
Two Abstractions for Implementing
Atomic Objects in Dynamic Systems

Roy Friedman1, Michel Raynal2, and Corentin Travers2

1 Computer Science Department, Technion, Haifa 32000, Israel
2 IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France

roy@cs.technion.ac.il, {raynal, ctravers}@irisa.fr

Abstract. Defining appropriate abstractions is one of the main challenges in
computer science. This paper investigates two matching abstractions for imple-
menting read/write objects in a dynamic server system prone to crash failures.
The first abstraction concerns dynamic quorum systems. The second is a persis-
tent reliable broadcast communication primitive. These two abstractions capture
the essence of basic mechanisms allowing the implementation of atomic objects
in a distributed system where servers can dynamically enter and leave the sys-
tem (or crash). A read protocol and a write protocol based on these abstractions
are described and proved correct. The properties defining these abstractions can
be seen as requirements that are sufficient for implementing a dynamic storage
service, while the feasibility conditions that are stated can be seen as necessary
requirements. Instantiating the proposed abstractions in different contexts (e.g.,
settings defined by specific assumptions on failures, synchrony, message delays
and processing times) provides as many system specific protocols.

Keywords: Atomic object, Communication primitive, Crash failures, Distributed
system, Dynamic system, Quorum, Server, Shared memory.

1 Introduction

This paper is on the implementation of atomic read/write objects in a dynamic server
system. More precisely, the general context that is considered is the following:

– There is an a priori infinite number of clients accessing shared objects. A client can
sequentially issue read and write operations. It can also crash while executing an
operation. A crash outside an operation is irrelevant.

– Each read or write operation on an object issued by a client is considered as an
“atomic interaction” that accesses copies of the object. From an internal structure
point of view, each operation follows the two phase pattern introduced in [5]. The
first phase obtains control information, while the second phase ensures data per-
sistence and consistency. This internal structure is unknown to the clients. From a
client point of view, a read or write operation is a “primitive”.

– Each object is supported by a set of servers. The server model is the infinite arrival
model with finite concurrency [27]. This means that each run can have an infinite
number of servers (i.e., an infinite number of servers can join and leave the system),
but in each finite time interval there are finitely many servers. So intuitively, the
only source of “infinitely” is the passage of time [1].

J.H. Anderson, G. Prencipe, and R. Wattenhofer (Eds.): OPODIS 2005, LNCS 3974, pp. 73–87, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

74 R. Friedman, M. Raynal, and C. Travers

This model is very general, and matches many types of long lived dynamic applica-
tions, as we elaborate in Section 6. In this paper, we are interested in implementing an
atomic read/write object.

If servers join and leave the system arbitrarily fast, it is possible that no server re-
mains long enough in the system for completing any read or write operations. So, imple-
menting read and write operations requires some form of stability. This stability could
be obtained by considering duration assumptions on the time a server process remains
in the system, on message delays and on processing times. We consider here a more
high level approach based only on the statement of abstract properties (in that sense
our approach is similar to the failure detector approach introduced in [6]). Of course,
implementing these properties can be done in dynamic systems satisfying some syn-
chrony and durations assumptions (e.g., when there is a sliding time period of known
and long enough duration during which some fixed and known number of non-faulty
servers are continuously present).

So, instead of relying on specific low-level assumptions, the approach we propose
to implement atomic shared objects in a dynamic distributed system is based on two
complementary abstractions. The aim of these abstractions is to capture the relevant
properties that facilitate the design of read and write protocols that focus on solving
the problem rather than being overloaded with system specific implementation details.
More precisely, we consider the following matching abstractions:

– The first defines quorums suited for read/write operations in a dynamic server sys-
tem.1 Each phase of an operation uses a particular type of quorum, and only some
quorums have to intersect. More precisely, only the quorums of different types and
belonging to consecutive operations have to intersect. Interestingly, the abstract
properties defining these dynamic quorums can be interpreted as sufficient condi-
tions when one wants to implement a dynamic reliable storage service. Feasibility
conditions are also associated with these properties; those can be seen as necessary
requirements for such implementations.

– The second abstraction, which we call persistent reliable broadcast, concerns com-
munication. The primitives we propose allow an operation to broadcast a message
uniformly to a sufficient subset of servers in a dynamic server model.

A read protocol and a corresponding write protocol that are based only on these ab-
stractions are then presented and proved correct. Their correctness depends only on the
properties of the abstractions. As those are defined as a set of abstract properties inde-
pendent of a particular system or given technology, they can be implemented differently
in different systems2. This modular approach favors the proof of the upper layer pro-
tocols, and cleanly separates between the properties we want to benefit from and their
implementation [12].

1 By definition, an object type that allows solving the Consensus problem despite process fail-
ures in otherwise asynchronous environment cannot be implemented purely by intersecting
quorums. In particular, read-modify-write semantics is too strong to be supported by intersect-
ing quorums without additional synchrony assumptions or failure detection capabilities.

2 A trivial case being a static system with a majority of correct servers.

Two Abstractions for Implementing Atomic Objects in Dynamic Systems 75

2 Application and System Model

An application is made up of clients processes that enter and leave the system (or crash).
These processes can access read/write shared data objects. A client is not aware of other
clients; it only knows that other clients can concurrently coexist. There is no global time
notion accessible to the clients or the objects. This section defines the corresponding
computation model.

To simplify the presentation, we assume the existence of a discrete global clock. This
clock, whose domain is the set of integers denoted IN, is a fictional device that is known
neither by the clients, nor by the objects.

2.1 Client Processes

From the application’s point of view, the system consists of a possibly infinite set of
sequential processes (called clients) that access a pool of shared read/write objects. The
client process model we consider is sometimes called the infinite arrival process with
finite concurrency [27]: the system has infinitely many processes, each run can have
infinitely many clients, but in each finite time interval only finitely many processes can
take steps [1].

Each client has an identity. These identities are such that no two clients have the same
identity, and any two identities can be compared. A client knows its identity, but does
not know the identities of the other clients. In the following we consider that a client
identity is an integer, yet the client identities are not necessarily consecutive integers.
The interested reader may refer to [1] for a protocol to “name the anonymous”.

A client process can crash. In that case it stops its execution. A crashed process does
not recover. Let us note that practically, this means that a process that recovers can
re-enter the system as a new process, i.e., with a new identity. As a client process is
not aware of the other clients, it has to terminate its operations (if it does not crash)
whatever the behavior of the other clients. This means that the operations provided to
the client processes have to be wait-free [20] (with respect to other clients).

2.2 Shared Objects

Each object x of the shared memory can be accessed by two operations denoted READ (x)
and WRITE (x, v). They allow the invoking process to obtain the value of x, or define the
new value v of x, respectively. Each object x is atomic. This means that, from an external
observer point of view, all the operations accessing x can be totally ordered in such a way
that (1) this order respects their real-time occurrence order, and (2) each read obtains the
value written by the last write that precedes it in this total order [23]. Atomicity is a
fundamental concept as it allows us to reason sequentially despite concurrency.

Let us note that in the context of concurrent objects, i.e., objects that can be concur-
rently accessed by several processes, the atomicity concept has initially been formalized
and investigated for read/write shared objects [23]. It has then been extended under the
name linearizability to any object that has a sequential specification [21].

76 R. Friedman, M. Raynal, and C. Travers

Interestingly, it has been shown that a run that satisfies the atomicity (linearizability)
consistency criterion with respect to each shared object considered separately, also sat-
isfies this criterion when we consider the whole set of atomic objects as a single (bigger)
variable [21]. This property is called locality. Thus, atomic consistency is local. How-
ever, sequential consistency and causal consistency are not [21]. That is, merging a
protocol providing sequential consistency on a single object x with a protocol provid-
ing sequential consistency on another object y does not provide a protocol providing
sequential consistency on the composite object X = [x, y].3

Locality is significant for both theory and practice. From a theoretical point of view,
it allows us to reason sequentially on the combined set of all objects as if it was a single
object. From an implementation and software engineering point of view, this property
enables scalable composable realizations. That is, as soon as we have a protocol imple-
menting atomic consistency for one object, we can run multiple independent instantia-
tions of this protocol, one for each object, and the entire system will behave correctly
without any additional control or synchronization.

2.3 Shared Memory: A Set of Servers

We consider a shared memory service consisting of read/write objects that are imple-
mented on top of a distributed message-passing system made up of a set of server
processes, denoted s1, s2, ... As indicated in the introduction, this system may have
an infinite number of servers. Yet (as for clients), in each finite time interval there is
only a finite number of servers (infinite arrival model with finite concurrency). A server
sj can enter the shared memory service (event init j). It can later crash (event fail j)
or leave the system (event leavej). As we noted earlier, this means that a process that
crashed or left the system can re-enter the system, each time with a new identity. Each
object is implemented by a subset of servers. Practically, this allows us to assume that
the subset of servers implementing a single object at any given finite time interval is
reasonably small, even though the system as a whole might include a huge number of
servers. Due to the locality property of atomicity (recall the discussion in Section 2.2),
in the rest of the paper we consider a single object x without losing generality.

Let up(t) denote the set of servers (implementing object x) that joined the system
before time t and have neither crashed nor left at t. We assume that ∀t : up(t) �= ∅.
This is a feasibility condition necessary to obtain live quorums, i.e., quorums that can
prevent from definitive blocking the read and write operations that use them.

2.4 Operations as Intervals

As we have seen, an application process can only invoke a read or a write operation
on a shared object. These operations are abstract for it in the sense that it can use them
as primitives but it does not know how these primitives and the atomic objects are
implemented at the underlying level.

Let us consider the ath READ () or WRITE () operation invoked by the same client
process pi. The beginning of the execution of that operation at the client defines an

3 The bounds of the locality property with respect to various consistency criteria have been
investigated in [33].

Two Abstractions for Implementing Atomic Objects in Dynamic Systems 77

event that we denote startai . Similarly, its termination at the client defines an event that
we denote enda

i . The crash of a client pi while it is executing a read or write operation
defines an event that we denote crashi (let us note that the crash of pi outside an
operation is irrelevant). On the application side, these are the only relevant events.

The invocations of read and write operations by a client pi defines its local history.
The subsequence of events between startai and enda

i (or crashi) defines what we call
the interval Ia

i [18]. Let us stress that an interval is defined with respect to events at the
client only, regardless of any events and operations taken by the servers or other clients.
An execution of a set of processes sharing a set of atomic objects can be represented
by a history h that is the sequence of events issued by these processes (if two or more
events are “simultaneous”, they can be arbitrarily ordered [22]).

Interestingly, the history h defines a natural partial order on the intervals. Ia
i →h Ib

j

(precedes) if enda
i (or crashi) appears in h before startbj . Ia

i is an immediate prede-
cessor of Ib

j if Ia
i →h Ib

j and there is no interval I such that Ia
i →h I and I →h Ib

j .
Finally, im pred(I1, I2) is a predicate that is true if and only if I1 is an immediate
predecessor of I2.

Let I be an interval whose start and end events occur at time tIb and tIe , respectively
(if there is no end event for I , let tIe = +∞). The following set of servers is associated
with each interval I:

STABLE (I) = {s | ∃t ∈ [tIb , t
I
e] : ∀t′ : t ≤ t′ ≤ tIe : s ∈ up(t′) }.

Another feasibility condition necessary to obtain live quorums is to have, for any inter-
val I , STABLE (I) �= ∅.

3 A Dynamic Read/Write Quorum Abstraction

3.1 Quorum Oracle

A quorum oracle is a device that provides the processes with a single primitive, namely a
query. Moreover, we consider here that such a query can only be issued at a client due to
a READ () or a WRITE () operation on a shared object inside the corresponding interval.
Each query returns a set of servers. To be meaningful, the sets of servers returned by
the queries have to satisfy some properties. A given set of such properties defines the
type of the corresponding quorum oracle.

3.2 Dynamic Read/Write Quorums

We are now in order to define a class of quorum oracles that can be used to implement
an atomic object in a dynamic server system. This class, denoted RWdyn, allows a
process to issue two types of queries. As elaborated below, the goal of the first type is
to obtain a “consistent” timestamp (associated with the value read or written), so we
denote it CD (for control data). The second is to ensure that “enough” servers will have
an up to date copy of the last value of the object, so we denote it VAL. RWdyn is defined
by the following properties:

78 R. Friedman, M. Raynal, and C. Travers

– Progress property.
Let Q(t) be the quorum obtained by a query issued at time t during an interval I
(whatever the type CD or VAL of the query).

∃t ∈ [tIb , t
I
e] : ∀t′ : t ≤ t′ ≤ tIe : Q(t′) ⊆ STABLE (I).

This property states that, by repeatedly querying its quorum oracle, an operation
(that does not crash) eventually obtains a quorum of servers that have joined the
system and have neither crashed nor left the system.

– Typed Bounded Lifetime Intersection property.
This property involves the two types of queries and their associated intervals. It
states that the quorums returned by two such queries have a non empty intersection
only if these queries (1) have different types and (2) belong to consecutive intervals.
Let Qcd (resp., Qval) denote both the quorum returned by a query whose type is
CD (resp., VAL), and the corresponding query event. Let I1 and I2 be the intervals
associated with these queries. We have:

[(Qval ∈ I1) ∧ (Qcd ∈ I2) ∧ im pred(I1, I2)] ⇒ Qval ∩ Qcd �= ∅.

3.3 Related Quorum Systems

When comparing RWdyn with traditional quorum systems [14, 15, 32], a noteworthy
difference lies in the limited period during which quorums (of different types) have
to intersect4. Interestingly, this intersection requirement allows all the servers that are
alive and participate in a quorum at a given time to later crash or leave the system.
In contrast, the quorum failure detectors introduced in [7, 8] require that all quorums
will intersect in at least one process that never crashes. The generalization of quorum
failure detectors in [11] only requires intersections between concurrent and immediately
consecutive quorums, but does not allow all the servers that are alive at some point to
later crash.

Herlihy’s work describe a scheme that allows processes to switch between quorums,
e.g., due to partitions [19]. The work of Herlihy concentrates on the mechanisms for
performing such transformations and assumes a finite set of servers. Our work, on the
other hand, concentrates on the formal framework and definitions of quorums in a dy-
namic system. In our approach, the change in the set of servers is inherently decided by
the environment and cannot be controlled by the processes.

The class RWdyn differs also from the quorums as defined in the seminal work
on RAMBO [24]. RAMBO is a reconfigurable atomic memory service for dynamic net-
works. A key notion in RAMBO is the concept of configuration that is a set of members
plus sets of read quorums and write quorums. RAMBO requires that any read quorum
and any write quorum of the same configuration do intersect. Moreover, this intersec-
tion requirement is independent of the actual pattern of read and write operations (in

4 One server that has the latest value of the object (it appears in the Qval quorum) has to sur-
vive until the next operation (that obtains the quorum Qcd), so that the previous intersection
property can be satisfied.

Two Abstractions for Implementing Atomic Objects in Dynamic Systems 79

our case, only consecutive operations require typed quorums to intersect). Thus, our
intersection requirement may allow for more continuous evolution of the system.

The notion of a Byzantine quorum system, i.e., one that is resilient to Byzantine
failures, was introduced in [25]. An extension that allows dynamically modifying the
resilience threshold, yet with a constant set of servers, was introduced in [3]. The work
of [29] describes a method that allows to dynamically change the set of servers by
running Byzantine consensus to decide on the next configuration of the system, and
thus can be thought as a kind of a Byzantine RAMBO like system. A somewhat similar
approach of switching quorum systems using views was taken in [26]. However, in [26],
a view change is performed by having an external entity notify a quorum of the current
view to stop accepting requests in that view, and then notifying all members of the new
view of its existence and initial state.

Finally, the idea of implementing a distributed shared memory in a dynamic system
based on a group communication system was introduced in [10]. Rather than using
quorums, that work relies on the virtual synchrony and total ordering mechanisms of
the underlying group communication toolkit to obtain total ordering of operations and
state continuity.

3.4 The Static Case

The static case is when the server system is statically defined with m = 2f + 1 servers,
and up to f of them can crash. Moreover, the bound f is known by the processes. In
this system, the classical quorum definition as sets of f +1 servers trivially satisfies the
two requirements of the previous definition. It is important to notice that if, incidentally,
a run has more than f + 1 servers that crash, the Progress property can no longer be
ensured, and operations based on such quorums can block forever. This means that,
be the system dynamic or static, there are assumptions for the operations to terminate
correctly. Here the implicit assumption is that “no more than f servers crash” (even
when this assumption is embedded into the model, it may or may not be satisfied during
a particular run).

4 A Communication Abstraction

In addition to the classical one-to-one reliable send and receive communication prim-
itives, the underlying system offers two communication primitives prst broadcast()
and prst deliver(). The first is to allow a read or a write operation to send a message
to the set of servers. The second allows a server s to be delivered the corresponding
message.

These primitives assume that each message m has a type type(m) and a sequence
number sn(m). When a process executes prst broadcast(m) (resp., prst deliver()),
we say that it “broadcasts” (resp., “delivers”) m. The persistent reliable broadcast com-
munication abstraction is defined by the following properties:

– Validity. If a message m is delivered by a server, it has been broadcast as part of
the execution of a read or a write operation.

– Integrity. A message m is delivered at most once by each server.

80 R. Friedman, M. Raynal, and C. Travers

– Server/server Termination. If a message m is broadcast during an interval I and
is delivered by a server, then any server s ∈ STABLE (I) eventually delivers a
message m′ such that type(m) = type(m′) and sn(m′) ≥ sn(m).5

– Client/server Termination. If the client process does not crash while it is executing
the read or write operation defining the interval I that gave rise to the broadcast of
m, the message m is delivered eventually by at least one server.

The validity and integrity properties are safety properties. The first states that no spu-
rious message is created, while the second states that no message is duplicated. The two
other properties address the liveness of message deliveries. The client/server termina-
tion property states that if the application process that executes a read or write operation
does not crash while it is executing that operation, each message it broadcasts (during
that operation) is not lost in the sense that it is eventually delivered by at least one
server. Due to asynchrony and the fact that servers can crash, or dynamically join/leave
the system, it is not possible to require that all the servers that are active when a mes-
sage m is broadcast will deliver the message. Hence the rationale for the server/server
termination property that states that if a message is delivered by a server, then all the
servers that have entered or will enter the system and neither leave it nor crash by the
end of the operation (the servers defining the set denoted STABLE (I)), will deliver
this message or a message of the same type sent later6.

When all the messages have different types, the type notion disappears and sequence
numbers become useless. If additionally the number of servers is statically defined,
and all the events define a single interval [18], the primitives prst broadcast() and
prst deliver() then boil down to the classical uniform reliable broadcast primitives [17].

An implementation of the persistent reliable broadcast abstraction can be done ac-
cording to the following lines. When a server receives a message m, the server first
forwards m to all the other processes, and only then delivers the message to itself (the
way message forwarding is ensured depends on the underlying overlay network and
the associated routing [28, 30, 31] – see also discussion in Section 6). Moreover, a new
server that joins the system has first to broadcast (using the underlying routing) an in-
quiry message to the servers currently present in the system. When a server receives
such a message, the server sends back its state and, for each message type, the sequence
number of the last message it has delivered.

5 An Atomic Object Service

Assuming the previous dynamic quorum and persistent reliable broadcast abstractions,
this section presents and proves correct a simple and general protocol implementing
read and write operations suited to dynamic server systems.

5 Notice that unlike uniform delivery, here the message m′ that is eventually delivered by the
servers in STABLE (I) can be different from m, as long as the types of m and m′ is the same
and sn(m′) ≥ sn(m).

6 The underlying idea is here the following. A message m′ that is causally affected by a message
m (hence sn(m′) > sn(m)) “includes” m from a causality point of view, and consequently
the delivery of m′ implicitly contains the delivery of m.

Two Abstractions for Implementing Atomic Objects in Dynamic Systems 81

5.1 Structure of the Implementation

Each client pi has a local variable sni that it uses to generate local sequence numbers.
This allows pi to give a unique identity to each read and write operation it invokes. In
the following we consider an application process pi and a read/write object x.

As a side comment, let us note that in some systems, an application process commu-
nicates only with a proxy, and several processes can share the same proxy. The proxy
plays the role of the process with respect to the server processes. As an example, we
have the following correspondence with transaction systems: transaction ↔ operations,
transaction manager ↔ proxy, data managers ↔ servers, and data ↔ shared object
copy. Here we could envisage a similar architecture, but as our focus is on atomic con-
sistency, we do not detail the architectural issues of the whole system. Intuitively, the
reader can think that the sequence numbers may be managed by the proxies and not by
the processes themselves (as done, e.g., in [9]).

Back to our model, the protocol uses a classical timestamping mechanism [22]. It as-
sociates a timestamp ts, which consists of a pair made up of an integer denoted ts.clock
plus a process id denoted ts.proc, with each value that has been successfully written.
Using lexicographic ordering, this allows us to obtain a total order on all the values that
have been written. This total order is used to enforce atomic consistency. This basic
principle is used in most atomic consistency protocols we are aware of.

The protocols implementing write and read operations are described in Figure 1
and Figure 2, respectively. They are based on the principles used in [5], namely, they
are two-phase protocols. We first describe the write protocol, and then the read
protocol.

5.2 Implementing a WRITE (x, v) Operation

When an application process pi wants to write a new value, its first phase consists of
defining a correct timestamp for the value v. The second phase is for pi to ensure that
the new pair (value, timestamp) is known by enough servers so that atomic consistency
can be achieved. Each phase obeys the same algorithmic pattern, involving both ab-
stractions, namely, a persistent broadcast followed by a quorum-based synchronization.
Thus, the phases proceed as follows.

– Phase 1. First, pi builds an identity for its requests concerning this write. This iden-
tity is the pair (i, sni). Then, it broadcasts a request to the servers with the goal
of obtaining the timestamp associated with the last value of the object. This corre-
sponds to line 2, where the field “no” in the message means that pi does not need
the last value of the object.

The type of this first broadcast is defined by the pair (cd req,i) where cd req is the
message tag, and i the sender id. Then, pi waits until it receives acknowledgments
from the processes defining a CD quorum (lines 3–6). Due to the bounded lifetime
intersection property of quorums (as can be seen in the proof in the full version of
this paper [13]), pi can then define the new timestamp ts associated with the value
v it wishes to write. This timestamp is greater than all the timestamps associated
with values previously written.

82 R. Friedman, M. Raynal, and C. Travers

– Phase 2. During this phase, pi broadcast to the servers a new request carrying
the pair (ts, v) (line 8). This request is tagged write req and its type is the pair
(write req,i). Next, pi waits until it has received acknowledgments from the processes
defining a VAL quorum (lines 10–13). When this occurs, it knows (see the proof in
[13]) that “enough” servers have received the write request and, consequently, the
current write can terminate (line 14).

operation WRITEi (x, v)
% Phase 1 (lines 1-7): synchronization to obtain consistent information %

(1) sni ← sni + 1; ansi ← ∅;
(2) prst broadcast cd req(i, sni, no);
(3) repeat
(4) wait for a message cd ack(sni, ts) received from s;
(5) ansi ← ansi ∪ {s}
(6) until

�
Qcd ⊆ ansi

�
;

(7) ts.clock ← max of the ts.clock fields received +1; ts.proc ← i;
% Phase 2 (lines 8-14): synchronization to ensure atomic consistency %

(8) prst broadcast write req(i, sni, ts, v);
(9) ansi ← ∅;
(10) repeat
(11) wait for a message write ack(sni) received from s;
(12) ansi ← ansi ∪ {s}
(13) until

�
Qval ⊆ ansi

�
;

(14) return()

Fig. 1. Implementing a WRITE () operation

operation READi (x)
% Phase 1 (lines 1-7): synchronization to obtain consistent information %

(1) sni ← sni + 1; ansi ← ∅;
(2) prst broadcast cd req(i, sni, yes);
(3) repeat
(4) wait for a message cd ack(sni, ts, value) received from s;
(5) ansi ← ansi ∪ {s}
(6) until

�
Qcd ⊆ ansi

�
;

(7) ts ← max of the ts received; v ← value field associated with ts;
% Phase 2 (lines 8-14): synchronization to ensure atomic consistency %

(8) prst broadcast write req(i, sni, ts, v);
(9) ansi ← ∅;
(10) repeat
(11) wait for a message write ack(sni) received from s;
(12) ansi ← ansi ∪ {s}
(13) until

�
Qval ⊆ ansi

�
;

(14) return(v)

Fig. 2. Implementing a READ () operation

Two Abstractions for Implementing Atomic Objects in Dynamic Systems 83

5.3 Implementing a READ (x) Operation

The protocol for a read operation is structurally the same, and semantically nearly the
same, as the write protocol. It has two phases with exactly the same meaning, as de-
scribed in Figure 2. The only noteworthy difference with respect to the write protocol
lies in the fact that the last field of the message cd req() broadcast at line 2 carries the
value “yes”. This is to demand each server that sends back an acknowledgment to pro-
vide not only its last timestamp but also the associated value. This is required because
a read has to return a value when it terminates (line 14).

The second phase of the read protocol is to ensure atomicity. It prevents two sequen-
tial read operations from obtaining inconsistent values. More precisely, let R1 and R2
be two read operations such that R2 starts after R1 is finished, and both R1 and R2
are concurrent with a write operation W that updates the object x from v1 to v2. The
second phase prevents what is called “new/old” inversion, namely, it is not possible for
R1 to read v2 while R2 would obtain v1. The prevention of new/old inversions is what
makes an “atomic” object distinct from a “regular” object [23]7.

5.4 Read/Write Protocol: The Server Side

Each server s manages two local variables, tss and values, that contain the highest
timestamp value that s has ever received, and the associated value, respectively.

As we have seen, only messages of the type (cd req,i) or (write req,i) can be de-
livered to a server s. These messages have been broadcast by pi during the first phase
(line 2) or the second phase (line 8) of the write or the read protocol.

– When a server receives cd req(i, sn, bool), it sends back to pi an acknowledgment
(carrying the same sequence number sn so that pi does not confuse all acks it re-
ceives), plus the required control information (local timestamp) with the associated
value if it is required.

– When a server s receives write req(i, sn, ts, v), is first updates its local data if they
are out of date. In all cases, s sends back an acknowledgment to the process pi that
initiated the broadcast.

It is interesting to notice that an application process communicates anonymously
with the set of servers using the persistent reliable broadcast primitives. That is, an
application process sees only a service and does not know the servers on an individual
basis. Differently, a server works on a responsive mode, and can always send back an
acknowledgment to the sender of the message it receives. The acknowledgments are
one-to-one. The broadcasts are one-to-all.8

5.5 Another Implementation for a READ (x) Operation

There are distinct ways to implement the second phase of the read protocol. An alter-
native approach consists of asking the servers to inform the reader pi when they have

7 The interested reader can find an elaborate discussion on this difference in [16].
8 Let us remind the reader that when we say “all the servers”, we mean the set of alive servers

that currently implement the desired object.

84 R. Friedman, M. Raynal, and C. Travers

(1) when cd req(i, sn, bool) is delivered:
(2) if (bool =yes) then val to send ← values else val to send ← ⊥ end if;
(3) send cd ack(sn, ts, val to send) to i

(4) when write req(i, sn, ts, v) is delivered:
(5) if (ts > tss) then tss ← ts; values ← v end if;
(6) send write ack(sn) to i

Fig. 3. Processing by a server s of the messages it receives

stored a value whose timestamp is equal to or higher than ts (the timestamp of the
value read by pi). When pi learns that a VAL type quorum of servers have stored such
a timestamp, it can terminate the read operation and return v (the value associated with
ts). Protocols based on a similar approach are described in [1, 2] to implement atomic
variables from a fixed set of crash-prone disks.

Adapting this idea to our context can be done as follows. A new message tag is used
by a read operation and its lines 8-13 are replaced by the following lines:

8’ prst broadcast read req(i, sni, ts, v);
9’ ansi ← ∅;
10’ repeat
11’ wait for a message read ack(sni) received from s;
12’ ansi ← ansi ∪ {s}
13’ until

�
Qval ⊆ ansi

�

The code of a server is modified accordingly, namely, it additionally includes the
following statement to process read req () messages:

(7) when read req(i, sn, ts) is delivered:
(8) wait until (tss ≥ ts);
(9) send read ack(sn) to i

Proof: Due to space limitation, the proof appears in the full version of this paper [13].

6 Practical Instantiations

Read/write objects are a general abstraction that can be used to implement various dis-
tributed services. These include, e.g., distributed shared memory, maintaining distrib-
uted files, distributed directory lookup services, shared bulletin boards, etc.

With proper assumptions about the rate of failures (process crashes), joins, and
leaves, it is possible to implement the required quorum oracles with many existing
distributed hash tables-based peer-to-peer systems (e.g., CAN [28], Chord [31], Pas-
try [30], Tapestry [34], to name a few). Specifically, most of these peer-to-peer systems
provide a service that enables implicit routing of messages to servers without the ap-
plication ever knowing the identifiers of the servers. The way these services operate is
that the application passes an object identifier to the service. The service calculates a
hashed identifier, and gradually forwards the message between some of the servers until
it reaches the server whose hashed identifier value is closest, under some metric, to the
hashed object identifier.

Two Abstractions for Implementing Atomic Objects in Dynamic Systems 85

When there are no changes in the system (i.e., no failures, no joins, and no leaves),
the service ensures that all requests to route a message with the same object identifier
x will reach the same server. In the rest of this section, we refer to such a server as
the responsible server for object x. Moreover, asymptotically, these systems provide
with high probability good load balancing for the division of object identifiers to cor-
responding responsible servers. That is, when there are “enough” servers and “enough”
object identifiers, each server is responsible for roughly the same number of objects.
Moreover, two slightly different object identifiers (e.g., the Hamming distance between
their binary representation is small) have different responsible servers.

If we assume that the rate of change in the system is low, we can employ the follow-
ing scheme, similar to what is done in [4]: for a given object identifier x and constant
k, we define the following set of derived object identifiers {1 x, 2 x, . . . , k x}. This set
of derived object identifiers implies a corresponding set of derived responsible servers.
Thus, the set of servers that implement a shared object x now becomes the set of derived
responsible servers for x.

Let us further assume that the rate of change, the latency of messages, and the speed
of processes are such that there exist constants k and f so that for every set of derived
servers whose size is k, at most f fail during an interval (an execution of a read or write
operation). With these assumptions, STABLE (I) becomes the set of derived responsi-
ble servers for object x that do not fail or leave during I . Moreover, an implementation
of the oracle can periodically use the peer-to-peer service to find the current set of de-
rived responsible servers for x, and return any subset of them of size at least (k − f).

Note that the choice of k and f , as well as the assumptions about the rate of change
in the systems are dependent on the specific peer-to-peer system used, as well as other
external environmental assumptions. This highlights the benefits of our approach, since
we have identified generic abstractions and devised a generic protocol based on them.
The specification of the protocol is independent of the low level assumptions needed to
implement the abstractions. Similarly, the proof of correctness only relies on the func-
tional properties of the abstractions, and does not rely on system dependent parameters.

7 Conclusion

This paper has investigated two matching abstractions suited to the implementation of
atomic objects in a dynamic distributed system where servers can dynamically enter
and leave the system (or crash). One of these abstractions concerns quorum systems,
the other one communication. Both abstractions are complementary in the sense they
address the two basic problems encountered when implementing atomic objects (data
persistence and data consistency). Their conceptual simplicity is a great advantage that
allows coping with and mastering the complexity of dynamic systems. As their de-
finition is based on abstract properties (and not on low-level assumptions), they are
problem-oriented and versatile.

A read protocol and a write protocol based on these abstractions have been de-
scribed and proved correct. The properties defining these abstractions can be seen as re-
quirements that are sufficient for implementing a dynamic storage service. Instantiating
the proposed abstractions in different contexts (e.g., settings defined by specific

86 R. Friedman, M. Raynal, and C. Travers

assumptions on failures, synchrony, message delays and processing times) provides as
many system specific protocols. It has also been shown that these abstractions can be
realized in dynamic peer-to-peer systems satisfying appropriate requirements.

As a server has to return values and execute Compare-&-Swap-like operations (i.e.,
store a value only if its timestamp is newer than the existing one) , it can actually be
either a process node or an active disk. It is consequently possible to envisage a hybrid
dynamic server system made up of nodes and active disks.

References

1. Aguilera M.K., A Pleasant Stroll Through the Land of Infinitely Many Creatures. ACM
SIGACT News, Distributed Computing Column, 35(2):36-59, 2004.

2. Aguilera M.K. and Gafni E., On Using Network Attached Disks as Shared Memory.
Proc. 21th ACM PODC, ACM Press, pp. 315-324, 2003.

3. Alvisi L., Malkhi D., Pierce E., Reiter M and Wright R.N., Dynamic Byzantine Quorum
Systems, Proc. IEEE Conf. on Depend. Syst. and Networks (DSN’00), pp. 283-392, 2000.

4. Anceaume E., Friedman R., Gradinariu M. and Roy M., An Architecture for Dynamic Scal-
able Self-managed Transactions. Proc. 6th International Symposium on Distributed Objects
and Applications, LNCS # 3291, pp. 1445-1462, 2004.

5. Attiya H., Bar-Noy A. and Dolev D., Sharing Memory Robustly in Message Passing Systems.
Journal of the ACM, 42(1):121-132, 1995.

6. Chandra T.D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225-267, 1996.

7. Delporte-Gallet C., Fauconnier H. and Guerraoui R., Shared memory vs Message Passing.
Tech Report IC/2003/77, EPFL, Lausanne, December 2003.

8. Delporte-Gallet C., Fauconnier H. and Guerraoui R., Hadzilacos V., Kouznetsov P. and Toueg
S., The Weakest Failure Detectors to Solve Certain Fundamental Problems in Distributed
Computing. Proc. 23rd ACM PODC, pp. 338-346, 2004.

9. Ezhilchelvan P., Helary J.-M. and Raynal M., Building TMR-Based Reliable Servers Despite
Bounded Input Lifetime. Proc. 7th European Parallel Computing Conference (Europar’01),
Manchester (UK), LNCS # 2150, pp. 482-485, 2001.

10. Friedman R., Using Virtual Synchrony to Develop Efficient Fault Tolerant Distributed Shared
Memories. Technical Report 95-1506, Dept. of Computer Science, Cornell University, 1995.

11. Friedman R., Mostefaoui A. and Raynal M., Asynchronous Bounded Lifetime Failure
Detectors. Information Processing Letters, 94:85-91, 2005.

12. Friedman R. and Raynal M., On the Benefits of the Functional Modular Approach in Dis-
tributed Data Management Systems. Proc. SRDS’04 IEEE satellite Workshop on Dependable
Distributed Data Management (WDDDM’04), IEEE Computer Press, pp. 1-6, 2004.

13. Friedman R., Raynal M. and Travers C., Two Abstractions for Implementing Atomic Objects
in Dynamic Systems. Tech Report #1692, IRISA, University of Rennes 1 (France), 2005.

14. Garcia-Molina H. and Barbara D., How to Assign Votes in a Distributed System. Journal of
the ACM, 32(4):841-860, 1985.

15. Gifford D.K., Weighted Voting for Replicated Data. Proc. 7th ACM Symposium on Operating
Systems Principles (SOSP’79), ACM Press, pp. 150-162, 1979.

16. Guerraoui R. and Raynal M., Fault-Tolerance Techniques for Concurrent Objects. Tech
Report # 1667, 22 pages, IRISA, Université de Rennes 1 (France), December 2004.

17. Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Distributed
Systems, ACM Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

Two Abstractions for Implementing Atomic Objects in Dynamic Systems 87

18. Helary J.-M., Mostefaoui A. and Raynal M., Interval Consistency of Asynchronous Distrib-
uted Computations. Journal of Computer and System Sciences, 64(2):329-349, 2002.

19. Herlihy M.P., Dynamic Quorum Adjustment for Partitioned Data. ACM Transactions on
Database Systems, 12(2):170-194, 1987.

20. Herlihy M.P., Wait-Free Synchronization. ACM TOPLAS, 13(1):124-149, 1991.
21. Herlihy M.P. and Wing J.L., Linearizability: a Correctness Condition for Concurrent Objects.

ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990.
22. Lamport, L., Time, Clocks and the Ordering of Events in a Distributed System. Communica-

tions of the ACM, 21(7):558-565, 1978.
23. Lamport L., On Interprocess communication. Part I: Formalism. Part II: Algorithms. Distrib-

uted Computing, 1-2(2):87-103, 1986.
24. Lynch N.A. and Shvartsman A.A., RAMBO: a Reconfigurable Atomic Memory Service

for Dynamic Networks. Proc. 16th Int’l Symposium on Distributed Computing (DISC’02),
Springer-Verlag LNCS #2508, pp. 173-190, 2002.

25. Malkhi D. and Reiter M., Byzantine Quorums Systems, Dist. Comp., 11(4):203-213, 1998.
26. Martin J.-P. and Alvisi L., A Framework for Dynamic Byzantine Storage, Proc. IEEE Conf.

on Dependable Systems and Networks (DSN’04), pp. 325-334, 2004.
27. Merritt M. and Taubenfeld G., Computing Using Infinitely Many Processes. Proc. 14th Int’l

Symposium on Distributed Computing (DISC’00), LNCS #1914, pp. 164-178, 2000.
28. Ratnasamy S., Handley M., Francis P. and Karp R., A Scalable content-Addressable

Network. Proc. ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and
Protocols for Computer Communication, ACM Press, pp. 161-172, 2001.

29. Rodrigues R and Liskov B., Reconfigurable Byzantine Fault-tolerant Atomic Memory. Brief
annoucement in Proc. 24th ACM PODC, ACM Press, p. 386, 2004.

30. Rowstron A. and Druschel P., Pastry: Scalable, Distributed Object Location and Routing for
Large Scale peer-to-Peer Systems. Proc.18th IFIP/ACM Int’l Conf. on Distributed Systems
Platforms (Middleware 2001), Springer-Verlag LNCS #2218, pp. 329-350, 2001.

31. Stoica I., Morris R., Liben-Nowell D., Karger D., Kaashoek M.F., Dabek F. and Balakrishnan
H., Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. ACM/IEEE
Transactions on Networking, 11(1):17-32, 2003.

32. Thomas R.H., A Majority Consensus Approach to Concurrency Control for Multiple Copy
Database. ACM Transactions on Database Systems, 4(2):180-229, 1979.

33. Vitenberg R. and Friedman R., On the Locality of Consistency Conditions. Proc. 17th Int’l
Symposium on Distributed Computing (DISC’03), LNCS #2848, pp. 92-105, 2003.

34. Zhao B., Kubiatowicz J. and Joseph A., Tapestry: An Infrastructure for Fault-Tolerant Wide-
area Location and Routing. Technical Report UCB/CSD-01-1141, U.C. Berkeley, 2001.

	Introduction
	Application and System Model
	Client Processes
	Shared Objects
	Shared Memory: A Set of Servers
	Operations as Intervals

	A Dynamic Read/Write Quorum Abstraction
	Quorum Oracle
	Dynamic Read/Write Quorums
	Related Quorum Systems
	The Static Case

	A Communication Abstraction
	An Atomic Object Service
	Structure of the Implementation
	Implementing a write (x,v) Operation
	Implementing a read (x) Operation
	Read/Write Protocol: The Server Side
	Another Implementation for a read (x) Operation

	Practical Instantiations
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

