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ABSTRACT
Disjoint-access parallelism and wait-freedom are two desir-
able properties for implementations of concurrent objects.
Disjoint-access parallelism guarantees that processes oper-
ating on different parts of an implemented object do not
interfere with each other by accessing common base objects.
Thus, disjoint-access parallel algorithms allow for increased
parallelism. Wait-freedom guarantees progress for each non-
faulty process, even when other processes run at arbitrary
speeds or crash.

A universal construction provides a general mechanism for
obtaining a concurrent implementation of any object from
its sequential code. We identify a natural property of univer-
sal constructions and prove that there is no universal con-
struction (with this property) that ensures both disjoint-
access parallelism and wait-freedom. This impossibility re-
sult also holds for transactional memory implementations
that require a process to re-execute its transaction if it has
been aborted and guarantee each transaction is aborted only
a finite number of times.

Our proof is obtained by considering a dynamic object
that can grow arbitrarily large during an execution. In
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contrast, we present a universal construction which pro-
duces concurrent implementations that are both wait-free
and disjoint-access parallel, when applied to objects that
have a bound on the number of data items accessed by each
operation they support.

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed data structures; D.1.3
[Concurrent Programming]: Distributed programming

General Terms
Algorithms, Theory

Keywords
disjoint-access parallelism, impossibility result, universal con-
struction, wait-freedom

1. INTRODUCTION
Due to the recent proliferation of multicore machines, sim-

plifying concurrent programming has become a necessity, to
exploit their computational power. A universal construction
[21] is a methodology for automatically executing pieces of
sequential code in a concurrent environment, while ensur-
ing correctness. Thus, universal constructions provide func-
tionality similar to Transactional Memory (TM) [23]. In
particular, universal constructions provide concurrent im-
plementations of any sequential data structure: Each opera-
tion supported by the data structure is a piece of code that
can be executed.

Many existing universal constructions [1, 12, 16, 17, 20,
21] restrict parallelism by executing each of the desired op-
erations one after the other. We are interested in universal
constructions that allow for increased parallelism by being
disjoint-access parallel. Roughly speaking, an implementa-
tion is disjoint-access parallel if two processes that oper-
ate on disjoint parts of the simulated state do not interfere
with each other, i.e., they do not access the same base ob-
jects. Therefore, disjoint-access parallelism allows unrelated
operations to progress in parallel. We are also interested
in ensuring strong progress guarantees: An implementation
is wait-free if, in every execution, each (non-faulty) process
completes its operation within a finite number of steps, even
if other processes may fail (by crashing) or are very slow.



In this paper, we present both positive and negative re-
sults. We first identify a natural property of universal con-
structions and prove that designing universal constructions
(with this property) which ensure both disjoint access par-
allelism and wait-freedom is not possible. We prove this
impossibility result by considering a dynamic data structure
that can grow arbitrarily large during an execution. Specif-
ically, we consider a singly-linked unsorted list of integers
that supports the operations Append(L, x), which appends
x to the end of the list L, and Search(L, x), which searches
the list L for x starting from the first element of the list.
We show that, in any implementation resulting from the ap-
plication of a universal construction to this data structure,
there is an execution of Search that never terminates.

Since the publication of the original definition of disjoint-
access parallelism [25], many variants have been proposed [2,
9, 19]. These definitions are usually stated in terms of a con-
flict graph. A conflict graph is a graph whose nodes is a set
of operations in an execution. An edge exists between each
pair of operations that conflict. Two operations conflict if
they access the same data item. A data item is a piece of
the sequential data structure that is being simulated. For
instance, in the linked list implementation discussed above,
a data item may be a list node or a pointer to the first or
last node of the list. In a variant of this definition, an edge
between conflicting operations exists only if they are con-
current. Two processes contend on a base object, if they
both access this base object and one of these accesses is a
non-trivial operation (i.e., it may modify the state of the
object). In a disjoint-access parallel implementation, two
processes performing operations op and op′ can contend on
the same base object only if the conflict graph of the mini-
mal execution interval that contains both op and op′ satisfies
a certain property. Different variants of disjoint-access par-
allelism use different properties to restrict access to a base
object by two processes performing operations. Note that
any data structure in which all operations access a common
data item, for example, the root of a tree, is trivially disjoint
access parallel under all these definitions.

For the proof of the impossibility result, we introduce fee-
ble disjoint-access parallelism, which is weaker than all ex-
isting disjoint-access parallelism definitions. Thus, our im-
possibility result still holds if we replace our disjoint-access
parallelism definition with any existing definition of disjoint-
access parallelism.

Next, we show how this impossibility result can be circum-
vented, by restricting attention to data structures whose op-
erations can each only access a bounded number of different
data items. Specifically, there is a constant b such that any
operation accesses at most b different data items when it is
applied sequentially to the data structure, starting from any
(legal) state. Stacks and queues are examples of dynamic
data structures that have this property. We present a uni-
versal construction that ensures wait-freedom and disjoint-
access parallelism for such data structures. The resulting
concurrent implementations are linearizable [24] and satisfy
a much stronger disjoint-access parallelism property than we
used to prove the impossibility result.

Disjoint-access parallelism and its variants were originally
formalized in the context of fixed size data structures, or
when the data items that each operation accesses are known
when the operation starts its execution. Dealing with these
cases is much simpler than considering an arbitrary dynamic

data structure where the set of data items accessed by an
operation may depend on the operations that have been pre-
viously executed and on the operations that are performed
concurrently.

The universal construction presented in this paper is the
first that provably ensures both wait-freedom and disjoint-
access parallelism for dynamic data structures in which each
operation accesses a bounded number of data items. For
other dynamic data structures, our universal construction
still ensures linearizability and disjoint-access parallelism.
Instead of wait-freedom, it ensures that progress is non-
blocking. This guarantees that, in every execution, from ev-
ery (legal) state, some process finishes its operation within
a finite number of steps.

2. RELATED WORK
Some impossibility results, related to ours, have been pro-

vided for transactional memory algorithms. Transactional
Memory (TM) [23] is a mechanism that allows a program-
mer of a sequential program to identify those parts of the
sequential code that require synchronization as transactions.
Thus, a transaction includes a sequence of operations on
data items. When the transaction is being executed in a
concurrent environment, these data items can be accessed
by several processes simultaneously. If the transaction com-
mits, all its changes become visible to other transactions
and they appear as if they all take place at one point in
time during the execution of the transaction. Otherwise,
the transaction can abort and none of its changes are ap-
plied to the data items.

Universal constructions and transactional memory algo-
rithms are closely related. They both have the same goal of
simplifying parallel programming by providing mechanisms
to efficiently execute sequential code in a concurrent envi-
ronment. A transactional memory algorithm informs the
external environment when a transaction is aborted, so it
can choose whether or not to re-execute the transaction. A
call to a universal construction returns only when the sim-
ulated code has been successfully applied to the simulated
data structure. This is the main difference between these
two paradigms. However, it is common behavior of an ex-
ternal environment to restart an aborted transaction until it
eventually commits. Moreover, meaningful progress condi-
tions [11, 31] in transactional memory require that the num-
ber of times each transaction aborts is finite. This property
is similar to the wait-freedom property for universal con-
structions. In a recent paper [11], this property is called
local progress. Our impossibility result applies to transac-
tional memory algorithms that satisfy this progress prop-
erty. Disjoint-access parallelism is defined for transactions
in the same way as for universal constructions.

Strict disjoint-access parallelism [19] requires that an edge
exists between two operations (or transactions) in the con-
flict graph of the minimal execution interval that contains
both operations (transactions) if the processes performing
these operations (transactions) contend on a base object.
A TM algorithm is obstruction-free if a transaction can be
aborted only when contention is encountered during the
course of its execution. In [19], Guerraoui and Kapalka
proved that no obstruction-free TM can be strictly disjoint
access parallel. Obstruction-freedom is a weaker progress
property than wait-freedom, so their impossibility result also
applies to wait-free implementations (or implementations



that ensure local progress). However, it only applies to this
strict variant of disjoint-access parallelism, while we con-
sider a much weaker disjoint-access parallelism definition.
It is worth-pointing out that several obstruction-free TM al-
gorithms [18, 22, 26, 29] satisfy a weaker version of disjoint-
access parallelism than this strict variant. It is unclear
whether helping, which is the major technique for achieving
strong progress guarantees, can be (easily) achieved assum-
ing strict disjoint-access parallelism. For instance, consider
a scenario where transaction T1 accesses data items x and
y, transaction T2 accesses x, and T3 accesses y. Since T2

and T3 access disjoint data items, strict disjoint-access par-
allelism says that they cannot contend on any common base
objects. In particular, this limits the help that each of them
can provide to T1.

Bushkov et al. [11] prove that no TM algorithm (whether
or not it is disjoint-access parallel) can ensure local progress.
However, they prove this impossibility result under the as-
sumption that the TM algorithm does not have access to
the code of each transaction (and, as mentioned in their in-
troduction, their impossibility result does not hold without
this restriction). In their model, the TM algorithm allows
the external environment to invoke actions for reading a data
item, writing a data item, starting a transaction, and try-
ing to commit or abort it. The TM algorithm is only aware
of the sequence of invocations that have been performed.
Thus, a transaction can be helped only after the TM algo-
rithm knows the entire set of data items that the transaction
should modify. However, there are TM algorithms that do
allow threads to have access to the code of transactions. For
instance, RobuSTM [31] is a TM algorithm in which the
code of a transaction is made available to threads so that
they can help one another to ensure strong progress guaran-
tees.

Proving impossibility results in a model in which the TM
algorithm does not have access to the code of transactions is
usually done by considering certain high-level histories that
contain only invocations and responses of high-level opera-
tions on data items (and not on the base objects that are
used to implement these data items in a concurrent environ-
ment). Our model gives the universal construction access to
the code of an invoked operation. Consequently, to prove
our impossibility result we had to work with low-level his-
tories, containing steps on base objects, which is technically
more difficult.

Attiya et al. [9] proved that there is no disjoint-access par-
allel TM algorithm where read-only transactions are wait-
free and invisible (i.e., they do not apply non-trivial opera-
tions on base objects). This impossibility result is proved for
the variant of disjoint-access parallelism where processes ex-
ecuting two operations (transactions) concurrently contend
on a base object only if there is a path between the two op-
erations (transactions) in the conflict graph. We prove our
lower bound for a weaker definition of disjoint-access paral-
lelism and it applies even for implementations with visible
reads. We remark that the impossibility result in [9] does
not contradict our algorithm, since our implementation em-
ploys visible reads.

In [27], the concept of MV-permissiveness was introduced.
A TM algorithm satisfies this property if a transaction
aborts only when it is an update transaction that conflicts
with another update transaction. An update transaction
contains updates to data items. The paper [27] proved that

no transactional memory algorithm satisfies both disjoint
access parallelism (specifically, the variant of disjoint-access
parallelism presented in [9]) and MV-permissiveness. How-
ever, the paper assumes that the TM algorithm does not
have access to the code of transactions and is based on the
requirement that the code for creating, reading, or writing
data items terminates within a finite number of steps. This
lower bound can be beaten if this requirement is violated.
Attiya and Hillel [8] presented a strict disjoint-access parallel
lock-based TM algorithm that satisfies MV-permissiveness.

More constraining versions of disjoint-access parallelism
are used when designing algorithms [5, 6, 25]. Specifically,
two operations are allowed to access the same base object
if they are connected by a path of length at most d in the
conflict graph [2, 5, 6]. This version of disjoint-access par-
allelism is known as the d-local contention property [2, 5,
6]. The first wait-free disjoint-access parallel implemen-
tations [25, 30] had O(n)-local contention, where n is the
number of processes in the system, and assumed that each
operation accesses a fixed set of data items. Afek et al. [2]
presented a wait-free, disjoint-access parallel universal con-
struction that has O(k + log∗n)-local contention, provided
that each operation accesses at most k pre-determined mem-
ory locations. It relies heavily on knowledge of k. This work
extends the work of Attiya and Dagan [5], who considered
operations on pairs of locations, i.e. where k = 2. Afek
et al. [2] leave as an open question the problem of finding
highly concurrent wait-free implementations of data struc-
tures that support operations with no bounds on the number
of data items they access. In this paper, we prove that, in
general, there are no solutions unless we relax some of these
properties.

Attiya and Hillel [7] provide a k-local non-blocking imple-
mentation of k-read-modify-write objects. The algorithm as-
sumes that double-compare-and-swap (DCAS) primitives are
available. A DCAS atomically executes CAS on two memory
words. Combining the algorithm in [7] and the non-blocking
implementation of DCAS by Attiya and Dagan [5] results in
a O(k + log∗n)-local non-blocking implementation of a k-
read-modify-write object that only relies on single-word CAS

primitives. Their algorithm can be adapted to work for op-
erations whose data set is defined on the fly, but it only
ensures that progress is non-blocking.

A number of wait-free universal constructions [1, 16, 17,
20, 21] work by copying the entire data structure locally, ap-
plying the active operations sequentially on their local copy,
and then changing a shared pointer to point to this copy.
The resulting algorithms are not disjoint access parallel, un-
less vacuously so.

Anderson and Moir [3] show how to implement a k-word
atomic CAS using LL/SC. To ensure wait-freedom, a process
may help other processes after its operation has been com-
pleted, as well as during its execution. They employ their
k-word CAS implementation to get a universal construction
that produces wait-free implementations of multi-object op-
erations. Both the k-word CAS implementation and the uni-
versal construction allow operations on different data items
to proceed in parallel. However, they are not disjoint-access
parallel, because some operations contend on the same base
objects even if there are no (direct or transitive) conflicts
between them. The helping technique that is employed by
our algorithm combines and extends the helping techniques



presented in [3] to achieve both wait-freedom and disjoint-
access parallelism.

Anderson and Moir [4] presented another universal con-
struction that uses indirection to avoid copying the entire
data structure. They store the data structure in an array
which is divided into a set of consecutive data blocks. Those
blocks are addressed by a set of pointers, all stored in one
LL/SC object. An adaptive version of this algorithm is pre-
sented in [16]. An algorithm is adaptive if its step complexity
depends on the maximum number of active processes at each
point in time, rather than on the total number n of processes
in the system. Neither of these universal constructions is
disjoint-access parallel.

Barnes [10] presented a disjoint-access parallel universal
construction, but the algorithms that result from this uni-
versal construction are only non-blocking. In Barnes’ algo-
rithm, a process p executing an operation op first simulates
the execution of op locally, using a local dictionary where
it stores the data items accessed during the simulation of
op and their new values. Once p completes the local sim-
ulation of op, it tries to lock the data items stored in its
dictionary. The data items are locked in a specific order to
avoid deadlocks. Then, p applies the modifications of op to
shared memory and releases the locks. A process that re-
quires a lock which is not free, releases the locks it holds,
helps the process that owns the lock to finish the operation
it executes, and then re-starts its execution. To enable this
helping mechanism, a process shares its dictionary immedi-
ately prior to its locking phase. The lock-free TM algorithm
presented in [18] works in a similar way.

As in Barnes’ algorithm, a process executing an operation
op in our algorithm, first locally simulates op using a local
dictionary, and then it tries to apply the changes. However,
in our algorithm, a conflict between two operations can be
detected during the simulation phase, so helping may occur
at an earlier stage of op’s execution. More advanced help-
ing techniques are required to ensure both wait-freedom and
disjoint-access parallelism.

Chuong et al. [12] presented a wait-free version of Barnes’
algorithm that is not disjoint-access parallel and applies op-
erations to the data structure one at a time. Their algo-
rithm is transaction-friendly, i.e., it allows operations to be
aborted. Helping in this algorithm is simpler than in our
algorithm. Moreover, the conflict detection and resolution
mechanisms employed by our algorithm are more advanced
to ensure disjoint-access parallelism. The presentation of
the pseudocode of our algorithm follows [12].

The first software transactional memory algorithm [28]
was disjoint-access parallel, but it is only non-blocking and
is restricted to transactions that access a pre-determined set
of memory locations. There are other TM algorithms [14, 18,
22, 26, 29] without this restriction that are disjoint-access
parallel. However, all of them satisfy weaker progress prop-
erties than wait-freedom. TL [14] ensures strict disjoint ac-
cess parallelism, but it is blocking.

A hybrid approach between transactional memory and
universal constructions has been presented by Crain et
al. [13]. Their universal construction takes, as input, se-
quential code that has been appropriately annotated for pro-
cessing by a TM algorithm. Each transaction is repeatedly
invoked until it commits. They use a linked list to store all
committed transactions. A process helping a transaction to
complete scans the list to determine whether the transac-

tion has already completed. Thus, their implementation is
not disjoint-access parallel. It also assumes that no failures
occur.

3. PRELIMINARIES
A data structure is a sequential implementation of an ab-

stract data type. In particular, it provides a representation
for the objects specified by the abstract data type and the
(sequential) code for each of the operations it supports. As
an example, we will consider an unsorted singly-linked list
of integers that supports the operations Append(v), which
appends the element v to the end of the list (by accessing
a pointer end that points to the last element in the list,
appending a node containing v to that element, and updat-
ing the pointer to point to the newly appended node), and
Search(v), which searches the list for v starting from the
first element of the list.

A data item is a piece of the representation of an object
implemented by the data structure. In our example, the data
items are the nodes of the singly-linked list and the pointers
first and last that point to the first and the last element of
the list, respectively. The state of a data structure consists
of the collection of data items in the representation and a
set of values, one for each of the data items. A static data
item is a data item that exists in the initial state. In our
example, the pointers first and last are static data items.
When the data structure is dynamic, the data items accessed
by an instance of an operation (in a sequential execution α)
may depend on the instances of operations that have been
performed before it in α. For example, the set of nodes
accessed by an instance of Search depends on the sequence
of nodes that have been previously appended to the list.

An operation of a data structure is value oblivious if, in
every (sequential) execution, the set of data items that each
instance of this operation accesses in any sequence of con-
secutive instances of this operation does not depend on the
values of the input parameters of these instances. In our ex-
ample, Append is a value oblivious operation, but Search
is not.

We consider an asynchronous shared-memory system with
n processes p1, . . . , pn that communicate by accessing shared
objects, such as registers and LL/SC objects. A register R
stores a value from some set and supports the operations
read(R), which returns the value of R, and write(R, v),
which writes the value v in R. An LL/SC object R stores
a value from some set and supports the operations LL,
which returns the current value of R, and SC. By execut-
ing SC(R, v), a process pi attempts to set the value of R to
v. This update occurs only if no process has changed the
value of R (by executing SC) since pi last executed LL(R).
If the update occurs, true is returned and we say the SC is
successful; otherwise, the value of R does not change and
false is returned.

A universal construction provides a general mechanism
to automatically execute pieces of sequential code in a con-
current environment. It supports a single operation, called
Perform, which takes as parameters a piece of sequential
code and a list of input arguments for this code. The al-
gorithm that implements Perform applies a sequence of
operations on shared objects provided by the system. We
use the term base objects to refer to these objects and we call
the operations on them primitives. A primitive is non-trivial
if it may change the value of the base object; otherwise, the



primitive is called trivial. To avoid ambiguities and to sim-
plify the exposition, we require that all data items in the
sequential code are only accessed via the instruction Cre-
ateDI, ReadDI, and WriteDI, which create a new data
item, read (any part of) the data item, and write to (any
part of) the data item, respectively.

A configuration provides a global view of the system at
some point in time. In an initial configuration, each pro-
cess is in its initial state and each base object has its initial
value. A step consists of a primitive applied to a base ob-
ject by a process and may also contain local computation by
that process. An execution is a (finite or infinite) sequence
Ci, φi, Ci+1, φi+1, . . . , φj−1, Cj of alternating configurations
(Ck) and steps (φk), where the application of φk to configu-
ration Ck results in configuration Ck+1, for each i ≤ k < j.
An execution α is indistinguishable from another execution
α′ for some processes, if each of these processes takes the
same steps in α and α′, and each of these steps has the
same response in α and α′. An execution is solo if all its
steps are taken by the same process.

From this point on, for simplicity, we use the term oper-
ation to refer to an instance of an operation. The execution
interval of an operation starts with the first step of the cor-
responding call to Perform and terminates when that call
returns. Two operations overlap if the call to Perform
for one of them occurs during the execution interval of the
other. If a process has invoked Perform for an operation
that has not yet returned, we say that the operation is ac-
tive. A process can have at most one active operation in any
configuration. A configuration is quiescent if no operation is
active in the configuration.

Let α be any execution. We assume that processes may
experience crash failures. If a process p does not fail in α, we
say that p is correct in α. Linearizability [24] ensures that,
for every completed operation in α and some of the uncom-
pleted operations, there is some point within the execution
interval of the operation called its linearization point, such
that the response returned by the operation in α is the same
as the response it would return if all these operations were
executed serially in the order determined by their lineariza-
tion points. When this holds, we say that the responses of
the operations are consistent. An implementation is lineariz-
able if all its executions are linearizable. An implementation
is wait-free [21] if, in every execution, each correct process
completes each operation it performs within a finite number
of steps.

Since we consider linearizable universal constructions, ev-
ery quiescent configuration of an execution of a universal
construction applied to a sequential data structure defines
a state. This is the state of the data structure resulting
from applying each operation linearized prior to this config-
uration, in order, starting from the initial state of the data
structure.

Two operations contend on a base object b if they both
apply a primitive to b and at least one of these primitives is
non-trivial. We are now ready to present the definition of
disjoint-access parallelism that we use to prove our impossi-
bility result. It is weaker than all the variants discussed in
Section 2.

Definition 1. (Feeble Disjoint-Access Parallelism).
An implementation resulting from a universal construction

applied to a (sequential) data structure is feebly disjoint-
access parallel if, for every solo execution α1 of an opera-

tion op1 and every solo execution α2 of an operation op2,
both starting from the same quiescent configuration C, if the
sequential code of op1 and op2 access disjoint sets of data
items when each is executed starting from the state of the
data structure represented by configuration C, then α1 and
α2 contend on no base objects. A universal construction is
feebly disjoint-access parallel if all implementations result-
ing from it are feebly disjoint-access parallel.

We continue with definitions that are needed to define the
version of disjoint-access parallelism ensured by our algo-
rithm. Fix any execution α = C0, φ0, C1, φ1, . . . , produced
by a linearizable universal construction U . Then there is
some linearization of the completed operations in α and a
subset of the uncompleted operations in α such that the re-
sponses of all these operations are consistent. Let op be any
one of these operations, let Iop be its execution interval, let
Ci denote the first configuration of Iop, and let Cj be the
first configuration at which op has been linearized. Since
each process has at most one uncompleted operation in α
and each operation is linearized within its execution inter-
val, the set of operations linearized before Ci is finite. For
i ≤ k < j, let Sk denote the state of the data structure
which results from applying each operation linearized in α
prior to configuration Ck, in order, starting from the initial
state of the data structure. Define DS(op, α), the data set
of op in α, to be the set of all data items accessed by op
when executed by itself starting from Sk, for i ≤ k < j.

The conflict graph of an execution interval I of α is an
undirected graph, where vertices represent operations whose
execution intervals overlap with I and an edge connects two
operations op and op′ if and only if DS(op, α)∩DS(op′, α) 6=
∅. The following variant of disjoint-access parallelism is en-
sured by our algorithm.

Definition 2. (Disjoint-Access Parallelism). An
implementation resulting from a universal construction ap-
plied to a (sequential) data structure is disjoint-access par-
allel if, for every execution containing a process executing
Perform(op1) and a process executing Perform(op2) that
contend on some base object, there is a path between op1 and
op2 in the conflict graph of the minimal execution interval
containing op1 and op2.

The original definition of disjoint-access parallelism
in [25] differs from Definition 2 in that it does not allow two
operations op1 and op2 to read the same base object even if
there is no path between op1 and op2 in the conflict graph of
the minimal execution interval that contains them. T Also,
that definition imposes a bound on the step complexity
of disjoint-access parallel algorithms. Our definition is a
slightly stronger version of the disjoint-access parallel vari-
ant defined in [9] in the context of transactional memory.
This definition allows two operations to contend, (but not
concurrently contend) on the same base object if there is no
path connecting them in the conflict graph. This definition
makes the lower bound proved there stronger, whereas our
definition makes the design of an algorithm (which is our
goal) more difficult. Our definition is obviously weaker than
strict disjoint-access parallelism [19], since our definition
allows two processes to contend even if the data sets of the
operations they are executing are disjoint.



4. IMPOSSIBILITY RESULT
To prove the impossibility of a wait-free universal con-

struction with feeble disjoint-access parallelism, we consider
an implementation resulting from the application of an arbi-
trary feebly disjoint-access parallel universal construction to
the singly-linked list discussed in Section 3. We show that
there is an execution in which an instance of Search does
not terminate. The idea is that, as the process p performing
this instance proceeds through the list, another process, q, is
continually appending new elements with different values. If
q performs each instance of Append before p gets too close
to the end of the list, disjoint-access parallelism prevents q
from helping p. This is because q’s knowledge is consistent
with the possibility that p’s instance of Search could ter-
minate successfully before it accesses a data item accessed
by q’s current instance of Append. Also, process p cannot
determine which nodes were appended by process q after
it started the Search. The proof relies on the following
natural assumption about universal constructions. Roughly
speaking, it formalizes that the operations of the concur-
rent implementation resulting from applying a universal con-
struction to a sequential data structure should simulate the
behavior of the operations of the sequential data structure.

Assumption 3 (Value-Obliviousness Assumption).
If an operation of a data structure is value oblivious, then,
in any implementation resulting from the application of a
universal construction to this data structure, the sets of base
objects read from and written to during any solo execution
of a sequence of consecutive instances of this operation
starting from a quiescent configuration do not depend on
the values of the input parameters.

We consider executions of the implementation of a singly-
linked list L in which process p performs a single instance
of Search(L, 0) and process q performs instances of Ap-
pend(L, i), for i ≥ 1, and possibly one instance of Ap-
pend(L, 0). We may assume the implementation is deter-
ministic: If it is randomized, we fix a sequence of coin tosses
for each process and only consider executions using these
coin tosses.

Let C0 be the initial configuration in which L is empty.
Let α denote the infinite solo execution by q starting from C0

in which q performs Append(L, i) for all positive integers i,
in increasing order. For i ≥ 1, let Ci be the configuration ob-
tained when process q performs Append(L, i) starting from
configuration Ci−1. Let αi denote the sequence of steps
performed in this execution. Let B(i) denote the set of base
objects written to by the steps in αi and let A(i) denote the
set of base objects these steps read from but do not write
to. Notice that the sets A(i) and B(i) partition the set of
base objects accessed in αi. In configuration Ci, the list L
consists of i nodes, with values 1, . . . , i in increasing order.

For 1 < j ≤ i, let Cj
i be the configuration obtained

from configuration C0 when process q performs the first
i operations of execution α, except that the j’th opera-
tion, Append(L, j), is replaced by Append(L, 0); namely,
when q performs Append(L, 1), . . ., Append(L, j − 1), Ap-
pend(L, 0), Append(L, j+1), . . . , Append(L, i). Since Ap-
pend is value oblivious, the same set of base objects are
written to during the executions leading to configurations
Ci and Cj

i . Only base objects in ∪{B(k) | j ≤ k ≤ i} can

have different values in Ci and Cj
i .
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Figure 1: Configurations and Sequences of Steps
used in the Proof

For i ≥ 3, let σi be the steps of the solo execution of
Search(L, 0) by p starting from configuration Ci. For 1 <
j ≤ i, let βj

i be the longest prefix of σi in which p does not
access any base object in ∪{B(k) | k ≥ j} and does not
write to any base object in ∪{A(k) | k ≥ j}

Lemma 4. For i ≥ 3 and 1 < j ≤ i, βj
i = βj

i+1 and βi−1
i+1

is a prefix of βi
i+2.

Proof. Only base objects in B(i+ 1) have different val-
ues in configurations Ci and Ci+1. Since βj

i and βj
i+1 do not

access any base objects in B(i+1), it follows from their def-
initions that βj

i = βj
i+1. In particular, βi

i+2 = βi
i+1, which,

by definition contains βi−1
i+1 as a prefix.

For i ≥ 3, let γi+2 be the (possibly empty) suffix of βi
i+2

such that βi−1
i+1γi+2 = βi

i+2. Figure 1 illustrates these defini-
tions.

Let α′ = α1α2α3α4β
2
4α5γ5α6γ6 · · · . We show that this

infinite sequence of steps gives rise to an infinite valid ex-
ecution starting from C0 in which there is an instance of
Search(L, 0) that never terminates. The first steps of this
execution are illustrated in Figure 2.

Since β2
4 does not write to any base objects accessed in

α2α3 · · · and, for i ≥ 4, βi−1
i+1 = βi−2

i γi+1 does not write
to any base object accessed in αi−1αi · · · , the executions
arising from α and α′ starting from C0 are indistinguishable
to process q. Furthermore, since βi−1

i+1 and, hence, γi+1 does
not access any base object written to by αi−1αi · · · , it follows
that α1α2α3α4β

2
4α5γ5 · · ·αjγj and α1α2α3α4 · · ·αjβ

j−2
j are

indistinguishable to process p for all j ≥ 4. Thus α′ is a
valid execution.

Next, for each i ≥ 4, we prove that there exists j > i
such that γj is nonempty. By the value obliviousness as-
sumption, only base objects in B(i − 2) ∪ B(i − 1) ∪ B(i)
can have different values in Ci and Ci−2

i . Since βi−2
i does

not access any of these base objects, βi−2
i is also a prefix of

Search(L, 0) starting from Ci−2
i . Since Search(L, 0) start-

ing from Ci−2
i is successful, but starting from Ci is unsuc-

cessful, Search(L, 0) is not completed after βi−2
i . Therefore

βi−2
i is a proper prefix of σi. Let b be the base object ac-

cessed in the first step following βi−2
i in σi. For j ≥ i + 1,

only base objects in ∪{B(k) | i+1 ≤ k ≤ j} can have differ-
ent values in Ci and Cj . Therefore the first step following
βi−2
i in σj is the same as the first step following βi−2

i in σi.
To obtain a contradiction, suppose that βi−2

i = βi+1
i+3 .

Then b is the base object accessed in the first step following
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Figure 2: An Infinite Execution with a Non-
terminating Search Operation

βi+1
i+3 in σi+3. By definition of βi+1

i+3 , there is some ` ≥ i + 1

such that the first step following βi+1
i+3 in σi+3 is either an

access to b ∈ B(`) or a write to b ∈ A(`).
Let S denote the state of the data structure in configura-

tion C`−3
`−1 . In state S, the list has `− 1 nodes and the third

last node has value 0. Thus, the set of data items accessed
by Search(L, 0) starting from state S consists of L.first
and the first `−3 nodes of the list. This is disjoint from the
set of data items accessed by Append(L, `) starting from
state S, which consists of L.last, the last node of the list,
and the newly appended node. Hence, by feeble disjoint
access parallelism, the solo executions of Append(L, `) and
Search(L, 0) starting from C`−3

`−1 contend on no base ob-
jects.

By the value obliviousness assumption, B(`) is the set of
base objects written to in the solo execution of Append(L, `)
starting from C`−3

`−1 and A(`) is the set of base objects read
from, but not written to in that execution.

By the value obliviousness assumption, only base objects
in B(`− 3)∪B(`− 2)∪B(`− 1) can have different values in
C`−1 and C`−3

`−1 . Since βi−2
i does not access any of these base

objects, βi−2
i is also a prefix of Search(L, 0) starting from

C`−3
`−1 and the first step following βi−2

i in this execution is the

same as the first step following βi−2
i in σi. Recall that this is

either an access to b ∈ B(`) or a write to b ∈ A(`). Thus, the
solo executions of Append(L, `) and Search(L, 0) starting
from C`−3

`−1 contend on b. This is a contradiction. Hence,

βi−2
i 6= βi+1

i+3 and it follows that at least one of γi+1, γi+2,
and γi+3 is nonempty.

Therefore γj is nonempty for infinitely many numbers j
and, in the infinite execution α′, process p never completes
its operation Search(L, 0), despite taking an infinite num-
ber of steps. Hence, the implementation is not wait-free and
we have proved the following result:

Theorem 5. No feebly disjoint-access parallel universal
construction is wait-free.

5. THE DAP-UC ALGORITHM
To execute an operation op, a process p locally simu-

lates the execution of op’s instructions without modifying
the shared representation of the simulated state. This part
of the execution is the simulation phase of op. Specifically,
each time p accesses a data item while simulating op, it stores
a copy in a local dictionary. All subsequent accesses by p
to this data item (during the same simulation phase of op)
are performed on this local copy. Once all instructions of op
have been locally simulated, op enters its modifying phase.

1 type varrec
2 value val
3 ptr to oprec A[1..n]

4 type statrec
5 {〈simulating〉,
6 〈restart, ptr to oprec restartedby〉,
7 〈modifying, ptr to dictionary of dictrec changes,
8 value output〉
9 〈done〉
10 } status

11 type oprec
12 code program
13 process id owner
14 value input
15 value output
16 ptr to statrec status
17 ptr to oprec tohelp[1..n]

18 type dictrec
19 ptr to varrec key
20 value newval

Figure 3: Type definitions

At that time, one of the local dictionaries of the helpers of
op becomes shared. All helpers of op then use this dictio-
nary and apply the modifications listed in it. In this way, all
helpers of op apply the same updates for op, and consistency
is guaranteed.

The algorithm maintains a record for each data item x.
The first time op accesses x, it makes an announcement by
writing appropriate information in x’s record. It also de-
tects conflicts with other operations that are accessing x by
reading this record. So, conflicts are detected without violat-
ing disjoint access parallelism. The algorithm uses a simple
priority scheme, based on the process identifiers of the own-
ers of the operations, to resolve conflicts among processes.
When an operation op determines a conflict with an opera-
tion op′ of higher priority, op helps op′ to complete before it
continues its execution. Otherwise, op causes op′ to restart
and the owner of op will help op′ to complete once it fin-
ishes with the execution of op, before it starts the execution
of a new operation. The algorithm also ensures that before
op′ restarts its simulation phase, it will help op to complete.
These actions guarantee that processes never starve.

We continue with the details of the algorithm. The al-
gorithm maintains a record of type oprec (lines 11-17) that
stores information for each initiated operation. When a pro-
cess p wants to execute an operation op, it starts by creating
a new oprec for op and initializing it appropriately (line 22).
In particular, this record provides a pointer to the code of
op, its input parameters, its output, the status of op, and
an array indicating whether op should help other operations
after its completion and before it returns. We call p the
owner of op. To execute op, p calls Help (line 23). To
ensure wait-freedom, before op returns, it helps all other op-
erations listed in the tohelp array of its oprec record (lines
24-25). These are operations with which op had a conflict
during the course of its execution, so disjoint-access paral-
lelism is not violated. The algorithm also maintains a record
of type varrec (lines 1-3) for each data item x, This record
contains a val field, which is an LL/SC object that stores the
value of x, and an array A of n LL/SC objects, indexed by
process identifiers, which stores oprec records of operations
that are accessing x. This array is used by operations to



21 value Perform(prog, input) by process p:
22 opptr := pointer to a new oprec record

opptr → program := prog, opptr → input := input, opptr → output := ⊥
opptr → owner := p, opptr → status := simulating, opptr → tophelp[1..n] := [nil, . . . , nil]

23 Help(opptr) /* p helps its own operation */

24 for p′ := 1 to n excluding p do /* p helps operations that have been restarted by its operation op */
25 if (opptr → tohelp[p′] 6= nil) then Help(opptr → tohelp[p′])

26 return(opptr → output)

27 Help(opptr) by process p:
28 opstatus := LL(opptr → status)

29 while (opstatus 6= done)

30 if opstatus = 〈restart, opptr′〉 then /* op′ has restarted op */
31 Help(opptr′) /* first help op′ */
32 SC(opptr → status, 〈simulating〉) /* try to change the status of op back to simulating */
33 opstatus := LL(opptr → status)

34 if opstatus = 〈simulating〉 then /* start a new simulation phase */
35 dict := pointer to a new empty dictionary of dictrec records

/* to store the values of the data items */
36 ins := the first instruction in opptr → program
37 while ins 6= return(v) /* simulate instruction ins of op */
38 if ins is (WriteDI(x, v) or ReadDI(x)) and (there is no dictrec with key x in dict)

then /* first access of x by this attempt of op */
39 Announce(opptr, x) /* announce that op is accessing x */
40 Conflicts(opptr, x) /* possibly, help or restart other operations accessing x */
41 if ins = ReadDI(x) then valx := x → val else valx := v /* ins is a write to x of v */
42 add new dictrec 〈x, valx〉 to dict /* create a local copy of x */
43 else if ins is CreateDI() then
44 x := pointer to a new varrec record
45 x → A[1..n] := [nil, . . . , nil]
46 add new dictrec 〈x, nil〉 to dict
47 else /* ins is WriteDI(x, v) or ReadDI(x) and there is a dictrec with key x in dict */

/* or ins is not a WriteDI(), ReadDI() or CreateDI() instruction */
48 execute ins, using/changing the value in the appropriate entry of dict if necessary
49 if ¬VL(opptr → status) then break /* end of the simulation of ins */
50 ins := next instruction of opptr → program

/* end while */

51 if ins is return(v) then /* v may be empty */
52 SC(opptr → status,〈modifying, dict, v〉) /* try to change status of op to modifying */

/* successful iff simulation is over and status of op not changed since beginning of simulation */
53 opstatus := LL(opptr → status)

54 if opstatus = 〈modifying, changes, out〉 then
55 opptr → outputs := out
56 for each dictrec 〈x, v〉 in the dictionary pointed to by changes do

57 LL(x → val) /* try to make writes visible */
58 if ¬VL(opptr → status) then return /* opptr → status = done */
59 SC(x → val, v)

60 LL(x → val)
61 if ¬VL(opptr → status) then return /* opptr → status = done */
62 SC(x → val, v)

/* end for */
63 SC(opptr → status, done)
64 opstatus := LL(opptr → status)

/* end while */
65 return

66 Announce(opptr, x) by process p:
67 q := opptr → owner

68 LL(x → A[q])
69 if ¬ VL(opptr → status) then return
70 SC(x → A[q], opptr)

71 LL(x → A[q])
72 if ¬VL(opptr → status) then return
73 SC(x → A[q], opptr)

74 return

75 Conflicts(opptr, x) by process p:
76 for p′ := 1 to n excluding opptr → owner do
77 opptr′ := LL(x → A[p′])
78 if (opptr′ 6= nil) then /* possible conflict between op and op′ */
79 opstatus′ := LL(oppptr′ → status)

80 if ¬VL(opptr → status) then return

81 if (opstatus′ = 〈modifying, changes, output〉)
82 then Help(opptr′)

83 else if (opstatus′ = 〈simulating〉) then
84 if (opptr → owner < p′) then

/* op has higher priority than op′, restart op′ */
85 opptr → tohelp[p′] := opptr′

86 if ¬VL(opptr → status) then return
87 SC(opptr′ → status, 〈restart, opptr〉)
88 if (LL(oppptr′ → status) = 〈modifying, changes, output〉) then

Help(opptr′)

89 else Help(opptr′) /* opptr → owner > p′ */
90 return

Figure 4: The code of Perform, Help, Announce, and Conflicts.



announce that they access x and to determine conflicts with
other operations that are also accessing x.

The execution of op is done in a sequence of one or more
simulation phases (lines 34-53) followed by a modification
phase (lines 54-62). In a simulation phase, the instructions
of op are read (lines 36, 37, and 50) and the execution of
each one of them is simulated locally. The first time each
process q helping op (including its owner) needs to access
a data item (lines 38, 43), it creates a local copy of it in
its (local) dictionary (lines 42, 46). All subsequent accesses
by q to this data item (during the current simulation phase
of op) are performed on this local copy (line 48). During
the modification phase, q makes the updates of op visible by
applying them to the shared memory (lines 56-62).

The status field of op determines the execution phase of
op. It contains a pointer to a record of type statrec (lines
4-10) where the status of op is recorded. The status of op can
be either simulating, indicating that op is in its simulation
phase, modifying, if op is in its modifying phase, done, if
the execution of op has been completed but op has not yet
returned, or restart, if op has experienced a conflict and
should re-execute its simulation phase from the beginning.
Depending on which of these values status contains, it may
additionally store another pointer or a value.

To ensure consistency, each time a data item x is accessed
for the first time, q checks, before reading the value of x,
whether op conflicts with other operations accessing x. This
is done as follows: q announces op to x by storing a pointer
opr to op’s oprec in A[opr → owner]. This is performed by
calling Announce (line 39). Announce first performs an
LL on varx → A[p] (line 68), where varx is the varrec for
x and p = opr → owner. Then, it checks if the status of op
(line 69) remains simulating and, if this is so, it performs an
SC to store op in varx → A[p] (line 70). These instructions
are then executed one more time. This is needed because
an obsolete helper of an operation, initiated by p before op,
may successfully execute an SC on varx → A[p] that stores
a pointer to this operation’s oprec. However, we prove [15]
that this can happen only once, so executing the instructions
on lines 68-70 twice is enough to ensure consistency.

After announcing op to varx, q calls Conflicts (line 40)
to detect conflicts with other operations that access x. In
Conflicts, q reads the rest of the elements of varx → A
(lines 76-77). Whenever a conflict is detected (i.e., the condi-
tion of the if statement of line 78 evaluates to true) between
op and some other operation op′, Conflicts first checks if
op′ is in its modifying phase (line 82) and, if so, it helps op′

to complete. In this way, it is ensured that, once an opera-
tion enters its modification phase, it will complete its opera-
tion successfully. Therefore, once the status of an operation
becomes modifying, it will next become done, and then,
henceforth, never change. If the status of op′ is simulating,
q determines which of op or op′ has the higher priority (line
84). If op′ has higher priority (line 89), then op helps op′

by calling Help(op′). Otherwise, q first adds a pointer opr′

to the oprec of op′ into opr → tohelp (line 85), so that the
owner of op will help op′ to complete after op has completed.
Then q attempts to notify op′ to restart, using SC (line 87)
to change the status of op′ to restart. A pointer opr is also
stored in the status field of op′. When op′ restarts its simu-
lation phase, it will help op to complete (lines 30-33), if op
is still in its simulation phase, before it continues with the

re-execution of the simulation phase of op′. This guarantees
that op will not cause op′ to restart again.

Recall that each helper q of op maintains a local dictio-
nary. This dictionary contains an element of type dictrec

(lines 18-20) for each data item that q accesses (while simu-
lating op). A dictionary element corresponding to data item
x consists of two fields, key, which is a pointer to varx, and
newval, which stores the value that op currently knows for
x. Notice that only one helper of op will succeed in exe-
cuting the SC on line 52, which changes the status of op to
modifying. This helper records a pointer to the dictionary
it maintains for op, as well as its output value, in op’s status,
to make them public. During the modification phase, each
helper q of op traverses this dictionary, which is recorded
in the status of op (lines 54, 56). For each element in the
dictionary, it tries to write the new value into the varrec

of the corresponding data item (lines 57-59). This is per-
formed twice to avoid problems with obsolete helpers in a
similar way as in Announce.

Theorem 6. The DAP-UC universal construction (Fig-
ures 3 and 4) produces disjoint-access parallel, wait-free,
concurrent implementations when applied to objects that
have a bound on the number of data items accessed by each
operation they support.
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