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The Iterated Immediate Snapshot model (IIS) is an asynchronous computation model where
processes communicate through a sequence of one-shot Immediate Snapshot (IS) objects.
It is known that this model is equivalent to the usual asynchronous read/write shared
memory model, for wait-free task solvability. Its interest lies in the fact that its runs are
more structured and easier to analyze than the runs in the shared memory model. As the
IIS model and the shared memory model are equivalent for wait-free task solvability, a
natural question is the following: Are they still equivalent for wait-free task solvability,
when they are enriched with the same failure detector? The paper shows that the answer
to this question is “no”.
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1. Introduction

The Iterated Immediate Snapshot model (IIS) of Borowsky
and Gafni [5] is an asynchronous computation model
where the processes communicate through a sequence
of one-shot Immediate Snapshot (IS) objects. Each IS ob-
ject can be accessed with a single operation denoted
write_snapshot(), that atomically writes a value and re-
turns a snapshot of its contents. Each process can access
each IS object at most once. Processes access the se-
quence of IS objects, one-by-one, in the same order, and
asynchronously; moreover, any number of processes can
crash. It has been shown by Borowsky and Gafni that this
model is equivalent to the usual read/write shared mem-
ory model, for wait-free task solvability. Its interest lies in
the fact that its runs are more structured and easier to an-
alyze than the runs in the shared memory model. As the
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IIS model and the shared memory model are equivalent for
wait-free task solvability, a natural question is the follow-
ing: Are they still equivalent for wait-free task solvability,
when they are enriched with the same failure detector?
The paper shows that the answer to this question is “no”.
Finally, the paper discusses alternative ways of studying
failure detectors within the IIS framework.

2. The iterated immediate snapshot (IIS) model

One-shot immediate snapshot. A one-shot immediate snap-
shot object IS abstracts a shared array SM[1..n] with one
entry per process. That array is initialized to [⊥, . . . ,⊥],
where ⊥ is a default value that cannot be written by a
process. Intuitively, when a process pi invokes IS.write_
snapshot(v), it is as if it instantaneously executes a
SM[i] ← v operation followed by a snapshot [1,3] of the
whole shared array. If several processes execute IS.write_
snapshot() simultaneously, then their corresponding write
operations are executed concurrently, followed by a con-
current execution of their snapshot operations.
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For each pi , the write_snapshot() operation satisfies the
three following properties, where vi is the value written
by pi and smi is the view it gets back from the operation.
We consider smi as a set of pairs (k, vk), where vk corre-
sponds to the value in pk ’s entry of the array. If SM[k] = ⊥,
the pair (k,⊥) is not placed in smi . Also, we define smi =
∅, if the process pi never invokes write_snapshot() on the
corresponding object. These properties are:

• Self-inclusion. ∀i: (i, vi) ∈ smi .
• Containment. ∀i, j: smi ⊆ sm j ∨ sm j ⊆ smi .
• Immediacy. ∀i, j: (i, vi) ∈ sm j ⇒ smi ⊆ sm j .

The first property holds because a process sees the
value it has written. The second property states that the
views (i.e., the contents of the smi sets) obtained by the
processes can be ordered by containment. The last prop-
erty states that when a process invokes write_snapshot(),
the snapshot is scheduled immediately after the write.1

The write_snapshot() operation can be wait-free imple-
mented is the classical single-writer/multi-reader atomic
registers model [4] (1WMR) (for completeness, this im-
plementation is described in Appendix A). The set of the
write_snapshot() invocations is set-linearizable [21]. This
means that each write_snapshot() issued by a process ap-
pears as if it has been instantaneously executed at a
single point of the time line, without preventing several
write_snapshot() to appear at the same point of time.

The iterated immediate snapshot model (IIS). In the IIS model
the shared memory is made up of an infinite number of
one-shot immediate snapshot objects IS[1], IS[2], . . . These
objects are accessed sequentially (and asynchronously) by
the processes according to the following round-based pat-
tern:

ri ← 0; vi ← local_input;
loop forever ri ← ri + 1;

smi ← IS[ri].write_snapshot(vi);
local computation; (* perhaps updating vi *)

end loop.

3. Why the IIS model is important

The interest of the IIS model comes from its seem-
ingly restrictive, round-by-round nature. It restricts the set
of interleavings of the shared memory model without re-
stricting the power of the model. Its runs have an elegant
recursive structure: the structure of global states after r +1
rounds is easily obtained from the structure of the global
states after r rounds. This implies a strong correlation with
topology, and allows for an easier analysis of wait-free
asynchronous computations. Indeed, the IIS model was the
basis for the proof in [5] of the main characterization the-
orem of [18], and was instrumental for the results of [13]
and of [22].

1 The immediacy property can be rewritten as ∀i, j: ((i, vi) ∈ sm j ∧
( j, v j) ∈ smi) ⇒ smi = sm j . Thus, concurrent invocations of write_
snapshot() obtain the same view.
3.1. Decision tasks

Definition. A decision task is a one-shot decision problem
specified in terms of an input/output relation �. The pro-
cesses start with private input values, and must eventually
decide on output values, by writing to a write-once regis-
ter. An input vector I specifies in its ith entry, I[i], the input
value of process pi , and we say pi proposes I[i] in the ex-
ecution. Similarly, an output vector J specifies a decision
value J [i] for each process pi . A task defines a set of legal
input vectors, and for each one, � specifies a set of legal
output vectors. Thus, given input vector I , the processes
decide a vector J such that (1) J ∈ �(I), and (2) indi-
vidually each pi decides J [i] or crashes. It is sometimes
convenient to consider inputless tasks, where a process has
only one possible input value, namely its own id. (For the
interested reader, a formal definition of a task is given
in Section 2.1 of [18].) A bounded decision task is a task
whose number of input vectors is finite.

Examples of tasks. The most famous decision task is the
consensus problem [10]. Each process proposes a value and
the correct processes have to decide the same value, that
has to be a proposed value. So here, an output vector con-
tains the same value in all entries. The relation � states
that the single value present in an output vector is a value
that appears in the corresponding input vector [20].

In the k-set agreement problem up to k different values
can be decided [8]. Other examples are the committee deci-
sion problem [2,14], and the musical benches problem [12].

3.2. A fundamental result in IIS the model

Let us observe that the IIS model requires each correct
process to execute an infinite number of rounds. How-
ever, it is possible that a correct process p1 is unable
to receive information from another correct process p2.
Consider a run where both execute an infinite number
of rounds, but p1 is scheduled before p2 in every round.
Thus, p1 never reads a value written to an immediate
snapshot object by p2. Of course, in the usual (non-iterated
read/write shared memory) asynchronous model, two cor-
rect processes can always eventually communicate with
each other. Thus, it may be surprising that, despite the
use of such a strong constraint on the behavior of the pro-
cesses, it is still possible to derive simulations between the
IIS model and the base read/write non-iterated model, as
stated in the following theorem.

Theorem 1. (See Borowsky and Gafni, 1997 [5].) A bounded de-
cision task can be wait-free solved in the 1WMR register model
if and only if it can be wait-free solved in the IIS model.

4. The read/write model enriched with failure detectors

4.1. The wait-free 1WMR shared memory model

This model consists of n processes, p1, . . . , pn , that
communicate through a shared memory. A process be-
haves correctly until it possibly crashes. A process that
does not crash in a run is correct in that run, otherwise
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it is faulty. Wait-free means that any number of processes
can crash [17].

The shared memory is made up of 1WMR registers, and
structured as an array SM[1..n], such that only pi can write
to SM[i], and any process can read any entry. A process can
have local variables (those are denoted with sub-indexed
lowercase letters, e.g., locali ).

4.2. Failure detectors

The concept of a failure detector has been introduced
by Chandra and Toueg [6] for the message passing model.
Since then it has been widely studied, also in the shared
memory model (e.g., [15,19]). Informally, a failure detector
is a device that provides each process pi with informa-
tion about process failures, through a local variable fdi

that pi can only read. Several classes of failure detectors
can be defined according to the kind and the quality of
the information on failures that has to be delivered to the
processes.

An example. Consider the class denoted �S , defined in
[6]. A failure detector of that class provides each process
pi with a local variable suspectedi that contains identities
of processes that are believed to have crashed. When j ∈
suspectedi we say “pi suspects p j ”. The failure detector
class �S is defined by the following properties:

• Strong completeness. There is a time after which ev-
ery faulty process is permanently suspected by every
correct process.

• Eventual weak accuracy. There is a time τ , after which
there is a correct process p� that is never suspected
by all the correct processes.

The time τ , and the process p� are not explicitly known.
These properties do not prevent an initial arbitrarily long
period during which the sets suspectedi contain arbitrary
values; they only state that this anarchy period eventually
terminates. Also, notice that a failure detector of the class�S can make an infinite number of mistakes (e.g., looping
on suspecting and not suspecting correct processes).

The class �S is particularly important from an asyn-
chronous computability point of view. Namely, it is the
weakest class of failure detectors that allows solving
the consensus problem despite asynchrony and process
crashes [7]; any other class of failure detector that allows
solving consensus despite asynchrony and crashes provides
information on failures that includes the information pro-
vided by �S . Examples of other failure detector classes are
described in [6,9,23].

5. An impossibility result

This section considers the question posed in the intro-
duction: are the basic read/write shared memory model
and the IIS model equivalent for wait-free decision task
solvability, when both are equipped with a failure detec-
tor of the same class? As announced, this section shows
that the answer to that question is “no”.
(1) init ri ← 0; sm(0)
i ← {〈inputi ,∅,deci〉}; deci ← g(sm(0)

i );

(2) loop forever
(3) ri ← ri + 1;

(4) locali ← compute(sm(ri−1)

i , fdi);

(5) sm(ri )

i ← IS[ri ].write_snapshot(〈sm(ri−1)

i , locali ,deci〉);

(6) if (deci = ⊥) then deci ← g(sm(ri )

i ) end if
(7) end loop.

Fig. 1. Full information “IIS + Failure detector” code for pi .

5.1. An IIS model with failure detector

Assume a failure detector of some class C , is available
in the IIS model, that provides each process pi with a lo-
cal variable fdi . During each round r, pi can read fdi any
number of times, and eventually, access the next imme-
diate snapshot object. Also, assume some task T is being
solved, so that each process starts with a private input
value in a local variable inputi , and must eventually put
its decision in a local write-once variable deci , initially ⊥.

The round-based framework of the IIS model defined
in Section 2 is refined as described in Fig. 1, with a full
information algorithm A solving the task T . In line (4),
compute(sm(ri−1)

i , fdi) is a shorthand for a loop that is
executed by pi , where in each iteration it considers the
current value of the failure detector obtained from fdi , to
make local computations and decide weather to execute
one more iteration or to exit the loop returning a value
to be placed in the variable locali . It is assumed that the
number of iterations executed is finite. When line (5) is
executed, pi invokes IS[r].write_snapshot() to write its view
sm(r−1)

i (obtained from the previous write_snapshot() invo-
cation) together with its latest failure detector information
(or any additional desired information), and the current
decision deci . After it has obtained a view sm(r)

i during the
round r (line 5), a process pi checks if it can decide by ap-
plying a decision function, denoted g(), to that view sm(r)

i .
Recall that each correct process keeps on taking steps for-
ever, even after having decided.

We say that a task T is wait-free solvable in the IIS model
with C if there is an algorithm A of the form in Fig. 1,
such that for any failure detector of the class C , in any (in-
finite) run where the input values are in the domain of T ,
every correct process eventually decides, and the decisions
satisfy the input/output relation � that defines the task T .

5.2. The impossibility

The idea of the proof is to show that C does not restrict
the set of possible interleavings of the IIS model. Thus, if T
is solvable in the IIS model with C , in particular it is solv-
able in the set of runs of the IIS model, and hence solvable
in the read/write shared memory model, by Theorem 1.
The crucial step is to group together all operations of a
round related to the failure detector, in a fixed predeter-
mined order, before executing shared memory operations
of that round. And only then, considering all interleavings
of the shared memory operations.

Theorem 2. For any failure detector class C and task T , if T is
solvable in the IIS model with C then T is wait-free solvable in
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the base read/write shared memory model with no failure de-
tector.

Proof. To facilitate the proof, we consider a single input
configuration of T (e.g., [5]), and hence a single input ini-
tial configuration of the system, denoted S0.

We consider the following subset of runs of the IIS
model with C , where no process fails, defined inductively,
starting with S0. Consider some reachable configuration of
the system after r − 1 rounds, say Sr−1 (for the basis, we
take S0). We schedule the steps of the processes following
the same round structure of the algorithm A, by having
all processes execute their round r before proceeding to
round r + 1. Moreover, we schedule first all local computa-
tions of the processes corresponding to line (4) of round r,
before any process starts executing its line (5). We sched-
ule all those local operations in a fixed order, first all those
of p1, then all those of p2, until all those of pn , and we get
a specific partial run

compute
(
sm(r−1)

1 , fd1
)
, compute

(
sm(r−1)

2 , fd2
)
,

. . . , compute
(
sm(r−1)

n , fdn
)
.

Let us denote the system configuration at the end of
this partial run by Sr−1

1 . Now, we consider all possible in-
terleavings of executions of line (5) for all processes. After
such an interleaving, we execute (in an arbitrary order)
line (6) of every process, and end up in a configuration
denoted Sr (with a slight abuse of notation, as for each
such interleaving the system ends up in a different config-
uration).

Let us observe that any failure detector output change
at a process pi , after pi returned from its invocation
compute(sm(r−1)

i , fdi) does not affect the execution of its
operation of line (5), because the value to be written by
the write_snapshot() invocation is fixed. That is, the views
obtained as a result of such invocations, in the sm(r)

i vari-
ables, on all possible interleavings, are equivalent to the
views of the IIS model with no failure detector. In other
words, given two set-linearizations of the write_snapshot()
operations, the view of a process pi is the same in both, iff
in the IIS model with no failure detector, pi has the same
view in both set-linearizations.2

We have constructed a subset of runs of IIS with C
where the views of the processes at the end of each round
have the same structure as the views of the original IIS
model with no failure detector. As we are assuming that
the algorithm A solves T in the IIS with C , it solves T also
in the IIS model alone. As the IIS model and the read/write
model are computationally equivalent for wait-free task
solvability (Theorem 1), the result follows. �
Remark. It follows from the previous theorem that, to
wait-free solve a decision task, failure detectors are use-
less in the IIS model. (From a practical point of view, this
means that à la Paxos consensus algorithms (e.g., [11,16])

2 In the topology parlance, this can be formulated as follows: the com-
plex of views in both models are isomorphic.
operation write_snapshot(vi):
REG[i] ← vi ;
repeat LEVEL[i] ← LEVEL[i] − 1;

for j ∈ {1, . . . ,n} do leveli [ j] ← LEVEL[ j] end for;
viewi ← { j: leveli [ j] � LEVEL[i]};

until (|viewi | � LEVEL[i]) end repeat;
return({( j,REG[ j]) such that j ∈ viewi}).

Fig. 2. Borowsky–Gafni’s one-shot write_snapshot() algorithm (code for pi ).

cannot be devised for the IIS model.) However and inter-
estingly, it appears that there are failure detector classes
C such that adding appropriate restrictions on the IIS
model (i.e., restricting its set of runs) provides a compu-
tation model that is wait-free equivalent to the read/write
model enriched with a failure detector of the correspond-
ing class C . This approach has given rise to the IRIS (It-
erated Restricted Immediate Snapshot) model that is pro-
posed and investigated in [22].

Appendix A. A wait-free implementation of the
write_snapshot() operation

For a completeness purpose, this appendix presents a
one-shot write_snapshot() construction. This algorithm, due
to Borowsky and Gafni [4], is described in Fig. 2. That al-
gorithm considers a one-shot immediate snapshot object
(a process invokes IS.write_snapshot() at most once). It uses
two arrays of 1W*R atomic registers denoted REG[1..n] and
LEVEL[1..n] (only pi can write REG[i] and LEVEL[i]). A pro-
cess pi first writes its value in REG[i]. Then the core of the
implementation of write_snapshot() is based on the array
LEVEL[1..n]. That array, initialized to [n + 1, . . . ,n + 1], can
be thought of as a ladder, where initially a process is at
the top of the ladder, namely, at level n + 1. Then it de-
scends the ladder, one step after the other, according to
predefined rules until it stops at some level (or crashes).
While descending the ladder, a process pi registers its cur-
rent position in the ladder in the atomic register LEVEL[i].

After it has stepped down from one ladder level to the
next one, a process pi computes a local view (denoted
viewi ) of the progress of the other processes in their de-
scent of the ladder. That view contains the processes p j

seen by pi at the same or a lower ladder level (i.e., such
that leveli[ j] � LEVEL[i]). Then, if the current level � of pi is
such that pi sees at least � processes in its view (i.e., pro-
cesses that are at its level or a lower level) it stops at the
level � of the ladder. Finally, pi returns a set of pairs de-
termined from the values of viewi . Each pair is a process
index and the value written by the corresponding process.
This behavior is described in Fig. 2 [4].

This very elegant algorithm satisfies the following prop-
erties [4]. The sets viewi of the processes that termi-
nate the algorithm, satisfy the following main property: if
|viewi | = �, then pi stopped at the level �, and there are
� processes whose current level is � �. From this prop-
erty, follow the self-inclusion, containment and immediacy
properties (stated in Section 2) that define the one-shot
immediate snapshot object.
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