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Abstract. The k-set agreement problem is a generalization of the uniform con-
sensus problem: each process proposes a value, and each non-faulty process has
to decide a value such that a decided value is a proposed value, and at most k
different values are decided. It has been shown that any algorithm that solves
the k-set agreement problem in synchronous systems that can suffer up to t crash
failures requires � t

k
�+1 rounds in the worst case. It has also been shown that it is

possible to design early deciding algorithms where no process decides and halts
after min

(
� f

k
� + 2, � t

k
� + 1

)
rounds, where f is the number of actual crashes in

a run (0 ≤ f ≤ t).

This paper explores a new direction to solve the k-set agreement problem in
a synchronous system. It considers that the system is enriched with base objects
(denoted [m, �] SA objects) that allow solving the �-set agreement problem in a
set of m processes (m < n). The paper has several contributions. It first proposes
a synchronous k-set agreement algorithm that benefits from such underlying base
objects. This algorithm requires O( t�

mk
) rounds, more precisely, Rt = � t

Δ
� + 1

rounds, where Δ = m�k
�
� + (k mod �). The paper then shows that this bound,

that involves all the parameters that characterize both the problem (k) and its en-
vironment (t, m and �), is a lower bound. The proof of this lower bound sheds
additional light on the deep connection between synchronous efficiency and asyn-
chronous computability. Finally, the paper extends its investigation to the early
deciding case. It presents a k-set agreement algorithm that directs the processes
to decide and stop by round Rf = min

(
� f

Δ
� + 2, � t

Δ
� + 1

)
. These bounds gen-

eralize the bounds previously established for solving the k-set problem in pure
synchronous systems.

1 Introduction

Context of the work. The k-set agreement problem generalizes the uniform consen-
sus problem (that corresponds to the case k = 1). That problem has been introduced
by S. Chaudhuri to investigate how the number of choices (k) allowed to the pro-
cesses is related to the maximum number (t) of processes that can crash during a
run [4]. The problem can be defined as follows. Each of the n processors (processes)
defining the system starts with a value (called a “proposed” value). Each process that
does not crash has to decide a value (termination), in such a way that a decided value

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 99–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



100 A. Mostefaoui, M. Raynal, and C. Travers

is a proposed value (validity), and no more than k different values are decided
(agreement)1.

When we consider asynchronous systems, the problem can trivially be solved when
k > t. Differently, it has been shown that there is no solution in these systems as soon as
k ≤ t [3,14,23]. (The asynchronous consensus impossibility, case k = 1, was demon-
strated before using a different technique). Several approaches have been proposed to
circumvent the impossibility to solve the k-set agreement problem in asynchronous sys-
tems (e.g., probabilistic protocols [20], unreliable failure detectors with limited scope
accuracy [12,19], or conditions associated with input vectors [17]).

The situation is different in synchronous systems where the k-set agreement problem
can always be solved, whatever the respective values of t and k. This has an inherent
cost, namely, the smallest number of rounds (time complexity measured in communi-
cation steps) that have to be executed in the worst case scenario is lower bounded by
� t

k�+1 [5]. (That bound generalizes the t+1 lower bound associated with the consensus
problem [1,7].)

Although failures do occur, they are rare in practice. For the uniform consensus prob-
lem (k = 1), this observation has motivated the design of early deciding synchronous
protocols [6,15], i.e., protocols that can cope with up to t process crashes, but decide
in less than t + 1 rounds in favorable circumstances (i.e., when there are few failures).
More precisely, these protocols allow the processes to decide in min(f + 2, t + 1)
rounds, where f is the number of processes that crash during a run, 0 ≤ f ≤ t, which
has been shown to be optimal (the worst scenario being when there is exactly one crash
per round).

In a very interesting way, it has also been shown that the early deciding lower bound
for the k-set agreement problem is min(� f

k � + 2, � t
k � + 1) [10]. This lower bound,

not only generalizes the corresponding uniform consensus lower bound, but also shows
an “inescapable tradeoff” among the number t of faults tolerated, the number f of
actual faults, the degree k of coordination we want to achieve, and the best running time
achievable. It is important to notice that, when compared to consensus, k-set agreement
divides the running time by k (e.g., allowing two values to be decided halves the running
time).

Related work. To our knowledge, two approaches have been proposed and investigated
to circumvent the min(� f

k �+2, � t
k �+1) lower bound associated with the synchronous

k-set agreement problem.
The first is the fast failure detector approach that has been proposed and developed

in [2] to expedite decision in synchronous consensus. That approach assumes a special
hardware that allows a process to detect the crash of any process at most d time units
after the crash occurred, where d < D, D being the maximum message delay provided
by the synchronous system. Both d and D are a priori known by the processes. A fast
failure detector-based consensus algorithm that terminates in D + fd is proposed in
[2], where it is also shown that D + fd is a lower bound for any algorithm based on a

1 This paper considers the crash failure model. The reader interested by the k-set agreement
problem in more severe send/receive/general omission failure models can consult the intro-
ductory survey [22].
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fast failure detector2. To our knowledge, this approach has been considered only for the
consensus problem.

A second approach that has been proposed to circumvent the min(f +2, t+1) lower
bound is the use of conditions [18]. That approach considers that the values proposed by
the processes define an input vector with one entry per process. Basically, a condition
Cd

t (t and d are two parameters that allow defining instances of the condition) is a set
of input vectors I such that ∀I ∈ Cd

t , there is a value that appears in I more than t − d
times. A deterministic way to define which value has to appear enough times in a vector
I (e.g., the maximal value of the vector [16]) allows defining a hierarchy of conditions
such that C0

t ⊂ · · · ⊂ Cx
t ⊂ · · · ⊂ Ct

t (where Ct
t is the condition including all the input

vectors).
[18] presents two main results. Let I be the input vector of the considered run, and

Cd
t be a condition. The first result is a synchronous consensus algorithm that allows the

processes to decide in (1) one round when I ∈ Cd
t and f = 0, (2) two rounds when

I ∈ Cd
t and f ≤ t−d, (3) min(d+1, f +2, t+1) rounds when I ∈ Cd

t and f > t−d,
and (4) min(f + 2, t + 1) when I /∈ Cd

t . The second result is a proof showing that
min(d + 1, f + 2, t + 1) rounds are necessary in the worst case when I ∈ Cd

t (and
I /∈ Cd−1

t ).

Problem addressed in the paper. The paper is on the efficiency (measured as the number
of rounds required to decide) of synchronous set agreement algorithms. As it has just
been shown, fast failure detectors and conditions are two ways to circumvent the syn-
chronous lower bound. The paper investigates a third approach. That approach is based
on base objects that allow narrowing the set of proposed values. Their aim is to play a
part similar to fast failure detectors or conditions, i.e., allow expediting consensus.

Let us consider as a simple example a test&set object. This object has consensus
number 2 [11], which means that it allows solving consensus in an asynchronous system
made up of two processes (where one of them can crash), but not in a system made up
of n > 2 processes (where up to n−1 can crash)3. Is it possible to use such base objects
to speed up synchronous set agreement in a system made up of n processes where up
to t may crash? More generally, let [m, �] SA denote an object that allows solving �-
set agreement in a synchronous system of m processes. As fast failure detectors or
conditions, these objects are assumed given for free. So, the previous question becomes:

– Is it possible to benefit from [m, �] SA objects to build a t-resilient synchronous
[n, k] SA object (i.e., a k-set agreement object that has to cope with up to t process
crashes)?

– If such a construction is possible, is its cost smaller than � t
k� + 1, or smaller than

min(� f
k � + 2, � t

k � + 1) if we are interested in an early deciding [n, k] SA object?

If m, �, n and k are such that there is an integer a with n ≤ am and a� ≤ k, it is
possible to solve the k-set agreement problem without exchanging any value (i.e., in 0

2 Without a fast failure detector, the cost would be D × min(f + 2, t + 1).
3 The consensus number of a concurrent object type is the maximum number of processes that

can solve consensus (despite any number of process crashes) using only atomic registers and
objects of that type. The consensus number of test&set objects, queues, and stacks is 2 [11].
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round!) whatever the value of t. This is trivially obtained by partitioning the n processes
into a subsets of at most m processes, and using in each subset a [m, �] SA object in
order that each process be provided with a decided value. So, the interesting cases are
when the values m, �, n and k do not allow a trivial partitioning such as the previous
one.

Another way to present the previous question is the following: how much crashes
can we tolerate when we want to build a synchronous [10, 3] SA object from [2, 1] SA
objects, if one wants to decide in at most one round? In at most two rounds? In at most
three rounds?

From a more practical point of view, we can see the system as made up of clusters
of m processes, such that an operation involving only processes of a given cluster can
be performed very efficiently, i.e., in a time that is smaller than the maximal message
transfer delay involving processes belonging to different clusters. That is the sense in
which the sentence “the [m, �] SA objects are given for free” has to be understood.

Results. The paper presents the following results.

– It first presents a synchronous message-passing algorithm that builds a [n, k] SA
object from [m, �] SA objects. This algorithm works for any values of n, k, m, and
� (assuming, of course, n > k and m > �).

– The paper then shows that the number of rounds (Rt) of the previous algorithm
varies as O( t�

mk ). This means that Rt (1) decreases when the coordination degree
k increases (i.e., when less synchronization is required), or when the number of
processes m involved in each underlying object increases, and (2) increases when
the underlying object is less and less powerful (i.e., when � increases) or when
the number of process crashes that the algorithm has to tolerate increases. More
precisely, we have:

Rt =
⌊ t

m�k
� � + (k mod �)

⌋
+ 1.

When we consider the previous example of building, in a synchronous system, a
[10, 3] SA object from [2, 1] SA objects, we can conclude that Rt = 1 requires
t < 6, while Rt = 2 allows t = 9. Moreover, as there are only n = 10 processes,
there is no value of t that can entail an execution in which Rt = 3 are required (for
it to occur, we should have 12 ≤ t < 18 and n > t).
To have a better view of Rt, it is interesting to look at special cases.

• Case 1. Build a consensus object in a synchronous system from [1, 1] SA base
objects or [m, m] SA objects (i.e., from base objects that have no power). It is
easy to see that Rt = t+1 (that is the well-known lower bound for synchronous
t-resilient consensus).

• Case 2. Build a [n, k] SA object in a synchronous system from [1, 1] SA base
objects or [m, m] SA objects (base objects without power). It is easy to see
that Rt = � t

k� + 1, (that is the lower bound for synchronous t-resilient k-set
agreement).

• Case 3. Build a synchronous consensus from [m, 1] SA base objects (i.e., con-
sensus objects). In that case Rt = � t

m� + 1.
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• Case 4. Build a synchronous [n, �] SA object from [m, �] SA base objects. In
that case, Rt = � t

m� + 1.
• Case 5. Build a synchronous [n, k] SA object from [m, 1] SA base objects (i.e.,

consensus objects). We then have Rt = � t
mk � + 1.

These particular instances show clearly how the coordination degree and the size of
the base objects (measured by the value m) affect the maximal number of rounds
executed by the algorithm and consequently allow expediting the decision.

– The paper then shows that the value Rt is optimal when, one wants to build, in a
synchronous system, an [n, k] SA object from [m, �] SA base objects. This opti-
mality result generalizes previous lower bounds proved for special cases such as
consensus [1,7,15], and set agreement [5].

The optimality proof relies on two theorems, one from Gafni [9], the other from
Herlihy and Rajsbaum [13]. Gafni’s theorem establishes a deep connection between
solvability in asynchronous system and lower bounds (efficiency) in synchronous
systems. Herlihy and Rajsbaum’s theorem is on the impossibility to solve some set
agreement problems in asynchronous systems.

– Finally, the paper extends the algorithm to the early decision case. More specifi-
cally, the maximal number of rounds of the early deciding version of the algorithm
is the following:

Rf = min
(
� f

Δ
� + 2, � t

Δ
� + 1

)
where Δ = m�k

�
� + (k mod �).

It is easy to see that this early decision bound generalizes the lower bounds that are
known for the special consensus and set agreement cases.

This paper is an endeavor to capture the essence of the synchronous set agreement
and provide the reader with a better understanding of it. To that end, it considers design
simplicity as a first-class citizen when both designing algorithms and proving lower
bound results4.

As already noticed, the lower bound proof relies on previous theorems. We do think
that Gafni’s theorem [9] (that states that an asynchronous system with at most t′ crashes
can implement the first � t

t′ � rounds of a synchronous system with up to t failures) is a
fundamental theorem of fault-tolerant distributed computing. The lower bound proof of
this paper paper shows an application of this powerful theorem.

Roadmap. The paper is made up of 5 sections. Section 2 introduces the system model
and definitions. Section 3 presents the algorithm that builds an [n, k] SA object from
[m, �] SA objects in Rt synchronous rounds. Section 4 proves that Rt is a lower bound
on the number of rounds for any synchronous algorithm that builds an [n, k] SA object
from [m, �] SA objects. Section 5 considers the early decision case.

2 Computation Model and the Set Agreement Problem

The k-set agreement problem. The problem has been informally stated in the Introduc-
tion: every process pi proposes a value vi and each correct process has to decide on

4 The paper strives to modestly follow Einstein’s advice “Make it as simple as possible, but no
more”.
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a value in relation to the set of proposed values. More precisely, the k-set agreement
problem [4] is defined by the following three properties (as we can see 1-set agreement
is the uniform consensus problem):

– Termination: Every correct process eventually decides.
– Validity: If a process decides v, then v was proposed by some process.
– Agreement: No more than k different values are decided.

Process model. The system model consists of a finite set of n processes, namely, Π =
{p1, . . . , pn}. A process is a sequence of steps (execution of a base atomic operation).
A process is faulty during an execution if it stops executing steps (after it has crashed a
process executes no step). As already indicated, t is an upper bound on the number of
faulty processes, while f denotes the number of processes that crash during a particular
run, 0 ≤ f ≤ t < n. (Without loss of generality we consider that the execution of a
step by a process takes no time.)

In the following, we implicitly assume k ≤ t. This is because k-set agreement can
trivially be solved in synchronous or asynchronous systems when t < k [4].

Communication/coordination model. The processes communicate by sending and re-
ceiving messages through channels. Every pair of processes pi and pj is connected by
a channel. The sending of a message and the reception of a message are atomic opera-
tions. The underlying communication system is assumed to be failure-free: there is no
creation, alteration, loss or duplication of message.

In addition to messages, the processes can coordinate by accessing [m, �] SA ob-
jects. Such an object is a one-shot object that can be accessed by at most m processes.
Its power is to solve the �-set agreement problem among m processes. Let us observe
that, for 1 ≤ m ≤ n, an [m, m] SA object is a trivial object that has no coordination
power.

Round-based synchrony. The system is synchronous. This means that each of its runs
consists of a sequence of rounds. Those are identified by the successive integers 1, 2,
etc. For the processes, the current round number appears as a global variable r that they
can read, and whose progress is given for free: it is managed by an external entity. A
round is made up of two main consecutive phases:

– A send phase in which each process sends zero or one message to each other pro-
cesses. If a process crashes during the send phase of a round, an arbitrary subset of
the processes to which it sent messages will receive these messages.

– A receive phase in which each process receives messages. The fundamental prop-
erty of the synchronous model lies in the fact that a message sent by a process pi to
a process pj at round r, is received by pj at the very same round r.

Before or after a phase, a process can execute local computations (e.g., process the mes-
sages it received during the current round). It can also invokes an underlying [m, �] SA
base object.
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3 A Synchronous [n, k] SA Algorithm

This section presents a simple algorithm that, when at most t processes may crash,
builds an [n, k] SA object if the system provides the n processes with round-based
synchrony and [m, �] SA base objects.

Notation. In all the rest of the paper we are using the following notations:

– k = α� + β with α = �k
� � and β = k mod �.

– Δ = α m + β and Rt = � t
Δ� + 1 =

⌊
t

m� k
� �+(k mod �)

⌋
+ 1.

3.1 The Algorithm

The algorithm is pretty simple. It is described in Figure 1. A process pi invokes the
operation proposek(vi) where vi is the value it proposes. That value is initially stored
in the local variable esti (line 01), that afterwards will contain the current estimate of
pi’s decision value (line 10). The process terminates when it executes the return(esti)
statement.

Each process executes Rt rounds (line 02). During any round r, only Δ processes
are allowed to send their current estimates. These processes are called the senders of
round r. When r = 1, they are the processes p1, . . . , pΔ, during the second round the
processes pΔ+1, . . . , p2Δ, and so on (lines 04-05).

The Δ senders of a round r are partitioned into � Δ
m	 subsets of m processes (the last

subset containing possibly less than m processes), and each subset uses an [m, �] SA
object to narrow the set of its current estimates (lines 06-07). After this “narrowing”,
each sender process sends its new current estimate to all the processes. A process pi ac-
cesses an [m, �] SA object by invoking the operation propose(esti). The � Δ

m	 [m, �] SA
objects used during a round r are in the array SA[r, 0..� Δ

m	−1] 5. Finally, when during
a round, a process pi receives estimates, it updates esti accordingly (line 10).

It is important to see that, if during a round, at least one sender process does not
crash, at most k = α� + β estimates are sent during that round, which means that k-set
agreement is guaranteed as soon as there is a round during which an active process does
not crash.

3.2 Proof of the Algorithm

Lemma 1. Let nc[r] be the number of processes that crash during the round r. There
is a round r such that r ≤ Rt and nc[r] < Δ.

Proof. Let t = α′Δ + β′ with α′ = � t
Δ� and β′ = t mod Δ. The proof is by contra-

diction. let us assume that, ∀ r ≤ Rt, we have nc[r] ≥ Δ. We then have:

Rt∑

r=1

nc[r] ≥ Δ × Rt = Δ
(
� t

Δ
� + 1

)
= Δ

(
α′ + �β′

Δ
� + 1

)
= Δ × α′ + Δ > t.

5 Actually, only Rt� Δ
m

� base [m, �] SA objects are needed. This follows from the following
observation: during each round r, if β �= 0, the “last” β sender processes do not need to use
such an [m, �] SA object because β ≤ �. (Let us recall that 0 ≤ β < � and Δ is defined as
α m + β.)
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Function proposek(vi)
(01) esti ← vi;
(02) for r = 1, 2, . . . , Rt do % r: round number %
(03) begin round
(04) first sender ← (r − 1)Δ + 1; last sender ← rΔ;
(05) if first sender ≤ i ≤ last sender then % pi is “sender” at round r %
(06) let y such that first sender + ym ≤ i < last sender + (y + 1)m;

% y is index of the [m, �] SA object used by pi %
(07) esti ← SA[r, y].propose(esti);
(08) for each j ∈ {1, . . . , n} do send (esti) to pj end do
(09) end if;
(10) esti ← any est value received if any, unchanged otherwise
(11) end round;
(12) return(esti)

Fig. 1. [n, k] SA object from [m, �] SA objects in a synchronous system (code for pi)

Consequently, there are more than t processes that crash: a contradiction. ��

Lemma 2. At any round r, at most k different estimate values are sent by the processes.

Proof. Let us recall that k = α � + β (Euclidean division of k by �) and the value Δ is
α m + β.

Due to the lines 04-05, at most Δ processes are sender at each round r. These Δ
sender processes are partitioned into � Δ

m� sets of exactly m processes plus a set of β
processes. As each underlying [m, �] SA object used during the round r outputs at most
� estimates values from the value it is proposed, it follows that at most α�+β estimates
values can be output by these objects, which proves the lemma. ��

Lemma 3. At most k different values are decided by the processes.

Proof. At any round the number of senders is at most Δ (lines 04-05). Moreover, due to
lemma 1, there is at least one round r ≤ Rt during which a correct process is a sender.
If follows from Lemma 2, line 08 and line 10, that, at the end of such a round r, the
estimates of the processes contain at most k distinct values. ��

Theorem 1. The algorithm described in Figure 1 is a synchronous t-resilient k-set
agreement algorithm.

Proof. The termination property follows directly from the synchrony of the model: a
process that does not crash executes Rt rounds. The validity property follows directly
from the initialization of the estimate values esti, the correctness of the underlying
[m, �] SA objects (line 07), and the fact that the algorithm exchanges only esti values.
Finally, the agreement property is Lemma 3. ��
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4 Lower Bound on the Number of Rounds

This section proves that the previous algorithm is optimal with respect to the number
of rounds. The proof of this lower bound is based on (1) a deep connection relating
synchronous efficiency and asynchronous computability in presence of failures [9], and
(2) an impossibility result in asynchronous set agreement [13].

4.1 Notation and Previous Results

– Sn,t[∅] denotes the classical round-based synchronous system model made up of n
processes, where up to t processes may crash.

– Sn,t[m, �] is the Sn,t[∅] system model enriched with [m, �] SA objects. This is the
model defined in Section 2 (n processes, at most t process crashes, coordination
possible through [m, �] SA objects).

– ASn,t[∅] denotes the classical asynchronous system model (n processes, up to pro-
cesses t may crash, no additional equipment).

– ASn,t[m, �] denotes the asynchronous system model ASn,t[∅] enriched with
[m, �] SA objects. (From a computability point of view, ASn,t[∅] is weaker than
ASn,t[m, �].)

The following theorems are central in proving that Rt is a lower bound.

Theorem 2. (Gafni [9]) Let n > t ≥ k > 0. It is possible to simulate in ASn,k[∅] the
first � t

k� rounds of any algorithm designed for Sn,t[∅] system model.

The next corollary is a simple extension of Gafni’s theorem suited to our needs.

Corollary 1. Let n > t ≥ k > 0. It is possible to simulate in ASn,k[m, �] the first � t
k �

rounds of any algorithm designed for Sn,t[m, �] system model.

Theorem 3. (Herlihy-Rajsbaum [13]) Let Jm,� be the function defined as follows: u →
�� u

m� + min(�, u mod m) − 1. There is no algorithm that solves the K-set agreement
problem, with K = Jm,�(t + 1), in ASn,t[m, �].

4.2 The Lower Bound

Theorem 4. Let 1 ≤ � ≤ m < n and 1 ≤ k ≤ t < n. Any algorithm that solves the
k-set agreement problem in Sn,t[m, �] has at least one run in which at least one process
does not decide before the round Rt =

⌊
t

m� k
� �+(k mod �)

⌋
+ 1.

Proof. The proof is by contradiction. let us assume that there is an algorithm A that
solves the k-set agreement problem in at most R < Rt rounds in Sn,t[m, �] (this means
that any process decides by at most R rounds, or crashes before). We consider two
cases.

– k < �. We have then R < Rt = � t
k � + 1.
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1. As k < �, the �-set agreement can be solved in in ASn,k[∅]. It follows that,
as far as set agreement is concerned, ASn,k[∅] and ASn,k[m, �] have the same
computational power.

2. It follows from the corollary of Gafni’s theorem that there is, in ASn,k[m, �], a
simulation of the first � t

k � rounds of any algorithm designed for the Sn,t[m, �]
system model. It is consequently possible to simulate in ASn,k[m, �] the R <
Rt = � t

k � + 1 rounds of the algorithm A. It follows that the k-set agreement
problem can be solved in in ASn,k[m, �].

3. Combining the two previous items, we obtain an algorithm that solves the k-set
agreement problem in ASn,k[∅]. This contradicts the impossibility to solve the
k-set agreement problem in ASn,k[∅] [3,14,23]. This proves the theorem for
the case k < �.

– k ≥ �. Let us recall the definition Δ = m�k
� � + (k mod �) = α m + β.

1. It follows from the corollary of Gafni’s theorem that at least � t
Δ� rounds of

any algorithm designed for the Sn,t[m, �] system model can be simulated in
ASn,Δ[m, �].

So, as the algorithm A solves the k-set agreement problem in Sn,t[m, �], in
at most R < Rt = � t

Δ� + 1, combining the simulation with A, we obtain an
algorithm that solves the k-set agreement problem in ASn,Δ[m, �].

2. Considering the argument used in Herlihy-Rajsbaum’s theorem we have the
following:

Jm,�(Δ + 1) = � �Δ + 1
m

� + min
(
�, (Δ + 1) mod m

)
− 1,

= � �α m + β + 1
m

� + min
(
�, (α m + β + 1) mod m

)
− 1,

= � (α + �β + 1
m

�) + min
(
�, (β + 1) mod m

)
− 1.

Let us observe that � ≤ m. Moreover, as β = k mod �, we also have β < �. To
summarize: β < � ≤ m. There are two cases to consider.
(a) m = β + 1. Observe that this implies that � = m and � − 1 = β.

Jm,�(Δ + 1) = � (α + 1) + min
(
�, m mod m

)
− 1,

= � α + � − 1 = � α + β = k.

(b) m > β + 1:

Jm,�(Δ + 1) = � α + min
(
�, (β + 1) mod m

)
− 1,

= � α + β + 1 − 1 = k.

In both cases, Jm,�(Δ + 1) = k. It follows from Herlihy-Rajsbaum’s theorem
that there is no algorithm that solves the Jm,�(Δ + 1)-set agreement problem
(i.e., the k-set agreement problem) in ASn,Δ[m, �].

3. The two previous items contradict each other, thereby proving the theorem for
the case k < �. ��
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Function ED proposek(vi)
(01) esti ← vi;
(02) for r = 1, 2, . . . , Rt do % r: round number %
(03) begin round
(04) first sender ← (r − 1)Δ + 1; last sender ← rΔ;
(05) if first sender ≤ i ≤ last sender then % pi is “sender” at round r %
(06) let y such that first sender + ym ≤ i < last sender + (y + 1)m;

% y is index of the [m, �] SA object used by pi %
(07) esti ← SA[r, y].propose(esti);
(08) for each j ∈ {1, . . . , n} do send (esti) to pj end do
(09) end if;
(A1) if (pi was a sender at round r − 1) then

for each j ∈ {1, . . . , n} do send (COMMIT) to pj end do end if;
(A2) if (COMMIT received) then return(esti) end if;
(10) esti ← any est value received if any, unchanged otherwise
(11) end round;
(12) return(esti)

Fig. 2. Early-deciding [n, k] SA object from [m, �] SA objects in a synchronous system (pi)

Corollary 2. When k < �, the underlying [m, �] SA objects are useless.

Proof. The corollary follows from the fact that k < � ⇒ Rt = � t
k� + 1, that is the

lower bound when no underlying base object is used. ��
This corollary means that no k-set agreement algorithm can benefit from [m, �] SA
objects when k < �.

5 Early Decision

This section extends the algorithm described in Figure 1 in order to obtain an early-
deciding algorithm that allows the processes to decide by round Rf = min

(
� f

Δ� + 2,

� t
Δ� + 1

)
, where Δ = m�k

� � + (k mod �).
This algorithm is described in Figure 2 (its proof can be found in [21]). It is obtained

from the base algorithm in a surprisingly simple way: only two new statements are
added to the base algorithm to obtain early decision. These are the new lines, named A1
and A2, inserted between line 09 and line 10. No statement of the base algorithm has to
be modified or suppressed.

The design principles of this algorithm are very simple. A process pi that is a sender
during a round r′ and participates in the next round r′ + 1 (so, it has not crashed by
the end of r′), sends to all the processes a control message (denoted COMMIT) during
the round r′ + 1 (additional line A1). In that way, pi informs all the processes that the
estimate value it sent during the previous round r′ was received by all the processes (this
follows from the communication synchrony property). Moreover, as at most k different
values are sent during a round (Lemma 2), and at least one process (namely, pi) sent a
value to all during r′, it follows from the fact that pi participates to the round r′ + 1



110 A. Mostefaoui, M. Raynal, and C. Travers

that the estimates of all the processes contain at most k different values at the end of
r′. Consequently, a process that receives a COMMIT message during a round r′ + 1 can
decide the value of its estimate at the end of the round r′ and stops (additional line A2).

It is easy to see that if at least one process in p1, . . . , pΔ does not crash, the processes
decide in two rounds. If all the processes p1, . . . , pΔ crash and at least one process in
pΔ+1, . . . , p2Δ does not crash, the decision is obtained in at most 3 rounds. Etc. It is
interesting to observe that, when m = � = k = 1 we have Δ = 1 and we obtain a
remarkably simple uniform early deciding consensus algorithm for the classical round-
based synchronous model Sn,t[∅].
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16. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Conditions on Input Vectors for Consensus Solv-

ability in Asynchronous Distributed Systems. Journal of the ACM 50(6), 922–954 (2003)



Narrowing Power vs. Efficiency in Synchronous Set Agreement 111
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