
Decision Optimal Early-Stopping k-set Agreement
in Synchronous Systems Prone to Send Omission Failures

Philippe RAÏPIN PARVÉDY Michel RAYNAL Corentin TRAVERS

IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
{praipinp|raynal|ctravers}@irisa.fr

Abstract

The k-set agreement problem is a generalization of the
consensus problem: each process proposes a value, and
each non-faulty process has to decide a value such that a
decided value is a proposed value, and no more than k dif-
ferent values are decided. This paper focuses on the k-set
agreement problem in the context of synchronous systems
where up to t < n processes can experience crash or send
omission failures (n being the total number of processes).
The paper presents a k-set agreement protocol for this fail-
ure model (the first to our knowledge) which has two main
outstanding features. (1) It provides the following early de-
ciding and stopping property: no process decides or halts
after the round min(�f/k� + 2, �t/k� + 1) where f is the
number of actual crashes (0 ≤ f ≤ t). (2) It is decision-
optimal. This new optimality criterion, suited to the omis-
sion failure model, concerns the number of processes that
decide, namely, the protocol forces all the processes that
do not crash to decide (regardless of whether they commit
omission faults or not). It is noteworthy that each of these
properties (early deciding/stopping vs decision-optimality)
is not obtained at the detriment of the other. Last but not
least, the protocol enjoys another first-class property, name-
ly, simplicity.
Keywords: Agreement problem, Crash failure, Early stop-
ping, k-set agreement, Message-passing system, Round-
based computation, Send omission failure, Synchronous
system, Uniform consensus.

1 Introduction

Context of the paper The k-set agreement problem gen-
eralizes the uniform consensus problem (that corresponds
to the case k = 1). It has been introduced by Soma Chaud-
huri to investigate how the number of choices (k) allowed
to the processes is related to the maximum number (t) of
processes that can crash [5]. The problem can be defined as

follows. Each of the n processes (processors) defining the
system starts with a value (called a “proposed” value). Each
process that does not crash has to decide a value (termina-
tion), in such a way that a decided value is a proposed value
(validity) and no more than k different values are decided
(agreement)1.

k-set agreement can be trivially solved in asynchronous
systems when k > t. Differently, it has been shown that
there is no solution in these systems as soon as k ≤ t [3,
15, 28]. (The asynchronous consensus impossibility, case
k = 1, was demonstrated before, using different techniques
[9]2.) Several approaches have been proposed to circumvent
the impossibility to solve the k-set agreement problem in
asynchronous systems (e.g., probabilistic protocols [20], or
unreliable failure detectors with limited scope accuracy [14,
19]).

The situation is different in synchronous systems where
the k-set agreement problem can always be solved, what-
ever the value of t with respect to k. It has also been shown
that, in the worst case, the lower bound on the number
of rounds (time complexity measured in communication
steps) is �t/k� + 1 [6]. (This bound generalizes the
t + 1 lower bound associated with the consensus problem
[1, 2, 8, 18].)

Although failures do occur, they are rare in practice. For
the uniform consensus problem (k = 1), this observation
has motivated the design of early deciding synchronous pro-
tocols [4, 7, 17, 27], i.e., protocols that can cope with up
to t process crashes, but decide in less than t + 1 rounds
in favorable circumstances (when there are fewer failures).

1A process that decides and thereafter crashes is not allowed to decide
one more value, in addition to the k allowed values. This is why k-set a-
greement generalizes uniform consensus where no two processes (be them
faulty or not) can decide different values. Non-uniform consensus allows a
faulty process to decide a value different from the value decided by the cor-
rect processes. The non-uniform version of the k-set agreement problem
has not been investigated in the literature.

2The impossibility to solve consensus in asynchronous systems is usu-
ally named “FLP result” according to the names of its authors [9].

More precisely, these protocols allow the processes to de-
cide in min(f + 2, t + 1) rounds, where f is the number
of processes that crash during a run, 0 ≤ f ≤ t, which has
been shown to be optimal (the worst scenario being when
there is exactly one crash per round) [4, 16]3.

In a very interesting way, it has very recently been
shown that the early deciding lower bound for the k-set
agreement problem in the synchronous crash failure model
is �f/k� + 2 for 0 ≤ �f/k� ≤ �t/k� − 2, and �f/k� + 1
otherwise [10]. This lower bound, not only generalizes
the corresponding uniform consensus lower bound, but
also shows an “inescapable tradeoff” among the number t
of crashes tolerated, the number f of actual crashes, the
degree k of coordination we want to achieve, and the best
running time achievable [6]. As far as the time/coordination
degree tradeoff is concerned, it is important to notice that,
when compared to consensus, k-set agreement divides the
running time by k (e.g., allowing two values to be decided
halves the running time).

The consensus problem has been investigated in syn-
chronous systems whose failure models are more severe
than the crash failure model. More precisely, consensus can
be solved in the Byzantine failure model (where a process
can fail by exhibiting an arbitrary behavior) provided that
t < n/3 [11, 22]4. The general omission failure model [23]
lies in between the crash failure model and the Byzantine
failure model: a process can crash or fail by omitting to
send or receive a message. An optimal early-stopping u-
niform consensus protocol for the general omission failure
model is described in [24]. This protocol assumes t < n/2
which is a necessary requirement [21].

There are two types of early-deciding consensus pro-
tocols that have been designed for the omission failure
model. In all cases a non-faulty process decides by round
min(f + 2, t + 1), but some protocols (e.g., [23]) allow a
faulty process that does not crash to execute more rounds
(up to t + 1), while in others protocols (e.g., [24]) no
process executes more than min(f + 2, t + 1) rounds.

The consensus termination property concerns only the
correct processes: they all have to decide. This require-
ment is tied to the problem, independently of a particular
failure model. Due to the very nature of the corresponding
faults, there is no way to force a faulty process to decide
in the crash failure model, or in the Byzantine failure mod-
el. This could be different in the omission failure model,
as this model prevents a faulty process that does not crash

3More precisely, the lower bound is f + 2 when f ≤ t− 2, and f + 1
when f = t − 1 or f = t.

4It is interesting to notice that, when it has been introduced for the first
time (in 1980 by Pease, Shostak and Lamport [22]), the consensus prob-
lem was considered in synchronous systems prone to Byzantine process
failures.

to behave arbitrarily. We could envisage that such process-
es be obliged to decide in some circumstances. But, none
of the protocols that we are aware of for this failure mod-
el, forces a non-crashed faulty process to decide in some
particular well-identified circumstances. Stated in another
way, none of these protocols characterizes runs where they
force non-crashed faulty processes to decide. Usually, as
soon as they have identified a non-crashed faulty process,
these protocols force it not to decide5.

Content of the paper While not-early deciding k-set a-
greement protocols for the synchronous crash failure model
(i.e., protocols that always terminate in �t/k� + 1 rounds)
are now well understood [2, 6, 18], to our knowledge, so
far only two early deciding k-set agreement protocols have
been proposed [10, 25]. The protocol described in [10]
assumes t < n−k, which means that (contrarily to what we
could “normally” hope) the coordination degree k increases
when the maximum number t of processes that can crash
decreases. The protocol described in [25], which imposes
no constraint on t, is based on a mechanism that allows the
processes to take into account the actual pattern of crash
failures and not only their number, thereby allowing the
processes to decide in much less than �f/k�+2 rounds in a
lot of cases (the worst case being only when the crashes are
evenly distributed in the rounds with k crashes per round).

This paper is on the k-set agreement problem in syn-
chronous systems prone to process crashes and send omis-
sion failures (i.e., a process is faulty if it crashes or omits
to send one or more messages). A protocol is proposed and
proved correct that enjoys the following noteworthy proper-
ties6:

• Resilience optimality: the protocol requires only t < n
(at least one non-faulty process).

• Early stopping: no process executes more than
min(�f/k� + 2, �t/k�+ 1) rounds.
So, differently from some consensus protocols, a faulty
process that does not crash, does not penalize the ter-
mination time of the protocol as it does not execute
more rounds than a correct process. When � f

k � + 2 ≤
� t

k�, the protocol extends consequently the � f
k � + 2

lower bound for a correct process to decide (1) to the
send omission failure model, and (2) to the processes
that commit only send omission failures.

• Decision optimality: this new criterion in on the faulty
processes that do not crash and are required to decide.

5More precisely, these faulty processes are unilaterally forced to “de-
cide” a default value ⊥, whose meaning is “no decision” [27].

6To our knowledge, this protocol is also the first k-set agreement pro-
tocol designed so far for the send omission failure model.

The protocol is optimal with respect to this criterion as
it forces all the processes that do not crash to decide (be
them faulty or not). We think that this is an important
property (which, as noticed previously, is not met by
the uniform consensus protocols designed so far for
the send -or send/receive- omission failure models).

The design of a protocol that satisfies, simultaneously
and despite process crashes and send omission faults, the
agreement property of the k-set problem, the early stopping
property and the decision optimality property, is not
entirely obvious, as these properties are partly antagonistic.
This is due to the fact that agreement requires that no more
than k distinct values be decided (be the deciding processes
correct or not), while early stopping requires the processes
to stop as soon as possible after deciding. Consequently
the protocol has not to prevent processes from deciding at
different rounds, and so, after it has decided, a process can
appear to the other processes as committing send omission
failures, while it is actually correct. Finally, the decision
optimality property prevents from eliminating from the
protocol a faulty process as soon as it has been discovered
as faulty, as it has to decide a value if it does not crash later.
A major difficulty in the design of the protocol consists in
obtaining simultaneously all these properties (agreement,
early stopping for all processes, and decision optimality),
and not each one at the price of not satisfying one of the
two others.

When instantiated with k = 1, the protocol provides a
new early stopping uniform consensus protocol for the send
omission failure model, where all the processes that do not
crash decide. To our knowledge, this is the first uniform
consensus protocol that enjoys this property.

Last but not least, the proposed protocol enjoys another
first class property, namely, design simplicity. Its design re-
lies on (1) the existence of at least one correct process, and
(2) the fact that each process that does not crash -be it faulty
or not- continues executing rounds until it decides, and (3)
the fact that a process that is informed it is faulty stops send-
ing messages: it becomes passive in the sense that it forgets
all its past, and from then on it only receives messages (at
least from the correct processes), and these messages will
help it decide correctly (this means that, when it discovers
it is faulty, a faulty process executes a kind of “reset”, and
from then on is “fed” only with values from the processes it
considers correct).

As already noticed, the main difficulty becomes from the
fact that not all the processes decide during the same round,
creating some uncertainty on which processes are correc-
t. Nevertheless, the protocol succeeds in having the correct
processes play a “pivot” role through which values converge
and from which they are disseminated, thereby allowing a-
greement, early stopping and decision optimality to be met.

Roadmap The paper consists of 5 sections. Section 2
presents the computation model and gives a definition of the
k-set agreement problem. Section 3 presents the protocol.
Section 4 provides a formal statement of its properties (lem-
mas and theorems). The proofs of these properties are given
in an appendix (interestingly, due to the specificity of send
omission failures, the proof techniques used for some lem-
mas and theorems differ deeply from the ones used to prove
the “corresponding properties” in the crash failure model).
Finally Section 5 discusses the protocol and concludes the
paper.

2 Computation Model and k-Set Agreement

2.1 Round-Based Synchronous System

The system model consists of a finite set of processes,
namely, Π = {p1, . . . , pn}, that communicate and synchro-
nize by sending and receiving messages through channels.
Every pair of processes is connected by a channel. The un-
derlying communication system is assumed to be failure-
free: there is no creation, alteration, loss or duplication of
messages.

The system is synchronous. This means that each of its
executions consists of a sequence of rounds. Those are iden-
tified by the successive integers 1, 2, etc. For the processes,
the current round number appears as a global variable r that
they can only read, and whose progress is managed by the
underlying system. A round is made up of three consec-
utive phases [2, 18, 27]. (1) A send phase in which each
process sends messages. (2) A receive phase in which each
process receives messages. (3) A computation phase dur-
ing which each process processes the messages it received
during that round and executes local computation. The fun-
damental property of the synchronous model lies in the fact
that a message sent by a process pi to a process pj at round
r, is received by pj at the same round r.

2.2 Process Failure Model

A process is faulty during an execution if its behavior
deviates from that prescribed by its algorithm, otherwise it
is correct. A failure model defines how a faulty process
can deviate from its algorithm [13]. We consider here the
following types of faults.

• Crash failure. A faulty process stops its execution pre-
maturely. After it has crashed, a process does nothing.
Let us observe that if a process crashes in the middle of
a sending phase, only a subset of the messages it was
supposed to send might actually be sent.

• Send omission failure model. A faulty process crash-
es or omits sending messages it was supposed to send

[23]. Let us observe that a faulty process can omit to
send messages to some processes during some round,
and not during other rounds7. It can also crash after
having committed send omission faults.

It is easy to see that these failure models are of increas-
ing “severity” in the sense that any protocol that solves a
problem in the send omission failure model, also solves it
in the (less severe) crash failure model [13]. This follows
from the fact that if a process crashes, it trivially commits
omission failures in a permanent way after it has crashed.

As already indicated, n, t and f denote the total number
of processes, the maximum number of processes that can
be faulty, and the actual number of processes that commit
failures during a run, respectively (0 ≤ f ≤ t < n); n and
t are initially known by each process.

2.3 The k-Set Agreement Problem

The problem has been informally stated in the Introduc-
tion: every process pi proposes a value vi and each cor-
rect process has to decide on a value in relation to the set
of proposed values. More precisely, the k-set agreement
problem is defined by the following three properties:

• Termination: Every correct process decides.

• Validity: If a process decides v, then v was proposed
by some process.

• Agreement: No more than k different values are de-
cided.

As we can see 1-set agreement is the uniform consen-
sus problem. In the following, we implicitly assume k ≤ t.
This is because k-set agreement can trivially be solved in
synchronous or asynchronous systems when t < k [5]. A
one communication step protocol is as follows: (1) k pro-
cesses are arbitrarily selected prior the execution; (2) each
of these k processes sends its value to all processes; (3) a
process decides the first value it receives.

3 An Optimal k-Set Agreement Protocol

This section presents a k-set agreement protocol that en-
joys both early-stopping and decision optimality. Before
presenting its design, let us first notice that transformations
have been proposed that translate protocols designed for the
crash failure model in corresponding protocols for the send
omission failure model [12, 21]. These general transforma-
tions are irrelevant to our purpose for two reasons. The first
reason lies in the fact that, as they are general, they have a

7A send omission failure actually models a failure of the output buffer
of a process. A buffer overflow is a typical example of such a failure.

cost (e.g., in the transformation described in [21], the send
omission failure model requires two rounds to simulate each
round of the crash failure model). The second issue is re-
lated to the decision optimality property. These transforma-
tion protocols track faulty processes and force the processes
that have committed a send omission failure to unilaterally
simulate a crash failure by returning a predefined default
value (e.g., a value that cannot be proposed by a process,
usually denoted ⊥ and whose meaning is “no decision”). It
follows that, inherently, these general transformations can
guarantee neither time optimality with respect to the early
stopping property, nor decision optimality with respect to
the number of processes that decide. Actually, on one side
attaining decision optimality, and on the other side forcing
a process that has committed only send omission failures to
crash are antagonistic.

This discussion shows that a k-set agreement protocol
that enjoys both early stopping and decision optimality, can-
not be obtained by simply “extending” a crash-tolerant pro-
tocol (this appears clearly in Section 4 where appropriate
claims and properties are stated and proved).

3.1 Underlying Principles

The protocol uses the well-known “flooding strategy” to
disseminate estimate values. Basically, it strives to partition
the processes in two groups: the ones that appear as being
correct and the ones that are faulty. The processes in the
first group remain active (they send and receive messages),
while the ones in the second group become passive (they
only receive messages). This partitioning aims at prevent-
ing inconsistencies due to the fact that a faulty process can
send messages to some processes while committing send
omission with respect to others. After it knows it is faulty,
a process pi forgets its past as far as the computation of the
decided value is concerned, resets the corresponding local
variables, and, as from then on it receives messages only
from processes it perceives as being correct, it will decide
the same value as one of them.

3.2 Local Variables

The code for a process pi is described in Figure 1.
A process pi starts participating in the k-set agreement
protocol when it invokes k-SET AGREEMENT(vi) where
vi is the value it proposes. It terminates either when it
crashes or when it executes the return (esti) statement
(line 11, 13 or 16) where esti is the value it decides.
As already announced, the protocol is round-based: r is
the common shared variable that the processes (can only)
read and that defines the progress of the whole computation.

In addition to esti, each process pi manages two local

set variables: senderi and can deci. The meaning of these
variables is the following.

• esti is pi’s local estimate of the decision value. Initial-
ized to vi (line 1), it is then updated according to the
estimate values received by pi (line 8).

• When pi starts a new round r, senderi contains the
processes from which pi is waiting for messages dur-
ing that round. Its initial value is Π (the whole set of
processes, line 1). It is then updated at line 6 to con-
tain the processes that have not decided in a previous
round and that pi considers as correct. (These pro-
cesses should normally either decide during the cur-
rent round r or proceed to the round r + 1 and send
messages during r + 1).

• can deci is a set of processes pj such that, to pi’s
knowledge, pj knows one of the k smallest values cur-
rently present in the system. Initialized to ∅ (line 1),
this variable is then updated according to the messages
received by pi (line 8).

3.3 Process Behavior: Part 1

The behavior of a process pi during a round r (lines 4-
14) can be divided in two parts according to the manage-
ment of its local variables, senderi on one side, and the
pair (esti, can deci) on the other side. The first part (lines
4-6) is devoted to the management of the senderi variable.

If it is not considered as faulty (i ∈ senderi), pi sends
to all the processes a message containing the current val-
ue of the three local variables (sender i, esti and can deci)
defining its local state (line 4). Then, pi (be it faulty or not)
waits for messages from each process pj that it consider-
s as being correct (i.e., from each pj that it considers as a
potential sender, namely such that j ∈ senderi). Finally,
according to the messages it has received, pi computes the
new value of senderi by intersecting its current senderi

set, the subset of potential senders pj from which it has re-
ceived a message (rec from set), and the senderj sets it
has received from these processes pj (line 6).

It follows from these statements that if a process py com-
mits a send omission fault with respect to a correct pro-
cess pj during a round r, all the (non-crashed) processes
pi will suspect py during the round r + 1, i.e., we will have
k /∈ senderi at the end of r + 1. Differently, if py commits
a send omission fault with respect to a process pj during a
round r, and pj (that behaved correctly until r) commits a
send omission fault during r+1, the fact that py be suspect-
ed depends on the actual pattern failure.

Let senderi[r] be the value of senderi after it has been
updated at line 6 during the round r, 0 ≤ r ≤ �t/k� + 1
(with senderi[0] = Π). Line 6 provides the following

monotonicity property: senderi[r] ⊆ senderi[r − 1], and
gives senderi[r] the following meaning: it is the set of pro-
cesses that have not decided during r′ < r and that pi con-
siders as being correct (according to the information it has
received up to r).

3.4 Process Behavior: Part 2

The second part (lines 7-14) concerns the management
of the esti and can deci variables. It is the crucial part of
the protocol to ensure early stopping and decision optimal-
ity.

The normal case. Considering a process pi, the “normal”
case is when, after pi has updated senderi at line 6 of r, we
have senderi[r] 	= ∅.

In that “normal” case, the process pi first updates esti
and can deci (line 8) by taking into account the messages
it has received from the processes it currently considers as
being correct (as defined by senderi[r]). As the protocol
requires that a process pi decides the smallest value it has
received from a process it considers correct, esti is updat-
ed to the smallest estj value that pi has received from the
processes in senderi[r].

Let us notice that i /∈ senderi[r] means that pi has
been informed it is faulty. From now on, it does no
longer consider its previous esti value. Basically, when it
discovers it is faulty, a process pi proceeds to a “passive”
mode where it does no longer send messages (line 4), and
“resets” esti only with the estj values sent by the processes
pj it considers correct: a faulty process forgets its past. In
that way, a decided value will always have been witnessed
by correct processes.

Let us now focus on the local predicate evaluated at line
10, namely (n − |senderi[r]| < kr). This predicate is for
early decision and stopping. As shown in the proof, this
predicate means that pi knows one of the k smallest values
currently present in the system. To get a part of its under-
lying intuition, let us consider the simpler case where there
are only crash failures. Let r be the first round during which
the predicate is satisfied at pi. We can then conclude that,
among all the processes that were alive at the beginning of
r, pi has not received messages from at most k − 1 of them
[25, 27]. It consequently knows one of the k smallest val-
ues present in the system at round r. While this predicate is
still correct for the send omission failure model, its correc-
tion proof is much more involved in this model than in the
crash failure model as soon as we want to show that it does
not prevent decision optimality. This difficulty comes from
the fact that crash failures are both stable and global (if a
process crashes at r, all the non-crashed processes suspect
it at the latest at r + 1), while send omission faults are nei-

Function k-SET AGREEMENT(vi)
(1) esti ← vi; sender i ← Π; can deci ← ∅; % r = 0 %
(2) for r = 1, . . . , �t/k� + 1 do
(3) begin round
(4) if (i ∈ senderi) then foreach j ∈ Π do send (sender i, esti, can deci) to pj enddo endif;
(5) let rec from = {j : (senderj , estj , can decj) is received from pj during round r ∧ j ∈ senderi};
(6) senderi ← senderi ∩ rec from ∩ j∈rec from\{i} senderj ;
(7) if (senderi �= ∅)
(8) then can deci ← j∈senderi

can decj ; esti ← min({estj}j∈senderi
);

(9) if (i ∈ senderi ∧ i /∈ can deci)
(10) then if (n − |senderi| < k r) ∨ (can deci �= ∅) then can deci ← can deci ∪ {i} endif
(11) else if (senderi ⊆ can deci) then return (esti) endif
(12) endif
(13) else return (esti) % esti is the smallest value received at r − 1 %
(14) endif;
(15) end round;
(16) return (esti)

Figure 1. k-set protocol for send omission, 1 ≤ k, t < n (code for pi)

ther stable (a process can commit a send omission during a
round and not during the next round) nor global (during a
round, py can commit send omission with respect to pi and
not with respect to pj).

So, when (n − |senderi[r]| < kr), pi indicates that it
knows one of the k smallest values present in the system
by adding its id to can deci (line 10). If this predicate is
false while can deci 	= ∅ (e.g., j ∈ can deci), pi learns
indirectly from pj one of the k smallest values present in
the system. It then adds its id to can deci (notice that line
10 is the only line where a process adds its own id to this
set).

The behavior of pi then depends on the fact it consid-
ers itself as correct (i ∈ senderi) and the value of its set
can deci. We consider three cases.

• i ∈ senderi ∧ i /∈ can deci is satisfied (lines 9-10).
i ∈ senderi[r] means that pi perceives itself as be-
ing correct, while i /∈ can deci means that it does
not know if esti is one of the k smallest values in the
system. Consequently, it checks if it is the case, ei-
ther directly because n − |senderi[r]| < kr is satis-
fied, or indirectly because another process informed it
(can deci 	= ∅).

• i ∈ senderi ∧ i ∈ can deci (lines 9 and 11). In
that case, pi perceives itself as being correct, and, at
least from the previous round, it knows that esti is one
of the k smallest values. It decides esti and stops if
senderi ⊆ can deci.

As a correct process pc that has not yet decided cannot
be suspected, senderi 	= ∅ ∧ senderi ⊆ can deci

means that pi knows that the estimate value of each
correct process that has not yet decided is among the k
smallest values currently present in the system. As the

estimate values of these correct processes are know by
all the processes participating in the current round, this
means that pi can safely decide.

• i /∈ senderi (lines 9 and 11). In that case, pi knows it
is faulty. It is in the “passive “mode, waiting for mes-
sages from the processes it perceives as being correct.

Similarly to the previous case, as a correct process
pc (that has not yet decided) cannot be suspected,
senderi ⊆ can deci means that pi knows the estimate
value of these correct processes and that these values
are among the k smallest ones. It can consequently
decides.

This terminates the discussion concerning the case of a
process pi such that senderi[r] 	= ∅ after it has updated
senderi during r.

A particular case. This case is when, after a process pi

has updated senderi at line 6 of r, we have senderi[r] = ∅.
This case occurs in the particular failure pattern where

(1) the correct processes decide during r − 1, (2) a process
pj behaved correctly until r − 2 and, during r − 1, com-
mits send omission failure only with respect to the correct
processes, and (3) pj commits send omission failure with
respect to the other faulty processes during r. This case
can happen because the correct processes stop at r− 1 after
having decided, and pj is never informed it is faulty. When
this occurs, the non-crashed faulty process pi is such that
senderi[r] = ∅. It then decides the current value of esti it
has computed during the previous round.

4 Proof of the Protocol

This section shows that the k-set agreement protocol
satisfies the validity, agreement and termination properties

defining the k-set agreement problem, plus the early decid-
ing and stopping property, and the decision optimality prop-
erty.

Notation The proof uses the following notations.

• xi[r] denotes the value of pi’s local variable x at the
end of round r.

• Participating [r] is the set of processes that execute
round r. More precisely :
Participating [r] = {pi : pi decides during round r or
proceeds to r + 1}.

• EST [r] = {esti[r] : pi ∈ Participating [r]}. By def-
inition EST [0] = the proposed values. (EST [r] con-
tains the values that are present in the system at the end
of round r.)

• Silent[r] = {pi : ∀pj ∈ Participating[r] : i /∈
senderj[r]}.

A process pi that has crashed or has decided before the
end of round r − 1 is in Silent[r]. On the contrary, a
process pi ∈ Silent[r] has not necessarily crashed or
decided before the end of round r. For example, a pro-
cess which does not crash but does not communicate
with any process during round r − 1 is in Silent[r].
It is important to remark that if pj ∈ Silent[r], then
no process pi (including pj itself) takes into account
estj and can decj sent by pj (if any) to update its lo-
cal variables esti and can deci at line 8 of the round
r.

Basic properties The proof of the following inclusions
are left to the reader:
- Participating[r + 1] ⊆ Participating[r],
- Silent[r] ⊆ Silent[r + 1],
- ∀i ∈ Participating[r] : Silent[r] ⊆ Π − senderi[r],
- ∀i ∈ Participating[r + 1] :

pi is correct ⇒ Π − senderi[r] ⊆ Silent[r + 1].

Lemmas and theorems Due to page limtation, the proof
of the lemmas and theorems stated below cannot be present-
ed here. The interested reader will find then in [26].

The first lemma establishes a monotonicity property on
the values of the abstract variables EST [r].

Lemma 1 ∀r ≥ 0 : EST [r + 1] ⊆ EST [r].

The second lemma is fundamental for agreement and
early decision and stopping. It relates an operational view
(the number of messages received by a process pi during a
round r) with a semantic information (the fact that esti[r] is
one of the k smallest values currently present in the system).
Interestingly, this lemma uses a “witness” correct process.

Lemma 2 Let us consider a round r, 1 ≤ r ≤ � t
k �+1, such

that (1) there is a correct process pc ∈ Participating[r],
and (2) |EST [r]| > k (let vm denote the greatest val-
ue among the k smallest values of EST [r]). Let pi ∈
Participating[r]. We have n − k r < |senderi[r]| ⇒
esti[r] ≤ vm.

The previous lemma established the validity of the lo-
cally evaluable predicate associated with the early stopping
property. The next lemma, also associated with agreement
and early stopping, defines the meaning of can deci[r].

Lemma 3 Let pi ∈ Participating[r] (1 ≤ r ≤ � t
k� + 1).

can deci[r] 	= ∅ ⇒ esti[r] is one of the k smallest values
in EST [r].

Lemma 4 Let pi be a process that decides during round
r ≤ � t

k �. No process decides after the round r + 1.

Theorem 1 [Agreement] No more than k different values
are decided.

Theorem 2 [Decision optimality] A process that does not
crash decides.

As a correct process does not crash, we have : (consequence
of the previous theorem):

Corollary 1 [Termination] Every correct process decides.

The next corollary follows from the proof of the previous
theorem.

Corollary 2 [Validity] A decided value is a proposed value.

Theorem 3 [Early Stopping] No process halts after the
round min(�f/k�+ 2, �t/k�+ 1).

5 Conclusion

This paper has introduced the notion of decision opti-
mality for agreement problems in omission failure model-
s. This optimality criterion means that all the processes
that do not crash decide. The paper has presented a k-set
agreement protocol that enjoys both this optimality prop-
erty and is early stopping. A process that does not crash
(be it correct or committing send omission failures) decides
and halts by the round min(�f/k� + 2, �t/k� + 1) where
f is the number of actual crashes and t < n the maximum
number of processes that may crash. Interestingly, when
�f/k� + 2 ≤ �t/k�, the very existence of this protocol ex-
tends the previous �f/k� + 2 lower bound [10] to the send
omission failure model.

A k-set agreement protocol suited to the synchronous
crash failure model is presented in [25]. This protocol is

not only early deciding but provides also “very early” deci-
sion in a lot of scenarios. More explicitly, if during the very
first rounds, there are either few crashes or a lot of crashes,
the protocol terminates very quickly. As an example, the
protocol stops after only three rounds when xk (∀ x > 1)
processes have crashed before the protocol starts, and less
than k processes crash thereafter. The �f/k� + 2 lower
bound is attained only in the worst case scenario where the
crashes are evenly distributed with k crashes per round. To
attain this goal, this protocol uses a differential approach
that allows a process to take into account the failure pat-
tern and not only the number of failures that occur. S-
tated with the variables used in the present paper this dif-
ferential approach would be expressed with the following
predicate |senderi[r − 1] − senderi[r]| < k r (instead of
n−k r < |senderi|). An open problem is the existence (and
its design if there is such a protocol) of a k-set agreemen-
t protocol satisfying such a “very early decision” criterion
despite omission failures.

References
[1] Aguilera M.K. and Toueg S., A Simple Bivalency Proof that

t-Resilient Consensus Requires t + 1 Rounds. Information
Processing Letters, 71:155-178, 1999.

[2] Attiya H. and Welch J., Distributed Computing, Fundamen-
tals, Simulation and Advanced Topics (Second edition). Wi-
ley Series on Par. and Dist. Comp., 414 pages, 2004.

[3] Borowsky E. and Gafni E., Generalized FLP Impossibil-
ity Results for t-Resilient Asynchronous Computations.
Proc. 25th ACM Symposium on Theory of Computation (S-
TOC’93), California (USA), pp. 91-100, 1993.

[4] Charron-Bost B. and Schiper A., Uniform Consensus is
Harder than Consensus. J. of Algorithms, 51(1):15-37, 2004.

[5] Chaudhuri S., More Choices Allow More Faults: Set Con-
sensus Problems in Totally Asynchronous Systems. Infor-
mation and Computation, 105:132-158, 1993.

[6] Chaudhuri S., Herlihy M., Lynch N. and Tuttle M.,
Tight Bounds for k-Set Agreement. Journal of the ACM,
47(5):912-943, 2000.

[7] Dolev D., Reischuk R. and Strong R., Early Stopping in
Byzantine Agreement. J. of the ACM, 37(4):720-741, 1990.

[8] Fischer M.J., Lynch N.A., A Lower Bound on the Time to
Assure Interactive Consistency. Information Processing Let-
ters, 14(4):183-186, 1982.

[9] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility
of Distributed Consensus with One Faulty Process. Journal
of the ACM, 32(2):374-382, 1985.

[10] Gafni E., Guerraoui R. and Pochon B., From a Static Impos-
sibility to an Adaptive Lower Bound: The Complexity of
Early Deciding Set Agreement. Proc. 37th ACM Symp. on
Theory of Computing (STOC’05), 2005.

[11] Garay J.A. and Moses Y., Fully Polynomial Byzantine A-
greement for n > 3t Processes in t+1 Rounds. SIAM Jour-
nal on Computing, 27(1):247-290, 1998.

[12] Hadzilacos V., Issues of Fault Tolerance in Concurrent Com-
putations. PhD Thesis, Tech Report 11-84, Harvard Univer-
sity, Cambridge (MA), 1985.

[13] Hadzilacos V. and Toueg S., Reliable Broadcast and Related
Problems. In Distributed Systems, ACM Press, New-York,
pp. 97-145, 1993.

[14] Herlihy M.P. and Penso L. D., Tight Bounds for k-Set A-
greement with Limited Scope Accuracy Failure Detectors.
Proc. 17th Int. Symposium on Distributed Computing (DIS-
C’03), Springer Verlag LNCS #2848, pp. 279-291, 2003.

[15] Herlihy M.P. and Shavit N., The Topological Structure
of Asynchronous Computability. Journal of the ACM,
46(6):858-923, 1999.

[16] Keidar I. and Rajsbaum S., A Simple Proof of the Unifor-
m Consensus Synchronous Lower Bound. Information Pro-
cessing Letters, 85:47-52, 2003.

[17] Lamport L. and Fischer M., Byzantine Generals and Trans-
action Commit Protocols. Unp. manuscript, 1982.

[18] Lynch N.A., Distributed Algorithms. Morgan Kaufmann
Pub., San Fransisco (CA), 872 pages, 1996.

[19] Mostéfaoui A. and Raynal M., k-Set Agreement with Limit-
ed Accuracy Failure Detectors. Proc. 19th ACM Symposium
on Principles of Distributed Computing (PODC’00), ACM
Press, pp. 143-152, Portland (OR), 2000.

[20] Mostéfaoui A. and Raynal M., Randomized Set Agreement.
Proc. 13th ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA’01), ACM Press, pp. 291-297, Hersonis-
sos (Crete), 2001.

[21] Neiger G. and Toueg S., Automatically Increasing the Fault-
Tolerance of Distributed Algorithms. Journal of Algorithms,
11:374-419, 1990.

[22] Pease L., Shostak R. and Lamport L., Reaching Agreement
in Presence of Faults. J. of the ACM, 27(2):228-234, 1980.

[23] Perry K.J. and Toueg S., Distributed Agreement in the Pres-
ence of Processor and Communication Faults. IEEE Trans-
actions on Software Eng., SE-12(3):477-482, 1986.

[24] Raı̈pin Parvédy Ph. and Raynal M., Optimal Early Stopping
Uniform Consensus in Synchronous Systems with Process
Omission Failures. Proc. 16th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’04), Barcelona (Spain),
ACM Press, pp. 302-310, 2004.

[25] Raı̈pin Parvédy Ph., Raynal M. and Travers C., Early-
stopping k-set agreement in synchronous systems prone to
any number of process crashes. Proc. 8th Int. Conference on
Parallel Computing Technologies (PaCT’05), Krasnoyarsk
(Russia), Springer Verlag LNCS #3606, pp. 49-58, 2005.

[26] Raı̈pin Parvédy Ph., Raynal M. and Travers C., Decision Op-
timal Early-Stopping k-set Agreement in Synchronous Sys-
tems Prone to Send Omission Failures. Tech Report #1689,
IRISA, Université de Rennes (France), 17 pages 2005.
http://www.irisa.fr/bibli/publi/pi/2005/1689/1689.html

[27] Raynal M., Consensus in Synchronous Systems: a Concise
Guided Tour. Proc. 9th IEEE Pacific Rim Int. Symposium on
Dependable Computing (PRDC’02), Tsukuba (Japan), IEEE
Computer Press, pp. 221-228, 2002.

[28] Saks M. and Zaharoglou F., Wait-Free k-Set Agreemen-
t is Impossible: The Topology of Public Knowledge. SIAM
Journal on Computing, 29(5):1449-1483, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

