
Exploring Gafni’s Reduction Land: From Ωk

to Wait-Free Adaptive (2p − �p
k
�)-Renaming

Via k-Set Agreement

Achour Mostefaoui, Michel Raynal, and Corentin Travers

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{achour, raynal, ctravers}@irisa.fr

Abstract. The adaptive renaming problem consists in designing an al-
gorithm that allows p processes (in a set of n processes) to obtain new
names despite asynchrony and process crashes, in such a way that the
size of the new renaming space M be as small as possible. It has been
shown that M = 2p−1 is a lower bound for that problem in asynchronous
atomic read/write register systems.

This paper is an attempt to circumvent that lower bound. To that
end, considering first that the system is provided with a k-set object,
the paper presents a surprisingly simple adaptive M -renaming wait-free
algorithm where M = 2p−� p

k
�. To attain this goal, the paper visits what

we call Gafni’s reduction land, namely, a set of reductions from one object
to another object as advocated and investigated by Gafni. Then, the
paper shows how a k-set object can be implemented from a leader oracle
(failure detector) of a class denoted Ωk. To our knowledge, this is the first
time that the failure detector approach is investigated to circumvent the
M = 2p−1 lower bound associated with the adaptive renaming problem.
In that sense, the paper establishes a connection between renaming and
failure detectors.

1 Introduction

The renaming problem The renaming problem is a coordination problem initially
introduced in the context of asynchronous message-passing systems prone to
process crashes [3]. Informally, it consists in the following. Each of the n processes
that define the system has an initial name taken from a very large domain [1..N]
(usually, n << N). Initially, a process knows only its name, the value n, and
the fact that no two processes have the same initial name. The processes have to
cooperate to choose new names from a name space [1..M] such that M << N
and no two processes obtain the same new name. The problem is then called
M -renaming.

Let t denote the upper bound on the number of processes that can crash.
It has been shown that t < n/2 is a necessary and sufficient requirement for
solving the renaming problem in an asynchronous message-passing system [3].
That paper presents also a message-passing algorithm whose size of the renaming
space is M = n + t.

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A. Mostefaoui, M. Raynal, and C. Travers

The problem has then received a lot of attention in the context of asynchro-
nous shared memory systems made up of atomic read/write registers. Numer-
ous wait-free renaming algorithms have been designed (e.g., [2,4,5,6]). Wait-free
means here that a process that does not crash has to obtain a new name in a
finite number of its own computation steps, regardless of the behavior of the
other processes (they can be arbitrarily slow or even crash) [12]. Consequently,
wait-free implies t = n− 1. An important result in such a context, concerns the
lower bound on the new name space. It has been shown in [13] that there is no
wait-free renaming algorithm when M < 2n− 1. As wait-free (2n− 1)-renaming
algorithms have been designed, it follows that that M = 2n − 1 is a tight lower
bound.

The previous discussion implicitly assumes the “worst case” scenario: all the
processes participate in the renaming, and some of them crash during the algo-
rithm execution. The net effect of crashes and asynchrony create “noise” that
prevents the renaming space to be smaller than 2n− 1. But it is not always the
case that all the processes want to obtain a new name. (A simple example is
when some processes crash before requiring a new name.) So, let p, 1 ≤ p ≤ n,
be the number of processes that actually participate in the renaming. A renam-
ing algorithm guarantees adaptive name space if the size of the new name space
is a function of p and not of n. Several adaptive wait-free algorithms have been
proposed that are optimal as they provide M = 2p− 1 (e.g., [2,4,6]).

The question addressed in the paper. Let us assume that we have a solution
to the consensus problem. In that case, it easy to design an adaptive renaming
algorithm where M = p (the number of participating processes). The solution is
as follows. From consensus objects, the processes build a concurrent queue that
provides them with two operations: a classical enqueue operation and a read
operation that provides its caller with the current content of the queue (without
modifying the queue). Such a queue object has a sequential specification and
each operation can always be executed (they are total operations according to
the terminology of [12]), from which it follows that this queue object can be
wait-free implemented from atomic registers and consensus objects [12]. Now, a
process that wants to obtain a new name does the following: (1) it deposits its
initial name in the queue, (2) then reads the content of the queue, and finally
(3) takes as its new name its position in the sequence of initial names read from
queue. It is easy to see that if p processes participate, they obtain the new names
from 1 to p, which means that consensus objects are powerful enough to obtain
the smallest possible new name space.

The aim of the paper is to try circumventing the lower bound M = 2p − 1
associated with the adaptive wait-free renaming problem, by enriching the un-
derlying read/write register system with appropriate objects. More precisely,
given M with p ≤ M ≤ 2p − 1, which objects (when added to a read/write
register system) allow designing an M -renaming wait-free algorithm (without
allowing designing an (M − 1)-renaming algorithm). The previous discussion on
consensus objects suggests to investigate k-set agreement objects to attain this
goal, and to study the tradeoff relating the value of k with the new renaming

Exploring Gafni’s Reduction Land 3

space. The k-set agreement problem is a distributed coordination problem (k
defines the coordination degree it provides the processes with) that generalizes
the consensus problem: each process proposes a value, and any process that does
not crash must decide a value in such a way that at most k distinct values are
decided and any decided value is a proposed value. The smaller the coordination
degree k, the more coordination imposed on the participating processes: k = 1
is the more constrained version of the problem (it is consensus), while k = n
means no coordination at all.

From k-set to (2p − � p
k�)-renaming. Assuming k-set agreement base objects,

and p ≤ n participating processes, the paper presents an adaptive wait-free
renaming algorithm providing a renaming space whose size is M = (2p − � p

k �).
Interestingly, when considering the two extreme cases we have the following:
k = 1 (consensus) gives M = p (the best that can be attained), while k = n (no
additional coordination power) gives M = 2p − 1, meeting the lower bound for
adaptive renaming in read/write register systems.

The proposed algorithm follows Gafni’s reduction style [9]. It is inspired by the
adaptive renaming algorithm proposed by Borowsky and Gafni [6]. In addition
to k-set objects, it also uses simple variants of base objects introduced in [6,7,10],
namely, strong k-set agreement [7], k-participating set [6,10]. These objects can
be incrementally built as follows: (1) base k-set objects are used to build k-
participating set objects, and then (2) k-participating set objects, are used to
solve (2p − � p

k �)-renaming.
The renaming algorithm that we obtain is surprisingly simple. It is based

on a very well-known basic strategy: decompose a problem into independent
subproblems, solve each subproblem separately, and finally piece together the
subproblem results to produce the final result. More precisely, the algorithm
proceeds as follows:
- (1) Using a k-participating set object, the processes are partitioned into inde-
pendent subsets of size at most k.
- (2) In each partition, the processes compete in order to acquire new names
from a small name space. Let h be the number of processes that belong to a
given partition.They obtain new names in the space [1..2h − 1].
- (3) Finally, the name spaces of all the partitions are concatenated in order to
obtain a single name space [1..M].

The key of the algorithm is the way it uses a k-participating set object to
partition the p participating processes in such a way that, when the new names
allocated in each partition are pieced together, the new name space is upper
bounded by M = (2p−� p

k�) Interestingly, the processes that belong to the same
partition can use any wait-free adaptive renaming algorithm to obtain new names
within their partition (distinct partitions can even use different algorithms).
This noteworthy modularity property adds a generic dimension to the proposed
algorithm.

From the oracle Ωk to k-set objects. Unfortunately, k-set agreement objects
cannot be wait-free implemented from atomic registers [7,13,17]. So, the paper

4 A. Mostefaoui, M. Raynal, and C. Travers

investigates additional equipment the asynchronous read/write register system
has to be enriched with in order k-set agreement objects can be implemented.
To that aim, the paper investigates a family of leader oracles (denoted here
(Ωz)1≤z≤n), and presents a k-set algorithm based on read/write registers and
any oracle of such a class Ωk.

So, the paper provides reductions showing that adaptive wait-free (2p−� p
k �)-

renaming can be reduced to the Ωk leader oracle class. To our knowledge, this is
the first time that oracles (failure detectors) are proposed and used to circumvent
the 2p−1 adaptive renaming space lower bound. Several problems remain open.
The most crucial is the statement of the minimal information on process crashes
that are necessary and sufficient for bypassing the lower bound 2p − 1.

Roadmap. The paper is made up of 5 sections. Section 2 presents the asyn-
chronous computation model. Then, Section 3 describes the adaptive renaming
algorithm. This algorithm is based on a k-participating set object. Section 4
visits Gafni’s reduction land by showing how the k-participating set object can
be built from a k-set object. Then, Section 5 describes an algorithm that con-
structs a k-set object in an asynchronous read/write system equipped with a
leader oracle of the class Ωk.

2 Asynchronous System Model

Process model. The system consists of n processes that we denote p1, . . . , pn.
The integer i is the index of pi. Each process pi has an initial name idi such
that idi ∈ [1..N]. Moreover, a process does not know the initial names of the
other processes; it only knows that no two processes have the same initial name.
A process can crash. Given an execution, a process that crashes is said to be
faulty, otherwise it is correct in that execution. Each process progresses at its
own speed, which means that the system is asynchronous.

In the following, given a run of an algorithm, p denotes the number of processes
that participate in that run, 1 ≤ p ≤ n. (To participate, a process has to execute
at least one operation on a shared object.)

Coordination model. The processes cooperate and communicate through two
types of reliable objects: atomic multi-reader/single-write registers, and k-set ob-
jects. A k-set object KS provides the processes with a single operation denoted
kset proposek(). It is a one-shot object in the sense that each process can invoke
KS .kset proposek() at most once. When a process pi invokes KS .kset proposek(v),
we say that it “proposes v” to the k-set object KS . If pi does not crash during
that invocation, it obtains a value v′ (we then say “pi decides v′”). A k-set object
guarantees the following two properties: a decided value is a proposed value, and
no more than k distinct values are decided.

Notation. Identifiers with upper case letters are used to denote shared registers
or shared objects. Lower case letters are used to denote local variables; in that
case the process index appears as a subscript. As an example, leveli[j] is a local
variable of the process pi, while LEVEL[j] is an atomic register.

Exploring Gafni’s Reduction Land 5

3 An Adaptive (2p − �p
k
�)-Renaming Algorithm

3.1 Non-triviality

Let us observe that the trivial renaming algorithm where pi takes i as its new
name is not adaptive, as the renaming space would always be [1..m], where m
is the greatest index of a participating process (as an example consider the case
where only p1 and pn are participating). To rule out this type of ineffective
solution, we consider the following requirement for a renaming algorithm [5]:

– The code executed by process pi with initial name id is exactly the same as
the code executed by process pj with initial name id.

This constraint imposes a form of anonymity with respect to the process
initial names. It also means that there is a strong distinction between the index
i associated with pi and its original name idi. The initial name idi can be seen
as a particular value defined in pi’s initial context. Differently, the index i can
be seen as a pointer to the atomic registers that can be written only by pi. This
means that the indexes define the underlying “communication infrastructure”.

3.2 k-Participating Set Object

The renaming algorithm is based on a k-participating set object. Such an object
generalizes the participating set object defined in [6].

Definition. A k-participating set object PS is a one-shot object that provides
the processes with a single operation denoted participating setk(). A process
pi invokes that operation with its name idi as a parameter. The invocation
PS .participating setk(idi) returns a set Si to pi (if pi does not crash while exe-
cuting that operation). The semantics of the object is defined by the following
properties [6,10]:

– Self-membership: ∀i: idi ∈ Si.
– Comparability: ∀i, j: Si ⊆ Sj ∨ Sj ⊆ Si.
– Immediacy: ∀i, j: (idi ∈ Sj) ⇒ (Si ⊆ Sj).
– Bounded simultaneity: ∀� : 1 ≤ � ≤ n: |{j : |Sj | = �}| ≤ k.

The set Si obtained by a process pi can be seen as the set of processes that,
from its point of view, have accessed or are accessing the k-participating set
object. A process always sees itself (self-membership). Moreover, such an object
guarantees that the Si sets returned to the process invocations can be totally
ordered by inclusion (comparability). Additionally, this total order is not at all
arbitrary: it ensures that, if pj sees pi (i.e., idi ∈ Sj) it also sees all the processes
seen by pi (Immediacy). As a consequence if idi ∈ Sj and idj ∈ Si, we have
Si = Sj . Finally, the object guarantees that no more than k processes see the
same set of processes (Bounded simultaneity). As we will see later (Section 3.2),
such an object can be constructed from k-set objects.

6 A. Mostefaoui, M. Raynal, and C. Travers

Table 1. An example of k-participating object (p = 10 ≤ n, k = 3)

level stopped processes Si sets

10 p5,p9 S5 = S9 = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}
9 empty level

8 p1, p3, p10 S1 = S3 = S10 = {p1, p2, p3, p4, p6, p7, p8, p10}
7 empty level

6 empty level

5 p2, p8 S2 = S8 = {p2, p4, p6, p7, p8}
4 empty level

3 p7 S7 = {p4, p6, p7}
2 p4, p6 S4 = S6 = {p4, p6}
1 empty level

Notation and properties. Let Sj be the set returned to pj after it has invoked
participating setk(idj), and � = |Sj | (notice that 1 ≤ � ≤ n). The integer � is
called the level of pj , and we say “pj is -or stopped- at level �”. If there is a
process pj such that |Sj | = �, we say “the level � is not empty”, otherwise we
say “the level � is empty”. Let L be the set of non-empty levels �, |L| = m ≤ n.
Let us order the m levels of L according to their values, i.e., �1 < �2 < · · · < �m

(this means that the levels in {1, . . . , n} \ {�1, . . . , �m} are empty).
|Sj | = � (pj stopped at level �) means that, from pj point of view, there are

exactly � processes that (if they do not crash) stop at the levels �′ such that
1 ≤ �′ ≤ �. Moreover, these processes are the processes that define Sj . (It is
possible that some of them have crashed before stopping at a level, but this fact
cannot be known by pj .) We have the following properties:

– If p processes invoke participating setk(), no process stops at a level higher
than p.

– (|Si| = |Sj | = �) ⇒ (Si = Sj) (from the comparability property).
– Let Si and Sj such that |Si| = �x and |Sj | = �y with �x < �y.

• Si ⊂ Sj (from �x < �y, and the comparability property).
• |Sj \Si| = |Sj |−|Si| = �y−�x (consequence of the set inclusion Si ⊂ Sj).

A k-participating set object can be seen as “spreading” the p ≤ n participating
processes on at most p levels �. This spreading is such that (1) there are at
most k processes per level, and (2) each process has a consistent view of the
spreading (where “consistent” is defined by the self-membership, comparability
and immediacy properties). As an example, let us consider Table 1 that depicts
the sets Si returned to p = 10 processes participating in a k-participating set
object (with k = 3), in a failure-free run. As we can see some levels are empty.
Two processes, p2 and p8, stopped at level 5; their sets are equal and contain
exactly five processes, namely the processes that stopped at a level ≤ 5.

The next lemma captures an important property provided by a k-participating
set object. Let ST [�x] = {j such that |Sj | = �x} (the processes that have
stopped at the level �x). For consistency purpose, let �0 = 0.

Exploring Gafni’s Reduction Land 7

Lemma 1. |ST [�x]| ≤ min(k, �x − �x−1).

Proof. |ST [�x]| ≤ k follows immediately from the bounded simultaneity prop-
erty. To show |ST [�x]| ≤ �x − �x−1, let us consider two processes pj and pi such
that pj stops at the level �x while pi stops at the level �x−1. We have:

1. |Sj | = �x and |Si| = �x−1 (definition of “a process stops at a level”).
2. ST [�x] ⊆ Sj (from the self-membership and comparability properties),
3. ST [�x] ∩ Si = ∅ (from Sj
= Si and the immediacy and self-membership

properties),
4. ST [�x] ⊆ Sj \ Si (from the items 2 and 3),
5. |Sj \ Si| = �x − �x−1 (previous discussion),
6. |ST [�x]| ≤ �x − �x−1 (from the items 4 and 5). �Lemma 1

Considering again Table 1, let us assume that the processes p1, p3 and p10

have crashed while they are at level � = 8, and before determining their sets S1,
S3 and S10. The level � = 8 is now empty (as no process stops at that level),
and the levels 10 and 5 are now consecutive non-empty levels. We have then
ST [10] = {p5, p9}, ST [5] = {p2, p8}, and |ST [10]| = 2 ≤ min(k, 10 − 5).

3.3 An Adaptive Renaming Protocol

The adaptive renaming algorithm is described in Figure 1. When a process pi

wants to acquire a new name, it invokes new name(idi). It then obtains a new
name when it executes line 05. Remind that p denotes the number of processes
that participate in the algorithm.

Base objects. The algorithm uses a k-participating set object denoted PS , and
a size n array of adaptive renaming objects, denoted RN [1..n].

Each base renaming object RN [y] can be accessed by at most k processes.
It provides them with an operation denoted rename(). When accessed by h ≤
k processes, it allows them to acquire new names within the renaming space
[1..2h − 1]. Interestingly, such adaptive wait-free renaming objects can be built
from atomic registers (e.g., [2,4,6]). As noticed in the introduction, this feature
provides the proposed algorithm with a modularity dimension as RN [y] and
RN [y′] can be implemented differently.

The algorithm: principles and description. The algorithm is based on the fol-
lowing (well-known) principle.

– Part 1. Divide for conquer.
A process pi first invokes PS .participating setk(idi) to obtain a set Si sat-
isfying the self-membership, comparability, immediacy and bounded simul-
taneity properties (line 01). It follows from these properties that (1) at most
k processes obtain the same set S (and consequently belong to the same
partition), and (2) there are at most p distinct partitions.

An easy and unambiguous way to identify the partition pi belongs to is
to consider the level at which pi stopped in the k-participating set object,

8 A. Mostefaoui, M. Raynal, and C. Travers

namely, the level � = |Si|. The h ≤ k processes in the partition � = |Si|
compete then among themselves to acquire a new name. This is done by
pi invoking the appropriate renaming object, i.e., RN

[|Si|
]
.rename(idi) (line

03). As indicated before, these processes obtain new names in renaming space
[1..2h− 1].

operation new name(idi):
(1) Si ← PS .participating setk(idi);

(2) basei ← (2× |Si| − � |Si|
k
�);

(3) offseti ← RN
�|Si|

�
.rename(idi);

(4) mynamei ← basei − offseti + 1;
(5) return(mynamei)

Fig. 1. Generic adaptive renaming algorithm (code for pi)

– Part 2. Piece together the results of the subproblems.
The final name assignment is done according to very classical (base,offset)
rule. A base is attributed to each partition as follows. The partition � = |Si|
is attributed the base 2 × |Si| − � |Si|

k � (line 02). Let us notice that no two
partitions are attributed the same base. Then, a process pi in partition �
considers the new name obtained from RN [�] as an offset (notice that an
offset in never equal to 0). It determines its final new name from the base
and offset values it has been provided with, considering the name space
starting from the base and going down (line 04).

3.4 Proof of the Algorithm

Lemma 2. The algorithm described in Figure 1 ensures that no two processes
obtain the same new name.

Proof. Let pi be a process such that |Si| = �x. That process is one of the |ST [�x]|
processes that stop at the level �x and consequently use the underlying renaming
object RN [�x]. Due to the property of that renaming object, pi computes a
value offseti such that 1 ≤ offseti ≤ 2 × |ST [�x]| − 1. Moreover, as |ST [�x]| ≤
min(k, �x − �x−1) (Lemma 1), the previous relation becomes 1 ≤ offseti ≤ 2 ×
min(k, �x − �x−1).

On another side, the renaming space attributed to the processes pi of ST [�x]
starts at the base 2�x − � �x

k � (included) and goes down until 2�x−1 − � �x−1
k �

(excluded). Hence the size of this renaming space is

2(�x − �x−1) −
(��x

k
� − ��x−1

k
�).

It follows from these observations that a sufficient condition for preventing
conflict in name assignment is to have

2 × min(k, �x − �x−1) − 1 ≤ 2(�x − �x−1) −
(��x

k
� − ��x−1

k
�).

Exploring Gafni’s Reduction Land 9

We prove that the algorithm satisfies the previous relation by considering two
cases according to the minimum between k and �x − �x−1. Let

�x = qx k + rx with 0 ≤ rx < k (i.e., �rx

k
� ∈ {0, 1})), and

�x−1 = qx−1 k + rx−1 with 0 ≤ rx−1 < k (i.e., �rx−1

k
� ∈ {0, 1}),

from which we have �x − �x−1 = (qx − qx−1) k + (rx − rx−1).

– Case �x − �x−1 ≤ k.
In that case, the relation to prove simplifies and becomes � �x

k �− � �x−1
k � ≤ 1,

i.e., (qx + � rx

k �)− (qx−1 + � rx−1
k �) ≤ 1, that can be rewritten as (qx − qx−1)+

(� rx

k � − � rx−1
k �) ≤ 1.

Moreover, from �x − �x−1 = (qx − qx−1) k + (rx − rx−1) and �x − �x−1 ≤ k,
we have (qx − qx−1) k + (rx − rx−1) ≤ k from which we can extract two
subcases:

• Case qx − qx−1 = 1 and rx = rx−1.
In that case, it trivially follows from the previous formulas that (qx −
qx−1) + (� rx

k � − � rx−1
k �) ≤ 1, which proves the lemma for that case.

• Case qx = qx−1 and 0 ≤ rx − rx−1 ≤ k.
In that case we have to prove � rx

k �−� rx−1
k � ≤ 1. As � rx

k �, � rx−1
k � ∈ {0, 1},

we have � rx

k � − � rx−1
k � ≤ 1, which proves the lemma for that case.

– Case k < �x − �x−1.
After simple algebraic manipulations, the formula to prove becomes:

(2k − 1)(qx − qx−1 − 1) + 2(rx − rx−1) −
(�rx

k
� − �rx−1

k
�) ≥ 0.

Moreover, we have now �x − �x−1 = (qx − qx−1) k + (rx − rx−1) > k, from
which, as 0 ≤ rx, rx−1 < k, we can conclude qx − qx−1 ≥ 1. We consider two
cases.

• qx − qx−1 = 1.
The formula to prove becomes 2(rx − rx−1) ≥ � rx

k � − � rx−1
k �.

From �x − �x−1 > k we have:

∗ rx > rx−1, from which (as rx and rx−1 are integers) we conclude
2(rx − rx−1) ≥ 2.

∗ 1 ≥ � rx

k � ≥ � rx−1
k � ≥ 0, from which we conclude � rx

k � − � rx−1
k � ≤ 1.

By combining the previous relations we obtain 2 ≥ 1 which proves the
lemma for that case.

10 A. Mostefaoui, M. Raynal, and C. Travers

• qx − qx−1 > 1. Let qx − qx−1 = 1 + α (where α is an integer ≥ 1).
The formula to prove becomes

(2k − 1)α + 2(rx − rx−1) −
(�rx

k
� − �rx−1

k
�) ≥ 0.

As 0 ≤ rx, rx−1 < k, the smallest value of rx−rx−1 is −(k−1). Similarly,
the greatest value of � rx

k � − � rx−1
k � is 1.

It follows that, the smallest value of the left side of the formula is (2k −
1)α − 2(k − 1) − 1 = 2kα − (2k + α) + 1 = (2k − 1)(α − 1). As k ≥ 1
and α ≥ 1, it follows that the left side is never negative, which proves
the lemma for that case.

�Lemma 2

Theorem 1. The algorithm described in Figure 1 is a wait-free adaptive (2p −
� p

k�)-renaming algorithm (where p ≤ n is the number of participating processes).

Proof. The fact that the algorithm is wait-free is an immediate consequence of
the fact that base k-set participating set object and the base renaming objects
are wait-free. The fact that no two processes obtain the same new name is
established in Lemma 2.

If p processes participate in the algorithm, the highest level at which a process
stops is p (this follows from the properties of the k-set participating set object).
Consequently, the largest base that is used (line 02) is 2p−� p

k �, which establishes
the upper bound on the renaming space. �Theorem 1

4 Visiting Gafni’s Land: From k-Set to k-Participating
Set

This section presents a wait-free transformation from a k-set agreement object to
a k-participating set object. It can be seen as a guided visit to Gafni’s reduction
land [6,7,10]. Let us recall that a k-set object provides the processes with an
operation kset proposek().

4.1 From Set Agreement to Strong Set Agreement

Let us observe that, given a k-set object, it is possible that no process decides
the value it has proposed. This feature is the “added value” provided by a strong
k-set agreement object: it is a k-set object (i.e., at most k different values are
decided) such that at least one process decides the value it has proposed [7]. The
corresponding operation is denoted strong kset proposek().

In addition to a k-set object KS , the processes cooperate by accessing an array
DEC [1..n] of one-writer/multi-reader atomic registers. That array is initialized
to [⊥, . . . ,⊥]. DEC [i] can be written only by pi. The array is provided with a
snapshot() operation. Such an operation returns a value of the whole array as if
that value has been obtained by atomically reading the whole array [1]. Let us
remind that such an operation can be wait-free implemented on top of atomic
read/write base registers.

Exploring Gafni’s Reduction Land 11

The construction (introduced in [7]) is described in Figure 2. A process pi first
proposes its original name to the underlying k-set object KS , and writes the value
it obtains (an original name) into DEC [i] (line 01). Then, pi atomically reads
the whole array (line 02). Finally, if it observes that some process has decided
its original name idi, pi also decides idi, otherwise pi decides the original name
it has been provided with by the k-set object (lines 03-04).

operation strong kset proposek(idi) :
(1) DEC [i]← KS .kset proposek(idi);
(2) deci[1..n]← snapshot(DEC [1..n]);
(3) if (∃h : deci[h] = idi) then decisioni ← idi else decisioni ← deci[i] endif ;
(4) return(decisioni)

Fig. 2. Strong k-set agreement algorithm (code for pi)

4.2 From Strong Set Agreement to k-Participating Set

The specification of a k-participating set object has been defined in Section 3.2.
The present section shows how such an object PS can be wait-free implemented
from an array of strong k-set agreement objects; this array is denoted SKS [1..n].
(This construction generalizes the construction proposed in [10] that considers
n = 3 and k = 2.) In addition to the array SKS [1..N] of strong k-set agreement
objects, the construction uses an array of one-writer/multi-reader atomic regis-
ters denoted LEVEL[1..n]. As before only pi can write LEVEL[i]. The array is
initialized to [n + 1, . . . , n + 1].

The algorithm is based on what we call Borowski-Gafni’s ladder, a wait-free
object introduced in [6]. It combines such a ladder object with a k-set agreement
object in order to guarantee that no more than k processes, that do not crash,
stop at the same step of the ladder.

Borowsky-Gafni’s Ladder. Let us consider the array LEVEL[1..n] as a ladder.
Initially, a process is at the top of the ladder, namely, at level n + 1. Then it
descends the ladder, one step after the other, according to predefined rules until
it stops at some level (or crashes). While descending the ladder, a process pi

registers its current position in the ladder in the atomic register LEVEL[i].
After it has stepped down from one ladder level to the next one, a process pi

computes a local view (denoted viewi) of the progress of the other processes in
their descent of the ladder. That view contains the processes pj seen by pi at
the same or a lower ladder level (i.e., such that leveli[j] ≤ LEVEL[i]). Then, if
the current level � of pi is such that pi sees at least � processes in its view (i.e.,
processes that are at its level or a lower level) it stops at the level � of the ladder.
This behavior is described by the following algorithm [6]:

repeat LEVEL[i]← LEVEL[i]− 1;
for j ∈ {1, . . . , n} do leveli[j]← LEVEL[j] end do;
viewi ←

�
j : leveli[j] ≤ LEVEL[i]};

until (|viewi| ≥ LEVEL[i]) end repeat;
let Si = viewi; return(Si).

12 A. Mostefaoui, M. Raynal, and C. Travers

This very elegant algorithm satisfies the following properties [6]. The sets Si

of the processes that terminate the algorithm, satisfy the self-membership, com-
parability and immediacy properties of the k-participating set object. Moreover,
if |Si| = �, then pi stopped at the level �, and there are � processes whose current
level is ≤ �.

From a ladder to a k-participating set object. The construction, described in
Figure 3, is nearly the same as the construction given in [10]. It uses the previous
ladder algorithm as a skeleton to implement a k-participating set object. When
it invokes participating setk(), a process pi provides its original name as input
parameter. This name will be used by the underlying strong k-participating set
object. The array INIT NAME [1..n] is initialized to [⊥, . . . ,⊥]. INIT NAME [i]
can be written only by pi.

operation participating setk(idi)
(1) INIT NAME [i]← idi;
(2) repeat LEVEL[i]← LEVEL[i]− 1;
(3) for j ∈ {1, . . . , n} do leveli[j]← LEVEL[j] end do;
(4) viewi ←

�
j : leveli[j] ≤ LEVEL[i]};

(5) if (LEVEL[i]> k) ∧ (|viewi| = LEVEL[i])
(6) then let � = LEVEL[i];
(7) ansi←SKS [�].strong kset proposek(idi);
(8) oki ←(ansi = idi)
(9) else oki ← true
(10) endif
(11) until (|viewi| ≥ LEVEL[i]) ∧ oki end repeat;
(12) let Si = {id | ∃j ∈ viewi such that INIT NAME [j] = id};
(13) return(Si)

Fig. 3. k-participating set algorithm (code for pi)

If, in the original Borowski-Gafni’s ladder, a process pi stops at a ladder level
� ≤ k, it can also stop at the same level in the k-set participating object. This
follows from the fact that, as |viewi| = � ≤ k when pi stops descending, we know
from the ladder properties that at most � ≤ k processes are at the level � (or at
a lower level). So, when LEVEL[i] ≤ k (line 05), pi sets oki to true (line 05). It
consequently exits the repeat loop (line 11) and we can affirm that no more than
k processes do the same, thereby satisfying the bounded simultaneity property.

So, the main issue of the algorithm is to satisfy the bounded simultaneity
property when the level � at which pi should stop in the original Borowski-
Gafni’s ladder is higher than k. In that case, pi uses the underlying strong
k-set agreement object SKS [�] to know if it can stop at that level (lines 07-08).
This k-participating set object ensures that at least one (and at most k) among
the participating processes that should stop at level � in the original Borowski-
Gafni’s ladder, do actually stop. If a process pi is not allowed to stop (we have
then oki = false at line 08), it is required to descend to the next step of the

Exploring Gafni’s Reduction Land 13

ladder (lines 11 and 01). When a process stops at a level �, there are exactly �
processes at the levels �′ ≤ �. This property is maintained when a process steps
down from � to � − 1 (this follows from the fact that when a process is required
to step down from � > k to � − 1 because � > k, at least one process remains at
the level � due to the k-set agreement object SKS [�]).

5 From Ωk to k-Set Objects

This section shows that a k-set object can be built from single-writer/multi-
reader atomic registers and an oracle (failure detector) of the class Ωk.

5.1 The Oracle Class Ωk

The family of oracle classes (Ωz)1≤z≤n has been introduced in [16]. That defini-
tion implicitly assumes that all the processes are participating. We extend here
this definition by making explicit the notion of participating processes. More pre-
cisely, an oracle of the class Ωz provides the processes with an operation denoted
leader() that satisfies the following properties:

– Output size: each time it is invoked, leader() provides the invoking process
with a set of at most z participating process identities (e.g., {idx1 , . . . , idxz}).

– Eventual multiple leadership: There is a time after which all the leader()
invocations return forever the same set. Moreover, this set includes at least
one correct participating process (if any).

It is important to notice that each instance of Ωk is defined with respect to
the context where it is used. This context is the set of participating processes.
This means that if Ωk is used to construct a given object, say a k-set object KS ,
the participating processes for that failure detector instance are the processes
that invoke KS .kset proposek(). Let us remark that, during an arbitrary long
period, the participating processes that invoke leader() can see different sets of
leaders, and no process knows when this “anarchy” period is over. Moreover,
nothing prevent faulty processes to be elected as permanent leaders.

When all the processes are assumed to participate, Ω1 is nothing else than the
leader failure detector denoted Ω introduced in [8], where it is shown that it is
the weakest failure detector for solving the consensus problem in asynchronous
systems. (Let us notice that the lower bound proved in [8], on the power of
failure detectors, assumes implicitly that all the correct processes participate in
the consensus algorithm.)

5.2 From Ωk to k-Set Agreement

In addition to an oracle of the class Ωk, the proposed k-set agreement algorithm
is based on a variant, denoted KA, of a round-based object introduced in [11] to
capture the safety properties of Paxos-like consensus algorithms [14]. The leader
oracle is used to ensure the liveness of the algorithm. KA is used to abstract
away the safety properties of the k-set problem, namely, at most k values are
decided, and the decided values are have been proposed.

14 A. Mostefaoui, M. Raynal, and C. Travers

The KA object This object provides the processes with an operation denoted
alpha proposek(ri, vi). That operation has two input parameters: the value vi

proposed by the invoking process pi (here its name idi), and a round number
ri (that allows identifying the invocations). The KA object assumes that no
two processes use the same round numbers, and successive invocations by the
same process use increasing round numbers. Given a KA object, the invocations
alpha proposek() satisfy the following properties:

– Validity: the value returned by any invocation alpha proposek() is a proposed
value or ⊥.

– Agreement: At most k different non-⊥ values can be returned by the whole
set of alpha proposek() invocations.

– Convergence: If there is a time after which the operation alpha proposek()
is invoked infinitely often, and these invocations are issued by an (unknown
but fixed) set of at most k processes, then there is a time after which none
of these invocations returns ⊥.

An algorithm constructing a KA object from single-writer/multi-reader atomic
registers is described in [15].

The k-set algorithm. The algorithm constructing a k-set object KS (accessed
by at most n processes1), is described in Figure 4. As in previous algorithms,
it uses an array DEC [1..n] of one-writer/multi-reader atomic registers. Only pi

can write DEC [i]. The array is initialized to [⊥, . . . ,⊥]. The algorithm is very
simple. If a value has already been decided (∃j : DEC [j]
= ⊥), pi decides it.
Otherwise, pi looks if it is a leader. If it is not, it loops. If it is a leader, pi invokes
alpha proposek(ri, vi) and writes in DEC [i] the value it obtains (it follows from
the specification of KA that that value it writes is ⊥ or a proposed value).

operation kset proposek(vi):
(1) ri ← (i− n);
(2) while (∀j : DEC [j] = ⊥) do
(3) if idi ∈ leader() then ri ← ri + n; DEC [i]← KA.alpha proposek(ri, vi) endif
(4) end while;
(5) let decidedi = any DEC [j] �= ⊥;
(6) return(decidedi)

Fig. 4. An Ωk-based k-set algorithm (code for pi)

It is easy to see that no two processes use the same round numbers, and each
process uses increasing round numbers. It follows directly from the agreement
property of the KA object, that at any time, the array DEC [1..n] contains at
most k values different from ⊥. Moreover, due the validity property of KA, these
values have been proposed.

1 Let us remind that the construction of each SKS [�] object used in Figure 3 is based
on an underlying k-set object KS object.

Exploring Gafni’s Reduction Land 15

It is easy to see that, as soon as a process has written a non-⊥ value in DEC [1..n],
any kset propose(vi) invocation issued by a correct process terminates. So, in order
to show that the algorithm is wait-free, we have to show that at least one process
writes a non-⊥ value in DEC [1..n]. Let us assume that no process deposits a value
in this array. Due to the eventual multiple leadership property of Ωk, there is a
time τ after which the same set of k′ ≤ k participating processes are elected as
permanent leaders, and this set includes at least one correctprocess. It follows from
the algorithm that, after τ , at most k processes invoke KA.alpha proposek(), and
one of them is correct. It follows from the convergence property of the KA object,
that there is a time τ ′ ≥ τ afterwhichno invocation returns⊥.Moreover, as at least
one correct process belongs to the set of elected processes, that process eventually
obtains a non-⊥ value from an invocation, and consequently deposits that non-⊥
value in DEC [1..n]. The algorithm is consequently wait-free.

References

1. Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic Snapshots
of Shared Memory. Journal of the ACM, 40(4):873-890, 1993.

2. Afek Y. and Merritt M., Fast, Wait-Free (2k − 1)-Renaming. Proc. 18th ACM
Symp. on Principles of Dist. Comp. (PODC’99), ACM Press, pp. 105-112, 1999.

3. Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming in an
Asynchronous Environment. Journal of the ACM, 37(3):524-548, 1990.

4. Attiya H. and Fouren A., Polynomial and Adaptive Long-lived (2k−1)-Renaming.
Proc. Symp. on Dist. Comp. (DISC’00), LNCS #1914, pp. 149-163, 2000.

5. Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and
Advanced Topics, (2d Edition), Wiley-Interscience, 414 pages, 2004.

6. Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming. Proc.
12th ACM Symp. on Principles of Distr. Comp. (PODC’93), pp. 41-51, 1993.

7. Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient
Asynchronous Computations. Proc. 25th ACM STOC, pp. 91-100, 1993.

8. Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving
Consensus. Journal of the ACM, 43(4):685–722, 1996.

9. Gafni E., Read/Write Reductions. DISC/GODEL presentation given as introduc-
tion to the 18th Int’l Symposium on Distributed Computing (DISC’04), 2004.

10. Gafni E., Rajsbaum R., Raynal M. and Travers C., The Committee Decision Prob-
lem. Proc. 8th LATIN, LNCS #3887, pp. 502-514, 2006.

11. Guerraoui R. and Raynal M., The Alpha of Asynchronous Consensus. The Com-
puter Journal. To appear.

12. Herlihy M.P., Wait-Free Synchronization. ACM TOPLAS, 13(1):124-149, 1991.
13. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Com-

putability. Journal of the ACM, 46(6):858-923,, 1999.
14. Lamport L., The Part-Time Parliament. ACM TOCS, 16(2):133-169; 1998.
15. Mostefaoui M., Raynal M., and Travers C., Exploring Gafni’s Reduction land: from

Ωk to Wait-free adaptive (2p − � p
k
�)-renaming via k-set Agreement. Tech Report

#1676, IRISA, Université de Rennes (France), 2006.
16. Neiger G., Failure Detectors and the Wait-Free Hierarchy. Proc. 14th Int’l ACM

Symp. on Principles of Dist. Comp. (PODC’95), ACM Press, pp. 100-109, 1995.
17. Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topol-

ogy of Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

	Introduction
	Asynchronous System Model
	An Adaptive $(2p-\lceil\frac{p}{k}\rceil)$-Renaming Algorithm
	Non-triviality
	k-Participating Set Object
	An Adaptive Renaming Protocol
	Proof of the Algorithm

	Visiting Gafni's Land: From k-Set to k-Participating Set
	From Set Agreement to Strong Set Agreement
	From Strong Set Agreement to k-Participating Set

	From Ω^k to k-Set Objects
	The Oracle Class Ω^k
	From Ω^k to k-Set Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

