The Committee Decision Problem*

Eli Gafni', Sergio Rajsbaum?, Michel Raynal®, and Corentin Travers®

! Department of Computer Science, UCLA, Los Angeles, CA 90095, USA
2 Instituto de Matematicas, UNAM, D. F. 04510, Mexico
3 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
eli@cs.ucla.edu, rajsbaum@math.unam.mx
{raynal|corentin.travers}@irisa.fr

Abstract. We introduce the (b,n)-Committee Decision Problem
(CD) - a generalization of the consensus problem. While set agreement
generalizes consensus in terms of the number of decisions allowed, the
CD problem generalizes consensus in the sense of considering many in-
stances of consensus and requiring a processor to decide in at least one
instance. In more detail, in the CD problem each one of a set of n pro-
cesses has a (possibly distinct) value to propose to each one of a set of
b consensus problems, which we call committees. Yet a process has to
decide a value for at least one of these committees, such that all pro-
cesses deciding for the same committee decide the same value. We study
the CD problem in the context of a wait-free distributed system and an-
alyze it using a combination of distributed algorithmic and topological
techniques, introducing a novel reduction technique.

We use the reduction technique to obtain the following results. We
show that the (2,3)-CD problem is equivalent to the musical benches
problem introduced by Gafni and Rajsbaum in [10], and both are equiv-
alent to (2, 3)-set agreement, closing an open question left there. Thus, all
three problems are wait-free unsolvable in a read/write shared memory
system, and they are all solvable if the system is enriched with objects
capable of solving (2, 3)-set agreement. While the previous proof of the
impossibility of musical benches was based on the Borsuk-Ulam (BU)
Theorem, it now relies on Sperner’s Lemma, opening intriguing ques-
tions about the relation between BU and distributed computing tasks.

Keywords: Asynchronous distributed system, Wait-free computing,
Shared memory, Consensus, Set Agreement, Musical benches.

1 Introduction

In a distributed asynchronous system of n processes where at most ¢ of them
can fail by stopping, the (k, n)-set agreement problem [7] abstracts away a basic
coordination problem: processes have input values, and they must agree on at
most k of these values. The problem has no solution if the shared-memory has

* This work has been supported by grants from LAFMI (Franco-Mexican Lab in Com-
puter Science) and PAPIIT-UNAM.

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 502-514] 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Committee Decision Problem 503

only read/write registers when k < ¢ [I72I] but is solvable if either k > ¢
or else more powerful communication primitives are available in the system. Set
agreement and consensus, when k = 1, have motivated a lot of research (e.g., [2|
[I8]) and helped to expand our understanding of distributed computing. The wait-
free case of t = n—1 has been shown to be fundamental (e.g., [12,[13,[17]), because
from this case results can be derived for any value of ¢ [4L[6], and the wait-free
techniques can be generalized to other synchronous and partially synchronous
models (e.g., [I5,16]), and even models with stronger communication primitives
(e.g., [T4]). In this paper we concentrate on the wait-free model.

One of the important uses of consensus arises in a distributed state machine
(e.g., [20]): the processes are executing a sequence of operations, and they need
to agree on the result of each one of the operations, before they can execute the
next one. This and other forms of long-lived versions of consensus (e.g., [3]) that
we are aware of are sequential, in that processes propose values, then they agree
on one of them, and only then they proceed to the next instance of consensus and
propose another value. However, it is also very natural to consider concurrent
versions of the problem, where a process p; proposes a vector V; of values, and
each one of them is intended to one of b different consensus problems, called
committees. We require that processes deciding on the same committee must
decide the same value for that committee. Thus, if the processes participate
concurrently in b different applications, we can guarantee wait-free progress in
at least one application, without using strong communication objects.

We call this generalization of consensus the committee decision problem (CD).
Notice that the usual termination requirement of consensus is weakened: a pro-
cess has to decide a value v for only one of the committees, which it can choose;
that is, if its decision is the pair (j,v), then all processes choosing to decide for
the j-th committee decide the same value v. The decisions should satisfy the
standard agreement and validity requirements of consensus: the value decided
for a committee was proposed by some process to that committee, and every
process deciding on the committee decides the same value. In addition to its
possible applications, there seem to be various interesting generalizations that
may motivate new research, such as:

e The number of different committees that are decided is at most k.
e At most k different values are decided for each committee.
e A process that decides must decide in at least k& committees.

The CD problem cannot be solved when n = 2 and b = 1, since this is exactly
equal to consensus for two processes, which has no solution [I2]. On the other
hand, it is easily solvable when b > n: p; decides on its own proposal, for the
i-th committee, (i, V;[¢]). In this paper we concentrate on the binary (2,3)-CD
problem, where the proposals are taken from the set V = {0,1}, and there are
b = 2 committees, and n = 3 processes. We state our results for this fundamental
case to simplify the presentation (avoiding more algebraic topology notation),
and defer the most general phrasing to the full version. We prove that the (2, 3)-
CD problem is equivalent to the musical benches problem of Gafni and Rajsbaum
[10], and both are equivalent to (2, 3)-set agreement, closing an open question left

504 E. Gafni et al.

there. Thus, all three problems are wait-free unsolvable in a read/write shared
memory system, and they are all solvable if the system is enriched with objects
capable of solving (2, 3)-set agreement (such as Test&Set).

Our paper is a follow up to [I0], that introduced the musical benches problem,
and showed the first connection between distributed computing and the Borsuk-
Ulam theorem[] In the musical benches problem there are 3 processes, the first
two, p_1,p1, wake up in the first bench (consensus instance), while a third one
wakes up in the 2nd bench, either p_o or ps, but not both. In executions without
conflict, namely when only one of p_1, p; wakes up, each process decides its own
index. Otherwise, the only requirement is that processes decide at most one
index in {—1,1} and one index in {—2,2}.

The musical benches problem tries to model a new distributed coordination
difficulty: processes jump from bench to bench trying to find one in which they
may be alone or not in conflict with one another. It resembles the consensus
problem in the sense that at least two processes must agree on the value for
one committee. However, it is not as clean a generalization as the CD is. Our
first aim was to show that the two problems are equivalent, but while investigat-
ing the CD problem, we found that both are equivalent to (2, 3)-set agreement,
while in [I0] we only knew that musical benches is somewhere in between (2, 3)-
set agreement and read-write memory in terms of difficulty. We believe these
equivalences are interesting, because although the problems are equivalent in
the sense that one can be reduced to any other, they are not the same, a situa-
tion reminiscent of NP-complete problems. Having an arsenal of problems that
we know are not solvable in read-write memory allows us to judge other prob-
lems unsolvable through reductions [9], rather than only through direct topo-
logical arguments. Indeed, distributed computing theory development has been
promoted by the identification of problems that capture essential coordination
difficulties.

The results in this paper are obtained through a novel reduction technique
that combines distributed algorithmic ideas with topological intuition. The re-
duction technique consists of taking a read/write shared memory wait-free pro-
tocol, A, and identifying one or more executions, at the end of which an object
solving some problem B is invoked. If the resulting protocol solves a problem
C (for any object that implements a solution to problem B), we have shown
that a solution to B implies a solution to C. Although reducing one problem
to another is an old idea, our version here has some novel features that stem
from the topological perspective of papers such as [I5[16,17,2T]. We first con-
sider the set of executions of A as a geometric object, called a compler. In
the case of n = 3, each execution is drawn as a triangle, or simplezr, where its
corner vertices are labeled with the views (local states) of each one of the pro-
cesses at the end of the execution. We then identify the triangles (or sometimes
edges corresponding to 2-process executions) on which we are going to invoke

1 Although we do not use it in this paper, the reader may be interested to know
that the theorem is “one of the most useful tools offered by by elementary algebraic
topology to the outside world” [19]. It implies Sperner’s lemma, but not the opposite.

The Committee Decision Problem 505

the object B. Then we replace these triangles by the complex representing the
set of possible responses of an implementation instance of B, and obtain the
combined complex representing the protocol reduction. The goal is to obtain a
protocol whose complex gives enough ﬂexibilityﬁ to associate a decision function
with each one of its vertices and solve the desired problem, C. See for example
Figure [Il where we start with the simplex representing the inputs to the (2, 3)-
set agreement problem, we then execute a wait-free protocol where we identify
two triangles to be removed and replaced by the set of possible responses of
an arbitrary musical benches implementation, and the vertices of the resulting
complex (obtained by gluing in the later complex into the hole of the former),
can be colored with decisions (placed in the figure by each one of the vertices)
that map into the (2,3)-set agreement outputs, represented by a hollow tri-
angle. We have thus created a hole, which gives the desired flexibility to the
final complex, and allows for an appropriate decision function to be designed.
More details appear in Section B, that includes more formal topology defini-
tions and explanations about Figure [l A good introduction to basic topology
is [1].

The rest of the paper is organized as follows. Section Bl defines the problems
of CD, set agreement and musical benches, and some additional preliminaries.
Section [3 describes an algorithm to solve (2, 3)-set agreement using a musical
benches object, and an algorithm to solve (2, 3)-set agreement using a CD object.
Section [shows that the CD problem is wait-free solvable using a (2, 3)-set
agreement object. Due to space limitation, proofs are omitted. Additional details
and full proofs can be found in [I7].

Input simplex to
(2,3)-set agreement

Musical benches object

Invocations

(2,3)-set agreement

Wait-free executions outputs

decisions

Fig. 1. Solving (2, 3)-set agreement using (one example of) a musical benches object

2 The actual complex obtained depends on the actual solution to B used, but any
such complex should exhibit that flexibility. Two features add flexibility: holes and
more vertices.

506 E. Gafni et al.

2 Three Problems and Preliminaries

This paper considers the usual asynchronous shared memory model, composed
of single-writer/multi-reader registers, and studies wait-free algorithms, where
any number of processes can fail by crashing. A full description of these concepts
can be found in textbooks such as [2[I§].

2.1 The Problems

The usual notion of task is a one-shot decision problem specified in terms of
an input/output relation A. The processes start with private input values, and
must eventually decide on output values, by writing to a write-once variable. An
input vector I specifies in its i-th entry, I[i], the input value of process p;, and
we say p; proposes I[i] in the execution; similarly, an output vector J specifies
a decision value J[i] for each process p;. The task defines a set of legal input
vectors, and for each one, A specifies a set of legal output vectors. Thus, given
input vector I, the processes decide a vector J such that individually p; decides
J[i]. It is sometimes convenient to consider inputless tasks, where a process has
only one possible input value, namely its own id.

Set Agreement. The k-set agreement problem is a generalization of consensus
where processes must decide on at most k different values, out of the input
values. The corresponding inputless version for three processes, p1, p2, p3, and
k = 2, denoted (2, 3)-set agreement, is illustrated in Figure 2] (ids associated to
each output value are omitted for clarity). It is defined by the set of input vectors
consisting of (p1,p2, p3) and all its subvectors, and the relations: A(p;) = {(4)},
A(pi,p;) = {(,9),(4,7), (4, 7),(4,1)} and, A(pi,pj,pr) equal to all vectors of
i,j, k with at most two different values (this requirement is represented in the
figure by the hole; the possible outputs have no triangle, only edges and vertices).
Set agreement is not wait-free solvable [4L[I7,21], due to a generalization of the
consensus impossibility connectivity argument to higher dimensions; wait-free
executions induce a “flat structure” subdividing the input triangle, and in the
figure one can see that a flat triangle is required to be mapped to a hollow one
(preserving the boundary), which is impossible.

Committee Decision Problem. In the (b, n)-committee decision (CD) prob-
lem n processes are trying to solve b consensus instances, called committees, and

Fig. 2. The inputless (2, 3)-set agreement problem (some arrows of A omitted)

The Committee Decision Problem 507

Inputs
Outputs

\ / peesenner

Musical benches object

2

Fig. 3. Musical benches task with a musical benches object

each process is required to make a decision for at least one of them. More ex-
plicitly, in an execution, each process p; proposes a vector V; of b entries: V;[¢] is
the value proposed by p; for committee ¢. A process decides a pair (¢,v) where
£, 1 < ¢ < b denotes a committee, and v a value proposed by a process for
committee £. The problem is defined by the three requirements:

e Termination. No process takes infinitely many steps without deciding.

e Validity. If a process decides (¢, v) then 3 j such that v = V;[(].

e Agreement. Assume p;,p; decide (¢;,v;) and (¢, v;) respectively. Then
&zﬁjévi:vj.

We concentrate our attention on the binary (2,3)-CD problem, where n = 3,
b = 2 and the proposed values are taken from V = {0,1}. We refer to this
version as the CD problem.

Musical Benches. We can think of 2-process binary consensus as a bench with
two places, designated 1 and —1. Processes p; and p_1, wake up at places 1 and
—1, respectively. In a solo execution a process must return the place it wakes
up in. Otherwise, in an execution where both participate, they return the same
place. We add a second bench, with places 2, —2, and wake up either process ps
at slot 2, or p_s at slot —2, but not both. In executions with no conflict, i.e.,
either p_; or p; wake up but not both, the participating processes return the
places they wake up in. Only if both p_; and p; wake up, then any participating
process can go to any seat. This is the musical benches problem of [10], shown
there to have no wait-free solution.

The musical benches problem is illustrated in Figure [3 disregarding ids and
omitting the dotted arrows of A for single vertices, to avoid cluttering the figure.
In the figure there is also an example of an object implementing the musical
benches problem. Each vertex is labeled on the inside with a process p;, and
on the outside with the value d returned from the object to p;. The corner

508 E. Gafni et al.

vertices correspond to executions where the process invokes the object alone, and
therefore, a p; vertex is labeled with value i. An edge joining two such vertices
represents an execution where both processes invoke the object alone. Notice
that there are two paths connecting the corners pi,p_1, with vertices labeled
p1 or p_1, representing executions where only these processes invoke the object.
For example, they are two edges incident to the p; corner, one representing an
execution where the object returns 1 to p_; and another where it returns —2 to
p_1. Executions where p_s participates appear on the left side of the hole, while
executions where po participates appear on the right side of the hole. Notice also
that no two vertices with the same id have the same value. One can check that
this object indeed satisfies the musical benches specification given by A.

2.2 Participating Set Problem

Preparing for the next section we recall the k-participating set problem [I0],
a generalization of the one in [B] that can access a set agreement object. We
present here the case of 3 levels, and either k = 2, that has access to (2,3)-
set agreement, or k = 3, the original problem of [5] that has no access to set
agreement. That is, we have our first simple example of a reduction, in this case
from the 2-participating set problem to (2, 3)-set agreement. The 3-participating
set problem shows that read write shared memory complex can be flattened to
a subdivided simplex, as in the left side of Figure l Using a (2, 3)-set agreement
implementation, as in the right side of the figure, the center triangle is removed
and we can create a subdivided simplex with a hole. A process p; computes a
set of ids S;, such that

1. Vi:ieS;, 2. Vi,j:SigS]‘\/Sngi,
3. Vi,j:iGSjﬁsigSj, 4. |{j‘SJ|:3}‘§k

The first three are the requirements of the participating set problem in [5]. Sets
satisfying these properties correspond to the subdivided simplex in Figure [
For completeness a protocol solving the k-participating set appears in
Figure Bl The 4-th property is achieved through the set agreement object, in-
voked by p; with the operation setAg(7), when k = 2. Invoking the set agreement
operation has the effect of removing the simplex in the center of the subdivision

solo executionby pL e > D
COPg (]
\ 3 et — »
Qo T D
()

execution where | M AT TTmmrmeeneenett

. invocation of (2,3)-set agreement
all participate

when k=2

executions where only p2,p3
participate

Fig. 4. The k-participating set views for k = 3; when k& = 2 the center triangle is
removed

The Committee Decision Problem 509

Initially: Level[j] =4 Vj € {1,2,3}; k=2 or k = 3;
Function k-PARTICIPATINGSET(7)
(01) Init OK; «— false;

(02) repeat Levelli] < Level[i] — 1;

(03) for j =1 to 3 do level;[j] < Level[j] enddo

(04) Si «— {j : level;[j] < Level[i],j € {1,2,3}};

(05) if |S;| =3 and k = 2 then ans; < (2, 3)-SETAG(7);
(06) if ans; = i then OK; «+ true endif
(07) else OK; «— true endif

(08) until (|S;| > Level;[i]) AN OKj;

(09) return(S;)

Fig. 5. From (2, 3)-set agreement to k-Participating set (code for p;)

(impossible that the three processes produce sets of size 3), and leaving just its
boundary (at most two processes may produce sets of size 3).

3 Solving (2, 3)-Set Agreement

An algorithm to solve musical benches using (2, 3)-set agreement is described in
[10]. In Section Bl we describe an algorithm to solve (2, 3)-set agreement using a
musical benches object. Therefore, the musical benches problem is equivalent to
(2, 3)-set agreement. In Section B2l we describe an algorithm to solve (2, 3)-set
agreement using a CD object.

3.1 Solving (2, 3)-Set Agreement with Musical Benches

Informally, the idea is very simple. In the musical benches one of two combina-
tions of 3 processors start with 3 distinct inputs. They eventually halt with at
most 2 distinct outputs. Thus the problem possess that “narrowing of choices”
property that set agreement exhibit. The only problem we face is how to inter-
face between the requirement of set agreement and those of musical benches.
Resolving this is the crux of the paper: Employ read-write first and then glue
the musical benches to replace two adjacent simplexes.

A protocol that solves (2,3)-set agreement using musical benches appears in
Figure [6 and it is illustrated in Figure [Il Each process p; starts by invoking
the participating set protocol of Figure Bl with & = 3. Once it gets back a set
S;, it invokes a musical benches protocol with a parameter h,,;(4,.5;) defined as
follows:

—lifi=1and S; ={1,2,3}

+1ifi=3and S; = {1,2,3}
hmp(,S;) = ¢ +2if i =2 and S; = {1, 2,3}

—2ifi=2and S; = {2}

1 otherwise

510 E. Gafni et al.

That is, the musical benches protocol is invoked only when h,;(7, S;) # L, and
if so, each process p; makes a decision, fi,p(bench), that depends on the answer
bench returned by the musical benches protocol, as follows

1 if bench = 1 or bench = —2
Jmb(bench) = ¢ 2 if bench = —1
3 if bench = 2

or if p; did not invoke the musical benches protocol, then it returns g(z, S;). The
only requirement is that g(¢,S;) returns an id in S;, to satisfy the validity re-
quirement of the set agreement problem (a decision was proposed by somebody).

Each vertex on the left of Figure [l is labeled in the inside with the corre-
sponding process p;, and on the outside with its decision. The boundary of the
removed triangles fits the boundary of the musical benches object. We stress
that the object in the figure is just an example of one possible implementation
of the musical benches problem; the protocol works for any implementation.
Each of the vertices of the musical benches object is labeled in the inside with
the corresponding process p;, and on the outside with the value returned by the
object. Thus, if we consider a vertex on the boundary of the hole (left side of
the figure), say the corner po, it corresponds to an execution where py runs solo,
gets So = {2} from the participating set object, invokes the musical benches
with hpmp(2,{2}) = —2, and gets back —2 (the label by the corresponding vertex
on the right side of the figure) and decides f,,,(—2) = 2 (the label by pa’s corner
vertex on the left side of the figure). A p; vertex of the left side of the figure
where the musical benches object is not invoked is labeled with ¢(i,S;) (this
particular g is just an example).

Function (2,3)-SETAG-FROM-BENCHES(%)

(01) S; < 3-PARTICIPATINGSET(%);

(02) if hms(i,5;) # L then

(03) bench; < Musical Benches(hms (i, Si));
(04) return fpp(bench;)

(05) else return g(i,S;) endif

Fig. 6. From Musical Benches to (2, 3)-Set Agreement (code for p;)

Lemma 1. The (2,3)-SETAG-FROM-BENCHES protocol solves (2,3)-set agree-
ment using any musical benches implementation.

3.2 Solving (2, 3)-Set Agreement with Committee Decision

The technique of Section [B] can be used to solve (2, 3)-set agreement with CD.
The SETAG-FROM-CD protocol of Figure B is similar to the one in Figure [6]
except that a CD object is invoked instead of invoking a musical benches object,
and the the functions h,.p, fme and g change.

The Committee Decision Problem 511

Each process p; starts by invoking the participating set protocol of Figure
with & = 3. Once it gets back a set \S;, it checks if h.q(4,.5;) = L. If so it decides
according to the function g.q(i,S;) (values by the vertices on the left side of
Figure [1):

i if |S;| =1 else:

lif(i=1land2€ S;)or (i=2and 1€ S5;)or (i=3and 1€ S,;),
2ifi=3and 2 € 5;,

3 otherwise.

gcd(ia Sz) -

Else, heq(i,S;) # L, and it invokes a CD protocol with the parameter h.q(, S;)
defined as follows. This is illustrated in the right side of Figure [, where an
example of a CD object is presented (not all the object is depicted, only the
values returned for the proposed input vectors).

(-1,-2)ifi=1and S; = {1,2,3},

(+1,42)if i =3 and S; = {1,2,3},
hea(i, S;) = ¢ (—=1,42)if : =2 and S; = {1,2,3},

(+1,-2)if i =2 and S; = {2},

1L otherwise.

Once the CD object returns a value the process p; stores it in a local variable
bench. In the right side of Figure[d, the vectors proposed to the CD are depicted
only in the 4 corners for lack of space; every vertex is labeled with the value
returned by the object. Notice that no two vertices with the same id and proposed
vectors have the same returned value associated (this is why the boundary can
be subdivided here, but not in a musical benches object). The process then
computes a decision f.q4(i, bench), defined as follows:

(1,2)1

Fig. 7. To solve set agreement each process p; invokes a CD object. On the left figure,
decisions are the values by the vertices; on the right figure values by the vertices are
returned by the object.

512 E. Gafni et al.

1if ¢ =1 and bench = 1 or bench = 2,
2if i = 1 and bench = —2,

3if ¢ =1 and bench = —1,

1if ¢ = 3 and bench = 1 or bench = 2,
2 if i = 2 and bench = 1 or bench = —2,
3if ¢ = 2 and bench = —1 or bench = 2,
2 if + = 3 and bench = —2.

3if ¢+ = 3 and bench = —1,

Jed(i,bench) =

Function (2, 3)-SETAG-FROM-CD(7)
(01) S; < 3-PARTICIPATINGSET(%);
(02) if heq(i,S;) # L then

(03) bench; «— CD(heq(i,S:));
(04) return fcq(bench;)

(05) else return gcq(i,S;) endif

Fig. 8. From CD to (2, 3)-Set Agreement (code for p;)

Lemma 2. The (2,3)-SETAG-FROM-CD protocol solves (2, 3)-set agreement us-
ing any CD implementation.

4 Solving Committee Decision with (2, 3)-Set Agreement

This section shows that the (2, 3)-CD problem is wait-free solvable using a (2, 3)-
set agreement object. Since in Section 3.2] we showed the opposite reduction, we
have that both problems are equivalent. The wait-free impossibility of solving
(2, 3)-set agreement [4,[17,21] implies that (2,3)-CD is wait-free unsolvable. In
[10] a protocol that solved the musical benches problem with access to a (2, 3)-
set agreement object is described. This protocol can be adapted to solve the
CD problem; the main difference is the decision function. The protocol works
as follows. Each process p; gets a vector V; as input to the CD problem. It

Function (2, 3)-CD-FROM-SETAG(V;)
Init view; < 0;id; — [L, L, 1];

(01) Propli] — Vi;

(02) Si < 2-PARTICIPATINGSET(%);

(03) if |S;| = 3 then id[i] — i;

(04) for j =1 to 3 do id;[j] < id[j] enddo
(05) view; — {j :idi[j] # L,j € {1,2,3}}
(06) endif
(07) return f(S;, view;)

Fig. 9. From (2, 3)-set agreement to (2,3)-CD (code for p;)

The Committee Decision Problem 513

first writes it to a shared array, Prop, in position Prop[i]. Then p; invokes the
2-PARTICIPATINGSET() function of Figure B and gets back a set S; of process
ids, satisfying the 2-PARTICIPATINGSET properties (see section [Z2)): Once p; gets
a set S; back from the 2-PARTICIPATINGSET object, if |S;| = 3 it executes lines
([@3)—(@E) which have the effect of proposing its id to a read/write object, and
gets back a set view; of ids, of processes that invoked the object. The aim is
to subdivide the boudary of removed center triangle of the protocol complex.
Finally, process p; decides a value f(S;,view;). Due to space limitation, the
corresponding figure and the definition of the decision function are omitted.
More details can be found in the technical report [I1].

Lemma 3. The (2,3)-CD-FROM-SETAG protocol solves (2,3)-CD using any
(2,3)-set agreement object.

As a consequence of Lemmas [I] 2l and Bl we have our main result.

Theorem 1. Musical benches can be wait-free solved iff CD can be wait-free
solved iff (2,3)-set agreement can be wait-free solved.

References

1. Armstrong M.A., Basic Topology, Springer-Verlag, 251 pages, 1983.

2. Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and
Advanced Topics, McGraw—Hill, 451 pages, 1998.

3. Bar-Noy A., Deng X., Garay J., Kameda T., Optimal amortized distributed con-
sensus. Info. and Comp., 120(1):93-100, 1995.

4. Borowsky E. and Gafni E., Generalized FLP Impossibility Results for ¢-Resilient
Asynchronous Computations. Proc. 25th ACM Symposium on the Theory of Com-
puting (STOC’93), ACM Press, pp. 91-100, 1993.

5. Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming (Ex-
tended Abstract). Proc. 12th ACM Symposium on Principles of Distributed Com-
puting (PODC’93), ACM Press, pp. 41-51, 1993.

6. Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation
Algorithm. Distributed Computing, 14(3):127-146, 2001.

7. Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation, 105:132-158, 1993.

8. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consen-
sus with One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

9. Gafni E. DISC/GODEL presentation: R/W Reductions (DISC’04), 2004.
http://www.cs.ucla.edu/~ eli/eli/godel.ppt

10. Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int. Symposium on Dis-
tributed Computing (DISC’05), Springer Verlag LNCS #3724, pp. 63-77, 2005.

11. Gafni E., Rajsbaum R., Raynal M. and Travers C., The Committee Decision Prob-
lem. Tech Report #1745, IRISA, University of Rennes 1 (France), 2005.
http://www.irisa.fr/bibli/publi/pi/2005/1745/1745.html

12. Herlihy M.P., Wait-Free Synchronization. ACM Transactions on programming Lan-
guages and Systems, 11(1):124-149, 1991.

514

13.

14.

15.

16.

17.

18.

19.

20.

21.

E. Gafni et al.

Herlihy M., Rajsbaum S., New Perspectives in Distributed Computing. Proc.
24th International Symposium Mathematical Foundations of Computer Science
(MFCS’99), Springer Verlag LNCS #1672, pp. 170-186, 1999.

Herlihy H., Rajsbaum S., Algebraic spans. Mathematical Structures in Computer
Science, 10(4): 549-573, 2000.

Herlihy, M. Rajsbaum, S. and Tuttle, M. Unifying Synchronous and Asynchronous
Message-Passing Models. Proc. 17th ACM Symposium on Principles of Distributed
Computing (PODC’98), pp. 133-142, 1998.

Herlihy, M. Rajsbaum, S. and Tuttle, M. An axiomatic approach to computing the
connectivity of synchronous and asynchronous systems. Proc. of the 6th workshop
on Geometric and Topological Methods in Concurrency and Distributed Computing
(GETCO04), 2004.

Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Com-
putability. Journal of the ACM, 46(6):858-923, 1999.

Lynch N., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA),
872 pages, 1996.

Matousek J., Using the Borsuk-Ulam Theorem, Lectures on Topological Methods
in Combinatorics and Geometry, 2003, Springer.

Lamport L., The Part-Time Parliament. ACM Transactions On Computer Sys-
tems, 16(2):133-169, 1998.

Saks, M. and Zaharoglou, F., Wait-Free k-Set Agreement is Impossible: The Topol-
ogy of Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

	Introduction
	Three Problems and Preliminaries
	The Problems
	Participating Set Problem

	Solving (2,3)-Set Agreement
	Solving (2,3)-Set Agreement with Musical Benches
	Solving (2,3)-Set Agreement with Committee Decision

	Solving Committee Decision with (2,3)-Set Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

