
Irreducibility and Additivity of Set Agreement-oriented
Failure Detector Classes∗

[Extended Abstract]
∗

Achour Mostefaoui‡ Sergio Rajsbaum§ Michel Raynal‡ Corentin Travers‡

{achour|raynal|ctravers}@irisa.fr rajsbaum@math.unam.mx

ABSTRACT
Solving agreement problems (such as consensus and k-set
agreement) in asynchronous distributed systems prone to
process failures has been shown to be impossible. To cir-
cumvent this impossibility, distributed oracles (also called
unreliable failure detectors) have been introduced. A fail-
ure detector provides information on failures, and a failure
detector class is defined by a set of abstract properties that
encapsulate (and hide) synchrony assumptions. Some fail-
ure detector classes have been shown to be the weakest to
solve some agreement problems (e.g., Ω is the weakest class
of failure detectors that allow solving the consensus problem
in asynchronous systems where a majority of processes do
not crash).

This paper considers several failure detector classes and
focuses on their additivity or their irreducibility. It mainly
investigates two families of failure detector classes (denot-
ed �Sx and �φy , 0 ≤ x, y ≤ n), shows that they can be
“added” to provide a failure detector of the class Ωz (a gen-
eralization of Ω). It also characterizes the power of such an
“addition”, namely, �Sx + �φy � Ωz ⇔ x + y + z > t + 1,
where t is the maximum number of processes that can crash
in a run. As an example, the paper shows that, while �St

allows solving 2-set agreement (and not consensus) and �φ1

allows solving t-set agreement (but not (t−1)-set agreemen-
t), their “addition” allows solving consensus. More general-
ly, the paper studies the failure detector classes �Sx, �φy

and Ωz, and shows which reductions among these classes are
possible and which are not. The paper presents also an Ωk-
based k-set agreement protocol. In that sense, it can be seen
as a step toward the characterization of the weakest failure
detector that allows solving the k-set agreement problem.

∗This work has been supported by a grant from LAFMI
(Franco-Mexican Lab in Computer Science) and PAPIIT-
UNAM.
‡IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France.
§Instituto de Matemáticas, UNAM, D. F. 04510, Mexico.
∗A full version of this paper is available in [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06, July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

Categories ands Subject Descriptors

C.2.4 [Computer-Communication Network]: Distribut-
ed Systems -distributed applications, network operating sys-
tems; D.4.1 [Operating Systems] Process Management -
concurrency, multiprocessing, synchronization; D.4.5 [Op-
erating Systems] Reliability -fault-tolerance; F.1.1 [Com-
putation by Abstract Devices]: Models of Computation
-Computability theory

General Terms: Algorithms, Reliability, Theory

Keywords: Asynchronous system, Fault-tolerance, Unreli-
able failure detector.

1. INTRODUCTION

Context of the work: failure detectors for agreement
problems. Consensus is one of the most fundamental prob-
lem in fault-tolerant distributed computing: each process
proposes a value, and every non-faulty process must decide
a value (termination) such that no two different values are
decided (agreement) and the decided value is a proposed
value (validity). Despite the simplicity of its definition and
its use as a basic building block to solve distributed agree-
ment problems, consensus cannot be solved in asynchronous
system where even a single process can crash [7].

Several approaches have been investigated to circumvent
this impossibility result. One of them is the failure detec-
tor approach [3, 21]. It consists in equipping the underlying
system with a distributed oracle that provides each process
with (possibly incorrect) hints on process failures. Accord-
ing to the type and the quality of the hints, several classes
of failure detectors can be defined. As far as consensus is
concerned, two classes are particularly important.
- The class of leader failure detectors [2] (denoted Ω). This
class includes all the failure detectors that continuously out-
put at each process a process identity such that, after some
time, all the correct processes are provided with the same
identity that is the identity of a correct process (eventu-
al leadership). Before that time, different processes can be
provided with distinct leaders (that can also change over
time), and there is no way for the processes to know when
this anarchy period is over. Ω-based asynchronous consen-
sus protocols can be found in [8, 12, 19]. (It is important to
notice that the first version of the leader-based Paxos pro-
tocol dates back to 1989, i.e., before the Ω formalism was
introduced.)
- The class of eventually strong failure detectors [3] (denoted
�S). A failure detector of that class provides each process

153

with a set of suspected processes such that this set eventu-
ally includes all the crashed processes (strong completeness)
and there is a correct process p and a time after which no set
contains the identity of p (eventual strong accuracy). �S-
based asynchronous consensus protocols can be found in [3,
8, 17, 23].
Two important results are associated with these classes.
First, they are equivalent (which means that it is possible,
from any failure detector of any of these classes, to build a
failure detector of the other class) [2, 5, 15]. Second, as far
as information on failures is concerned, they are the weak-
est class of failure detectors that allow solving consensus
in asynchronous systems where a majority of processes are
correct [2].

The k-set agreement problem relaxes the consensus re-
quirement to allow up to k different values to be decided [4]
(consensus is 1-set agreement). This problem is solvable in
asynchronous system despite up to k − 1 process crash fail-
ures, but has been shown to be impossible to solve as soon
as k or more processes can crash [1, 11, 22].

The failure detector class �S has been weakened in [18,
24] to address this problem. While the scope of the accuracy
property of �S spans the whole system (there is a correct
process that, after some time, is not suspected by any pro-
cess), the class �Sx is defined by the same completeness
property and a limited scope accuracy property, namely,
there is a correct process that, after some time, is not sus-
pected by x processes. It is easy to see that �Sn (where n
is the total number of processes) is �S , while �S1 provides
no information on failures. Moreover, �Sx+1 ⊆ �Sx. It has
been shown that, when we consider the family (�Sx)1≤x≤n

of failure detectors, �Sx is the weakest class that allows solv-
ing k-set agreement in asynchronous systems for k = t−x+2
(where t is an upper bound on the number of processes that
can crash) [10] (message-passing systems must also satisfy
the additional constraint of a majority of correct processes,
t < n/2). The class Sx is a subset of �Sx. It has a the same
completeness property but a stronger accuracy property: it
requires that, from the very beginning, there is a subset of
x processes that never suspect one correct process.

A new family of failure detectors (denoted (φy)0≤y≤n), has
recently been introduced in [14] (where it is used in conjunc-
tion with conditions [13] to solve set agreement problems).
A failure detector of the class φy provides the processes with
a query primitive that has a parameter (a set X of process-
es) and returns a boolean answer. The invocation query(X)
by a process returns systematically true (resp., false) when
0 ≤ |X| ≤ t−y, i.e., when the set is too small (resp., |X| > t,
i.e., when the set is too big). When t − y < |X| ≤ t (the
set has then an appropriate size), if query(X) returns true
then all the processes in X have crashed; moreover, if all
the processes of X have crashed and a process repeatedly
issues query(X), it eventually obtains the answer true . We
have φy+1 ⊆ φy. Moreover, φ0 provides no information on
failures, while, ∀ y ≥ t, φy is equivalent to a perfect failure
detector (one that never makes a mistake [3]). It is shown
in [14], that, in shared memory systems, φy is the weak-
est failure detector class of the family (φy)0≤y≤t that allows
solving asynchronous k-set agreement with k = t− y + 1.

The family of failure detector classes (Ωz)1≤z≤n [20] has
been introduced to augment the synchronization power of
object types in the wait-free hierarchy. A failure detector
of the class Ωz outputs at each process a set of at most

z process identities such that, after some time, the same
set including the identity of at least one correct process is
output at all correct processes. Clearly, Ω1 is Ω. Moreover,
Ωz ⊆ Ωz+1.

Motivation and results. The paper first extends the family
(φy)0≤y≤n, by considering its eventual counterpart, namely
the family (�φy)0≤y≤n. �φy is a weakening of φy in the
sense it allows the properties defining φy to be satisfied only
after some finite time. So, while the families (Sx)1≤y≤n and
(φy)0≤y≤n are characterized by a “perpetual” property (i.e.,
a property that has to be satisfied from the very beginning),
the families (�Sx)1≤y≤n, (Ωz)1≤z≤n and (�φy)0≤y≤n are
characterized by an eventual property.

It appears that, when we are interested in solving set a-
greement problems, we are provided with three families of
failure detectors: (�Sx)1≤x≤n, (�φy)0≤y<n and (Ωz)1≤z≤n.
Whatever the problems these failure detector classes help
solving, important questions are the following: Which a-
mong these classes are equivalent? Which are not? Is it
possible to combine some of them to obtain stronger fail-
ure detector classes? If the answer is “yes”, which ones and
which failure detector class do they produce? If the answer
is “no”, why? Etc. This is the type of questions addressed in
this paper that characterizes relationships linking each pair
of failure detector classes. More precisely, the contributions
of the paper are the following. The notation A + B � C
means that, given as inputs a failure detector of the class A
and a failure detector of the class B, there is an algorithm
that constructs a failure detector of the class C. The nota-
tion A+B �� C means that there is no such transformation
algorithm. The notations A � C and A �� C have the same
meaning considering a single failure detector class as input.

Contribution C1: Reducibility, Irreducibility and Mini-
mality.

• Relations linking φy/�φy and Sx/�Sx:
- Let 1 ≤ x ≤ t + 1 and 1 ≤ y ≤ t. Sx �� �φy .
(Theorem 5.)
- Let 0 ≤ y < t and 1 < x ≤ t + 1. φy �� �Sx.
(Theorem 6.)

• Relations linking φy/�φy and Ωz :
- �φy � Ωz Iff y + z > t. (Corollary 4.)
- Let 1 ≤ z ≤ t + 1 and 1 ≤ y ≤ t. Ωz �� �φy.
(Theorem 7.)

• Relations linking �Sx and Ωz:
- �Sx � Ωz Iff x + z > t + 1. (Corollary 5.)
- Let 1 < x, z ≤ t. ∀z : Ωz �� �Sx. (Theorem 8.)

All these relations are depicted in Figure 1 where the bold
arrows mean reducibility, and the dotted arrows mean irre-
ducibility. The class Sx is the subclass of �Sx where the ac-
curacy is perpetual (namely, there is a correct process that
is not suspected by x processes from the very beginning). P
is the class of perfect failure detectors [3] (the ones that n-
ever make a mistake). The column at the right of the figure
concerns k-set agreement: all the failure detector classes in
the zth line allow solving z-set agreement. It is important to
notice that (1) �St−z+2 and �φt−z+1 cannot be compared,
(2) both are stronger than Ωz. Moreover, given a line (say
z) of the figure, Ωz is the weakest class of that line that
allows solving k-set agreement.

154

�P P k-set

agreement
St+1 �St+1 Ω1 �φt φt 1

St �St Ω2 �φt−1 φt−1 2

St−z+2 �St−z+2 Ωz �φt−z+1 φt−z+1 z

S1 �S1 Ωt+1 �φ0 φ0 t + 1

Figure 1: Grid of failure detector classes

k-set agreement

Ωz−1 z − 1

+

Ωz z = (t + 1 − (x − 1)) − y
= (t + 1 − y) − (x − 1)

+

�Sx t + 1 − (x − 1)

�φy t + 1 − y

Figure 2: Additivity of �Sx and �φy

Contribution C2: Additivity. This paper poses the ques-
tion of adding failure detectors of distinct classes. This is
an important issue as “additivity” is a crucial concept as
soon as modularity and scalability of distributed systems
are concerned.

As an example, assuming t > 1, let us consider the class
�St that allows solving 2-set agreement (but not consen-
sus), and the class �φ1 that allows solving t-set agreement
(but not (t − 1)-set agreement). What about �St + �φ1?
Is it possible to add them? If the answer is “yes”, which
type of information on failures is provided by their combi-
nation? The paper shows that �St + �φt−1 allows solving
the consensus problem. More generally, with respect to the
grid described in the previous figure, the paper character-
izes which classes can be added and which cannot. More
explicitly, it shows the following result (see also Figure 2):

�Sx + �φy � Ωz ⇔ x + y + z > t + 1. To that end, the

paper presents a construction algorithm (sufficiency part,
Figures 4 and 5), and an impossibility proof (necessity part,
Theorem 4).

Intuitively, this shows that �Sx and �φy provide differ-
ent seeds to build Ωz. To see the gain provided by such an
addition, let us analyze it as follows:
- As �Sx � Ωt−x+2, the previous addition shows that adding
�φy allows strengthening Ωt−x+2 to obtain Ωz with z =
(t− x + 2)− y.
- Similarly, as �φy � Ωt−y+1, the previous addition shows
that adding �Sx allows strengthening Ωt−y+1 to Ωz with
z = (t− y + 1) − (x− 1).

Contribution C3: Asynchronous Ωk-based k-set agree-
ment. This paper proposes such an algorithm. (To our
knowledge, no previous work has addressed the design of
Ωz-based k-set agreement algorithms.) The proposed algo-
rithm is very simple. Moreover, the paper establishes that
t < n/2 and z ≤ k are two tight bounds of the k-set agree-
ment problem, when considering the (Ωz)1≤z≤n family of
failure detectors in an asynchronous message-passing system
(Theorem 1). Consequently, among all the classes described
in Figure 1, Ωk is the weakest class for solving asynchronous
k-set agreement (hence, the algorithm is optimal in that re-
spect). This constitutes a step towards the characterization
of the weakest failure detector class that allows solving the

k-set agreement problem. Due to space limitation, the pro-
tocol is given in [16].

From a methodology point of view, the paper uses as much
as possible reduction algorithms (striving not to reinvent the
wheel). Two more transformations for particular cases are
presented in [16]. These transformations are simpler and
more efficient than the general transformation building a
failure detector of the class Ωz from failure detectors of the
classes �Sx and �φy. The first transforms φy into Ωz for
y + z > t. The second presents an addition algorithm of
�Sx with �φy that provides �S when x + y > t.

Roadmap. The paper is made up of 5 sections. Section 2
describes the asynchronous computing model and the classes
of failure detectors we are interested in. Section 3 presents
lower bound on the solvability of the k-set agreement prob-
lem in asynchronous systems equipped with a failure detec-
tor of the family (Ωz)1≤z≤n. Then, Section 4 presents an al-
gorithm that builds a failure detector of the class Ωz from a
pair of underlying failure detectors, one of the class �φy , the
other of the class �Sx. Section 5 shows that x+y+z > t+1
is a necessary requirement for the previous construction, and
establishes the irreducibility relations depicted by the grid
of Figure 1. Due to page limitations, (1) the proof of the
transformation algorithm and (2) the k-set agreement pro-
tocol based on Ωk are given in [16].

2. COMPUTATION MODEL

2.1 Asynchronous System with Process Crash
Failures

We consider a system consisting of a finite set Π of n ≥ 2
processes, namely, Π = {p1, p2, . . . , pn}. When it is not
ambiguous we also use Π to denote the set of the identities
1, . . . , n of the processes. A process can fail by crashing, i.e.,
by prematurely halting. It behaves correctly (i.e., according
to its specification) until it (possibly) crashes. By definition,
a process is correct in a run if it does not crash in that run;
otherwise it is faulty. As previously indicated, t denotes
the maximum number of processes that can crash in a run
(1 ≤ t < n). The identity of the process pi is i, and each
process knows all the identities.

155

Processes communicate and synchronize by sending and
receiving messages through channels. Every pair of process-
es is connected by a channel. Channels are assumed to be
reliable: they do not create, alter or lose messages. In partic-
ular, if pi sends a message to pj , then eventually pj receives
that message unless it fails. There is no assumption about
the relative speed of processes or message transfer delays
(let us observe that channels are not required to be fifo).

Broadcast(m) is an abbreviation for “foreach pj ∈ Π do
send(m) to pj enddo”. Moreover, we assume (without loss
of generality) that the communication system provides the
processes with a reliable broadcast abstraction [9]. Such an
abstraction is made up of two primitives Broadcast() and
Deliver() that allow a process to broadcast and deliver mes-
sages (we say accordingly that a message is R broadcast or
R delivered by a process) and satisfy the following proper-
ties:

• Validity: If a process R delivers m, then some process
has R broadcast m. (No spurious messages.)

• Integrity: A process R delivers a message m at most
once. (No duplication.)

• Termination: If a message m is R broadcast or R deli-
vered by a correct process, then all the correct process-
es R delivers m. (No message R broadcast or R delive-
red by a correct process is missed by a correct process.)

As we can see, the messages sent (resp., R broadcast) by
a process are not necessarily received (resp., R delivered)
in their sending order. Moreover, different processes can
R deliver messages in different order. There is no assump-
tion on message transfer delays. The communication system
is consequently reliable and asynchronous.

2.2 Failure Detector Classes
The definition of the families of failure detector class-

es (Sx)1≤x≤n, (�Sx)1≤x≤n, (φy)0≤y<n and (Ωz)1≤z≤n have
been sketched in the introduction. This section provides
more complete definitions.

The classes (Sx)1≤x≤n and (�Sx)1≤x≤n. A failure detector
of the class Sx or �Sx consists of a set of modules, each one
attached to a process: the module attached to pi maintains
a set (named suspectedi) of processes it currently suspects
to have crashed. As in other papers devoted to failure detec-
tors, we say “process pi suspects process pj at some time τ”,
if pj ∈ suspectedi at that time. Moreover, (by definition) a
crashed process suspects no process.

The failure detector �Sx [18, 24] class generalizes the class
�S defined in [3] (we have �Sn = �S). A failure detector
belongs to the class �Sx if it satisfies the following proper-
ties:

• Strong Completeness: Eventually, every process that
crashes is permanently suspected by every correct pro-
cess.

• Limited Scope Eventual Weak Accuracy: There is a time
after which there is a set Q of x processes such that
Q contains a correct process and that process is never
suspected by the processes of Q.

Similarly, the class Sx generalizes the class S [3] (and we
have Sn = S). A failure detector of the class Sx satisfies the

previous strong completeness property, plus the following
accuracy property:

• Limited Scope Perpetual Weak Accuracy: there is a set
Q of x processes such that (from the very beginning)
Q contains a correct process and that process is never
suspected by the processes of Q.

It is easy to see that Sx+1 ⊆ Sx, �Sx+1 ⊆ �Sx, and
Sx ⊆ �Sx. It is also easy to see that the failure detectors of
the classes S1 and �S1 provide no information on failures.
It has been shown in [10] that �Sx is the weakest failure
detector class of the family (�Sx)1≤x≤n that allows solving
k-set agreement for k = t−x +2, in asynchronous message-
passing systems with a majority of correct processes (t <
n/2).

The classes (Ωz)1≤z≤n. This family of failure detectors has
been introduced in [20]. A failure detector of the class Ωz

maintains at each process pi a set of processes of size at most
z (denoted trustedi) that satisfies the following property:

• Eventual Multiple Leadership: there is a time after which
the sets trustedi of the correct processes contain for-
ever the same set of processes and at least one process
of this set is correct.

The family (Ωz)1≤z≤n generalizes the class of failure de-
tectors Ω defined in [2] (we have Ω1 = Ω).

Recently, another generalization of Ω has been studied in
[6] that considers ΩS , where S is a predefined subset of the
processes of the system. ΩS requires that all the correct
processes of S eventually agree on the same correct leader
(it is not required that their eventual common leader belongs
to S). Let X be the set of all the pairs of processes. It is
shown in [6] that, given all the Ωx, x ∈ X, it is possible to
build Ω.

The classes (φy)0≤y<n. These failure detector classes have
been introduced in [14] to solve set agreement problems in
combination with conditions [13]. Differently from the pre-
vious classes of failure detectors that provides each process
pi with a set (suspectedi or trustedi) that pi can only read,
a failure detector of a class φy provides the processes with a
primitive query(X), where X is a set of process identities
supplied by the invoking process. Such a primitive allows
a process pi to query about the crash of a region X of the
system. More precisely, a failure detector of the class φy

is defined by the following properties (remind that t is an
upper bound on the number of process crashes):

• Triviality property. If |X| ≤ t − y, then queryy(X)
returns true . If |X| > t, then query(X) returns false.

• Safety property. If t − y < |X| ≤ t, then if at least
one process in X has not crashed when query(X) is
invoked, the invocation returns false.

• Liveness property. Let X be such that t− y < |X| ≤ t.
Let τ be a time such that, at time τ , all the process-
es in X have crashed. Moreover, let us assume that
after τ there is an infinite sequence of invocations of
query(X). Then, for some time τ ′ ≥ τ , all the invo-
cations of query(X) return true.

156

The triviality property provides the invoking process with
a trivial output when the set X is too small or too big. The
safety property states that if the output is true , then all
the processes in X have crashed. The liveness property s-
tates that query(X) eventually outputs true when all the
processes in X have crashed. It is shown in [14] that (1)
φy+1 ⊆ φy, and (2) φt and the class P of perfect failure
detectors are equivalent in any system where at most t pro-
cesses can crash. Moreover, it is easy to see that φ0 provides
no information on failures. Within the family (φy)0≤y≤t of
failure detector classes, φy is the weakest for solving k-set
agreement for k = t−y+1, in asynchronous shared memory
systems.

The classes (�φy)0≤y<n. The failure detector class �φy is
the “eventual” counterpart of the class φy . More precisely,
a failure detector of the class �φy is defined by the following
properties (remind that t is an upper bound on the number
of process crashes):

• Triviality property. If |X| ≤ t − y, then queryy(X)
returns true . If |X| > t, then query(X) returns false.

• Eventual Safety property. Let X be such that t − y <
|X| ≤ t. Suppose that at least one correct process
belongs to X. Moreover, let us assume that there is
an infinite sequence of invocation of query(X). Then,
it exists some time τ from which all the invocations of
query(X) return false.

• Liveness property. Let X be such that t− y < |X| ≤ t.
Let τ be a time such that, at time τ , all the process-
es in X have crashed. Moreover, let us assume that
after τ there is an infinite sequence of invocations of
query(X). Then, for some time τ ′ ≥ τ , all the invo-
cations of query(X) return true .

As for the classes (φy)0≤y≤t, it follows from these proper-
ties that (1) �φy+1 ⊆ �φy , and (2) �φt and the class �P
are equivalent in any system where at most t processes can
crash.

Notation. Let F and G be any two classes among the pre-
vious classes of failure detectors. The notation ASn,t[F]
is used to represent a message-passing asynchronous system
made up of n processes, where up to t may crash (1 ≤ t ≤ n),
equipped with a failure detector of the class F . Similarly,
ASn,t[F , G] denotes a system equipped with a failure de-
tector of the class F and a failure detector of the class G.
Finally, ASn,t[∅] denotes a “pure” asynchronous message-
passing system (i.e., without additional equipment).

3. FROM ΩK TO K-SET AGREEMENT

3.1 A k-Set Agreement Algorithm
As announced in the introduction, it is possible to design

an Ωk-based k-set agreement algorithm. Due space limita-
tion, such an algorithm (inspired from an Ω-based consensus
protocol [8]) with its proof are described in [16]. This algo-
rithm assumes t < n/2.

3.2 A Lower Bound
Considering an asynchronous message-passing system e-

quipped with a failure detector of the class Ωz, 1 ≤ z ≤ n,

this section establishes that t < n/2 and z ≤ k are neces-
sary and sufficient conditions for solving the k-set agreement
problem. As already noticed, this result is obtained by a re-
duction to the problem of the weakest failure detector in the
family (�Sx)1≤x≤n that allows solving k-set agreement.

Theorem 1. The k-set agreement problem is solvable in
ASn,t[Ω

z] if and only if t < n/2 and z ≤ k.

Proof [⇒ part] The proof is by contradiction. let us assume
that there is an algorithm A that solves the k-set agreement
problem in ASn,t[Ω

z] such that t ≥ n/2 or z > k. Due
to Theorem 5, there is an algorithm T that builds a failure
detector of the class Ωz in ASn,t[�St−z+2]. Moreover, there
are such transformation algorithms (e.g., the one presented
in Section 4 with y = 0) that are independent of the value of
t (i.e., t < n). Combining such a transformation T and the
algorithm A, we obtain an algorithm that solves the k-set
agreement problem in ASn,t[�St−z+2]. It then follows from
the lower bound established by Herlihy and Penso [10] for
solving the k-set agreement problem in ASn,t[�St−z+2] that
t < min(n/2, (t − z + 2) + k − 1), from which we conclude
t < n/2 and z ≤ k: a contradiction.
[⇐ part] This part follows directly from the very existence
of the Ωk-based k-set agreement algorithm described in [16].

�Theorem 1

4. ADDITIVITY OF THE FAILURE DETEC-
TOR CLASSES �SX AND �φY

This section presents an algorithm that, given as input
any pair of failure detectors of the classes �Sx and �φy,
constructs a failure detector of the class Ωz , provided that
x + y + z > t + 1. (It is proved in Section 5.1 that this
is a necessary requirement for such a construction, thereby
showing that the algorithm is optimal.)

The algorithm is made up of two components that we call
wheels because each “turns” like a gear-wheel until they be-
come synchronized and stop turning. The wheel that is the
first to eventually stop is the one whose progress depends
on the the underlying �Sx failure detector (“lower” wheel).
When it stops, it provides a property that allows the sec-
ond wheel in turn to eventually stop (“upper” wheel). As
we will see, the wheel metaphor comes from the fact that
each component is made up of main tasks that “turn”, each
scanning a sequence until some property becomes satisfied.

Let us remind that 1 ≤ x ≤ n. Moreover, as the class
�φt is equivalent to the class of eventual perfect failure de-
tectors we consider only the cases 0 ≤ y ≤ t, from which
we conclude t − y + 1 > 0. Finally, as z ≥ t + 2 − (x + y)
is a necessary requirement and Ω1 is the strongest class in
the family (Ωz)1≤z≤n, the only interesting cases for the pair
(x, y) are when t + 2− (x + y) ≥ 1. Hence, in the following
we consider that t − y + 1 > 0, z = t + 2 − (x + y) and
t + 2− (x + y) > 0.

4.1 The Lower Wheel Component
The aim of this component is to provide each process pi

with a local variable repri intended to contain a process
identity and such that the following property becomes even-
tually satisfied: there is a set X of x processes that either
have crashed, or the variables repri of the processes of X
that have not crashed, contains the identity �x of one of

157

them that is a correct process. This process is their com-
mon representative (leader). The variable repri of a process
pi that does not belong to X has to be equal to the identity
i of pi.

To attain this goal the processes use their sets suspectedi

that collectively satisfy the completeness and limited scope
eventual accuracy properties defining the class �Sx. Let X
be the finite set of all the sets of x processes that can be built
from the set Π = {p1, . . . , pn}. Let nb x denote the num-
ber of combinations of x elements in a set of n elements.
X has nb x elements. Let us organize X as a sequence,
and let X [k] be its kth element, 1 ≤ k ≤ nb x. With-
in X [k], let us arrange the x processes it is made up of in
some predefined (arbitrary) order: �k

1 , . . . , �k
x. This means

that the infinite sequence X [1],X [2], . . . ,X [nb x], X [1], . . .
gives rise to an infinite sequence of process identities, name-
ly, �11, . . . , �1

x, �21, . . . , �2
x, �31, . . . (see Figure 3). This sequence

is assumed to be initially known by all the processes in order
they can scan it in the same order.

In addition to its output repri , each process pi manages
a local set Xi and a local variable �xi. It starts with Xi

initialized to X [1], and �xi initialized to �11 (the first process
of X [1]). Then, it uses the function Next(−,−) defined as
follows to progress along the infinite sequence of process
identities. Next(�k

y ,X [k]) outputs the pair (�k
y+1,X [k]) if y <

x and the pair (�k+1
1 ,X [k + 1]) if y = x (with k + 1 being

replaced by 1 when k = nb x).
The behavior of the lower wheel component of a process pi

is described in Figure 4. It is made up of two simple tasks.
The processes scan the infinite sequence of sets generated
from X until they stabilize. Xi represents the set of x pro-
cesses that are currently in charge of extracting a common
representative �xi from this set. To do it, each process pi

that belongs to Xi uses its set suspectedi provided by the
underlying failure detector of the class �Sx. If the processes
of Xi succeed in not suspecting one of them -whose identity
is kept by pi in �xi-, they stop sending x move() messages.
Differently, if a process pj of the set Xi suspects its cur-
rent “leader” �xj , it uses the reliable broadcast primitive to
send the message x move(�xj , Xi) indicating that, from its
point of view, �xj cannot be their common representative.
A process pj delivers a message x move(�x, X) only when
�x = �xi and Xi = X; it then proceeds to the next process
identity (according to the infinite sequence), and possibly
to the next candidate set X [k + 1] if Xi = X = X [k] and
�x = �xi is the last process of X [k].

Let us finally consider that the processes progress until
they consider a set X such that the x processes that consti-
tute X have crashed. It is easy to see that each non-crashed
process pi continues looping inside task T1 without sending
messages, and is such that repri = i.

Proof of the lower wheel component. The proof considers
an arbitrary run of the algorithm described in Figure 4. C
denotes the set of processes that are correct in that run.
Moreover, varτ

i denotes the value of the local variable vari

at time τ .

Lemma 1. ∀i ∈ C, there are a pair (λi, σi) and a time τi

such that ∀τ ≥ τi : (�xτ
i , Xτ

i) = (λi, σi).

Corollary 1. The protocol is quiescent (i.e., eventually
all the processes stop sending x move messages).

Lemma 2. ∀i, j ∈ C : (λi, σi) = (λj , σj). (In the follow-
ing, (λ, σ) denotes that pair.)

Lemma 3. (σ ∩ C �= ∅)⇒ (λ ∈ C).

Theorem 2. The algorithm described in Figure 4 ensures
the existence of a set X and a time τ such that ∀τ ′ ≥ τ , the
following holds:

1. |X| = x,
2. i ∈ Π−X ⇒ repri = i,
3. ∀i, j ∈ X ∩ C : repri = reprj = ρ ∈ C ∩X.

Proof Let τ = max{τi : i ∈ Π} where τi is the time
introduced in Lemma 1, and σ and λ be the set and the
process identity defined in Lemma 2. Let us first observe
that due to its definition (σ is a set Xi) we have |σ| = x (1).
Let pi be a correct process. If i ∈ Π−X, then as the value
of repri does not change after time τ (Lemma 1 and Task
T1), it follows that repri = i is permanently true from time
τ (2). Moreover, it directly follows from Lemma 2 and task
T1 that all the correct processes pj belonging to the set σ
have permanently the same representative reprj = λ from
time τ . Finally, λ is the identity of a correct process due
to Lemma 3 (3). Taking X = σ, τ = max{τi : i ∈ Π} and
ρ = λ completes the proof of the theorem. �Theorem 2

4.2 The Upper Wheel Component
The “upper wheel” component consists of four tasks T3−

T6 (Figure 5). Similarly to the lower wheel component, it
uses a set, that we call Y, including all the possible sets of
t−y +1 processes built from the n processes composing the
system. Let nb y denote the number of such distinct sets.
Organizing Y as a sequence, let Y[k] be its kth element, and
let us consider the infinite sequence Y[1],Y[2], . . . ,Y[nb y],
Y[1], . . . Moreover, given any set Y[k] of this sequence, let us
consider all its subsets of size z = (t + 2)− (x+ y) (let nb L
denote the number of such subsets). Finally, let us order
them (the order is arbitrary). Let Lk

1 , Lk
2 , . . . , Lk

nb L denote
the sequence of all the sets of size (t+2)− (x+y) generated
from the set Y[k] (whose size is t − y + 1). As before, the
infinite sequence L1

1, L1
2, . . . , L1

nb L, L2
1, . . . , L2

nb L, . . . ,
Lnb y

1 , . . . , Lnb y
nb L, L1

1, L1
2, . . . is initially known by each

process. The function Next(Lk
r ,Y[k]) is defined similarly

to the previous Next() function. It outputs (Lk
r+1,Y[k]) if

r < nb L, and outputs (Lk+1
1 ,Y[k + 1]) if r = nb L (k + 1

being replaced by 1 when k = nb y).

Given these ingredients we can now describe the principles
the additive transformation relies on. The aim is for pi to
return Li as the value of the set trustedi it provides to the
upper layer (remind that this set has to include at most z
processes and eventually at least one correct process). With-
in the upper wheel component, the processes start from the
set Y[1] and then scan the same infinite sequence of sets
Y[1],Y[2], . . . ,Y[nb y],Y[1], . . . (tasks T3 and T4). When
pi is working with Yi, it looks for one of its subset Li (of
size z) containing a correct process (when this occurs, that
set defines the value of trustedi). To check if its current set
Li contains a correct process, pi sends inquiry() messages
and waits until it has received at least one response(id)
message from a process of Yi or all the processes of the set
Yi have crashed (task T3). When a process pj sends back a

158

X︷ ︸︸ ︷
X [1]

︷ ︸︸ ︷
�1
1, �1

2, , �
1
x, · · ·

X [i]
︷ ︸︸ ︷
, �i

1, . . . �i
j , �i

j+1, . . . , �i
x,

X [i + 1]
︷ ︸︸ ︷
�i+1
1 , . . . , �i+1

x , · · ·
X [nb x]

︷ ︸︸ ︷
, �nb x

1 , �nb x
2 , . . . , �nb x

x

Next
(
(�i

x,X [i])
)

Next
(
(�nb x

1 ,X [nb x])
)

Next
(
(�nb x

x ,X [nb x])
)

Figure 3: The Next() function on the logical ring (�,X)

Init: Xi ← X [1]; �xi ← �11; repri ← i
Task T1:

repeat forever
if (i ∈ Xi) then repri ← �xi else repri ← i end if ;
if

�
(i ∈ Xi) ∧ (�xi ∈ suspectedi)

�
then R Broadcast x move

�
�xi, Xi) end if

end repeat
Task T2: when x move(�xi, Xi) is R delivered: (�xi, Xi)← Next(�xi, Xi)

Figure 4: From �φy + �Sx to Ωz: lower wheel component (code for pi)

response, it sends the last identity reprj currently comput-
ed by its underlying wheel (task T5). Let us consider two
cases.

• Case A. The first case is when all the processes of
Yi have crashed (φ-query(Yi) then eventually returns
true , lines 04 and 09). It follows that the task T3 stop-
s broadcasting R Broadcast l move(Li, Yi) messages.
In that case, the value returned for trustedi (line 09) is
the smallest identity among the non-crashed processes.

• Case B. The second case is when pi receives a response
message from a process in Yi. Then, the set rec fromi

is not empty and contains the identities of the repre-
sentative reprj of each process pj that has answered.
We consider two subcases.

- Case B.1. None of these identities belongs to
Li. pi then suspects that all the processes of
Li have crashed. It consequently broadcasts the
message R Broadcast l move(Li, Yi) to entail the
progress of all the processes to the next Li set.

- Case B.2. One of these identities belongs to Li.
In that case pi considers that its current set Li

contains one correct process (the one with that
identity). It then continues sending inquiry()
messages until either none of the identities it re-
ceives belongs to Li (and then we are in case B.1),
or it receives a R Broadcast l move(Li, Yi) mes-
sage which entails its progress to the next Li.

Let us notice that, due to the property eventually ensured
on the reprj local variables by the lower wheel component,
there is a time after which all the response(id) messages
carry identities of correct processes. It follows that if the set
Li currently investigated by the processes does not change,
that set includes at least one correct process and we have
obtained the property required for trustedi.

To capture the intuition that underlies the fact that the
two wheels synchronize and the processes stabilize on the
same set L, let us first recall that, due to the properties of
the lower wheel component, there is a time after which there
is a set X of x processes such that (1) either all its processes

have crashed, or (2) each non-crashed process pj of X is such
that reprj = �x (the identity of a correct process of X). In
both cases, a process pi that does not belong to X is then
such that repri = i.

Yi

Li
x − 1

|Yi| = t − y + 1

|Li| = z = t + 2 − (x + y)

1

X

|X| = x

�x

�x

Figure 6: When the upper wheel stops looking for
a new Li set

Let us examine the configuration described in Figure 6.
We show that in this configuration a process pi cannot en-
tail the progress from (Li, Yi) to Next(Li, Yi). As this is
true for any process pi, it follows that the processes con-
verge to the same final leader set Li. The configuration
occurs when Yi contains at least one non-crashed process,
X ⊆ Yi, Yi ∩X = {�x}, and �x is the identity of the com-
mon representative of the non-crashed processes of X (or
the identity of any of them if they all have crashed). In that
configuration, any response(id) message sent by any pro-
cess pj ∈ Yi carries an identity that belongs to Li. It follows
that rec fromi ∩ Li �= ∅ (line 06), and so pi does not issue
R Broadcast l move(Li, Yi) messages.

Proof of the upper wheel component. The proof is very
similar to the proof of the lower wheel algorithm. Its struc-
ture is the same, and some of its parts are also the same.
This is a direct consequence of the fact that both compo-
nents are based on the same “wheel” principle. The proof
considers an arbitrary run of the algorithm. As before, C
denotes the set of processes that are correct in that run, and
varτ

i denotes the value of the local variable vari of pi at time
τ .

159

Init: Yi ← Y[1]; Li ← L1
1

Task T3:
(01) while true do
(02) Broadcast inquiry();
(03) wait until

�
(∃j ∈ Yi: a corresponding response(idj) is received from pj)

(04) ∨ φ-query(Yi)
�
; % Yi can dynamically change %

(05) let rec fromi = {idj received previously at line 03 };
(06) if (rec fromi �= ∅) ∧ (rec fromi ∩ Li = ∅) then
(07) R Broadcast l move(Li, Yi) end if
(08) end do

Task T4: when l move(Li, Yi) is R delivered: (Li, Yi)← Next(Li, Yi)
Task T5: when inquiry() is received from pj : send response(repri) to pj

Task T6: when trustedi is read by the upper layer:
(09) case φ-query(Yi) then return(min

�
j : j /∈ Yi ∧ ¬φ-query(Yi ∪ {j})

�

(10) ¬φ-query(Yi) then return(Li)
(11) end case

Figure 5: From �φy + �Sx to Ωz: upper wheel component (code for pi)

Lemma 4. ∀i ∈ C, there are a pair (Λi, Υi) and a time
τi such that ∀τ ≥ τi : (Lτ

i , Y τ
i) = (Λi, Υi).

Corollary 2. It exists a time after which no process
sends l move messages.

Lemma 5. ∀i, j ∈ C : (Λi, Υi) = (Λj , Υj). (In the fol-
lowing, (Λ, Υ) denotes that pair.)

Theorem 3. The sets trustedi implemented by the algo-
rithm described in Figure 5 satisfy the property defining the
class Ωz.

Proof Due to Lemma 5, there is a time after which all pro-
cesses have permanently the same pair (Λ, Υ). We consider
two cases:

• Υ ∩ C = ∅. In that case, due to the liveness proper-
ty of the class �φy , there is a time after which any
φ-query(Υ) returns true. It follows then from line 09
that all the set trustedi are eventually equal and con-
tain only the identity of a correct process (namely, the
correct process with the lowest identity that does not
belong to Υ).

• Υ ∩ C �= ∅. In that case, any φ-query(Υ) eventually
always returns false (eventual safety property of the
class �φy). It follows then from line 10 that all the
sets trustedi are eventually permanently equal to Λ.
As |Λ| = z, it remains to show that Λ ∩ C �= ∅.
Let us assume for contradiction that Λ ∩ C = ∅. Let
pi be a correct process. Due to properties ensured
by the lower wheel (Theorem 2), there is a time af-
ter which any message response(repr) contains the
identity of a correct process. From the assumption
that Λ contains only faulty processes, it follows that
there is a time τ1 after which pi cannot receive a re-
sponse message that carries the identity of a process
belonging to Λ. Moreover, since set Υ contains at
least one correct process, it follows from line 03-04
and the eventual safety property of the class �φy that
it exists a time τ2 after which pi always gets a re-
sponse(reprj) message from some process pj , j ∈ Υ
while waiting at lines 03-04. Finally, there is a time τi

after which the predicate (Li, Yi) = (Λ, Υ) is perma-
nently true (Lemma 4). Consequently, there is a time

τ ≥ max(τ1, τ2, τi) at which the predicate in the if s-
tatement of line 06 is not satisfied (i.e., at time τ , we
have rec fromi �= ∅∧rec fromi∩Λ = ∅). It follows then
that pi broadcasts a l move(Λ, Υ) message. When pi

delivers such a message, it executes (Li, Yi) ← Nex-
t(Λ, Υ). The fact that this occurs after the time τi

contradicts Lemma 4.

�Theorem 3

A Particular Case. If y = 0, �φy provides no information
on failures. The upper wheel algorithm can be simplified by
suppressing task T6 and line 04 of task T3. The value of
trustedi is the current value of Li.

5. LOWER BOUNDS AND REDUCIBILITY
RESULTS

This section first states a lower bound related to the ad-
dition of failure detector classes (Fig. 2). It then proves the
(ir)reducibility results stated in the grid of Figure 1.

5.1 A Lower bound when Adding �Sx and �φy

This section shows that (x + y + z > t + 1) is a lower
bound when one wants to add failure detectors of the class
�Sx and �φy to build a failure detector of the class Ωz.

Theorem 4. Let us consider any system ASn,t[�Sx, �φy].
(�Sx + �φy � Ωz)⇔ (x + y + z > t + 1).

Proof [⇐ part] This part follows directly from the two
wheels algorithm previously described in Sections 4.1 and
4.2.

[⇒ part] The proof of this part is by contradiction and con-
siders the stronger system ASn,t[Sx, φy]. As Sx ⊆ �Sx and
φy ⊆ �φy, an impossibility result established inASn,t[Sx, φy]
holds in ASn,t[�Sx, �φy].

Let us assume that there is an algorithm T that builds
a failure detector of the class Ωz in ASn,t[Sx, φy] with x +
y + z ≤ t + 1. The contradiction is based on the following
observations:

• Observation O1: Let f be the number of actual fail-
ures. When f ≤ t − y, the only information that a

160

failure detector of the class φy can provide is the fact
that the number of failures is ≤ t− y.
Proof of O1. Consider a run where f ≤ t − y. Let
E ⊆ Π. Due to the triviality property of φy any
φ-query(E) returns true (resp., false) when |E| ≤
t − y (resp., |E| > t). As f ≤ t − y there is al-
ways a correct process in any set E such that t− y <
|E| ≤ t. It follows that, due the safety property of φy

any φ-query(E) returns false when t − y < |E| ≤ t.
Consequently the boolean value returned by any φ-
query(E) depends on the size of X, and does not de-
pend on which processes define E. End of the Proof
of O1.

• Observation O2: There is no algorithm that solves
the k-set agreement problem in ASn,t[Sx] when t ≥
k + x− 1.
Proof of O2. This is a lower bound for solving the
k-set agreement problem in ASn,t[Sx] established in
[10]. End of the Proof of O2.

Let us now consider the transformation T . In any run
where f ≤ t−y, it follows from O1 that T can rely on φy only
to know that the number of failures is ≤ t− y. This implies
that T can be used to build a failure detector of the class Ωz

in ASn,t−y[Sx]. Moreover, it exists and algorithm A that
solves the z-set agreement problem in ASn,t−y[Ωz] (such
an algorithm is presented in Section 3.1). Consequently,
by combining transformation T and algorithm A, one can
solve the z-set agreement problem in ASn,t−y[Sx]. Hence,
it follows from O2 that the constraint t− y < z + x− 1 has
to be satisfied, from which we obtain x + y + z > t + 1: a
contradiction. �Theorem 4

The following corollary is a consequence of Theorem 4.

Corollary 3. The two wheels algorithm described in Fig-
ures 4 and 5 is optimal with respect to the possible values of
x, y and z.

As �S1 (case x = 1) and �φ0 (case y = 0) provide no infor-
mation on failures, we directly obtain the following corollar-
ies from the two wheel algorithm and Theorem 4.

Corollary 4. It is possible to build a failure detector
of the class Ωz in ASn,t[φ

y] or ASn,t[�φy] if and only if
y + z > t.

Corollary 5. It is possible to build a failure detector of
the class Ωz in ASn,t[�Sx] if and only if x + z > t + 1.

5.2 Relations between Sx/�Sx and φy/�φy

Theorem 5. Let 1 ≤ x ≤ t + 1 and 1 ≤ y ≤ t. It is not
possible to build a failure of the classes φy ,�φy neither in
ASn,t[�Sx] nor in ASn,t[Sx].

Proof The proof considers the “stronger” systemASn,t[Sx].
the proof remains valid for a system ASn,t[�Sx], since Sx ⊆
�Sx. Similarly, as φy ⊆ �φy the proof considers only the
“weaker” class �φy in the following. The proof is by con-
tradiction. Let us assume that there is a failure detector F
of the class Sx and an algorithm A that transforms F into
a failure detector of the class �φy. We exhibit a run R in
which the eventual safety property of the class �φy is not
satisfied.

Let E ⊆ Π, |E| = t − y + 1 and E ∩ C �= ∅. Let pc be
a correct process that does not belong to set E. Moreover,
pc is never suspected by F in run R. Let τ0 be the time
at which any φ-query(E) invoked after time τ0 returns the
value false. Such a time exists due to the correctness of
algorithm A and the eventual safety property of the class
�φy . We consider the following runs R1 and R1′:

• Runs R1 and R are indistinguishable by all processes
until time τ0. A time τ0 + 1, all processes that belong
to E crash. Let τ1 > τ0 be a time at which a process
pi ∈ Π−E invokes φ-query(E) and obtains the value
true. Such a time must exist due to liveness property
of the class �φy.

• Runs R1′ and R are indistinguishable by all processes
until time τ0. In the run R1′, all the processes in E are
correct, but all the messages they send between times
τ0 + 1 and τ1 are delayed until time τ1 + 1.

Moreover, both runs are such that the outputs of the failure
detector F , at each process, are exactly the same between
the times 0 and τ1. (Let us notice that whatever the output
of F in R1, the output of F can be exactly the same in R1′

without violating the properties of the class Sx. As pc is
correct in R1 and R1′ and never suspected in R1 and R1′,
limited scope perpetual accuracy is insured. Since strong
completeness is an eventual property, it is always satisfied
in any finite prefix of any execution.) Clearly, up to time τ1,
the processes that belong to Π − E cannot distinguish the
run R1 from the run R1′. It follows that, in the run R1′, an
invocation of φ-query(E) by pi at time τ1 > τ0 returns the
value true. But in run R1′, a φ-query(E) issued after time
τ0 must return the value false: a contradiction. �Theorem 5

Theorem 6. Let 0 ≤ y < t and 1 < x ≤ t + 1. It is not
possible to build a failure of the class Sx or �Sx neither in
ASn,t[�φy] nor in ASn,t[φ

y].

Proof Let us first notice that we need to prove only the
impossibility to build a failure detector of the class �Sx

in ASn,t[φ
y]. The proof is by contradiction and uses the

following observations.
Observation O1: Let f be the number of actual failures.

When f ≤ t−y, the only information that a failure detector
of the class φy can provide is the fact that the number of
failures is ≤ t−y. (This observation has already been stated
and proved in Theorem 4.)

Observation O2: There are algorithms that solve the k-
set agreement problem in ASn,t[Sx]. All these algorithms
require t ≤ k + x − 2. (Examples of such algorithms can
be found in [10, 18]. The lower bound on t is established in
[10].)

Observation O3: The k-set agreement problem can be
solved in ASn,t−y[∅] if and only if k > t. (The proof of this
observation constitutes an important result of fault-tolerant
distributed computing. It can be found in [1, 11, 22].)

Let us suppose that there is an algorithm A that builds a
failure detector of the class �Sx from a failure detector of the
class φy. In any run where f ≤ t−y, it follows from O1 that
A can rely on φy only to know that the number of failures is
≤ t− y. Consequently, A can build a failure detector of the
class �Sx in a system ASn,t−y[∅]. This means that one can
use A to solve the the (t− y)−x+2-set agreement problem
using any algorithm listed in observation O2 in a system

161

ASn,t−y[∅]. We then conclude from O3 that (t − y) − x +
2 > t − y, i.e., x ≤ 1, a contradiction with the assumption
1 < x ≤ n 1. �Theorem 6

5.3 From Ωz to φy/�φy or Sx/�Sx

It has been shown (Corollaries 5 and 4) that it is possible
to build a failure detector of the class Ωz from any failure
detector of the classes Sx/�Sx (resp., φy/�φy) if and only
if x + z > t + 1 (resp., y + z > t). This section shows that
it is not possible to build a failure detector of the classes
Sx/�Sx (resp., φy/�φy) from any failure detector of the
class Ωz . The proofs of these impossibilities derived from
Theorem 6 and 5.

Theorem 7. Let 1 ≤ y ≤ t and 1 ≤ z ≤ t + 1. It is
impossible to build a failure detector of a class φy/�φy in
ASn,t[Ω

z].

Proof The proof is by contradiction. Let us assume that
there is an algorithm A that builds a failure detector of a
class �φy , 1 ≤ y ≤ t , from any failure detector of a class
Ωz , 1 ≤ z ≤ t + 1. Due to Corollary 5, it is possible to
build a failure detector of a class Ωz in ASn,t[�Sx] when
x + z > t + 1, i.e., when z > t − x + 1. Combining this
construction with the algorithm A we obtain an algorithm B
that builds a failure detector of the class φy, 1 ≤ y ≤ t from
a failure detector of the class �Sx when t+1−z < x ≤ t+1
and 1 ≤ z ≤ t + 1. But such an algorithm B contradicts
Theorem 5 that states that there is no such algorithm when
1 ≤ x ≤ t + 1 and 1 ≤ y ≤ t. �Theorem 7

Theorem 8. Let 1 < x, z ≤ t. It is impossible to build a
failure detector of the class Sx/�Sx in ASn,t[Ω

z].

Proof The proof is similar to the proof of Theorem 7. It
is left to the reader. �Theorem 8

5.4 Optimality in the Grid
It follows from all the previous theorems and lemmas that,

when we consider all the failure detector classes depicted in
Figure 1, Ωk is the weakest class that allows solving the k-
set agreement problem. This constitutes a first step towards
the characterization of the weakest failure detector class for
solving that problem.

6. REFERENCES
[1] Borowsky E. and Gafni E., Generalized FLP Impossibility

Results for t-Resilient Asynchronous Computations. Proc.
25th ACM Symp. on the Theory of Computing
(STOC’93), ACM Press, pp. 91-100, 1993.

[2] Chandra T., Hadzilacos V. and Toueg S., The Weakest
Failure Detector for Solving Consensus. Journal of the
ACM, 43(4):685–722, 1996.

[3] Chandra T.D. and Toueg S., Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[4] Chaudhuri S., More Choices Allow More Faults: Set
Consensus Problems in Totally Asynchronous Systems.
Information and Computation, 105:132-158, 1993.

[5] Chu F., Reducing Ω to �W . Information Processing
Letters, 76(6):293-298, 1998.

1Let us remind that the failure detectors of the classes S1

and �S1 provide no information on failures.

[6] Delporte-Gallet C., Fauconnier H. and Guerraoui R.,
(Almost) All Objects are Universal in Message Passing
Systems. Proc. 19th Symp. on Distributed Computing
(DISC’05), Springer Verlag LNCS #3724, pp. 184-198,
2005.

[7] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process. Journal of
the ACM, 32(2):374-382, 1985.

[8] Guerraoui R. and Raynal M., The Information Structure of
Indulgent Consensus. IEEE Transactions on Computers.
53(4), 53(4):453-466, 2004.

[9] Hadzilacos V. and Toueg S., Reliable Broadcast and
Related Problems. In Distributed Systems, acm Press,
New-York, pp. 97-145, 1993.

[10] Herlihy M.P. and Penso L. D., Tight Bounds for k-Set
Agreement with Limited Scope Accuracy Failure Detectors.
Distributed Computing, 18(2): 157-166, 2005.

[11] Herlihy M.P. and Shavit N., The Topological Structure of
Asynchronous Computability. Journal of the ACM,
46(6):858-923, 1999.

[12] Lamport L., The Part-Time Parliament. ACM
Transactions On Computer Systems, 16(2):133-169, 1998.

[13] Mostefaoui A., Rajsbaum S. and Raynal M., Conditions on
Input Vectors for Consensus Solvability in Asynchronous
Distributed Systems. Journal of the ACM, 50(6):922-954,
2003.

[14] Mostefaoui A., Rajsbaum S. and Raynal M., The
Combined Power of Conditions and Failure Detectors to
Solve Asynchronous Set Agreement. Proc. 24th ACM
Symp. on Principles of Distributed Computing
(PODC’05), ACM Press, pp. 179-188, 2005.

[15] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C.,
From �W to Ω: a Simple Bounded Quiescent Reliable
broadcast-based Transformation. Tech Report 1759, IRISA,
University of Rennes 1 (France), 2005.

[16] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C.,
Irreducibility and Additivity of Set Agreement-oriented
Failure Detector Classes. Tech Report 1758, IRISA,
University of Rennes 1 (France), 2005.
ftp://ftp.irisa.fr/techreports/2005/PI-1758.ps.gz.

[17] Mostefaoui A. and Raynal M., Solving Consensus Using
Chandra Toueg’s Unreliable Failure Detectors: a General
Quorum Based Approach. Proc. 13th Symp. on Distributed
Computing (DISC’99), Springer Verlage LNCS #1693, pp.
49-63, 1999.

[18] Mostefaoui A. and Raynal M., k-Set Agreement with
Limited Accuracy Failure Detectors. Proc. 19th ACM
Symp. on Principles of Distributed Computing
(PODC’00), ACM Press, pp. 143-152, 2000.

[19] Mostefaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 2001.

[20] Neiger G., Failure Detectors and the Wait-free Hierarchy.
Proc. 14th ACM Symp. on Principles of Distributed
Computing (PODC’95), ACM Press, pp. 100-109, 1995.

[21] Raynal M., A Short Introduction to Failure Detectors for
Asynchronous Distributed Systems. ACM SIGACT News,
Distributed Computing Column, 36(1):53-70, 2005.

[22] Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is
Impossible: The Topology of Public Knowledge. SIAM
Journal on Computing, 29(5):1449-1483, 2000.

[23] Schiper A., Early Consensus in an Asynchronous System
with a Weak Failure Detector. Distributed Computing,
10:149-157, 1997.

[24] Yang J., Neiger G. and Gafni E., Structured Derivations of
Consensus Algorithms for Failure Detectors. Proc. 17th
ACM Symp. on Principles of Distributed Computing
(PODC’98), pp.297-308, 1998.

162

