
Parallel Processing Letters,fc World Scienti�c Publishing Company
A TIME-FREE ASSUMPTION TO IMPLEMENT EVENTUAL LEADERSHIPACHOUR MOSTEFAOUIIRISA, Université de Rennes, Campus de Beaulieu, FranceandERIC MOURGAYAIRISA, Université de Rennes, Campus de Beaulieu, FranceandMICHEL RAYNALIRISA, Université de Rennes, Campus de Beaulieu, FranceandCORENTIN TRAVERSIRISA, Université de Rennes, Campus de Beaulieu, FranceReceived (received date)Revised (revised date)Communicated by (Name of Editor)ABSTRACTLeader-based protocols rest on a primitive able to provide the processes with thesame unique leader. Such protocols are very common in distributed computing to solvesynchronization or coordination problems. Unfortunately, providing such a primitiveis far from being trivial in asynchronous distributed systems prone to process crashes.(It is even impossible in fault-prone purely asynchronous systems.) To circumvent thisdi�culty, several protocols have been proposed that build a leader facility on top ofan asynchronous distributed system enriched with synchrony assumptions. This paperintroduces a novel approach to implement an eventual leader protocol, namely a time-free behavioral assumption on the �ow of messages that are exchanged. It presents avery simple leader protocol based on this assumption. It then presents a second leaderprotocol combining this timeless assumption with eventually timely channels. As itconsiders several assumptions, the resulting hybrid protocol has the noteworthy featureto provide an increased overall assumption coverage. A probabilistic analysis shows thatthe time-free assumption is practically always satis�ed.Keywords: Asynchronous system, Distributed algorithm, Fault tolerance, Hybrid Algo-rithm, Leader election, Process crash, Time-free Protocol, Timely Channel.1. IntroductionContext of the study The design and implementation of reliable applications ontop of asynchronous distributed systems prone to process crashes is a di�cult and1

2 Parallel Processing Letterscomplex task. A main issue lies in the impossibility of correctly detecting crashes inthe presence of asynchrony. In such a context, some problems become very di�cultor even impossible to solve. The most famous of those problems is the Consensusproblem for which there is no deterministic solution in asynchronous distributedsystems where processes (even only one) may crash [8].While consensus is considered as a �theoretical� problem, middleware design-ers are usually interested in the more practical Atomic Broadcast problem. Thatproblem is both a communication problem and an agreement problem. Its commu-nication part speci�es that the processes can broadcast and deliver messages in sucha way that each correct process delivers at least the messages sent by the correctprocesses (a correct process is a process that does not crash). Its agreement partspeci�es that there is a single delivery order (so, the correct processes deliver thesame sequence of messages, and a faulty process delivers a pre�x of this sequence ofmessages). It has been shown that consensus and atomic broadcast are equivalentproblems in asynchronous systems prone to process crashes [4]: in such a setting,any protocol solving one of them can be used as a black box on top of which theother problem can be solved. Consequently, in asynchronous distributed systemsprone to process crashes, the impossibility of solving consensus extends to atomicbroadcast.When faced to process crashes in an asynchronous distributed system, the mainproblem comes from the fact that it is impossible to safely distinguish a crashedprocess from a process that is slow or with which communication is very slow [14].To overcome this major di�culty, Chandra and Toueg have introduced the conceptof Unreliable Failure Detector [4]. A failure detector is a device that outputs failurerelated information according to the current failure pattern. Among all the classesof failure detectors, we are interested here in the class of failure detectors denoted
, and called the class of eventual leader oracles. Such an oracle o�ers a primitiveleader() that satis�es the following leadership property: a unique correct leader iseventually elected, but there is no knowledge on when this common leader is electedand, before this occurs, several distinct leaders (possibly con�icting) can co-exist.Interestingly, it is possible to solve consensus (and related agreement problems) inasynchronous distributed system equipped with such a �weak� oracle (as soon asthese systems have a majority of correct processes) [5,18]. It has also been shownthat, as far as failure detection is concerned,
 is the weakest failure detector classthat allows solving consensus [5].
 is the oracle that is (implicitly) used to ensurethe termination property in Lamport's Paxos protocol [12].Unfortunately,
 cannot be implemented in pure (time-free) asynchronous sys-tems (its implementation would contradict the consensus impossibility result [8]).Nevertheless, such an oracle allows the protocols that use it to bene�t from a verynice property, namely indulgence [9,10]. More precisely, let P be an oracle-basedprotocol, and PS be the safety property satis�ed by its outputs. P is indulgent with

A Time-free Assumption to Implement Eventual Leadership 3respect to its underlying oracle if, whatever the behavior of the oracle, its outputsnever violate the safety property PS. This means that each time P produces out-puts, those are correct. Moreover, P always produces outputs when the underlyingoracle meets its speci�cation. The only case where P can be prevented from pro-ducing outputs is when the underlying oracle does not meet its speci�cation. (Letus notice that it is still possible that P produces outputs despite the fact that itsunderlying oracle does not work correctly.)Interestingly,
 de�nes a class of oracles that allow the design of indulgentconsensus protocols [10]. It is important to notice that indulgence is a �rst classproperty that makes valuable the design of �approximate� protocols that do theirbest to implement
 on top of the asynchronous system itself. The periods duringwhich their best e�ort succeeds in producing a correct implementation of the oracleare called �good� periods, the upper layer oracle-based protocol P then producesoutputs and those are correct. During the other periods (sometimes called �bad�periods), P does not produce erroneous outputs. The only bad thing that canhappen in a bad period is that P can be prevented from producing outputs. It isimportant to notice that neither the occurrence, nor the length of the good/badperiods (sometimes called stable vs unstable periods) can be known by the upperlayer protocol P that uses the underlying oracle. The only thing that is known isthat a result produced by P is always correct.The fact that the safety property of an
-based protocol P can never be violated,and the fact that its liveness property (outputs are produced) can be ensured in�good� periods, make attractive the design of indulgent
-based protocols, andmotivate the design of underlying �best e�ort� protocols that implement an
 oraclewithin the asynchronous distributed system itself. A challenge is then to identifyproperties that, when satis�ed by the asynchronous system, ensure that it evolvesin a good period.Related work Several works have considered the implementation of failure detec-tors of the class
 (e.g., [1,7,13]). Basically, all these works consider that, eventually,the underlying system (or a part of it) behaves in a synchronous way. More precise-ly, some of these implementations consider the partially synchronous system model[4] which is a generalization of the models proposed in [6]. A partially synchronoussystem assumes there are bounds on process speeds and message transfer delays,but these bounds are not known and hold only after some �nite but unknown time(called Global Stabilization Time). The protocols implementing failure detectors insuch systems obey the following principle: using successive approximations, eachprocess dynamically determines a value � that eventually becomes an upper boundon transfer delays and processing speed.The
 protocol described in [1] considers weaker synchrony assumptions, namelyit requires synchronous processes (process speed is bounded) and the existence of atleast one correct process whose output links are eventually timely (i.e., there are abound � and a time t, such that, after t, each message sent on such a link is received

4 Parallel Processing Letterswithin � time). The
 protocol described in [2] improves on the previous one as itrequires that only f output links of a correct process be eventually timely (wheref is the upper bound on the number of faulty processes).Content of the paper Another approach to implement failure detectors, thatdi�erently from the previous ones does not rely on the use of timeouts, has recentlybeen introduced in [15]. This approach, which uses explicitly the values of n (thetotal number of processes) and f (the maximal number of processes that can crash),consists in stating a property on the message exchange pattern that, when satis�ed,allows implementing some classes of failure detectors.Assuming that each process can broadcast queries and then, for each query,wait for the corresponding responses, we say that a response to a query is a winningresponse if it arrives among the �rst (n � f) responses to that query (the otherresponses to that query are called losing responses). Let MP be the following be-havioral property on the query/response exchange pattern (MP stands for MessagePattern): �There are a correct process pi and a set Q of (f + 1) processes suchthat eventually the response of pi to each query issued by any pj 2 Q is always awinning response (until -possibly- the crash of pj)�. It is shown in [15,16,19] thatsome failure detector classes can be implemented when this property is satis�ed.The paper investigates MP and shows how it can be used to implement a leaderoracle. It is important to notice that the MP property is time-free: it does notinvolve timing assumptions. It that sense, the �rst protocol presented in this papershows that, as soon as theMP property is satis�ed by the message exchange pattern,the eventual leader election problem can be solved in asynchronous systems proneto process crashes without requiring dependable timeout values. The paper presentsalso a second protocol, namely a hybrid leader protocol that bene�ts from the bestof both worlds: it elects a leader as soon as MP is satis�ed or some channels areeventually timely. In that sense, this protocol is practically appealing as it canprovide a better assumption coverage [20] than a leader protocol based on a singleproperty.2. System ModelAsynchronous distributed system with process crash failures We considera system consisting of a �nite set � of n � 3 processes, namely, � = fp1; p2; : : : ; png.A process can fail by crashing, i.e., by prematurely halting. It behaves correctly (i.e.,according to its speci�cation) until it (possibly) crashes. By de�nition, a correctprocess is a process that does not crash. A faulty process is a process that is notcorrect. As previously indicated, f denotes the maximum number of processes thatcan crash (1 � f < n). This means that 1 � f < n is an assumption on the systembehavior. More precisely, in all the executions where at most f processes crash, theupper layer protocol we are interested in has to work correctly (eventually elect acommon leader). On the contrary, in the executions where more than f processes

A Time-free Assumption to Implement Eventual Leadership 5crash, there is no guarantee on the the upper layer protocol (as we will see, if morethan f processes crash, the proposed leader protocol can block).Processes communicate by sending and receiving messages through channels.Every pair of processes is connected by a channel. Channels are assumed to bereliable: they do not create, alter or lose messages. In particular, if pi sends amessage to pj , then eventually pj receives that message unless it fails. There is noassumption about the relative speed of processes or message transfer delays (let usobserve that channels are not required to be fifo).A process pi has local variables, and consists of one or several local tasks. Whena process is made up of several local tasks, it is implicitly assumed that these tasksaccess the local variables in mutual exclusion. So, the local variables have theatomicity semantics with respect to the local tasks.We assume the existence of a global discrete clock. This clock is a �ctional devicewhich is not known by the processes; it is only used to state speci�cations or proveprotocol properties. The range T of clock values is the set of natural numbers.Query-response mechanism For our purpose (namely, the implementation ofa leader oracle) we consider that each process is provided with a query-responsemechanism. Such a query-response mechanism can easily be implemented in atime-free distributed asynchronous system. More speci�cally, any process pi canbroadcast a query_alive() message and then wait for corresponding response()messages from (n � f) processes (these are the winning responses for that query).The other response() messages associated with a query, if any, are systematicallydiscarded (these are the losing responses for that query).Both a query_alive() message and a response() message can be used topiggyback values. This allows the querying process to disseminate a value to all theprocesses, and to obtain a value from each process.A query issued by pi is terminated if pi has received the (n� f) correspondingresponses it was waiting for. We assume that a process issues a new query onlywhen the previous one has terminated. Without loss of generality, the responsefrom a process to its own queries is assumed to always arrive among the �rst (n�f)responses it is waiting for. Moreover, query_alive() and response() are assumedto be implicitly tagged in order not to confuse response() messages correspondingto di�erent query_alive() messages. It is assumed that (until it possibly crash)a process pi issues forever sequential queries.Figure 1 depicts a query-response mechanism in a system made up of n = 6processes, and f = 2. After p3 broadcasts query_alive(), the n � f = 4 �rstresponse() messages it receives are from p2, p3 (itself), p5 and p6. These responsesare the winning responses for that query. Notice that p4 has crashed.In the following ASn;f [;] denotes an asynchronous distributed system made upof n processes among which up to f < n can crash.

6 Parallel Processing Letters
query_alive()

response()

Losing responses from fp1; p4gWinning responses from fp2; p3; p5; p6g
Crash

p1p2p3p4p5p6 Figure 1: Query/Response Mechanism3. A Behavioral Property on the Message Exchange PatternAs implementing a leader oracle in an asynchronous system is impossible (seeTheorem 1), we consider the following additional assumption that we callMP (that,as already indicated, is a shortcut for Message Pattern):�There are a time t, a correct process pi and a set Q of (f +1) processes(t, pi and Q are not known in advance) such that, after t, each processpj 2 Q gets a winning response from pi to each of its queries (until pjpossibly crashes).�The intuition that underlies this property is the following. Even if the systemnever behaves synchronously during a long enough period, it is possible that itsbehavior has some �regularity� that can be exploited to build a leader oracle. Thisregularity can be seen as some �logical synchrony� (as opposed to �physical� syn-chrony). More precisely, MP states that, eventually, there is a cluster Q of (f + 1)processes that (until some of them possibly crash) receive winning responses from pito their queries. This can be interpreted as follows: among the n processes, there is aprocess that has (f+1) �favorite neighbors� with which it communicates faster thanwith the other processes. When we consider the particular case f = 1, MP boilsdown to a simple channel property, namely, there is channel (pi; pj) that is neverthe slowest among the channels connecting pj to the other processes (it is shown in[15] that the probability that this property be satis�ed in practice is very close to 1).In the following, ASn;f [MP] denotes an asynchronous distributed system madeup of n processes among which up to f can crash, and satisfying the property MP .The appendix studies the case f = 1 and shows that MP is then practically alwayssatis�ed.

A Time-free Assumption to Implement Eventual Leadership 74. A Leadership FacilityDe�nition and use A leader oracle is a distributed entity that provides theprocesses with a function leader() that returns a process name each time it is invoked.A unique correct leader is eventually elected but there is no knowledge of when theleader is elected. Several leaders can coexist during an arbitrarily long period oftime, and there is no way for the processes to learn when this �anarchy� period isover. The leader oracle (denoted
) satis�es the following property (his propertyrefers to a notion of global time that is not accessible to the processes):� Eventual Leadership: There is a time t and a correct process p such that, aftert, every invocation of leader() by any correct process returns p.
-based consensus algorithms are described in [10,12,18]�for systems where a ma-jority of processes are correct (f < n=2). Such consensus algorithms can then beused as a subroutine to implement atomic broadcast protocols (e.g., [4,12,17]).An impossibility result As consensus can be solved in an asynchronous systemwith a majority of correct processes, and equipped with a leader oracle, and asconsensus cannot be solved in purely asynchronous systems [8], it follows that aleader oracle cannot be implemented in an asynchronous system ASn;f [;] with f <n=2. The theorem that follows shows a more general result in the sense that it doesnot state a constraint on f .Theorem 1 No leader oracle can be implemented in ASn;f [;] with f < n.Proof (This proof is close to the proof we give in [3] where we show that there is noprotocol implementing an eventually weak failure detector in ASn;f [;] with f < n.)The proof is by contradiction. Assuming that there is a protocol implementinga leader oracle, we construct a crash-free execution in which there is an in�nitesequence of leaders such that any two consecutive leaders are di�erent, from whichit follows that the eventual leadership property is not satis�ed.� Let R1 be a crash-free execution, and t1 be the time after which some processp`1 is elected as the de�nitive leader.Moreover, let R01 be an execution identical to R1 until t1 + 1, and where p`1crashes at t1 + 2.� Let R2 be a crash-free execution identical to R01 until t1 + 1, and where themessages sent by p`1 after t1+1 are arbitrarily delayed (until some time thatwe will specify later).�The Paxos protocol [12] is leader-based and considers a more general model where processes cancrash and recover, and links are fair lossy. (Its �rst version dates back to 1989, i.e., before the
formalism was introduced.)

8 Parallel Processing LettersAs, for any process px 6= p`1 , R2 cannot be distinguished from R01, it followsthat some process p`2 6= p`1 is elected as the de�nitive leader at some timet2 > t1. After p`2 is elected, the messages from p`1 can be received.Moreover, let R02 be an execution identical to R2 until t2 + 1, and where p`2crashes at t2 + 2.� Let R3 be a crash-free execution identical to R02 until t2 + 1, and where themessages from `2 are delayed (until some time that we will specify later).Some process p`3 6= p`2 is elected as the de�nitive leader at some time t3 >t2 > t1. After p`3 is elected, the messages from p`2 are received. Etc.This inductive process, repeated inde�nitely, constructs a crash-free execution inwhich an in�nity of leaders are elected at times t1 < t2 < t3 < � � � and such thatno two consecutive leaders are the same process. Hence, the eventual leadershipproperty we have assumed is not satis�ed. 2Theorem 15. An MP -based Asynchronous Leader Protocol5.1. Underlying PrinciplesThe protocol is made up of three tasks executed by each process. Its underlyingprinciples are relatively simple. It is based on the following heuristic: each processelects as a leader the process it suspects the less. To implement this idea, eachprocess pi manages an array counti[1::n] in such a way that counti[j] counts thenumber of times pi suspects pj to have crashed. Then, if counti[j] never stopsincreasing, pi heuristically considers that pj has crashed.According to this management of the counti array, the role of the Task T3 ofpi is to de�ne its current leader. More explicitly, the current leader of pi is theprocess p` such that the pair (`; counti[`]) is the smallest pair over all the pairs(x; counti[x]), for 1 � x � n. This is the classical lexicographical order, namely,(`1; c1) < (`2; c2) if (c1 < c2) or (c1 = c2 ^ `1 � `2).The aim of the tasks T1 and T2 is to manage the array counti such that theprevious heuristic used to de�ne the current leader be consistent, i.e., satis�es theeventual leadership property. To bene�t from the MP property, the task T1 usesthe underlying query-response mechanism. Periodically, each pi issues a query andwaits for the (n � f) corresponding winning responses (lines 1-2). The responsefrom pj carries the set of processes that sent winning responses to its last query(this set is denoted rec_fromj). Then, according to the rec_fromj sets it hasreceived, pi updates accordingly its counti array.The query_alive() messages implementing the query-response mechanism areused as a gossiping mechanism to disseminate the value of the counti array of eachprocess pi. The aim of this gossiping is to ensure that eventually all correct processescan elect the same leader.

A Time-free Assumption to Implement Eventual Leadership 9Let us observe that all the tasks that de�ne pi access a single local variable,namely, counti[1::n]. It follows that they cannot deadlock (assuming a deadlock-free underlying locking mechanism).init: rec_fromi �; counti [0; : : : ; 0];Launch in parallel the tasks T1; T2 and T3 (they access counti in mutual exclusion)task T1:repeat(1) for_each j do send query_alive(counti) to pj end_do;(2) wait_until � corresponding response(rec_from) received from (n� f) proc. �;(3) let REC_FROMi = [of all the rec_fromk received at line 2;(4) let not_rec_fromi = ��REC_FROMi;(5) for_each j 2 not_rec_fromi do counti[j] counti[j] + 1 end_do;(6) let rec_fromi = the set of processes from which pi received a response at line 2end_repeattask T2: upon reception of query_alive(cj) from pj :(7) for_each k 2 � do counti[k] max(cj [k]; counti[k]) end_do;(8) send response(rec_fromi) to pjtask T3: when leader() is invoked by the upper layer:(9) let ` such that (counti[`]; `) = mink2��(counti[k]; k)	;(10) return (`)Figure 2: MP -based Module (for Process pi)5.2. Correctness ProofGiven an execution, let C denote the set of processes that are correct in thatexecution. Let us consider the following set de�nitions (PL stands for �PotentialLeaders�): PL = fpx j 9pi 2 C : counti[x] is boundedg;For any correct process pi : PLi = fpx j counti[x] is boundedg:The proof is decomposed into four lemmas. It assumes that at most f processescrash, and that a process regularly issues queries (until it possibly crashes).The �rst lemma shows that the additional assumption MP ensures that the setPL cannot be empty.Lemma 1 MP) PL 6= ;.Proof Due to the MP assumption, there are a time t, a correct process pi and aset Q including at least f +1 processes such that, after t, 8pj 2 Q, until it possiblycrashes, pj receives from pi only winning responses to its queries. Let us notice thatQ includes at least one correct process.Let us consider a time t0 after which no more process crashes, and let � =max(t; t0). Let pk be any correct process. As pk waits for response() messages from(n� f) processes and, after � , at most n� (f +1) processes do not receive winning

10 Parallel Processing Lettersresponses from pi, it follows that there is a time �k, after which pi always belongsto REC_FROMk. From which we conclude that, after �k, pk never incrementscountk[i] at line 5. As this is true for any correct process px, it follows that thereis a time T � maxpx2C(�x) after which, due to the gossiping of the countx arrays,we have countx1[i] = countx2[i] = Mi (a constant value), for any pair of correctprocesses px1 and px2. The lemma follows. 2Lemma 1The second lemma shows that the set of potential leaders PL contains onlycorrect processes.Lemma 2 PL � C.Proof We show the contrapositive, i.e., if px is a faulty process, then each correctprocess pi is such that counti[x] increases forever. Thanks to the gossiping mech-anism (realized by the query_alive() messages) used to periodically broadcastthe counter arrays, it is actually su�cient to show that there is a correct process pisuch that counti[x] increases forever if px is faulty.Let t0 be a time after which all the faulty processes have crashed, and all themessages they have previously sent are received. Moreover, let t > t0 be a timesuch that each correct process has issued and terminated a query-response betweent0 and t (the aim of this query-response invocation is to �clean up� -eliminate faultyprocesses from- the rec_fromi set sent by every correct process pi). Let px bea faulty process (it crashed before t) and pi be a correct process. We have thefollowing:� All the query-response invocations issued by pi after t de�ne a rec_fromi set(computed at line 6) that does not include px.� It follows that, after t, the set REC_FROMi computed at line 3 can neverinclude px. This means that, after t, the set not_rec_fromi (computed atline 4) always includes px. Hence, after t, counti[x] is increased each time piissues a query-response. As pi is correct it never stops invoking the query-response mechanism, and the lemma follows. 2Lemma 2Finally, the third lemma shows that no two processes can see di�erent sets ofpotential leaders.Lemma 3 pi 2 C) PLi = PL.Proof Let us �rst observe that PL = Spi2C PLi (this follows immediately fromthe de�nition of PL). Consequently, PLi � PL.To show the inclusion in the other direction, let us consider px 2 PL (i.e., px is acorrect process such that there is a correct pj such that countj [x] is bounded). LetMx be the greatest value taken by countj [x]. We show that counti[x] is bounded.As after some time countj [x] remains forever equal to Mx, it follows from the factthat pi and pj are correct and the perpetual gossiping from pi to pj (lines 1 and7) that we always have counti[x] � Mx, from which we conclude that counti[x] isbounded. 2Lemma 3

A Time-free Assumption to Implement Eventual Leadership 11The last lemma shows that, due to the gossiping mechanism, if a counter valueremains bounded, it eventually takes the same value at all the correct processes.Lemma 4 Let pi and pj be any pair of correct processes. If, after some time,counti[k] remains forever equal to some constant value Mk, then there is a timeafter which countj [k] remains forever equal to the same value Mk.Proof The proof is by contradiction. let us assume that (1) pi and pj are correct,(2) from some time t1, counti[k] stays constant at the value Mk, and (3) there is atime t2 > t1 after which countj [k] becomes equal to M 0k > Mk.As pj is correct, it sends query messages carrying the value countj [k] = M 0kafter time t2. As pi is correct, it receives such a message and updates consequentlycounti[k] toM 0k > Mk, contradicting the assumption stating that, after t1, counti[k]remains forever equal to Mk. 2Lemma 4Theorem 2 The protocol described in Figure 2 implements a leader facility inASn;f [MP].Proof The proof follows directly from the lemmas 1, 2 and 3 which state thatall the correct processes have the same non-empty set of potential leaders, whichincludes only correct processes. Moreover, due to Lemma 4, all the correct processhave the same counter values for the processes of PL (and those values are the onlyones to be bounded). It follows that the correct processes elect the same leader thatis the correct process with the smallest counter value. 2Theorem 2This protocol uses unbounded counters. This property can be useful for someclasses of applications (e.g., [11]). It is nevertheless possible to obtain a MP -basedleader protocol that uses only �nite memory [19].6. A Hybrid ProtocolThis section shows that the previous approach (based on a property satis�ed bythe message exchange pattern) and the more classical approach that relies on the useof timeouts are not antagonistic and can be combined to produce a hybrid protocolimplementing an eventual leader oracle. The resulting protocol bene�ts from thebest of both worlds in that it converges as soon as some synchrony assumption issatis�ed, or the required message exchange pattern occurs. We consider here thesynchrony assumption and the corresponding leader protocol de�ned in [2].6.1. Synchrony AssumptionsWe consider here a synchrony model slightly stronger than the one introducedin [2]y. First, the processes are synchronous (there is a lower and upper bound onthe number of steps per time unit of any non-faulty process). Moreover, there is atleast one correct process that is a 3f -source. This means that there is a correctprocess pi that has f output channels such that, after some unknown but �niteyWhile [2] considers that the channels can be fair lossy, we consider here that they are reliable.

12 Parallel Processing Letterstime t, there is a bound � (whose value is not known in advance) such that -aftert- any message sent on such a channel is received within � (it is not required thatthe destination processes of a 3f -source be correct; some -or all- of them can befaulty).Let ASn;f [3f -source] denote a distributed system satisfying this synchrony as-sumption.6.2. Aguilera et al.'s ProtocolAguilera et al. present in [2] the following leader protocol, described in Figure3, that works in any system ASn;f [3f -source]. Each process pi manages an arraycounti. This array is such that counti[j] is bounded if pj is a correct 3f -source,while counti[j] is unbounded if pj is faulty. As in the protocol described in Figure2, the leader is the process p` whose counter has the smallest value (task T5).init: for_each j 6= i do timeouti[j] �+ 1; set timeri[j] to timeouti[j] end_do;counti [0; : : : ; 0]; suspecti [;; : : : ; ;];Launch in parallel the tasks T1 until T5task T1: repeat periodically every � time units:for_each j 6= i do send alive (counti) to pj end_dotask T2: when alive (count) is received from pj :for_each k do counti[k] max(counti[k]; count[k]) enddo;reset timeri[j] to timeouti[j]task T3: when timeri[k] expires:timeouti[k] timeouti[k] + 1;for_each j do send suspect(k) to pj enddo;reset timeri[k] to timeouti[k]task T4: when suspect(k) is received from pj :suspecti[k] suspecti[k][fpjg;if (jsuspecti[k]j � n� f) then counti[k] counti[k] + 1;suspecti[k] ;end iftask T5: when leader() is invoked by the upper layer:let ` such that (counti[`]; `) = mink2��(counti[k]; k)	;return (`)Figure 3: Aguilera et al.'s Leader Protocol (for Process pi)The key of the protocol is the management of each counter counti[j], i.e., the waysuch a counter is (or not) increased. To this end, each process pi manages an arraysuspecti as follows (task T4): suspecti[j] keeps track of the set of processes thatcurrently suspect pj to have crashed(task T3). If this set contains (n�f) processes(or more), then pi increases counti[j] and resets suspecti[j] to ;. It is relatively easyto see that if a process pj crashes, then counti[j] will never stop increasing at any

A Time-free Assumption to Implement Eventual Leadership 13non-crashed process pi. The 3f -source assumption allows showing that counti[j]will remain bounded if pj is a 3 f -source. Consequently, there is at least one entryof counti that remains bounded and all the entries of counti that remain boundedcorrespond to correct processes. So, we get the following theorem:Theorem 3 [2] The protocol in Figure 3 implements a leader facility in ASn;f [3f-source].6.3. A Hybrid ProtocolLet count_MPi be the array counti used in the protocol described in Figure 2(the protocol based on the message exchange pattern assumption). Similarly, letcount_3f i be the array counti used in the protocol described in Figure 3 (theprotocol based on the 3f -source synchrony assumption).These protocols can be merged as follows. Both protocols execute independentlyone from the other with the following modi�cation. The last task of each protocol(i.e., the task T3 in Figure 2, and the task T5 in Figure 3) are suppressed andreplaced by a new task T3=T5 de�ned as follows:task T3=T5: when leader() is invoked by the upper layer:for_each k do counti[k] min(count_MPi[k]; count_3f i[k]) enddo;let ` such that (counti[`]; `) = mink2��(counti[k]; k)	;return (`)The previous proof can be easily adapted to show that the resulting hybrid pro-tocol implements a leader facility as soon as either the message pattern assumptionMP or the 3f -source synchrony assumption is satis�ed. So we get the followingtheorem:Theorem 4 The hybrid protocol obtained by combining the protocol described inFigure 2 and the protocol described in Figure 3 implements a leader facility inASn;f [MP _3f-source].Hence, this protocol bene�ts from the best of both worlds. This shows that, whenthe underlying system can satisfy several alternative assumptions, convergence canbe expedited. Moreover, since convergence is guaranteed if any one of the alternativeassumptions is satis�ed, the resulting hybrid protocol provides an increased overallassumption coverage [20].7. ConclusionLeader-based protocols are common in distributed computing. They rely on anunderlying primitive that eventually provides the processes with the same uniqueleader. Such a primitive is usually used to solve synchronization or coordinationproblems. While it is particularly easy to implement a leader primitive in a fault-free system, its construction in an asynchronous system prone to process crashesis impossible if the underlying system is not enriched with additional assumption-s. While the traditional approach to build a distributed leader facility in such

14 Parallel Processing Letterscrash-prone asynchronous systems considers additional synchrony assumptions, theapproach presented in this paper has considered an additional time-free assumption,namely, a behavioral property on the message �ow.The paper has presented two leader protocols. The �rst is based on a propertyon the message exchange pattern generated by query and response messages. Thesecond merges the synchrony-based approach with the the proposed approach to geta hybrid leader protocol. This protocol allows expediting the convergence (a correctprocess is elected as the de�nitive leader) as, in that case, convergence can then beguaranteed as soon as one assumption (synchrony or message exchange pattern) issatis�ed, thereby providing an increased overall assumption coverage.AcknowledgmentsWe would like to thank Kemal Ebcio§lu (the managing editor of this specialissue) and the referees for their constructive comments that helped improve thepresentation of the paper.References[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., On ImplementingOmega with Weak Reliability and Synchrony Assumptions. Proc. 22th ACM Sympo-sium on Principles of Distributed Computing (PODC'03), ACM Press, pp. 306-314,Boston (MA), 2003.[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., Communication-E�cient Leader Election and Consensus with Limited Link Synchrony. Proc. 23thACM Symposium on Principles of Distributed Computing (PODC'04), ACMPress, pp. 328-337, St. John's, Newfoundland (Canada), 2004.[3] Anceaume E., Fernandez A., Mostefaoui A., Neiger G. and Raynal M., Necessary andSu�cient Condition for Transforming Limited Accuracy Failure Detectors. Journal ofComputer and System Sciences, 68:123-133, 2004.[4] Chandra T.D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Sys-tems. Journal of the ACM, 43(2):225-267, 1996.[5] Chandra T.D., Hadzilacos V. and Toueg S., The Weakest Failure Detector for SolvingConsensus. Journal of the ACM, 43(4):685-722, 1996.[6] Dwork C., Lynch N. and Stockmeyer L., Consensus in the Presence of Partial Syn-chrony. Journal of the ACM, 35(2):288-323, 1988.[7] Fetzer C., Raynal M. and Tronel F., An Adaptive Failure Detection Protocol. Proc.8th IEEE Paci�c Rim Int. Symposium on Dependable Computing (PRDC'01),IEEE Computer Society Press, pp. 146-153, Seoul (Korea), 2001.[8] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus withOne Faulty Process. Journal of the ACM, 32(2):374-382, 1985.[9] Guerraoui R., Indulgent Algorithms. Proc. 19th ACM Symposium on Principles ofDistributed Computing, (PODC'00), ACM Press, pp. 289-298,Portland (OR), 2000.[10] Guerraoui R. and Raynal M., The Information Structure of Indulgent Consensus. IEEETransactions on Computers, 53(4):453-466, April 2004.[11] Hayashibara N., Defago X., Yared Y. and Katayama T., The � Accrual Failure De-tector. Proc. 23th IEEE Symposium on Reliable Distributed Systems (SRDS'04),IEEE Computer Society Press, pp. 66-78, Florianpolis (Brasil), 2004.

A Time-free Assumption to Implement Eventual Leadership 15[12] Lamport L., The Part-Time Parliament. ACM Transactions on Computer Systems,16(2):133-169, 1998.[13] Larrea M., Fernndez A. and Arvalo S., Optimal Implementation of the Weakest FailureDetector for Solving Consensus. Proc. 19th Symposium on Reliable Distributed Sys-tems (SRDS'00), IEEE Computer Society Press, pp. 52-60, Nuremberg (Germany),2000.[14] Mostefaoui A., Mourgaya E. and Raynal M., An Introduction to Oracles for Asyn-chronous Distributed Systems. Future Generation Computer Systems, 18(6):757-767,2002.[15] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous Implementation of FailureDetectors. Proc. Int. IEEE Conference on Dependable Systems and Networks(DSN'03), IEEE Computer Society Press, pp. 351-360, San Francisco (CA), 2003.[16] Mostefaoui A., Powell D., and Raynal M., A Hybrid Approach for Building EventuallyAccurate Failure Detectors. Proc. 10th IEEE Int. Paci�c Rim Dependable Com-puting Symposium (PRDC'04), IEEE Computer Society Press, pp. 57-65, Papeete,(Tahiti, France), 2004.[17] Mostefaoui A. and Raynal M., Low-Cost Consensus-Based Atomic Broadcast. 7thIEEE Paci�c Rim Int. Symposium on Dependable Computing (PRDC'2000),IEEE Computer Society Press, UCLA, Los Angeles (CA), pp. 45-52, 2000.[18] Mostefaoui A. and Raynal M., Leader-Based Consensus. Parallel Processing Letters,11(1):95-107, 2001.[19] Mostefaoui A., Raynal M. and Travers C., Crash-Resilient Time-free Eventual Leader-ship. Proc. 23th IEEE Symposium on Reliable Distributed Systems (SRDS'04),IEEE Computer Society Press, pp. 208-217, Florianpolis (Brasil), 2004.[20] Powell D., Failure Mode Assumptions and Assumption Coverage. Proc. of the 22ndInt. Symp. on Fault-Tolerant Computing (FTCS-22), Boston, MA, pp.386-395,1992.Appendix AA.1. The Case f = 1A.1.1. A Channel PropertyWe can assume that the response from a process to its own queries always arriveamong the �rst (n� f) responses it is waiting for. Let MP(1) denote the propertyMP when f = 1. MP(1) means that there is a set of two processes, say fpi; pjg,such that pj (until it possibly crashes) always receives and processes the responsefrom pi to its queries (in other words, the responses from pi always arrive amongthe (n� 1) responses pj is waiting for and so are never discarded by pj).Let a query be terminated when the corresponding process has received all thecorresponding winning responses. Considering the last query issued by pk termi-nated at or before t, let rtd(k; `; t) denote the round-trip delay of the correspondingquery-response exchanged between pk and p`. If there is no response from p` or ifthe response is discarded by pk, let rtd(k; `; t) = +1. With these notations MP(1)

16 Parallel Processing Lettersan be rewritten as follows whenMP (1) � 9 a time t0; 9(pi; pj) such that8t > t0 : (pj not crashed at t)) �rtd(i; j; t) 6= +1�:This property can be rephrased as a property on the behavior of the channels,namely: �There is a time after which there is a channel in the system, say (pi; pj),that is never the slowest among the channels connecting pi or pj to the other pro-cesses�. It follows that, when the underlying system satis�es this channel property,the protocol described in Figure 2 builds a failure detector of the class
 despiteone process crash.A.2. Probabilistic AnalysisThis section computes the probability that the propertyMP(1) be satis�ed fromthe very beginning in an asynchronous distributed system made up of n processesin which at most one process can crash, i.e., to computeProb�9(pi; pj) : 8t : (pj not crashed at t)) �rtd(i; j; t) 6= +1��:To compute such a probability we assume that no process crashes (this is because,as soon as a process crashes, MP(1) is trivially satis�ed). So, assuming no processcrash, we want to compute:Prob�9(pi; pj) : 8t : �rtd(i; j; t) 6= +1��:In order to take into account the time parameter t in a simple way, we considerthat a protocol execution proceeds in consecutive asynchronous rounds in the sensethat during each �round� r, each process issues a query, waits for the �rst (n � 1)corresponding responses, and then proceeds to the next �round�. As the system isasynchronous, the (n � 1) response messages associated with a query issued bya process pi can arrive to it in any order. It follows that the previous probabilitytends towards 0 when t (i.e., r) tends towards +1 (this follows from the fact thatthe system is asynchronous). But, as no real execution is in�nite, we are interestedin protocol executions made up of a �nite number x of rounds. Actually, x measuresthe length of a time period during which the failure detector is used. So, from arealistic point of view, we are interested in computing the following probability p(x):p(x) = Prob�9(pi; pj) : 8r � x : �rtd(j; i; r) 6= +1��:Let discardedi(r) be the identity of the process whose response has not been receivedamong the (n � 1) �rst responses to the query issued by pi during round r. Asby assumption no process crashes, discardedi(r) is always de�ned, and we havej = discardedi(r) , rtd(i; j; r) = +1. Hence, p(x) can be rewritten as follows:p(x) = Prob�9pi; 9pj 6= pi : ^0<r�x(j 6= discardedi(r))�:

A Time-free Assumption to Implement Eventual Leadership 17Computing the p(x) functionLet prop(i; x) � 8pj 6= pi : W0<r�x (j = discardedi(r))�: We have:p(x) = Prob[9pi : : prop(i; x)];i.e., p(x) = 1� Prob[8pi : prop(i; x)]:Let pp(i; x) = Prob[prop(i; x)]. As no process plays a particular role, for any (i; j; x)we have pp(i; x) = pp(j; x). Let pp(x) be that value. Moreover, 8(i; j; r; r0) the iden-tities k = discardedi(r) and k0 = discardedj(r0) are independent random variables(they are not related by the query mechanism). Moreover, the property prop(i; x)is veri�ed (or not) for each process pi independently from the other processes. Wecan conclude from this discussion that p(x) follows a binomial distribution and weget: p(x) = 1 � �pp(x)�n:The computation of pp(x) can be done by observing that the x (probabilistic) eventscorresponding to the collect of the (n � 1) response messages do correspond to a�trial with replacement� among (n � 1) values (as already indicated, we assumethat a process pi always receives its own responses to its own queries). Each querycan be seen as �selecting� a process id to discard it, and so pp(x) is the probabilitythat each process identity is drawn out at least once. It follows that pp(x) can becomputed from basic probability theorems. Then, as soon as pp(x) is determined,one can easily compute p(x).

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10

p(
x)

number of processes (n)

p(3n/2)

p(2n)

(a) p(x) according to n for x = 3n=2 andx = 2n 0

5

10

15

20

25

30

35

40

45

50

5 6 7 8 9 10 11 12 13 14

nu
m

be
r o

f r
ou

nd
s (

x)

number of processes (n)

p=0.9900

p=0.9999

(b) Fixing a priori a probability pFigure A.1: Measuring �how realistic� is MP(1)

18 Parallel Processing LettersPractical results The previous determination of the probability p(x) can be usedto evaluate �how realistic� is the propertyMP(1) in an asynchronous system. Let usnotice that the number of rounds considered (x) can be interpreted as the durationof a session during which the upper layer application uses the leader oracle.We have seen that p(x) tends towards 0 when x tends towards +1. So, itis interesting to know if p(x) tends quickly towards 0 or not. To this aim, let usconsider the two curves depicted in Figure A.1.(a) whose horizontal axis correspondsto the number n of processes, and vertical axis corresponds to the probability p(x).The curves correspond to the cases where the number x of rounds that are consideredare x = 3n=2 and x = 2n, respectively (the highest curve depicts p(3n=2), whilethe lowest one depicts p(2n), for 5 � n � 10). These curves �rst show how p(x)is related to the session length x. More interestingly, they also show that, whenx � 2n, p(x) is very close to 1 for n � 7. Intuitively, adding processes can onlycreate more situations where MP (1) is satis�ed. This is con�rmed and measuredin Figure A.1.(a) that shows that, when the number n of processes increases, theprobability increases also and becomes very quickly very close to 1. In all cases, fromn = 7, the probability p(x) is very close to 1. This means that MP(1) is practicallysatis�ed in asynchronous distributed systems made up of n � 7 processes, if thesessions (during which the upper layer application uses the leader oracle) are not�too long�.Figure A.1.(b) provides a complementary view. Its horizontal axis correspondsto the number n of processes, while its vertical axis corresponds to the length ofthe observation period (number x of rounds). Considering a given probability p,this �gure shows how long an upper layer session can be (number x of rounds) foran asynchronous system made up of n processes (5 � n � 14) to satisfy MP(1)with the given probability. The lowest curve corresponds to p = 0:9999, the highestcorresponds to p = 0:9900. These curves show in another way that an asynchronousdistributed system satis�es MP(1) with a very high probability.

