchrony Assumptions

We consider here a synchrony model slightly stronger than the one introduced
in [2]T First, the processes are synchronous (there is a lower and upper bound on
the number of steps per time unit of any non-faulty process). Moreover, there is at
least one correct process that is a < f-source. This means that there is a correct
process p; that has f output channels such that, after some unknown but finite

fWhile [2] considers that the channels can be fair lossy, we consider here that they are reliable.

12 Parallel Processing Letters

time ¢, there is a bound ¢ (whose value is not known in advance) such that -after
t- any message sent on such a channel is received within § (it is not required that
the destination processes of a < f-source be correct; some -or all- of them can be
faulty).

Let AS,, ¢[< f-source] denote a distributed system satisfying this synchrony as-
sumption.

6.2. Aguilera et al.’s Protocol

Aguilera et al. present in [2] the following leader protocol, described in Figure
3, that works in any system AS, ;[® f-source]. Each process p; manages an array
count;. This array is such that count;[j] is bounded if p; is a correct < f-source,
while count;[j] is unbounded if p; is faulty. As in the protocol described in Figure
2, the leader is the process py whose counter has the smallest value (task 7'5).

init: for _each j # i do timeout;[j] « o + 1; set timer;[j] to timeout;[j] end _do;
count; < [0,...,0]; suspect; « [0,...,0];
Launch in parallel the tasks 7'1 until 75

task 7'1: repeat periodically every a time units:
for _each j # i do send ALIVE (count;) to p; end do

task T2: when ALIVE (count) is received from p;:
for _each k do count;[k] < max(count;[k], count[k]) enddo;
reset timer;[j] to timeout;[j]

task 7'3: when timer; [k] expires:
timeout;[k] < timeout;[k] + 1;
for _each j do send suspecT(k) to p; enddo;
reset timer; k] to timeout; k]

task 7T'4: when suspect(k) is received from p;:
suspect;[k] < suspect;[k] U {p;};
if (|suspect;[k]| > n — f) then count;[k] < count;[k]+ 1;
suspect;[k] < 0
end if

task 7'5: when leader() is invoked by the upper layer:
let £ such that (count;[(],¢) = minken{(counti [k},k)},
return (¢)

Figure 3: Aguilera et al.’s Leader Protocol (for Process p;)

The key of the protocol is the management of each counter count;[j], i.e., the way
such a counter is (or not) increased. To this end, each process p; manages an array
suspect; as follows (task T'4): suspect;[j] keeps track of the set of processes that
currently suspect p; to have crashed(task 7'3). If this set contains (n — f) processes
(or more), then p; increases count;[j] and resets suspect;[j] to 0. It is relatively easy
to see that if a process p; crashes, then count;[j] will never stop increasing at any

A Time-free Assumption to Implement Eventual Leadership 13

non-crashed process p;. The < f-source assumption allows showing that count;[j]
will remain bounded if p; is a & f-source. Consequently, there is at least one entry
of count; that remains bounded and all the entries of count; that remain bounded
correspond to correct processes. So, we get the following theorem:

Theorem 3 [2] The protocol in Figure 3 implements a leader facility in AS,, ([f-
source].

6.3. A Hybrid Protocol

Let count M P; be the array count; used in the protocol described in Figure 2
(the protocol based on the message exchange pattern assumption). Similarly, let
count_<f, be the array count; used in the protocol described in Figure 3 (the
protocol based on the < f-source synchrony assumption).

These protocols can be merged as follows. Both protocols execute independently
one from the other with the following modification. The last task of each protocol
(i.e., the task T'3 in Figure 2, and the task 7'5 in Figure 3) are suppressed and
replaced by a new task 7'3/7T'5 defined as follows:

task 7'3/T5: when leader() is invoked by the upper layer:
for each k do count;[k] < min(count_ M P;[k], count_< f;[k]) enddo;
let ¢ such that (count;[(],¢) = mingen{(count;[k], k) };
return (¢)

The previous proof can be easily adapted to show that the resulting hybrid pro-
tocol implements a leader facility as soon as either the message pattern assumption
MP or the < f-source synchrony assumption is satisfied. So we get the following
theorem:

Theorem 4 The hybrid protocol obtained by combining the protocol described in
Figure 2 and the protocol described in Figure 3 implements a leader facility in
ASp f[MP V < f-source].

Hence, this protocol benefits from the best of both worlds. This shows that, when
the underlying system can satisfy several alternative assumptions, convergence can
be expedited. Moreover, since convergence is guaranteed if any one of the alternative
assumptions is satisfied, the resulting hybrid protocol provides an increased overall
assumption coverage [20].

7. Conclusion

Leader-based protocols are common in distributed computing. They rely on an
underlying primitive that eventually provides the processes with the same unique
leader. Such a primitive is usually used to solve synchronization or coordination
problems. While it is particularly easy to implement a leader primitive in a fault-
free system, its construction in an asynchronous system prone to process crashes
is impossible if the underlying system is not enriched with additional assumption-
s. While the traditional approach to build a distributed leader facility in such

14 Parallel Processing Letters

crash-prone asynchronous systems considers additional synchrony assumptions, the
approach presented in this paper has considered an additional time-free assumption,
namely, a behavioral property on the message flow.

The paper has presented two leader protocols. The first is based on a property
on the message exchange pattern generated by query and response messages. The
second merges the synchrony-based approach with the the proposed approach to get
a hybrid leader protocol. This protocol allows expediting the convergence (a correct
process is elected as the definitive leader) as, in that case, convergence can then be
guaranteed as soon as one assumption (synchrony or message exchange pattern) is
satisfied, thereby providing an increased overall assumption coverage.

Acknowledgments

We would like to thank Kemal Ebcioglu (the managing editor of this special
issue) and the referees for their constructive comments that helped improve the
presentation of the paper.

References

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., On Implementing
Omega with Weak Reliability and Synchrony Assumptions. Proc. 22th ACM Sympo-
siwm on Principles of Distributed Computing (PODC’038), ACM Press, pp. 306-314,
Boston (MA), 2003.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., Communication-
Efficient Leader Election and Consensus with Limited Link Synchrony. Proc. 23th
ACM Symposium on Principles of Distributed Computing (PODC’04), ACM
Press, pp. 328-337, St. John’s, Newfoundland (Canada), 2004.

[3] Anceaume E., Fernandez A., Mostefaoui A., Neiger G. and Raynal M., Necessary and
Sufficient Condition for Transforming Limited Accuracy Failure Detectors. Journal of
Computer and System Sciences, 68:123-133, 2004.

[4] Chandra T.D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Sys-
tems. Journal of the ACM, 43(2):225-267, 1996.

[5] Chandra T.D., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving
Consensus. Journal of the ACM, 43(4):685-722, 1996.

[6] Dwork C., Lynch N. and Stockmeyer L., Consensus in the Presence of Partial Syn-
chrony. Journal of the ACM, 35(2):288-323, 1988.

[7] Fetzer C., Raynal M. and Tronel F., An Adaptive Failure Detection Protocol. Proc.
8th IEEE Pacific Rim Int. Symposium on Dependable Computing (PRDC’01),
IEEE Computer Society Press, pp. 146-153, Seoul (Korea), 2001.

[8] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

[9] Guerraoui R., Indulgent Algorithms. Proc. 19th ACM Symposium on Principles of
Distributed Computing, (PODC’00), ACM Press, pp. 289-298 Portland (OR), 2000.

[10] Guerraoui R. and Raynal M., The Information Structure of Indulgent Consensus. IEEE
Transactions on Computers, 53(4):453-466, April 2004.

[11] Hayashibara N., Defago X., Yared Y. and Katayama T., The ¢ Accrual Failure De-
tector. Proc. 23th IEEE Symposium on Reliable Distributed Systems (SRDS’04),
IEEE Computer Society Press, pp. 66-78, Florianpolis (Brasil), 2004.

A Time-free Assumption to Implement Eventual Leadership 15

[12] Lamport L., The Part-Time Parliament. ACM Transactions on Computer Systems,
16(2):133-169, 1998.

[13] Larrea M., Fernndez A. and Arvalo S., Optimal Implementation of the Weakest Failure
Detector for Solving Consensus. Proc. 19th Symposium on Reliable Distributed Sys-
tems (SRDS’00), IEEE Computer Society Press, pp. 52-60, Nuremberg (Germany),
2000.

[14] Mostefaoui A., Mourgaya E. and Raynal M., An Introduction to Oracles for Asyn-
chronous Distributed Systems. Future Generation Computer Systems, 18(6):757-767,
2002.

[15] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous Implementation of Failure
Detectors. Proc. Int. IEEE Conference on Dependable Systems and Networks
(DSN’03), IEEE Computer Society Press, pp. 351-360, San Francisco (CA), 2003.

[16] Mostefaoui A., Powell D., and Raynal M., A Hybrid Approach for Building Eventually
Accurate Failure Detectors. Proc. 10th IEEE Int. Pacific Rim Dependable Com-
puting Symposium (PRDC’04), IEEE Computer Society Press, pp. 57-65, Papeete,
(Tahiti, France), 2004.

[17) Mostefaoui A. and Raynal M., Low-Cost Consensus-Based Atomic Broadcast. 7th
IEEE Pacific Rim Int. Symposium on Dependable Computing (PRDC’2000),
IEEE Computer Society Press, UCLA, Los Angeles (CA), pp. 45-52, 2000.

[18] Mostefaoui A. and Raynal M., Leader-Based Consensus. Parallel Processing Letters,
11(1):95-107, 2001.

[19] Mostefaoui A., Raynal M. and Travers C., Crash-Resilient Time-free Eventual Leader-
ship. Proc. 23th IEEE Symposium on Reliable Distributed Systems (SRDS’04),
IEEE Computer Society Press, pp. 208-217, Florianpolis (Brasil), 2004.

[20] Powell D., Failure Mode Assumptions and Assumption Coverage. Proc. of the 22nd
Int. Symp. on Fault-Tolerant Computing (FTCS-22), Boston, MA, pp.386-395,
1992.

Appendix A

A.1. The Case f=1

A.1.1. A Channel Property

We can assume that the response from a process to its own queries always arrive
among the first (n — f) responses it is waiting for. Let MP(1) denote the property
MP when f = 1. MP(1) means that there is a set of two processes, say {pi,p;},
such that p; (until it possibly crashes) always receives and processes the response
from p; to its queries (in other words, the responses from p; always arrive among
the (n — 1) responses p; is waiting for and so are never discarded by p;).

Let a query be terminated when the corresponding process has received all the
corresponding winning responses. Considering the last query issued by pj, termi-
nated at or before ¢, let rtd(k, £, t) denote the round-trip delay of the corresponding
query-response exchanged between py and py. If there is no response from p, or if
the response is discarded by p, let rtd(k, ¢,t) = +oo. With these notations MP(1)

16 Parallel Processing Letters

an be rewritten as follows when

MP(1) = 3Jatimet', I(p;,p;) such that
Vt > t': (p; not crashed at t) = (rtd(i, j,t) # +00).

This property can be rephrased as a property on the behavior of the channels,
namely: “There is a time after which there is a channel in the system, say (p;,p;),
that is never the slowest among the channels connecting p; or p; to the other pro-
cesses’. It follows that, when the underlying system satisfies this channel property,
the protocol described in Figure 2 builds a failure detector of the class Q despite
one process crash.

A.2. Probabilistic Analysis

This section computes the probability that the property MP(1) be satisfied from
the very beginning in an asynchronous distributed system made up of n processes
in which at most one process can crash, i.e., to compute

Prob[3(p;,p;) : Vt : (p; not crashed at ¢) = (rtd(i, j,t) # +00)].

To compute such a probability we assume that no process crashes (this is because,
as soon as a process crashes, MP(1) is trivially satisfied). So, assuming no process
crash, we want to compute:

Prob[EI(pi,pj) 1Vt (rtd(i,j, t) # —f—oo)].

In order to take into account the time parameter ¢ in a simple way, we consider
that a protocol execution proceeds in consecutive asynchronous rounds in the sense
that during each “round” r, each process issues a query, waits for the first (n — 1)
corresponding responses, and then proceeds to the next “round”. As the system is
asynchronous, the (n — 1) RESPONSE messages associated with a query issued by
a process p; can arrive to it in any order. It follows that the previous probability
tends towards 0 when ¢ (i.e., r) tends towards +oo (this follows from the fact that
the system is asynchronous). But, as no real execution is infinite, we are interested
in protocol executions made up of a finite number z of rounds. Actually, z measures
the length of a time period during which the failure detector is used. So, from a
realistic point of view, we are interested in computing the following probability p(z):

p(z) = Prob[A(ps, p;) : Vr < @ : (rtd(j,i,r) # +00)].

Let discarded;(r) be the identity of the process whose response has not been received
among the (n — 1) first responses to the query issued by p; during round r. As
by assumption no process crashes, discarded;(r) is always defined, and we have
j = discarded;(r) < rtd(i, j,r) = +o0o. Hence, p(x) can be rewritten as follows:

p(x) = Prob [Hpi,Elpj #pi: /\ (j # discardedi(r))].

o<r<z

A Time-free Assumption to Implement Eventual Leadership 17

Computing the p(z) function
Let prop(i,z) = Vp; #pi: Vocpeap U= discarded;(r))]. We have:

p(z) = Prob[3p; : — prop(i,z)],

ie.,
p(m) =1 —Prob[Vpi . prOP(Zax)]

Let pp(i, z) = Prob[prop(i, z)]. As no process plays a particular role, for any (i, j,)
we have pp(i,x) = pp(j,x). Let pp(x) be that value. Moreover, V(i, j,r, ') the iden-
tities k = discarded;(r) and k' = discarded;(r') are independent random variables
(they are not related by the query mechanism). Moreover, the property prop(i,x)
is verified (or not) for each process p; independently from the other processes. We
can conclude from this discussion that p(z) follows a binomial distribution and we
get:
ple) = 1 — (pp(x))".

The computation of pp(z) can be done by observing that the (probabilistic) events
corresponding to the collect of the (n — 1) response messages do correspond to a
“trial with replacement” among (n — 1) values (as already indicated, we assume
that a process p; always receives its own responses to its own queries). Each query
can be seen as “selecting” a process id to discard it, and so pp(x) is the probability
that each process identity is drawn out at least once. It follows that pp(x) can be
computed from basic probability theorems. Then, as soon as pp(x) is determined,
one can easily compute p(z).

1 —

50

/,,p(é,n/z)

0.95
0.9

= 0.85

number of rounds (x)

0.8

0.75

0.7 L L L L Is) L L L L L L L L
5 6 7 8 9 10 5 6 7 8 9 10 11 12 13 14

number of processes (n) number of processes (n)
(a) p(z) according to n for x = 3n/2 and (b) Fixing a priori a probability p
T =2n

Figure A.1: Measuring “how realistic” is MP(1)

18 Parallel Processing Letters

Practical results The previous determination of the probability p(z) can be used
to evaluate “how realistic” is the property MP(1) in an asynchronous system. Let us
notice that the number of rounds considered (z) can be interpreted as the duration
of a session during which the upper layer application uses the leader oracle.

We have seen that p(zr) tends towards 0 when z tends towards +oo. So, it
is interesting to know if p(z) tends quickly towards 0 or not. To this aim, let us
consider the two curves depicted in Figure A.1.(a) whose horizontal axis corresponds
to the number n of processes, and vertical axis corresponds to the probability p(z).
The curves correspond to the cases where the number z of rounds that are considered
are ¢ = 3n/2 and = = 2n, respectively (the highest curve depicts p(3n/2), while
the lowest one depicts p(2n), for 5 < n < 10). These curves first show how p(x)
is related to the session length x. More interestingly, they also show that, when
x < 2n, p(z) is very close to 1 for n > 7. Intuitively, adding processes can only
create more situations where MP(1) is satisfied. This is confirmed and measured
in Figure A.1.(a) that shows that, when the number n of processes increases, the
probability increases also and becomes very quickly very close to 1. In all cases, from
n = 7, the probability p(z) is very close to 1. This means that MP(1) is practically
satisfied in asynchronous distributed systems made up of n > 7 processes, if the
sessions (during which the upper layer application uses the leader oracle) are not
“too long”.

Figure A.1.(b) provides a complementary view. Its horizontal axis corresponds
to the number n of processes, while its vertical axis corresponds to the length of
the observation period (number z of rounds). Considering a given probability p,
this figure shows how long an upper layer session can be (number z of rounds) for
an asynchronous system made up of n processes (5 < n < 14) to satisty MP(1)
with the given probability. The lowest curve corresponds to p = 0.9999, the highest
corresponds to p = 0.9900. These curves show in another way that an asynchronous
distributed system satisfies MP (1) with a very high probability.

