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Abstract. The paper investigates the consensus problem in anonymous,
failures prone and asynchronous shared memory systems. It introduces
a new class of failure detectors, called anonymity-preserving failure de-
tectors suited to anonymous systems. As its name indicates, a failure
detector in this class cannot be relied upon to break anonymity. For ex-
ample, the anonymous perfect detector AP , which gives at each process
an estimation of the number of processes that have failed belongs to this
class.
The paper then determines the weakest failure detector among this class
for consensus. This failure detector, called C, may be seen as a loose
failures counter: (1) after a failure occurs, the counter is eventually in-
cremented, and (2) if two or more processes are non-faulty, it eventually
stabilizes.

1 Introduction

Anonymous computing The vast majority of the literature about distributed
computing assumes that each process is provided with a unique identifier. We
consider in this work anonymous computing in which processes have no identi-
fiers and are programmed identically. Besides intellectual curiosity, anonymous
computing might be of practical interest [23]. For example, for privacy reasons,
a set of distributed processes may be willing to compute some function on their
inputs without revealing their identity. Alternatively, the distributed computa-
tion might be performed on top of an anonymous communication system [14],
and thus using ids is forbidden.

Specifically, we consider the totally anonymous shared memory model of dis-
tributed computing. The shared memory consists only in basic shared objects,
namely read/write registers. We assume that there is no way to uniquely assign
registers to the processes as this would provide a way to differentiate the pro-
cesses. Previous works [5,23] have shown that the lack of unique identifiers limits
the computational power of the shared memory model. Similarly, starting from
the pioneering work of Angluin [1], the computational power of anonymous mes-
sage passing system in the failure-free case has been investigated for particular
or general graph topologies, e.g., [6,25].

? This work has been carried out with financial support from the French State, man-
aged by the French National Research Agency (ANR) in the frame of the ”Invest-
ments for the future” Program IdEx Bordeaux - CPU (ANR-10-IDEX-03-02).



Consensus, failure and asynchrony Besides the unavailability of unique iden-
tifiers, a major difficulty is coping with failures and asynchrony. Many simple
distributed tasks cannot be solved in asynchronous and failures-prone distributed
system. A prominent example is consensus, which is a cornerstone task in fault-
tolerant distributed computing. Informally, the processes, each starting with a
private value, are required to agree on one value chosen among their initial val-
ues. Even if processes have unique identifiers, it is well known that asynchronous
fault tolerant consensus is impossible as soon as at least one process may fail by
crashing [24]. This impossibility trivially extends to anonymous systems.

Failure detectors A popular approach to circumvent impossibilities stemming
from asynchrony and failures is to use failure detectors [13]. A failure detec-
tor is a distributed device that provides each processes with perhaps unreliable
information about which other processes have crashed. In systems with identi-
ties, several classes of failure detectors have been defined [18]. In many cases,
their specification involves processes identities. For example, the perfect detector
P provides each process with a list of the identities of some of the processes
that have crashed. The list is eventually complete in the sense that it eventu-
ally includes the identity of each crashed process. The leader failure detector Ω
eventually outputs the same identity at every process, which is the identity of a
non-faulty process.

Given a distributed task T , a natural question is to determine the weakest
failure detector for T , that is a failure detector D which is both sufficient to
solve the task – there is an asynchronous, fault tolerant protocol that uses D to
solve T – and necessary, in the sense that any failure detector D′ that can be
used to solve T can also be used to emulate D. For example, is well-known that
Ω is the weakest failure detector for consensus [12] in shared memory systems
with identities.

Failure detectors in anonymous systems The study of failure detectors in anony-
mous message passing systems was initiated in [8]. In particular, identity-free
counterparts of classical failure detectors including Ω and P are identified. AΩ,
an identity-free failure detector equivalent to Ω, outputs a Boolean value at each
process such that eventually true is output only at a unique correct process. A
consensus protocol that uses AΩ was also presented. In the shared memory
model, an anonymous AΩ-based protocol can be found in [15]. Bonnet and
Raynal left open the following question: “Consensus in anonymous distributed
systems: is there a weakest failure detector?”[7]. We answer this question posi-
tively.

Contributions of the paper Although the definition of the failure detector AΩ
is useful for anonymous systems, as it does not involve processes identities, it
can be used to (eventually) break symmetry, as it eventually singles out one
process. We are interested in failure detectors that preserve anonymity in the
following sense: for any process p and any sequence of failure detector outputs at
process p, the same sequence might be output at every process without violating



the specification of the failure detector. An example of such failure detector
is AP which provides each process with an eventually accurate estimation of
the number of faulty processes. Within this framework, we identify the weakest
failure detector for consensus in the shared memory model. In more details, the
paper makes the following contributions:

1. It first defines (Section 3) the class of anonymity-preserving failure detectors
and a new failure detector denoted C. Failure detector C might be seen
as a shared loose failure counter. It guarantees that after a failure occurs
the counter is eventually incremented, and in case two or more processes
are non-faulty, the counter eventually stabilizes. Let us notice that even if
several failures occur, the counter might be incremented only once. C is thus
far from providing an accurate tally of failures.

2. The paper shows that C is strong enough to solve consensus while tolerat-
ing any number of failures (Section 4). Striving to not reinvent the wheel,
the protocol relies on standard shared memory constructs, namely adopt-
commit [19] and safe-agreement [10] objects.

3. It is then shown that C can be emulated using any anonymity-preserving
failure detector powerful enough to solve consensus (Section 5). The extrac-
tion protocol reuses in part the techniques developed by Zieliński [26] for
proving statement of this type in the shared memory model when processes
are not anonymous. Interestingly, the proof does not rely on the specifics of
the impossibility of fault-tolerant consensus but rather on the fact this task
cannot be solved non-anonymously wait-free among two processes.

Due to space constraints, some proofs and additional results have been omitted.
See [11] for a complete report on this work.

2 Computational Model

We consider an asynchronous and crash-prone shared-memory system consisting
in a set Π = {p1, . . . , pn} of n ≥ 2 processes, i is the index of pi. Processes are
anonymous in the sense that they run the same code and are not aware of their
index. They communicate via a shared memory that consists in an unbounded
number of multi-writer/multi-reader atomic registers. For modeling purpose we
assumed the existence of global clock not accessible to the processes and whose
range is the integers.

A failure pattern is a function F : N→ 2Π that specifies the set of processes
that have failed at each time τ ∈ N. faulty(F) =

⋃
τ≥0 F(τ) denotes the set of

processes that fail in F . A process p is faulty in F if it belongs to faulty(F)
and correct otherwise, that is p ∈ correct(F) = Π \ faulty(F). We assume the
wait-free environment that contains every failure pattern in which at least one
process is correct. A failure detector D with range R is a distributed device that
provides each process with information about the failure pattern [13]. A failure
detector history is a function H : Π × N → R that maps each pair (process
index, time) to a value in the failure detector range. The value returned by the



failure detector at process pi at time τ is H(pi, τ). D associates a non-empty set
of histories D(F) with each failure pattern F .

A protocol consists in n copies of a local algorithm A, one per process. In a
step a process (1) queries the failure detector or (2) reads or (3) writes a shared
register, and then performs some local computation. A run of a protocol A using
failure detector D is a tuple e = (F , H, I, S, T ) where F is a failure pattern,
H ∈ D(F), I and S are respectively an initial configuration and a sequence of
steps of A and T a non-decreasing sequence of times. S is called a schedule and
the ith step S[i] of S takes place at time T [i]. e = (F , H, I, S, T ) represents an
execution of A if and only if (1) S and T are both infinite or |S| = |T |, (2) no
processes take a step after it has crashed, (3) if step S[i] is a failure detector
query by process p that returns d, then d = H(p, T [i]), (4) the steps taken in S
are consistent with A, (5) the timings of read and write steps, together with the
values written or read in these steps are consistent with the atomic semantic of
the shared registers and, (6) if S is infinite, every correct process takes infinitely
many steps in S.

In the consensus task, each process starts with a value taken from some
set V and is required to decide a value subject to the following requirements:
(Validity) any decided value is the initial value of some process, (Agreement)
no two distinct values are decided and (Termination) every non-faulty process
decides.

A failure detector D is said to be as least as weak as a failure detector D′,
denoted D ≤ D′ if there is a protocol TD′→D that emulates D using D′. Failure
detector D is said to be the weakest failure detector for a task T if (1) there is
a protocol that solves T using D in E and (2) for every failure detector D′ that
can be used to solve T , D ≤ D′. In systems with identities, Ω is the weakest
failure detector for consensus [12].

3 Anonymity-Preserving Failure Detectors

The class of anonymity-preserving failure detectors Intuitively, a failure detector
is anonymity preserving if it cannot be relied upon to break symmetry among the
processes. A failure detector history H is anonymity-preserving if for every time
τ and every processes indexes i, j,H(pi, τ) = H(pj , τ). That is, two queries at the
same time by different processes return the same value. Hence, in such history,
the value output by the failure detector only depends on the time at which the
failure detector is queried, and does not depend on the querying process. An
anonymity preserving history is thus a function H : N → R that maps time to
values in the failure detector range.

A failure detector is anonymity preserving if for every failure pattern F , for
every pi ∈ Π and every history H ∈ D(F), the anonymity-preserving history H ′:
∀pj ∈ Π,∀τ,H ′(pj , τ) = H(pi, τ) also belongs to D(F). Intuitively, any sequence
of values output by the failure detector at process pi may have been returned at
every other process. That is, if d = d1, d2, . . . is a legal sequence of output for



process pi for some failure pattern F , then d is also a valid sequence for process
pj 6= pi, for the same failure pattern F .

For instance, the failure detector AΩ [8] eventually distinguishes a unique
correct process. It provides to each process a single bit whose value eventually
is 0 except for one correct process. AΩ is thus not an anonymity-preserving
failure detector. An example of an anonymity-preserving failure detector is the
identity-free variant of the perfect failure detector, denoted AP in [8]. The range
of AP is N and, for any failure pattern F the history H : Π × N → N belongs
to AP (F) if and only if: (Accuracy) For every time τ and every process pi,
H(pi, τ) ≤ |F(τ)|, and (Completeness) there exists a time τ such that for all
τ ′ ≥ τ , H(pi, τ

′) = |F(τ ′)|. AP is an anonymity-preserving failure detector. If
for failure pattern F f1, f2, . . . is a valid sequence of outputs for process pi, so
it is for any process pj 6= pi.

Failure detector C Failure detector C might be seen as an unreliable variant
of the signaling failure detector FS [22]. The range of failure detector FS is
{green,red}. While no failures occur, the output of FS is green. Once a failure
occurs, and only if it does, the failure detector must eventually output red at
every correct process.

The range of failure detector C is the integers. At each process, the sequence
of integers output by C is non-decreasing, and after each new failure, the out-
put of the failure detector is eventually increased. Moreover, when at least two
processes are correct in the underlying failure pattern, C output eventually stabi-
lizes. That is, after some time, every query to C by process pi returns the same
value, for each process pi. More formally, for every failure pattern F , history
H : Π × N→ N belongs to C(F) if and only if:

1. Monotonicity. For every process pi, for every times τ ≤ τ ′, H(pi, τ) ≤
H(pi, τ

′);
2. Signaling. For every times τ, τ ′ : τ < τ ′, for every processes pi, pj , if |F(τ)| <
|F(τ ′)|, there exists a time τ ′′, τ ′ ≤ τ ′′ such that H(pi, τ) < H(pj , τ

′′);
3. Convergence. If |correct(F)| > 1, there exists a time τ : for every process pi,
∀τ ′τ ≤ τ ′, H(pi, τ) = H(pi, τ

′).

4 A C-based Consensus Protocol

This section presents a consensus protocol (Protocol 1) based on failure detector
C. To simplify the presentation, we concentrate on binary consensus in which
the set of possible inputs is {0, 1}. Besides registers, it relies on standard shared
memory constructs, namely adopt-commit [19] and safe agreement [9,10] objects,
that we describe next.

Base objects An adopt-commit object has a single operation denoted propose(v)
where v is a value from some finite set V. Such an operation returns a couple (b, u)
where b is either adopt or commit and u is a value in V, subject to the following
requirements [3,19]: (Validity) If an operation returns (d, v) then v is the input of



a propose() operation; (Agreement) If an operation returns (commit , v) then each
output is either (adopt , v) or (commit , v); (Convergence) If the input of every
operation is v, then every output is (commit , v); (Termination) Each operation
by a non-faulty process produces an output.

A shared-memory implementation of an adopt-commit object that tolerates
an arbitrary number of crash-failures can be found in [3]. The implementation
([3], Algorithm 2) uses two multi-writer/multi-reader registers and a conflict-
detector, which in turn can be implemented in a wait-free manner using only
fact−1(|V|) multi-writer/multi-reader registers ([3], Algorithm 3). These algo-
rithms do not use identities, and are thus suitable for the anonymous shared-
memory model.

The safe agreement object, introduced by Borowsky and Gafni in [9] allows
processes to propose values and to agree on a single value. It is at the heart of
the BG-simulations [9] in which it is used by simulators to agree on each step of
the simulated processes. Different specifications of a safe agreement object can
be found in the literature, e.g., [4,10]. Our specification below closely follows [4].

A safe agreement object supports two operations propose(v) where v is a value
in {0, 1}1 and read(). Both operations return either a value u ∈ {0, 1} or ⊥. Each
process can invoke propose() at most once, while read() can be invoked arbitrarily
many times. We say that a propose() operation is successful if it returns a value
6= ⊥. An execution is well-formed if (1) each process calls propose() at most once
and, (2) no processes start a read() or propose() operation before its previous
operation (if any) has returned. It is required that in any well-formed execution,
the following properties are satisfied: (Validity) If an operation returns a value
v 6= ⊥, v is the input of a propose() operation; (Agreement) If values v, v′ ∈
{0, 1} are returned by some operation, v = v′; (Termination) Every operation
performed by a non-faulty process terminates; (Consistent reads) Any read()
operation that terminates and starts after a successful propose() operation has
completed returns a non-⊥ value; (Non-triviality) Not every propose() operation
returns ⊥.

Observe that the non-triviality property is satisfied in executions in which
a process fails while performing a propose() operation. In the case in which no
processes fail while performing propose(), it follows from the termination and
non-triviality properties that at least one propose() operation is successful. Nev-
ertheless, it is not guaranteed that every propose() operation is successful. How-
ever, the consistent reads property implies that if, after its propose() operation
has returned, a process keeps reading the object, it eventually gets back a non-⊥
value.

In systems with identities, safe agreement objects can be implemented with
registers, e.g., [9]. In anonymous systems, a safe agreement object implementa-
tion can be obtained by slightly modifying an anonymous binary consensus pro-
tocol by Attiya, Gorbach and Moran [5] designed for the asynchronous shared
memory model with no failures.

1 More generally, v may belong to any finite set. Restricting to binary inputs is suffi-
cient for our purpose, namely using failure detector C to solve binary consensus.



Protocol 1 C-based binary consensus.

1: init SA[1, . . .], AC [1, . . .], D ← ⊥ . Arrays of safe agreement, adopt-commit
objects and decision register

2: function propose(v) . v ∈ {0, 1}
3: est← v; start tasks T1, T2;

4: task T1:
5: for r = 1, 2, . . . do
6: repeat d← C-query() until d ≥ r end repeat
7: aux ← SA[r].propose(est) . aux ∈ {0, 1,⊥}
8: if aux = ⊥ then
9: repeat aux← SA[r].read(); d← C-query()

10: until (d > r) ∨ (aux 6= ⊥)
11: end if
12: (b, u)← AC [r].propose(aux) . b ∈ {adopt , commit}, u ∈ {0, 1,⊥}
13: case b = commit ∧ u ∈ {0, 1} then D ← u; return
14: b = adopt ∧ u ∈ {0, 1} then est← u
15: default then nop . u = ⊥
16: end case
17: end for
18: task T2:
19: repeat u← D until u 6= ⊥ end repeat
20: stop task T1; return u

Description of the protocol Protocol 1 consists in two tasks denoted T1 and T2,
launched in parallel at each process p (line 3). In task T2, process p keeps reading
a shared register D, whose initial value is ⊥, until it sees some non-⊥ value u. u
is then decided by p (line 20).

In task T1, processes proceed in asynchronous rounds aiming at writing a
single non-⊥ value to D. An adopt-commit object and a safe agreement object
denoted respectively AC [r] and SA[r] are associated with each round r. Following
a standard design pattern, e.g., [2,20], the processes that enter round r first try
to reach agreement by accessing the safe agreement object SA[r] (line 7) and
then check whether agreement has been achieved using the adopt-commit object
AC [r] (line 12).

In more details, each process p maintains an estimate est that contains the
value it currently favors. In round r, process p proposes its estimate to SA[r]
(line 7) and, if its operation is unsuccessful (line 8), it enters a loop in which
it repeatedly reads the object (line 9). If no processes that enter round r fail,
at least one of the invocations of propose() on SA[r] is successful (non-triviality
and termination properties of safe agreement) and thus by keeping reading the
object, a process eventually obtains a non-⊥ value (consistent reads property of
safe agreement). Hence, in the case in which no processes entering round r fail,
every process that enters that round eventually obtains a non-⊥ value, either
because its propose() operation is successful, or as a result of a read() operation.
Note that this value is the same for every process (agreement property of safe
agreement).



However, some of the processes that enter round r may fail. In this case, each
propose() operation may be unsuccessful, and every read() operation may return
⊥. We rely on failure detector C to ensure progress as follows:

– A process is allowed to enter a round r only if its local failure detector module
output is larger than or equal to r (line 6);

– A process exits the loop in which it is trying to obtain a non-⊥ value by
performing read() operations on SA[r] when its local failure detector output
is strictly larger than dc (line 10).

This simple mechanism prevents processes from getting stuck in any round r in
which a failure occurs. Indeed, a process p failing in round r must have obtained
from C a value dc ≥ r (line 5). Then, following the crash of p, due to the sig-
naling property of C, C eventually outputs at every non-faulty processes values
strictly larger than dC , allowing these processes to exit the loop in which the
safe agreement object SA[r] is read (lines 9–10).

To reconcile processes that have obtained a non-⊥ value form SA[r] and
those to which C has signaled a failure, we use the adopt-commit object AC [r]
(line 12). Each process p keeps in its local variable aux the result of its operations
(at lines 7 and 9) on SA[r], e.g., ⊥ or some value v ∈ {0, 1}. In the second part of
round r, process p proposes the value stored in aux to AC [r] (line 12). If it gets
back (adopt, u), where u 6= ⊥ it changes its estimate to u (line 14). A process
that receives (commit, u) can thus safely write u to the decision register D, as
it follows from the agreement of adopt-commit that every propose() operation
returns (commit, u) or (adopt, u). Hence, every process either writes u to D or
changes its estimate to u, thus preventing any value u′ 6= u to be written to D in
subsequent rounds. Finally, if a process p receives (∗,⊥), then no process writes
to D in the current round r, and p leaves its estimate unchanged (line 15).

As for termination, a process decides as soon as it reads a non-⊥ value from
D (task T2). Let us observe that this happens if there is a round r in which
(1) enters only one process, and this process is correct or (2) enter only correct
processes, and at each of these processes, the largest output of C is r. Clearly,
if only one process p enters round r, its propose() operation on SA[r] returns
a non-⊥ value u (non-triviality property of safe agreement). u is then the only
value proposed to AC [r]. p thus receives (commit, u) from AC [r] (convergence
property of adopt-commit) and then writes u to D. Condition (1) is satisfied in
executions in which there is only one correct process.

For the second condition, if only correct processes enter round r, at least
one of the propose() operations on SA[r] is successful. Moreover, no process can
exit the reading loop (lines 9-10) without having obtained a non-⊥ value from
SA[r], as C never outputs a value larger than r to those processes. Since all
non-⊥ values returned by operations on SA[r] are the same, only one value
is proposed to AC [r], from which we conclude that only (commit, v), where
v 6= ⊥, is returned by each propose() operation performed on AC [r] (convergence
property of AC [r].). Hence a value is written to D in round r. Condition (2) is
met in every execution in which there are at least two correct processes, since
in that case the output of C eventually stabilizes at every correct process, and



the stabilization value is larger than every value output at faulty processes. The
proof of correctness can be found in the full version [11].

5 C is Necessary to Solve Consensus

Let X be an anonymity-preserving failure detector, and assume that there is a
protocol A that solves consensus using X. We present (Protocol 2) a protocol
TX→C that emulates C using X in the wait-free environment.

Overview As in previous protocols [12,16,21,26] that emulate weakest failure
detectors, in TX→C each process locally simulates many possible runs of proto-
col A. According to the output of these runs, information on the failure pattern
is inferred and the desired weakest failure detector emulated.

Let F denote the failure pattern underlying the execution of TX→C . In order
to simulate valid runs of A, e.g., runs indistinguishable from reals runs of A,
samples from the underlying failure detector X have to be collected. Those
samples are then used in the simulation of each step in which a query to failure
detector X occurs. Hence, each process p must collect samples from its failure
detector module, but also from other processes. Precedence relationships between
samples should also be maintained to order to simulate valid runs of A. For
example, the simulation must avoid using a sample from some faulty process q
if a sample taken after the failure of q has already been used. In systems with
identities, this is usually achieved by maintaining a DAG, where each vertex v
contains a failure detector sample d and a process id, and for any successor v′ of v,
the sample d′ associated with v′ has been taken after d. In the anonymous shared
memory model, the lack of identifiers make tracking precedence relationships
difficult and the standard technique [12] does not apply. However, in the case of
anonymity-preserving failure detectors, the samples taken by each process p from
its local failure detector module are sufficient to simulate runs of A, even with
more than one participating process. This is because the sequence of samples
obtained by p might have been also obtained by every other processes in some
execution with the same failure pattern F .

Each process p simulates executions of A in which at most two processes,
denoted q0 and q1, participate with input 0 and 1 respectively. On the one hand,
for such an execution e by adding clones of q0 and q1 one may construct an
indistinguishable execution e′ in which the number of participating processes
matches the number of correct processes in F . It thus can be shown that, from
the point of view of q0 and q1, execution e is indistinguishable from some real
execution of A with failure pattern F . On the other hand, there must exist
an interleaving of the steps of q0 and q1 such that the corresponding emulated
execution ofA does not decide. Otherwise, protocolA together with the sequence
of failure detector samples collected by p can be used to solve binary consensus
wait-free and without failure detector by two non-anonymous processes q0 and
q1, contradicting the impossibility of consensus.

Operationally, process p explores every possible two-processes schedules of A
in a particular, corridor -based order, as in [21,26]. Whenever a decision occurs in



Protocol 2 TX→C , where X can be used to solve consensus.

1: initA[1 . . .]← [⊥, . . .] . Array of registers with initial value ⊥
2: procedure C-emulation
3: x[1 . . .]← [⊥, . . .] . Array for storing outputs of X
4: c0 ← initial configuration: qi, i ∈ {0, 1} input is i, MEM is initialized as pre-

scribed by A′

5: P0 ← {q0, q1}; λ0 ← ε; out-C ← 0; start tasks T and T’ where task T’ is
explore(λ0, c0, P0);

6: function explore(λ, c, P )
7: let U be the set of processes still undecided in c
8: for each P ′ ⊆ P ∩ U in an order consistent with ⊆ do
9: for each qi ∈ P ′ do

10: let step be the next step of qi in configuration c according to A′ .
simulate next step of qi

11: case step = read() from `th register then read c.MEM [`]
12: step = write(v) to `th register then write v to c.MEM [`]
13: step = X-query() then take x[`] as the output of X, where ` is the

value of η in c.si;
14: end case
15: perform local computation; update c.si
16: if qi has decided in c then let m ← min{` : A[`] = ⊥}; A[m] ← >;

C-out ← m
17: end if . update (emulated) failure detector C output
18: λ← λ · i; explore(λ, c, P ′)
19: end for
20: end for
21: task T: for i = 1, 2, . . . do x[i]← X-query() end for . f.d. X sampling

the execution simulated by p, a shared counter is incremented, and the output
of C at p is set to the new value of the counter. We prove that (1) following
any (real) process failure, p eventually simulates an execution of A in which a
decision occurs, and due to the order in which schedules are explored, that (2)
eventually p keeps simulating one infinite execution in which no processes decide.
The correctness of the emulation C then follows from (1) and (2).

Protocol A′ Let MEM denote the (not necessarily finite) array of registers used
by A. Recall that in a step of A, a process performs a read() or write() operation
on some register MEM [`] or a query() operation to the underlying failure detector
X. It may then perform some local computation. Instead of simulating runs of
A, we are going to simulate runs of a slightly modified version of A, called A′,
defined as follows. The purpose of the modification is to help tracking causality
relations between steps of the protocols.

In protocol A′, each process has an extra local counter η whose initial value
is 1. Each register MEM [`] is divided in two fields, data and ctr. MEM [`].data
is initialized as specified by A while the initial value of MEM [`].ctr is 0. For
each integer ` and value v, each operation MEM [`].write(v) in A is replaced in



A′ by MEM [`].write(〈v, η〉), i.e., v and the current value of the local variable η
are written to the data and ctr components, respectively, of MEM [`]. Similarly,
each instruction of the form v ← MEM [`].read() in A is replaced in A′ by
〈v, η′〉 ← MEM [`].read(); η ← max(η, η′ + 1). Finally, after each write(), read()
or query() operation η is incremented (η ← η+1). For each step s of the modified
protocol A′, we define η(s) as the value of η immediately before it is incremented
(e.g., immediately before η ← η+1 is performed). Obviously, these modifications
do not affect the correctness of A′, i.e., A′ solves consensus using X.

Causality Let r be a run of A′ with two processes q0, q1, where the input of
qi, i ∈ {0, 1} is i. Note that in these particular executions, although the processes
are anonymous, we can assume that the values written are unique, as they can
be tagged with the process input and a sequence number. For any two steps
s, s′ in r, s causally precedes s′, denoted s � s′ if and only if (1) s and s′ are
performed by the same process in that order or, (2) in s a value v is written to
some register MEM [`], and in s′ v is read from MEM [`] or, (3) there exists a
step s′′ such that s � s′′ and s′′ � s′. The following Lemma follows from the
management of the variables η in A′.

Lemma 1. Let r be a run of A′ by two processes q0, q1 with input 0 and 1
respectively. For every steps s, s′ of r, s � s′ =⇒ η(s) < η(s′).

Collecting failure detector X samples As X is anonymity-preserving, for any
failure pattern F and any finite or infinite sequence x = x1, x2, . . . of outputs of
X collected by some process p in a run with failure pattern F , there is a run
with the same failure pattern in which every process see the same sequence x
of outputs of X. Therefore, in order to provide failure detector values for the
simulation of runs of A′, p simply builds an ever growing sequence of failure
detector outputs x[1], x[2], . . . by repeatedly querying its local failure detector
module.

Induced schedules of A′ Each process p simulates runs of A′ in which at most two
processes, denoted q0 and q1, take steps with initial values 0 and 1 respectively.
We next describe how a binary sequence (specifying the order in which q0 and
q1 takes steps) and a sequence of failure detector X outputs induce a schedule
S of A′, that is a sequence of steps of A′.

Let x denote a sequence of failure detector outputs, obtained from X at
increasing times, and let λ denote a binary sequence. Intuitively, λ describes in
which order processes take steps in S and x supplies failure detector outputs for
simulating query(). A difficulty is to choose an output in x for each query() step
of S in such a way that there is a real execution of A′ indistinguishable from S
to both q0 and q1.

Schedule S is defined inductively. Recall that a configuration c, in the context
of a two processes schedule consists in a triplet (s0, s1,MEM ) where si, i ∈ {0, 1}
is the local state of qi and the array MEM contains the current value of each
register used by A′. In the initial configuration c0 of S, c0.si, i ∈ {0, 1} reflects



the fact that the initial value of qi is i and c0.MEM is initialized as specified by
A′. The ith step of S is taken by process qλ[i] and is deduced from A′ applied
to the local state of qλ[i] in configuration ci−1. If this step is a read() or write()
step, it is simulated by reading or writing a value to/from MEM . If the step is
a query() operation, it is simulated by taking x[ηλ[i]] as its result, where ηλ[i] is
the value of the variable η at process qλ[i] in configuration ci−1. Configuration
ci is then derived from ci−1 in the obvious way.

The choice of output for each simulated query() preserves causality in the
following sense: Let s and s′ be steps of S in which X is queried and assume
that s � s′. Let j, j′ the indices in x of the values returned by these queries in
the simulation. Then x[j] is obtained from X before x[j′], i.e., j < j′, as one
would expect. Indeed, let qi and qi′ be respectively the processes that perform
s and s′, and let η(s) and η(s′) be the value of η at process qi and qi′ in the
configurations that immediately precede s and s′, respectively. The results of the
queries in s and s′ are x[η(s)] and x[η(s′)]. By Lemma 1, as s � s′, η(s) < η(s′).

Indistinguishability of induced schedules from real runs Given a binary sequence
λ and a sequence x of outputs of X, the schedule Sλ,x induced by λ and x
may not correspond to a real execution of A′. More precisely, for the simulation
of S to be meaningful, we need that there exists a real run r of A′ that is
indistinguishable from S to q0 and q1. The schedule in r may differ from S, but
the successive states of qi must be the same in S and r, for each i ∈ {0, 1}. Next
Lemma establishes the existence of r.

Lemma 2. Let λ be a binary sequence. Let x denote a (finite or infinite) se-
quence of outputs of X and let S denote the schedule induced by λ and x. Assume
that there exists a failure pattern F , a history H ∈ X(F) and an increasing se-
quence of times τ1 < τ2 < . . . such that for every i, x[i] = H(p, τi) for some
process p. If for every i, |F(τi)| ≤ n − 2, there exists a run of A indistinguish-
able from S to q0 and q1.

Run r may however not be fair. A infinite run r = (F , H, I, S, T ) is fair if
every process in correct(F) take infinitely many steps in r. Given an infinite
binary sequence λ, let inf(λ) ⊆ {0, 1} be the bits that appear infinitely often
in λ. Next Lemma expresses a sufficient condition for the existence of a fair run
indistinguishable to q0 and q1 from the schedule induced by a binary sequence
and a sequence of failure detector outputs λ, x.

Lemma 3. Let λ, x be infinite sequences of respectively bits and failure detector
X outputs. Suppose that there exists a failure pattern F , a sequence of times
τ1 < τ2 < . . . and a history H ∈ X(F) such that for every i ≥ 1, x[i] = H(p, τ)
for some process p. If |correct(F)| ≥ 2 and inf(λ) = {0, 1} then the schedule Sλ,x
induced by λ, x is indistinguishable from the schedule in a fair run r of A.

In the induced schedule Sλ,x, only two processes take step. However, more
than two processes may be correct in the failure pattern F . We resolve this
difficulty by adding clones of q0 and q1. A clone [17] of process qi is a process



that has the same input and the same code as qi. p is scheduled in lock-step with
qi: it reads and writes the same values as p, and each of its queries to X returns
the same output as the queries by p. The latter is made possible by the fact that
X is anonymity-preserving. The outputs of X at qi are also valid outputs at any
other processes.

C emulation Protocol 2 emulates failure detector C from any anonymity preserv-
ing failure detector X that can be used to solve consensus. It closely follows the
emulation technique of Zieliński [26]. At each process p, the emulation consists
in two tasks T and T ′ that run in parallel. In task T , p collects outputs of X by
querying its local failure detector module. The outputs are stored in the array x.
In task T ′, p recursively simulates every possible schedule of A′ (lines 8-18). An
infinite array A of registers is used to implement a weak shared counter. Each
register A[i] initial value is ⊥. The counter is incremented by changing to >
the value of the register with the smallest index containing ⊥. The value of the
counter is thus the largest index i of A such that A[i] = >. Each time a process
decides in a simulated schedule, the counter is incremented and the output of C
is set to the counter new value (line 16).

For any arbitrary run of protocol 2 with failure pattern F , we first show
(see [11]) that each correct process p simulates at least one schedule in which
a decision occurs after the time of the last crash. Consequently, the output
of C at p is incremented at least once after the last time a process fails, as
required by the signaling property. We then establish that if |correct(F)| ≥ 2,
the exploration procedure is eventually stuck simulating a non-deciding schedule.
As the output of C is modified each time a simulated schedule decides, the output
of C eventually stabilizes at each process, hence,

Theorem 1. Protocol 2 emulates C.

6 Conclusion

The paper has defined the class of anonymity-preserving failure detectors and
has shown that within this class, at least for consensus a weakest failure C exists
in the anonymous shared-memory model.

In the full version [11], a natural generalization denoted Ck of failure detec-
tor C is introduced and a Ck-based protocol for k-set agreement is presented.
Questions for future work include (dis)proving that Ck is the weakest anonymity
preserving failure detector for k-set agreement and extending weakest failure de-
tector results in anonymous systems outside the domain of anonymity preserving
failure detectors.
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