
How to solve consensus
in the smallest window of synchrony

Dan Alistarh1, Seth Gilbert1, Rachid Guerraoui1, and Corentin Travers2

1 EPFL LPD, Bat INR 310, Station 14, 1015 Lausanne, Switzerland
2 Universidad Politecnica de Madrid, 28031 Madrid, Spain

Abstract. This paper addresses the following question: what is the
minimum-sized synchronous window needed to solve consensus in an oth-
erwise asynchronous system? In answer to this question, we present the
first optimally-resilient algorithm ASAP that solves consensus as soon
as possible in an eventually synchronous system, i.e., a system that from
some time GST onwards, delivers messages in a timely fashion. ASAP
guarantees that, in an execution with at most f failures, every process
decides no later than round GST + f + 2, which is optimal.

1 Introduction

The problem of consensus, first introduced in 1980 [22,25], is defined as follows:

Definition 1 (Consensus). Given n processes, at most t of which may crash:
each process pi begins with initial value vi and can decide on an output satisfying:
(1) Agreement: every process decides the same value; (2) Validity: if a process
decides v, then v is some process’s initial value; (3) Termination: every correct
process eventually decides.

In a seminal paper [10], Dwork et al. introduce the idea of eventual synchrony
in order to cirumvent the asynchronous impossibility of consensus [11]. They
study an asynchronous system in which, after some unknown time GST (global
stabilization time), messages are delivered within a bounded time. They show
that consensus can be solved in this case if and only if n ≥ 2t+ 1.

Protocols designed for the eventually synchronous model are appealing as
they tolerate arbitrary periods of asynchrony: in this sense, they are “indul-
gent” [13]. Such protocols are particularly suited to existing distributed systems,
which are indeed synchronous most of the time, but might sometimes experience
periods of asynchrony. In practice, the system need not be permanently syn-
chronous after GST; it is necessary only that there be a sufficienly big window
of synchrony for consensus to complete.

This leads to the following natural question: For how long does the system
need to be synchronous to solve consensus? In other words, how fast can processes
decide in an eventually synchronous system after the network stabilizes? The
algorithm presented in [10] guarantees that every process decides within 4(n+1)
rounds of GST, i.e., the required window of synchrony is of length 4(n+ 1). On

the other hand, in [7], Dutta and Guerraoui show that, in the worst case, at
least t+ 2 synchronous rounds of communication are needed. They also present
an algorithm for t < n/3 that matches this lower bound, but they leave open
the question of whether there is an optimally resilient algorithm that decides in
any synchronous window of size t+ 2. In this paper, we once and for all resolve
this question by demonstrating a consensus algorithm that guarantees a decision
within t+ 2 rounds of GST.
Early decision. Even though, in the worst case, at least t + 2 synchronous
rounds are needed to solve consensus, in some executions it it is possible to
decide faster. Lamport and Fisher [21] showed that, in a synchronous system, if
an execution has at most f ≤ t failures, it is possible to decide in f + 2 rounds.
Dolev, Reischuk, and Strong [5] showed that this bound was optimal. It has
remained an open question as to whether there is an optimally resilient early
deciding protocol for eventually synchronous systems.

Intuitively, eventual synchrony requires one additional round: t + 1 syn-
chronous rounds to compute the decision, and one additional round to determine
that the execution was, in fact, synchronous. Similarly, early-deciding algorithms
require one additional round: f+1 synchronous rounds to compute the decision,
and one round to determine that there were only f failures. Thus, the question
at hand is whether these rounds can be merged: can we verify in just one round
both that the execution was synchronous and that there were only f failures?
The algorithm presented in this paper achieves exactly that feat, terminating
within f + 2 rounds after GST in an execution with at most f failures.
Results. In this paper, we present the ASAP algorithm which solves consensus
and ensures the following properties: (1) Optimal resilience: ASAP can tolerate
up to t < n/2 crash failures; notice that no consensus algorithm can tolerate
≥ n/2 failures in an eventually synchronous system. (2) Early deciding : in every
execution with at most f ≤ t failures, every process decides no later than round
GST + f + 2; again, notice that this is optimal.
Key ideas. The ASAP algorithm consists of three main mechanisms. The first
mechanism is responsible for computing a value that is safe to decide; specifically,
each process maintains an estimate, which is updated in every round based
on the messages it receives. The second mechanism is responsible for detecting
asynchrony; processes maintain (and share) a log of active and failed processes
which helps to discover when asynchronies have occurred. Finally, the third
mechanism is responsible for determining when it is safe to decide; specifically,
a process decides when it has: (1) observed ≤ f failures for some f ≤ t; (2)
observed at least f + 2 consecutive synchronous rounds; and (3) observed at
least two consecutive rounds in which no process appears to have failed. The
ASAP algorithm combines these mechanisms within a full information protocol,
meaning that in each round, each process sends its entire state to every other
process. (Optimizing the message complexity is out of the scope of this paper.)

Perhaps the key innovation in the ASAP algorithm is the mechanism by
which a process updates its estimate of the decision value. We begin with the
näıve approach (as in [24]) in which each process adopts the minimum estimate

received in each round. In a synchronous execution with at most f ≤ t failures,
this guarantees that every process has the same estimate no later than round
f + 1. We augment this simple approach (generalizing on [7]) by prioritizing an
estimate from a process that is about to decide. Moreover, we break ties among
processes about to decide by giving priority to processes that have observed
more consecutive synchronous rounds. This helps to ensure that if a process
does, in fact, decide, then every process has adopted its estimate. This same
prioritization scheme, however, poses a problem when a process that has been
given priority (since it is about to decide), finally does not decide (due to a newly
detected asynchrony). To resolve this issue, we sometimes waive the priority on
an estimate: when a process pi receives an estimate from another process pj
that is about to decide, pi examines the messages it has received to determine
whether or not pj (or any process that has received pj ’s message) can decide. If
pi can prove that process pj does not decide, then pi can treat the estimate from
process pj with normal priority. Otherwise, if pi cannot be certain as to whether
pj will or will not decide, pi makes the conservative decision and prioritizes the
estimate from pj . This notion of selective prioritization is at the heart of our
ASAP algorithm, and may be of use in other contexts, such as k-set agreement
and Byzantine agreement.

2 Related Work

Beginning with Dwork et al. [10], a variety of different models have been used
to express eventual synchrony, including failure detectors [3, 4] and round-by-
round failure detectors (RRFD) [12]. These approaches have led to the concept
of indulgent algorithms [7, 13, 14]—algorithms that tolerate unreliable failure
detectors, expressed in the RRFD model. More recently, Keidar and Shraer [17,
18] introduced GIRAF, a framework that extends the assumptions of RRFD.

An important line of research has approached the question we address in this
paper in a different manner, asking how fast consensus can terminate if there are
no further failures after the system stabilizes. Keidar, Guerraoui and Dutta [8]
show that at least 3 rounds are needed after the system stabilizes and failures
cease, and they present a matching algorithm3. Two further papers [17,18] also
investigate the performance of consensus algorithms under relaxed timeliness
and failure detector assumptions after stabilization.

Paxos-like algorithms that depend on a leader form another class of algo-
rithms in this line of research. Work in [19, 23] and [1, 2] minimizes the number
of “stable” synchronous communication rounds after a correct leader is elected

3 It may appear surprising that we can decide within f +2 rounds of GST, as [8] shows
that it is impossible to decide sooner than three rounds after failures cease. Indeed,
a typical adversarial scenario might involve failing one processor per round during
the interval [GST +1,GST +f], resulting in a decision within two rounds of failures
ceasing. However, this is not a contradiction as these are worst-case executions in
which our algorithm does not decide until 3 rounds after failure cease.

that are needed to reach agreement, matching lower bounds in [20] and [16], re-
spectively. A related algorithm is presented in [9], which guarantees termination
within 17 message delays after stabilization, for the case where no failures occur
after stabilization. In fact, it is conjectured there that a bound of O(f) rounds is
possible in the case where f failures occur after stabilization. Our paper resolves
this conjecture in the affirmative.

Note that our approach to network stabilization differs from both of these
previous approaches in that it focuses only on the behavior of the network,
independent of failures or leader election.

Finally, Guerraoui and Dutta [6,7] have investigated the possibility of early-
deciding consensus for eventual synchrony and have obtained a tight lower bound
of f + 2 rounds for executions with f ≤ t failures, even if the system is initially
synchronous. They also present an algorithm for the special case where t < n/3
(not optimally resilient) that solves consensus in executions with at most f
failures within f + 2 rounds of GST , leaving open the question of an optimally
resilient consensus algorithm, which we address in this paper.

3 Model

We consider n deterministic processes Π = {p1, . . . , pn}, of which up to t < n/2
may fail by crashing. The processes communicate via an eventually synchronous
message-passing network, modeled much as in [7, 10, 17]: time is divided into
rounds; however, there is no assumption that every message broadcast in a round
is also delivered in that round. Instead, we assume only that if all non-failed
processes broadcast a message in some round r, then each process receives at
least n− t messages in that round 4. We assume that the network is eventually
synchronous: there is some round GST after which every message sent by a
non-failed process is delivered in the round in which it is sent.

4 The ASAP Consensus Algorithm

In this section, we present an optimally-resilient early-deciding consensus algo-
rithm for the eventually-synchronous model that tolerates t < n/2 failures and
terminates within f + 2 rounds of GST , where f ≤ t is the actual number of
failures. The pseudocode for ASAP can be found in Figures 1 and 2.

4.1 High-Level Overview

The ASAP algorithm builds on the idea of estimate flooding from the classi-
cal synchronous “FloodSet” algorithm (e.g., [24]) and on the idea of detecting
asynchronous behavior introduced by the “indulgent” At+2 algorithm of [7].
4 A simple way to implement this would be for each node to delay its round r + 1

message until at least n − t round r messages have been received, and ignoring
messages from previous rounds; however, this affects the early-deciding properties of
the algorithm, as a correct process can be delayed by asynchronous rounds in which
it does not receive n− t messages.

Each process maintains an estimate, along with other state, including: for
each round, a set of (seemingly) active processes and a set of (seemingly) failed
processes; a flag indicating whether the process is ready to decide; and an in-
dicator for each round as to whether it appears synchronous. At the beginning
of each round, processes send their entire state to every other process; ASAP
is a full-information protocol. Processes then update their state and try to de-
cide, before continuing to the next round. We briefly discuss the three main
components of the algorithm:
Asynchrony Detection. Processes detect asynchrony by analyzing the mes-
sages received in preceeding rounds. Round r is marked as asynchronous by a
process p if p learns that a process q is alive in a round r′ > r, even though it be-
lieves 5 q to have failed in round r. Notice that a process p may learn that process
q is still alive either directly—by receiving a message from q—or indirectly—by
receiving a message from a third process that believes q to be alive. The same
holds for determining which processes have failed. Thus, a process merges its
view with the views of all processes from which it has received messages in a
round, maximizing the amount of information used for detecting asynchrony.
Decision. A process can decide only when it is certain that every other process
has adopted the same estimate. There are two steps associated with coming to
a decision. If a process has observed f failures, and the previous f + 1 rounds
are perceived as synchronous, then it sets a “ready to decide” flag to true. A
process can decide in the following round under the following circumstances: (i)
it has observed f failures; (ii) the last f + 2 rounds appear synchronous; and
(iii) there are no new failures observed in the last two rounds. Once a process
decides, it continues to participate, informing other processes of the decision.
Updating the Estimate. The procedure for updating the estimate is the key
to the algorithm. Consider first the simple rule used by the classic synchronous
consensus protocol, where each process adopts the minimum estimate received in
every round. This fails in the context of eventual synchrony since a “slow” process
may maintain the minimum estimate even though, due to network delays, it is
unable to send or receive messages; this slow process can disrupt later decisions
and even cause a decision that violates safety. A natural improvement, which
generalizes the approach used in [7], is to prioritize the estimate of a process
that is about to decide. Notice that if a process is about to decide, then it
believes that it has seen at least one failure-free synchronous round, and hence
its estimate should be the minimum estimate in the system. However, this too
fails, as there are situations where a process has a synchronous view of f + 1
rounds with f failures without necessarily holding the smallest estimate in the
system. Thus, we award higher priority to messages from processes that are
ready to decide, but allow processes to de-prioritize such estimates if they can
prove that no process decides after receiving that estimate in the current round.

It remains to describe how a process p can prove that no process decides
upon receiving q’s message. Consider some process s that decides upon receiving

5 Note that, throughout this paper, we use terms like “knowledge” and “belief” in
their colloquial sense, not in the knowledge-theoretical sense of [15].

procedure propose(vi)i1
begin2

esti ← vi; ri ← 1; msgSeti ← ∅; sF lagi ← false3
Activei ← []; Failedi ← []; AsynchRoundi ← []4
while true do5

send(esti, ri, sF lagi, Activei, Failedi, AsynchRoundi, decidei) to all6
wait until received messages for round ri7

msgSeti[ri]← messages that pi receives in round ri8
Activei[ri]← processes from which pi gets messages in round ri9
Failedi[ri]← Π \ Activei[ri]10
f ← |Failedi[ri]|11

updateState() /* Update the state of pi based on messages received */12
if (checkDecisionCondition() = false) then13

esti ← getEstimate()14

if (sCounti ≥ f + 1) then sF lagi = true15
else sF lagi = false16

end17
ri ← ri + 118

end19

end20

Fig. 1. The ASAP algorithm, at process pi.

q’s message. If p can identify a process that is believed by q to be alive and which
does not support the decision being announced by q, then p can be certain that s
will not decide: either s receives a message from the non-supporting process and
cannot decide, or s does not receive its message and thus observes a new failure,
which prevents s from deciding. Thus, a sufficient condition for discarding q’s flag
is the existence of a third process that: (i) q considers to be alive in the previous
round, and (ii) receives a set of messages other than q’s in r− 1 (Proposition 9).
Although this condition does not ensure that p discards all flags that do not lead
to decision, it is enough for ASAP to guarantee agreement.

4.2 Detailed Description

We now describe the pseudocode in Figures 1 and 2. When consensus is initiated,
each process invokes procedure propose() (see Figure 1) with its initial value. A
decision is reached at process pi when decidei is first set to true; the decision is
stored in est i. (For simplicity, the algorithm does not terminate after a decision;
in reality, only one further round is needed.)
State Variables. A process pi maintains the following state variables: (a) ri is
the current round number, initially 1. (b) est i is pi’s estimate at the end of round
ri. (c) Activei[] is an array of sets of processes. For each round r′ ≤ ri, Activei[r′]
contains the processes that pi believes to have sent at least one message in round
r′. (d) Failed i[] is an array of sets of processes. For each round r′ ≤ ri, Failed i[r′]
contains the processes that pi believes to have failed in round r′. (e) msgSet i is
the set of messages that pi receives in round ri. (f) AsynchRound i[] is an array
of flags (booleans). For each round r′ ≤ ri, AsynchRound i[r′] = true means that
r′ is seen as asynchronous in pi’s view at round ri. (g) sCount i is an integer

denoting the number of consecutive synchronous rounds pi sees at the end of ri.
More precisely, if sCount i = x, then rounds in the interval [ri − x + 1, ri] are
seen as synchronous by pi at the end of round ri. (h) sFlag i is a flag that is set
to true if pi is ready to decide in the next round. (i) decided i is a flag that is set
to true if process pi has decided.
Main algorithm. We now describe ASAP in more detail. We begin by outlining
the structure of each round (lines 5-18, Figure 1). Each round begins when pi
broadcasts its current estimate, together with its other state, to every process
(line 6); it then receives messages for round ri (line 7). Process pi stores these
messages in msgSet i (line 8), and updates Activei[ri] and Failed i[ri] (lines 9–11).

Next, pi calls the updateState() procedure (line 12), which merges the newly
received information into the current state. It also updates the designation of
which rounds appear synchronous. At this point, checkDecisionCondition is called
(line 13) to see if a decision is possible. If so, then the round is complete. Oth-
erwise, it continues to update the estimate (line 14), and to update its sFlag i
(line 15–16). Finally, process pi updates the round counter (line 18), and pro-
ceeds to the next round.
Procedure updateState(). The goal of the updateState() procedure is to
merge the information received during the round into the existing Active and
Failed sets, as well as updating the AsynchRound flag for each round. More
specifically, for every message received by process pi from some process pj , for
every round r′ < ri: process pi merges the received set msgj .Activej [r′] with its
current set Activei[r′]. The same procedure is carried out for the Failed sets.
(See lines 3-8 of updateState(), Figure 2).

The second part of the updateState procedure updates the AsynchRound
flag for each round. For all rounds r′ ≤ ri, pi recalculates AsynchRoundi[r′],
marking whether r′ is asynchronous in its view at round ri (lines 9-14). Notice
that a round r is seen as asynchronous if some process in Failed i[r] is discovered
to also exist in the set Activei[k] for some k > r, i.e., the process did not actually
fail in round r, as previously suspected. Finally, pi updates sCounti, with the
number of previous consecutive rounds that pi sees as synchronous (line 15).
Procedure checkDecisionCondition(). There are two conditions under which
pi decides. The first is straightforward: if pi receives a message from another
process that has already decided, then it too can decide (lines 3–6). Otherwise,
process pi decides at the end of round rd if: (i) pi has seen ≤ f failures; (ii) pi
observes at least f + 2 consecutive synchronous rounds; and (iii) the last two
rounds appear failure-free, i.e. Activei[rd] = Activei[rd − 1] (line 8). Notice that
the size of Failed i[ri] captures the number of failures that pi has observed, and
sCount i captures the number of consecutive synchronous rounds.
Procedure getEstimate(). The getEstimate() procedure is the key to the
workings of the algorithm. The procedure begins by identifying a set of pro-
cesses that have raised their flags, i.e., that are “ready to decide” (lines 3–4).
The next portion of the procedure (lines 5-13) is dedicated to determining which
of these flagged messages to prioritize, and which of these flags should be “dis-
carded,” i.e., treated with normal priority. Fix some process pj whose message is

being considered. Process pi first calculates which processes have a view that is
incompatible with the view of pj (line 6); specifically, these processes received a
different set of messages in round ri−1 from process pj . None of these processes
can support a decision by any process that receives a message from pj .

Next pi fixes fj to be the number of failures observed by process pj (line 7),
and determines that pj ’s flag should be waived if the union of the “non-supporting”
processes and the failed processes is at least fj + 1 (line 8). In particular, this
implies that if a process ps receives pj ’s message, then one of three events oc-
curs: (i) process ps receives a non-supporing message; (ii) process ps receives a
message from a process that was failed by pj ; or (iii) process ps observes at least
fj + 1 failures. In all three cases, process ps cannot decide. Thus it is safe for pi
to waive pj ’s flag and treat its message with normal priority (lines 9-11).

At the end of this discard process, pi chooses an estimate from among the
remaining flagged messages, if any such messages exist (lines 14-19). Specifically,
it chooses the minimum estimate from among the processes that have a maximal
sCount , i.e., it prioritizes processes that have seen more synchronous rounds.
Otherwise, if there are no remaining flagged messages, pi chooses the minimum
estimate that it has received (line 18).

5 Proof of Correctness

In this section, we prove that ASAP satisfies validity, termination and agree-
ment. Validity is easily verified (see, for example, Proposition 2), so we focus on
termination and agreement.

5.1 Definitions and Properties

We begin with a few definitions. Throughout, we denote the round in which
a variable is referenced by a superscript: for example, estri is the estimate of
pi at the end of round r. First, we say that a process perceives round r to be
asynchronous if it later receives a message from a process that it believes to have
failed in round r.

Definition 2 (Synchronous Rounds). Given pi ∈ Π and rounds r, rv, we say
that round r is asynchronous in pi’s view at round rv if and only if there exists
round r′ such that r < r′ ≤ rv and Activerv

i [r′] ∩ Failedrv
i [r] 6= ∅. Otherwise,

round r is synchronous in pi’s view at round rv.

A process perceives a round r as failure-free if it sees the same set of processes
as alive in rounds r and r + 1.

Definition 3 (Failure-free Rounds). Given pi ∈ Π and rounds r, rv, we
say that round r ≤ rv is failure-free in pi’s view at round rv if and only if
Activerv

i [r] = Activerv
i [r + 1].

Note that, by convention, if a process pm completes round r but takes no steps
in round r + 1, pm is considered to have failed in round r. We now state two
simple, yet fundamental properties of ASAP :

procedure updateState()1
begin2

for every msgj ∈ msgSeti[ri] do3
/* Merge newly received information */
for round r from 1 to ri − 1 do4

Activei[r]← msgj .Activej [r] ∪ Activei[r]5

Failedi[r]← msgj .Failedj [r] ∪ Failedi[r]6

end7

end8

for round r from 1 to ri − 1 do9
/* Update AsynchRound flag */
AsynchRoundi[r]← false10
for round k from r + 1 to ri do11

if (Activei[k] ∩ Failedi[r] 6= ∅) then AsynchRoundi[r]← true12
end13

end14

sCounti ← max`(∀ri − ` ≤ r′ ≤ ri, AsynchRoundi[r
′] = true)15

end16

procedure checkDecisionCondition()1
begin2

if ∃msgp ∈ msgSeti s.t. msgp.decidedp = true then3
decidei ← true4
esti ← msgp.estp5

return decidei6

end7
/* If the previous f + 2 rounds are synchronous with at most f failures */
if (sCount ≥ |Failedi[ri]|+ 2) and (Activei[ri] = Activei[ri − 1]) then8

decidei ← true9
return decidei10

end11

end12

procedure getEstimate()1
begin2

flagProcSeti ← {pj ∈ Activei[ri] |msgj .sF lagj = true}3
flagMsgSeti ← {msgj ∈ msgSeti |msgj .sF lagj = true}4

/* Try to waive the priority on flagged messages. */
for pj ∈ flagProcSeti do5

/* Find the set of processes that disagree with pj’s view. */

nonSupportj
i ← {p ∈ Activei[ri] : msgp.Activep[ri − 1] 6= msgj .Activej [ri − 1]}6

fj ← |msgj .Failedj [ri − 1]|7

if (|nonSupportj
i ∪ Failedj [ri − 1]| ≥ fj + 1) then8

msgj .sFlagj [ri − 1]← false9

flagMsgSeti ← flagMsgSeti \ {msgj}10
flagProcSeti ← flagProcSeti \ {pj}11

end12

end13
/* Adopt the min estimate of max priority; higher sCount has priority. */
if (flagMsgSeti 6= ∅) then14

/* The set of processes that have the highest sCount */
highPrSet ← {pj ∈ flagMsgSeti|msgj .sCountj = maxpl∈flagMsgSeti

(sCountl)}15

est ← minpj∈highPrSet (estj)16

else17
est ← minpj∈msgSeti

(estj)18

end19
return est20

end21

Fig. 2. ASAP procedures.

Proposition 1 (Uniformity). If processes pi and pj receive the same set of
messages in round r, then they adopt the same estimate at the end of round r.

Proposition 2 (Estimate Validity). If all processes alive at the beginning of
round r have estimate v, then all processes alive at the beginning of round r+ 1
will have estimate v.

These properties imply that if the system remains in a bivalent state (in the sense
of [11]), then a failure or asynchrony has to have occured in that round. Propo-
sition 7 combines these properties with the asynchrony-detection mechanism to
show that processes with synchronous views and distinct estimates necessarily
see a failure for every round that they perceive as synchronous.

5.2 Termination

In this section, we show that every correct process decides by round GST +f+2,
as long as there are no more than f ≤ t failures. Recall that a process decides
when there are two consecutive rounds in which it perceives no failures. By the
pigeonhole principle, it is easy to see that there must be (at least) two failure-free
rounds during the interval [GST + 1,GST + f + 2]; unfortunately, these rounds
need not be consecutive. Even so, we can show that at least one correct node
must perceive two consecutive rounds in this interval as failure-free.

We begin by fixing an execution α with at most f failures, and fixing GST
to be the round after which α is synchronous. We now identify two failure-free
rounds in the interval [GST +1,GST +f+2] such that in the intervening rounds,
there is precisely one failure per round.

Proposition 3. There exists a round r0 > GST and a round r` > r0 such that:
(a) r` ≤ GST + f + 2; (b) rounds r0 and r` are both failure free; (c) for every
r : r0 < r < r`, there is exactly one process that fails in r; and (d) ∀i > 0 such
that r0 + i < r`, there are no more than (r0 + i)−GST − 1 failures by the end
of round r0 + i.

The claim follows from a simple counting argument. Now, fix rounds r0 and r`
that satisfy Proposition 3. For every i < `: denote by ri the round r0 +i; let qi be
the process that fails in round ri; let q` = ⊥. Let Si be the set of processes that
are not failed at the beginning of round ri. We now show that, for every round
r in the interval [r1, r`−1], if a process in Sr receives a message from qr, then it
decides at the end of round r. This implies that either every process decides by
the end of r`, or, for all rounds r, no process in Sr receives a message from qr.

Lemma 1. Assume r0 + 1 < r`, and some process in S` does not decide by the
end of r`. Then ∀i : 0 < i < `:

(i) For every process p ∈ Si+1 \ {qi+1}, process p does not receive a message
from qi in round ri.

(ii) If process qi+1 6= ⊥ receives a message from qi in round ri, then process qi+1

decides at the end of ri.

We can now complete the proof of termination:

Theorem 1 (Termination). Every correct process decides by the end of round
GST + f + 2.

Proof (sketch). If r0 +1 = r`, then it is easy to see that every process decides by
the end of r`, since there are two consecutive failure-free rounds. Otherwise, we
conclude by Lemma 1 that none of the processes in S` receive a message from
q`−1 in round r`−1. Thus every process receives messages from S`−1 \ {q`−1}
both in rounds r`−1 and r`, which implies that they decide by the end of r`.

5.3 Agreement

In this section, we prove that no two processes decide on distinct values. Our
strategy is to show that once a process decides, all non-failed processes adopt
the decision value at the end of the decision round (Lemma 2). Thus, no decision
on another value is possible in subsequent rounds.

Synchronous Views. The key result in this section is Proposition 7, which
shows that in executions perceived as synchronous, there is at least one (per-
ceived) failure per round. The idea behind the first preliminary proposition is
that if an estimate is held by some process at round r, then there exists at least
one process which “carries” it for every previous round.

Proposition 4 (Carriers). Let r > 0 and p ∈ Π. If p has estimate v at the end
of round r, then for all rounds 0 ≤ r′ ≤ r, there exists a process qr

′ ∈ Activerp[r′]
such that estqr′ [r′ − 1] = v.

Next, we prove that processes with synchronous views see the same information,
with a delay of one round. This follows from the fact that processes communicate
with a majority in every round.

Proposition 5 (View Consistency). Given processes pi and pj that see rounds
r0 + 1, . . . , r0 + `+ 1 as synchronous: ∀r ∈ [r0 + 1, r0 + `], Activer0+`+1

i [r+ 1] ⊆
Activer0+`+1

j [r].

The next proposition shows that if a process observes two consecutive syn-
chronous rounds r and r + 1 with the same set of active processes S, then
all processes in S receive the same set of messages during round r.

Proposition 6. Let r, rc be two rounds such that rc > r. Let p be a process that
sees round r as synchronous from round rc. If Activerc

p [r] = Activerc
p [r+1], then

all processes in Activerc
p [r] receive the same set of messages in round r.

The next proposition is the culmination of this section, and shows that in periods
of perceived synchrony, the amount of asynchrony in the system is limited. It
captures the intuition that at least one process fails in each round in order to
maintain more than one estimate in the system. Recall, this is the key argument
for solving consensus in a synchronous environment.

Proposition 7. Given processes pi, pj that see rounds r0 + 1, . . . , r0 + `+ 1 as
synchronous and adopt distinct estimates at the end of round r0 + `+ 1, then for
all r ∈ [r0 + 1, r0 + `], |Activer0+`+1

i [r + 1]| < |Activer0+`+1
i [r]|.

Proof (sketch). We proceed by contradiction: assume there exists a round r ∈
[r0 + 1, r0 + `] such that Activer0+`+1

i [r+ 1] = Activer0+`+1
i [r]. This implies that

all processes in Activer0+`+1
i [r] received the same set of messages in round r by

Proposition 6. Proposition 1 then implies that all processes in Activer0+`+1
i [r]

have adopted the same estimate at the end of round r, that is, they have adopted
estr0+`+1

i .
Proposition 4 implies that there exists a process p ∈ Activer0+`+1

j [r+ 1] that
adopts estimate estr0+`+1

j at the end of r. By the above, this process is not in
Activer0+`+1

i [r]. This, together with the fact that estr0+`+1
i 6= estr0+`+1

j implies
that p ∈ Activer0+`+1

j [r + 1] \Activer0+`+1
i [r], which contradicts Proposition 5.

Decision Condition. In this section, we examine under which conditions a
process may decide, and under what conditions a process may not decide. These
propositions are critical to establishing the effectiveness of the estimate-priority
mechanism. The following proposition shows that every decision is “supported”
by a majority of processes with the same estimate. Furthermore, these processes
have a synchronous view of the previous rounds.

Proposition 8. Assume process pd decides on vd at the end of r0 +f+2, seeing
f + 2 synchronous rounds and f failures (line 10 of checkDecisionCondition). Let
S := Activer0+f+2

d [r0 + f + 2]. Then:

(i) For all p ∈ S,Activer0+f+1
p [r0 + f + 1] = S and estr0+f+1

p = vd.
(ii) At the end of r0 +f+1, processes in S see rounds r0 +1, r0 +2, . . . , r0 +f+1

as synchronous rounds in which at most f failures occur.

The proposition follows from a careful examination of the decision condition.
Next, we analyze a sufficient condition to ensure that a process does not decide,
which is the basis for the flag-discard rule:

Proposition 9. Let p be a process with sFlag = true at the end of round r > 0.
If there exists a process q such that q ∈ Activerp[r] and Activerq[r] 6= Activerp[r],
then no process that receives p’s message in round r + 1 decides at the end of
round r + 1.

Notice that if a process receives a message from p and not from q, then it sees q
as failed; otherwise, if it receives a message from both, it sees a failure in r−1. In
neither case can the process decide. The last proposition is a technical result that
bounds a process’s estimate in rounds in which it receives a flagged estimate:

Proposition 10. Let r > 0 and p ∈ Π. Let flagProcSetrp be the set of pro-
cesses in Activerp[r] with sF lag = true. Assume flagProcSetrp is non-empty,
and let q be a process such that, ∀s ∈ flagProcSetrp, estr−1

q ≤ estr−1
s , also q /∈

Failedr−1
s [r−1] and p receives a message from q in round r. Then estrp ≤ estr−1

q .

Safety. We now prove the key lemma which shows that if some process decides,
then every other non-failed process has adopted the same estimate. The first
part of the proof uses Propositions 5 and 7 to determine precisely the set of
processes that remain active just prior to the decision, relying on the fact that
there must be one new failure per round. The remainder of the proof carefully
examines the behavior in the final two rounds prior to the decision; we show
that in these rounds, every process must adopt the same estimate. This analysis
depends critically on the mechanism for prioritizing estimates, and thus relies
on Proposition 10.

Lemma 2 (Safety). Let rd be the first round in which a decision occurs. If
process pd decides on value v in round rd, then every non-failed process adopts
v at the end of round rd.

Proof (sketch). Assume for the sake of contradiction that there exists a process
q such that estrd

q = u 6= v. Fix f to be the number of failures observed by process
pd and fix round r0 > 0 such that rd = r0 + f + 2. The case where f ∈ {0, 1}
needs to be handled separately; in the following, we assume that f > 1.

Since pd decides at the end of r0+f+2, Proposition 8 implies that there exists
a support set S of at least n−f processes such that pd receives a message in round
r0 + f + 2 from all processes in S, and ∀p ∈ S,Activer0+f+1

p [r0 + f + 1] = S.
Furthermore, processes in S have sCount ≥ f + 1 and est = v at the end of
r0 + f + 1. Since process q receives at least n− t messages in round r0 + f + 2,
it necessarily receives a message from a process in S. Denote this process by pi.
We make the following claim:

Claim. Process q receives a message from some process pj in round r0 + f + 1
such that estj = u, pj /∈ S, sFlagj = true and sCountj ≥ f + 1.

The claim follows from the observation that q cannot discard pi’s flag (as per
Proposition 9), therefore there has to exist a process pj with estimate u and flag
set with priority at least as high as pi’s. Hence, at the end of round r0 +f +1 we
have two processes pi and pj that see rounds r0 +1, . . . , r0 +f+1 as synchronous
and adopt distinct estimates. This leads to the following claim:

Claim. For every process p ∈ S ∪ {pj}, Activer0+f+1
p [r0 + f] = S ∪ {pj}.

In particular, Proposition 7 implies that pj sees one failure per round, and hence
|Activer0+f+1

j [r0 + f]| ≤ n− f + 1. Since Activer0+f+1
i [r0 + f + 1] = S, Propo-

sition 5 implies that S ∪{pj} ⊆ Activer0+f+1
j [r0 + f]. Since pj /∈ S, we conclude

that S ∪ {pj} = Activer0+f+1
j [r0 + f]. A similar argument yields that, for all

p ∈ S,Activer0+f+1
p [r0 + f] = S ∪ {pj}.

In the remaining portion of the proof, we show that no process in S ∪ {pj}
adopts estimate max(u, v) at the end of r0+f+1, which leads to a contradiction.
Let m := min(u, v) and M := max(u, v). Proposition 4 ensures that there exist
processes pm, pM ∈ S ∪ {pj} such that estr0+f−1

m = m and estr0+f−1
M = M . Let

fj = |Failedr0+f+1
j [r0 + f + 1]|. We can then conclude:

Claim. There exists a set S′ of at least n− fj − 1 processes in S such that every
process in S ∪ {pj} receives messages from S′ in round r0 + f + 1 and processes
in S′ have estr0+f ≤ min(u, v).

To see this, notice that process pj receives exactly n − fj messages in round
r0 + f + 1; one of these messages must have been sent by pj itself, while the
remaining n− fj − 1 of these messages were sent by processes in S. We denote
these processes by S′. Notice that the processes in S′ are not considered failed
by other processes in S in round r0 + f + 1 since they support pd’s decision in
round r0 + f + 2. It follows that the processes in S′ have received messages from
every process in S ∪ {pj} in round r0 + f . With some careful analysis, we can
apply Proposition 10 to conclude that for all s ∈ S′, estr0+fs ≤ m, from which
the claim follows. Finally, we show that, because of S′, no process in S ∪ {pj}
can adopt M at the end of r0 + f + 1, which contradicts the existence of either
pi or pj , concluding the proof.

Claim. For every process p in S ∪ {pj}, estr0+f+1
p ≤ m.

This follows because every process p in S receives a message from a process s ∈ S′
in round r0 + f + 1, and no other process in S could have failed s in r0 + f ; thus
we can again apply Proposition 10 to conclude that estr0+f+1

p ≤ estr0+fs ≤ m,
and the claim follows, which concludes the proof of Lemma 2.

We can now complete the proof of agreement:

Theorem 2 (Agreement). No two processes decide on different estimates.

Proof (sketch). Let rd be the first round in which a decision occurs. Since major-
ity support is needed for a decision (see Proposition 8), all processes deciding in
rd decide on the same value. Lemma 2 shows that all processes adopt the same
estimate at the end of rd, and by Proposition 2, no other value is later decided.

6 Conclusions and Future Work

We have demonstrated an optimally-resilient consensus protocol for the eventu-
ally synchronous model that decides as soon as possible, i.e., within f+2 rounds
of GST in every execution with at most f failures. It remains an interesting
question for future work as to whether these techniques can be extended to k-
set agreement and Byzantine agreement. In particular, it seems possible that
the mechanism for assigning priorities to estimates based on what a process can
prove about the system may be useful in both of these contexts. Indeed, there
may be interesting connections between this technique and the knowledge-based
approach (see, e.g., [15]).

References

1. R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Deconstructing paxos.
SIGACT News, 34(1):47–67, 2003.

2. R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Reconstructing paxos.
SIGACT News, 34(2):42–57, 2003.

3. T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. J. ACM, 43(4):685–722, 1996.

4. T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

5. D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine agreement.
J. ACM, 37(4):720–741, 1990.

6. P. Dutta and R. Guerraoui. The inherent price of indulgence. In PODC, pages
88–97, 2002.

7. P. Dutta and R. Guerraoui. The inherent price of indulgence. Distributed Com-
puting, 18(1):85–98, 2005.

8. P. Dutta, R. Guerraoui, and Idit Keidar. The overhead of consensus failure recov-
ery. Distributed Computing, 19(5-6):373–386, 2007.

9. P. Dutta, R. Guerraoui, and L. Lamport. How fast can eventual synchrony lead
to consensus? In DSN, pages 22–27, 2005.

10. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

11. M. Fisher, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.

12. E. Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In PODC, pages 143–152, 1998.

13. R. Guerraoui. Indulgent algorithms (preliminary version). In PODC, pages 289–
297, 2000.

14. R. Guerraoui and M. Raynal. The information structure of indulgent consensus.
IEEE Transactions on Computers, 53(4):453–466, 2004.

15. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990.

16. I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are
no faults: preliminary version. SIGACT News, 32(2):45–63, 2001.

17. I. Keidar and A. Shraer. Timeliness, failure-detectors, and consensus performance.
In PODC, pages 169–178, 2006.

18. I. Keidar and A. Shraer. How to choose a timing model? In DSN, pages 389–398,
2007.

19. L. Lamport. Generalized consensus and paxos. Microsoft Research Technical Re-
port MSR-TR-2005-33, March 2005.

20. L. Lamport. Lower bounds for asynchronous consensus. Distributed Computing,
19(2):104–125, 2006.

21. L. Lamport and M. Fisher. Byzantine generals and transaction commit protocols.
Unpublished, April 1982.

22. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

23. Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.
24. N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
25. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of

faults. J. ACM, 27(2):228–234, 1980.

