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Abstract

The k-set agreement problem is a paradigm of coordi-
nation problems encountered in distributed computing. The
parameter k defines the coordination degree we are inter-
ested in. (The case k = 1 corresponds to the well-known
uniform consensus problem.) More precisely, the k-set
agreement problem considers a system made up of n pro-
cesses where each process proposes a value. It requires that
each non-faulty process decides a value such that a decided
value is a proposed value, and no more than k different val-
ues are decided.

This paper visits the k-set agreement problem in syn-
chronous systems where up to t processes can experience
failures. Three failure models are explored: the crash fail-
ure model, the send omission failure model, and the general
omission failure model. Lower bounds and protocols are
presented for each model. Open problems for the general
omission failure model are stated. This paper can be seen
as a short tutorial whose aim is to make the reader familiar
with the k-set agreement problem in synchrony models with
increasing fault severity. An important concern of the paper
is simplicity. In addition to its survey flavor, several results
and protocols that are presented are new.

1 Introduction

Coordination problems and %-set agreement Coordina-
tion problems are central in the design of distributed sys-
tems where processes have to exchange information and
synchronize in order to agree in one way or another (for oth-
erwise, they would behave as independent Turing machines,
and the system would no longer be a distributed system).
This paper surveys one distributed coordination problem,
namely, the k-set agreement problem. This survey focuses
on recent results in synchronous systems.

The k-set agreement problem has been introduced in [4].
It can can be defined as follows. Considering a system made

up of n processes where each process proposes a value, and
up to ¢ processes can experience failures, each non-faulty
process has to decide a value such that a decided value is a
proposed value, and no more than & different values are de-
cided. The well-known consensus problem is nothing else
than the 1-set agreement problem, where the non-faulty pro-
cess have to decided the same value. The parameter k£ of
the set agreement can be seen as the degree of coordina-
tion associated with the corresponding instance of the prob-
lem. The smaller k, the more coordination among the pro-
cesses: k = 1 means the strongest possible coordination,
while £ = n means no coordination.

Be the message-passing system synchronous or asyn-
chronous, the k-set agreement problem can always be
solved despite process crash failures, as soon as k > t. A
trivial solution is as follows: k predefined processes broad-
cast their value to all the processes, and a process simply
decides the first value it receives. (It is easy to see that,
whatever the crash pattern, at most k values are sent, and at
least one value is sent.)

k-set agreement solvability Surprisingly, while the k-set
agreement can be trivially solved in asynchronous systems
when the coordination degree k is such that k > t, there is
no deterministic protocol that can solve it in such a system
as soon as k < t (e.g., see [12] for such an impossibility
proof). This impossibility result generalizes the impossibil-
ity to solve the consensus problem in asynchronous systems
where even only one process can crash (case k =t = 1)
[8]. This means that solving the k-set agreement problem
in an asynchronous system requires either to enrich this sys-
tem with additional power (such as the one provided by fail-
ure detectors [11, 16] or random numbers [17]), or restrict
the input vectors that the processes can collectively propose
[3, 15].

Differently, the k-set agreement problem can always be
solved in synchronous systems prone to process crash fail-
ures. The protocols that solves it are all based on the round
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notion. The processes execute a sequence of rounds and,
during each round, each process executes sequentially the
following steps: it first sends messages, then receives mes-
sages, and finally executes local computation. The main
property of a synchronous system is that the messages sent
during a round are received during the same round.

k-set agreement efficiency A fundamental question asso-
ciated with k-set agreement concerns the minimal number
of rounds that any protocol has to execute in the worst case
scenario where up to ¢ processes crash (the time complexity
of a synchronous protocol is usually measured as the max-
imal number of rounds it requires). It has been shown that
Ib; = |£] + 1is a lower bound on that number of rounds.
This means that, whatever the k-set agreement protocol, it
is always possible to have a run of that protocol that re-
quires at least [b; rounds for the processes to decide [5].
(This worst case scenario is when exactly k processes crash
during each round, in such a way that -during the round
in which it crashes- a process sends values to some non-
crashed processes but not to all of them.) It is important to
notice that the previous bound states an “inescapable trade-
oft” relating the fault-tolerance parameter ¢, the degree k
of coordination achieved, and the best time complexity /b,
that a set agreement protocol can attain [5]. Moreover, it is
worth noticing that, when compared to the consensus prob-
lem, k-set agreement divides the time by &.

Another fundamental question concerns the adaptivity of
a k-set agreement protocol to the “good” runs. Those are the
runs where there are few crashes, i.e., the runs where the
number of actual crashes f is smaller than ¢ (the maximum
number of crashes for which the protocol works). This is the
notion of early decision [6]. It has very recently been shown
that there is no k-set agreement protocol that, in presence of
f process crashes, allows the processes to always decide be-
fore lby = min([%] +2, %] + 1) rounds [9]. This bound
shows an additional relation linking the best time efficiency
a set agreement protocol can attain, the actual number of
crashes f, and the coordination degree k. It is worth notic-
ing that, in failure-free runs (f = 0), two rounds are suffi-
cient for the processes to coordinate (decide) whatever the
value of k (which is the lower bound for solving the uniform
consensus problem in failure-free runs [13]).

Content of the paper The spirit of this paper is the same
as [24] (devoted to consensus). The paper visits k-set agree-
ment protocols in several process failure models, namely,
the classical crash failure model, the send omission failure
model and the general omission failure model. In the send
omission failure model, during a round, a process can crash
or forget to send messages. In the general omission fail-
ure model, a process can additionally forget to receive mes-
sages. In addition to the (five) protocols that are described,

it is shown that the previous lower bounds Ib; and [b; are
still valid for the send omission failure model for any value
of t (i.e., t < n), and for the general omission failure model
when ¢ < n/2. A new protocol for general omission fail-
ures that works for ¢ < kiﬂn is also presented. It is shown
that this protocol is optimal with respect to the resilience
bound ¢.

The paper also introduces a new property for the k-set
agreement problem in presence of omission failures. This
property, called strong termination, requires that the pro-
cesses that commit only send omission failures (and do not
crash) decide as if they were non-faulty. This allows more
processes to decide. Open problems that concern k-set
agreement in the general omission failure models are also
presented. A main accent of the paper is simplicity. (Due
to page limitation, it was not possible to include the proofs
of the protocols and the theorems presented in the paper.
They can be found in [25].) In that sense, the paper can
be considered as an “introductory survey”. As indicated in
the abstract, this paper can be seen as a short tutorial whose
aim is to make the reader familiar with the k-set agreement
problem in synchrony models with increasing fault severity.
In addition to its survey flavor, several results and protocols
that are presented are new. Moroever, some problems that
remain open are stated.

2 Distributed Computing Model
2.1 Synchronous System

The system model consists of a finite set of processes,
namely, IT = {p;, ... ,p,}, that communicate and synchro-
nize by sending and receiving messages through channels.
Every pair of processes p; and p; is connected by a reliable
channel (which means that there is no creation, alteration,
loss or duplication of message).
The system is synchronous. This means that each of its
executions consists of a sequence of rounds. Those are iden-
tified by the successive integers 1, 2, etc. For the processes,
the current round number appears as a global variable r that
they can read, and whose progress is managed by the un-
derlying system. A round is made up of three consecutive
phases:
e A send phase in which each process sends messages.
e A receive phase in which each process receives mes-
sages.
The fundamental property of the synchronous model
lies in the fact that a message sent by a process p; to
a process p; at round r, is received by p; at the same
round 7.

e A computation phase during which each process pro-
cesses the messages it received during that round and
executes local computation.
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2.2 Process Failure Model

A process is faulty during an execution if its behavior
deviates from that prescribed by its algorithm, otherwise it
is correct. A failure model defines how a faulty process can
deviate from its algorithm. We consider here the following
failure models:

e Crash failure. A faulty process stops its execution pre-

maturely. After it has crashed, a process does nothing.
Let us observe that if a process crashes in the middle of
a sending phase, only a subset of the messages it was
supposed to send might actually be received.

e Send Omission failure. A faulty process crashes or
omits sending messages it was supposed to send.

e General Omission failure. A faulty process crashes,
omits sending messages it was supposed to send or
omits receiving messages it was supposed to receive
(receive omission) [19].

It is easy to see that these failure models are of increas-
ing “severity” in the sense that any protocol that solves a
problem in the General Omission (resp., Send Omis-
sion) failure model, also solves it in the (less severe) Send
Omission (resp., Crash) failure model.

A send (receive) omission failure actually models a fail-
ure of the output (input) buffer of a process. A buffer over-
flow is a typical example of such a failure. An intuitive
explanation of the fact that it is more difficult to cope with
receive omission failures than with send omission failures is
the following. A process that commits only send omission
failure continues to receive the messages sent by the cor-
rect process. Differently, when a process commits receive
omission, it experiences an “autism” behavior.

3 The k-Set Agreement Problem

The problem has been informally stated in the Introduc-
tion: every process p; proposes a value v; and each correct
process has to decide on a value in relation to the set of
proposed values. More precisely, the set agreement prob-
lem with coordination degree k, is defined by the following
three properties:

e Termination: Every correct process decides.
o Validity: If a process decides v, then v was proposed
by some process.

e Agreement: No more than k different values are de-
cided.

As we have seen, 1-set agreement is the uniform consensus
problem. In the following, we implicitly assume k£ < ¢
(this is because, as we have seen in the introduction, k-set
agreement is trivial when &k > t).

Function set_agreement (v;)
est; < v;;

whenr =1,2,..., \_%j + 1 {do % r: round number %

begin_round

send (est; ) to all; % including p; itself %

est; «— min({est; values rec. during the current round r})
end_round;
return (est;)

Figure 1. Crash failures: Synchronous k-set
agreement, code for p; (t < n)

4 Set Agreement in the Crash Failure Model
4.1 A simple protocol

A very simple synchronous k-set agreement protocol for
the most general crash failure model (i.e., ¢ < n) is de-
scribed in Figure 1 (this is the classical protocol presented in
distributed computing textbooks (e.g., [2, 14]). A process p;
invokes the protocol by calling the function set_agreement
(v;) where v; is the value it proposes. If it does not crash, p;
terminates when it executes the return() statement.

The idea is for a process to decide the smallest estimate
value it has ever seen. To attain this goal, the protocol is
based on the flooding strategy. Each process p; maintains
a local variable est; that contains its current estimate of the
decision value. Initially, est; is set to v; the value proposed
by p;. Then, during each round, each non-crashed process
first broadcasts its current estimate, and then updates it to
the smallest values among the estimates it has received.
(The proof of this protocol appears as a particular case of
the proof of the early-deciding protocol that follows.)

4.2 An early-deciding protocol

An early deciding k-set agreement protocol for the crash
failure model is presented in Figure 2. This protocol (intro-
duced in [21]) is a generalization of the previous flood-set
protocol. Its underlying principles are the following. Let
nb;[r] be the number of processes from which a process p;
has received messages during the round r (by definition,
nb;[0] = n). As crashes are stable (there is no recovery),
we have nb;[r — 1] > nb;[r].

This simple observation incite investigating the local
predicate nb;[r — 1] —nb;[r] < k. When true, this predicate
means that p; is missing the current estimates from at most
k — 1 processes among all the processes that were alive at
the beginning of the round 7. Combined with the systematic
use of the flooding strategy, this allows p; to conclude that
it knows one of the k smallest value present in the system.

Unfortunately, the local predicate nb;[r — 1] —nb;[r] < k
is not powerful enough to allow p; to also conclude that the
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Function set_agreement (v;)
est; < vi; nb;[0] « n; can_dec; + false;

whenr =1,2,..., \_%J + 1 {do % r: round number %

begin_round

send (est;, can_decide;) to all; % including p; itself %
** if can_decide; then return (est;) end_if;
let nb;[r] = number of messages received by p; during 7;
let decide; =V on the can_decide; boolean values rec. during 7;
est; < min({est; values rec. during the current round });
if (nbi[r — 1] — nb;[r] < k) V decide;)
then can_decide; < true end_if
end_round;
return (est;)

Figure 2. Early stopping synchronous k-set
agreement: code for p; (t < n)

other processes know it has one of the k£ smallest values.
Consequently, p; cannot decide and stop immediately. To
be more explicit, let us consider the case where the current
estimate of process p; is the smallest value v in the system,
p; is the only process that knows v, p; decides v at the end
of r, and crashes immediately after deciding. The other pro-
cesses can then decide k other values as v is no longer is the
system from round r + 1. An easy way to fix this problem
consists in requiring p; to proceed to the round r + 1 be-
fore deciding. When nb;[r — 1] — nb;[r| < k becomes true,
p; sets a boolean (can_decide;) to true and proceeds to the
next round r + 1. As, before deciding at line ** of r + 1, p;
has first sent the pair (est;, can_decide;) to all processes,
any process p; active during r + 1 not only knows v but,
as can_decide; is true, knows also that v is one of k small-
est values present in the system during r + 1. The protocol
follows immediately from these observations.

The protocol is early-deciding, namely, a process that
does not crash decides at the latest during the round lb; =
min( L%J +2, [£] 4 1) rounds. Its correctness proof can be
found in [21].

4.3 On the early decision predicate

Instead of using the local predicate nb;[r — 1] — nb;[r] <
k, an early stopping protocol could be based on the local
predicate faulty;[r] < k r where faulty;[r] = n — nb;[r]
(the number of processes perceived as faulty by p;)'. While
both predicates can be used to ensure early stopping, we
show here that nb;[r — 1] — nb;[r] < k is a more efficient
predicate than faulty;[r] < k r (more efficient in the sense
that it can allow for earlier termination). To prove it, we

show the following:
o (i) Let r be the first round during which the local pred-

icate faulty;[r] < k r is satisfied. The predicate

IThis predicate is implicitly used in the proof of the (not-early decid-
ing) k-set agreement protocol described in [14].

nb;[r — 1] — nb;[r] < k is then also satisfied.

o (it) Let r be the first round during which the local pred-
icate nb;[r — 1] — nb;[r] < k is satisfied. It is possible
that faulty;[r] < k r be not satisfied.

We first show (7). As r is the first round during which
faulty;[r] < k r is satisfied, we have faulty;[r — 1] >
k (r —1). So, we have faulty;[r] — faulty;[r — 1] <
kr —k (r —1) = k. Replacing the sets faulty;[r] and
faulty;[r — 1] by their definitions we obtain (n — nb;[r]) —
(n —nbi[r — 1)) < k, i.e., (nb;[r — 1] — nb;[r]) < k.

A simple counter-example is sufficient to show (ii).
Let us consider a run where f1 > ak (a > 2) pro-
cesses crash initially (i.e., before the protocol starts),
and f2 < Kk processes crash thereafter. ~We have
n— f1 > nb;[1] > nb;[2] > n— (f1+ f2), which implies
that (nb;[r — 1] — nb;[r]) < k is satisfied at round r = 2.
On an other side, faulty;[2] > f1 = ak > 2k, from which
we conclude that faulty;[r] < r k is not satisfied at r = 2.

This discussion shows that, while the early decision
lower bound can be obtained with any of these predicates,
the predicate nb;[r — 1] — nb;[r] < k is more efficient in
the sense it takes into consideration the actual failure pat-
tern (a process counts the number of failures it perceives
during each round, and not only from the beginning of the
run). Differently, the predicate faulty;[r] < r k considers
only the actual number of failures and not their pattern (it
basically always considers the worst case where there are
k crashes per round, whatever their actual occurrence pat-
tern).

S Set Agreement in the Send Omission Model

Let us now consider that, in addition to crash, a process
can also fails by omitting to send messages. This means
that, during a round, a process can send a message to some
processes and forget to send a message to some other pro-
cesses. Similarly to the crash failure model, the fact that a
process p; does not receive a message from p; can allow p;
to conclude that p; is faulty, but differently, it cannot allow
it to conclude that p; has crashed.

5.1 A simple protocol

A simple k-set agreement protocol that can cope with
up to t < n faulty processes is described in Figure 3. This
protocol (that is a variant of a protocol introduced in [10]) is
obtained from the previous basic flooding protocol by two
simple modifications. They concern the starred lines.

The underlying idea is the following one. During a round
r (1 < r < [t/k| + 1), only the processes p; such that
(r — 1)k < i < rk send their estimate values. As far as
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Function set_agreement (v;)
est;  v;;

whenr =1,2,..., L%j + 1 |do % r: round number %
begin_round
(*1) if (¢ is such that (r — 1)k < ¢ < rk)
then send (est;) to all end._if;
(*2) est; < any est; rec. during 7 if any, unchanged otherwise
end_round;
return (est;)

Figure 3. Send omission failures: Syn-
chronous k-set agreement, code for p; (¢ < n)

message reception is concerned, at the end of a round, a
process p; defines its estimate est; as being any estimate
value it has received during that round. If it has received no
estimate, est; keeps its previous value.

The protocol is based on the following simple princi-
ple: restricting each round to have at most k£ senders. As
(Lt/k] + 1)k > t and at most ¢ processes crash or commit
send omission failures, there is at least one round (say R)
that has a correct sender p.. This means that during R, all
the processes receives an estimate from p.. Consequently,
any non-crashed process updates its estimate during R. Fi-
nally, at most k different estimates can be adopted during a
round (line *2). It follows that, from round R, there are at
most k distinct values in the system. Interestingly, this pro-
tocol associates specific senders with each round (which, in
some sense, means that it forces the other processes to sim-
ulate send omission failures during that round).

5.2 Early decision and strong termination

An early-deciding k-set protocol for the send omission
failure model with ¢ < n, is described in [22]. No pro-
cess decides after the round lby = min([%] +2,[L]+1).
Thanks to this protocol, we have the following theorem.

Theorem 1 1b; = min(|£] +2, [ £] +1) is a lower bound
on the number of rounds for solving k-set agreement in the
synchronous send omission failure model with t < n.

Proof The theorem follows from the following observa-
tions. (1) The very existence of the previous early-deciding
protocol. (2) The fact that [b; is a lower bound in the crash
failure model. And, (3) the fact that the send omission fail-
ure model includes (is more severe than) the crash failure
model. UTheorem 1

In addition to the termination, validity and agreement
properties that defines the k-set agreement problem, the
early deciding protocol described in [22] enjoys the follow-
ing noteworthy property:

e Strong termination: a process that does not crash de-
cides.

It is worth noticing that each of these properties (early deci-
sion vs strong termination) is not obtained at the detriment
of the other. Strong termination is a property particularly
meaningful when one is interested in solving agreement
problems despite omission failures. Intuitively, it states that
a protocol has to force as many processes as possible to de-
cide.

Problem difficulty The non-early deciding protocol de-
scribed in Figure 3 and the early deciding protocol de-
scribed in [22] shows that the k-set agreement problem has
the same lower bounds in the crash failure model and the
send omission failure model. This means that, for that prob-
lem, the send omission failure model is not “more difficult”
than the crash model. As we are about to see, this is no
longer true for the general omission failure model.

6 Set Agreement in the General Omission
Failure Model when ¢ < n/2

Let us now consider the more severe failure model where
a process can crash, omit to send messages or omit to re-
ceive messages. We first address the case where no more
than ¢ < n/2 processes can be faulty. This section presents
an optimal k-set agreement protocol suited to this context
and states an open problem.

6.1 A strongly terminating protocol for ¢t < n/2

There is no way to force a process that commits receive
omission failures to decide one of the k£ values decided by
the other processes. This is because, due to its faults, such
a process can never know these values. In that case, the
protocol forces such processes to stop without deciding a
value (let us remind that the problem requires “only” that
the correct processes decide). A faulty process that does not
decide, returns a default value denoted L whose meaning is
“no decision” from the k-set agreement point of view. By
a language abuse we then say that such a process “decides
1>

Local variables The protocol, described in Figure 4, has
been proposed in [23]. In addition to est;, a process p; man-
ages three local variables whose meaning is the following:
o trusted; represents the set of processes that p; cur-
rently considers as being correct. It initial value is II
(the whole set of processes). So, i € trusted; (line 4)
means that p; considers it is correct. (If j € trusted;
we say “p; trusts p;”; if j € trusted; we say “p; sus-
pects p;”.)
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Function set_agreement(v;)

@) forr=1,...)|[f]+1|do
(3) begin_round

(10) end_round;
(11) return (est;)

(1) est; «+ v;; trusted; < I, %r=0%

(4)  if (¢ € trusted;) then for_each j € II do send(est;, trusted;) to p; end_do end_if;
(5)  letrec_from; = {j : (est;, trust;) is received from p; during r A j € trusted;};
(6) for_each j € rec_from; let W;(j) = {€: £ € rec_from; A j € trust,};

(7)  trusted; < rec_from; — {5 : [Wi(j)| <n —t};

(8)  if (|trusted;| < n — t) then return (L) end_if;

) est; < min(est; received during r and such that j € trusted;)

Figure 4. General omission failures: strongly terminating k-set protocol, code for p; (¢ < %)

e rec_from; is around local variable used to contain the
ids of the processes that p; does not currently suspect
and from which it has received messages during that
round (line 5).

e W;(4) is a set of process identities associated with the
processes p, that are currently trusted by p; and that
(to p;’s knowledge) trust p; (line 6). (W;(j) stands for
“Witness of p;”.)

Process behavior The aim is for a process to decide the
smallest value it has seen. But, due to the send and receive
omission failures possibly committed by some processes, a
process cannot safely decide the smallest value it has ever
seen, it can only safely decide the smallest in “some subset”
of values it has received. The crucial part of the protocol
consists in providing each process with correct rules that
allow it to determine a “safe subset”.

During each round r, these rules are implemented by
the following process behavior decomposed in three parts
according to the synchronous round-based computation
model.

o If p; considers it is correct (i € trusted;), it first sends
to all the processes its current local state, namely, the
current pair (est;, trusted;) (line 4). Otherwise, p;
skips the sending phase.

e Then, p; executes the receive phase (line 5). As al-
ready indicated, when it considers the messages it has
received during the current round, p; considers only
the messages sent by the processes it trusts (here, the
set trusted; can be seen as a filter).

o Finally, p; executes the local computation phase that is
the core of the protocol (lines 6-9). This phase is made
up of the following statements where the value n — ¢
constitutes a threshold that plays a fundamental role.

— First, p; determines the new value of trusted;
(lines 6-7). It is equal to the current set
rec_from; from which are suppressed all the
processes p; such that |WW;(j)| < n —t. These

processes p; are no longer trusted by p; because
there are “not enough” processes trusted by p;
that trust them (p; is missing “Witnesses” to re-
main trusted by p;, hence the name W;(j)); “not
enough” means here less than n — ¢.

— Then, p; checks if it trusts enough processes, i.e.,
at least n —t (line 8). If the answer is negative, p;
discovers that it has committed receive omission
failures and cannot safely decide. It consequently
halts, returning the default value L.

— Finally, if it has not stopped at line 8, p; com-
putes its new estimate of the decision value (line
9) according to the estimate values it has received
from the processes it currently trusts.

A proof of this protocol can be found in [23]. The role
of the W;(j) control variable and the associated predicate
|[W;i(j)| < n—t are central to ensure the strong termination
property. Let p; be a faulty process that neither crashes,
nor commits receive omission failures (i.e., it commits only
send omission failures). Let us observe that, at each round,
such a p; receives a message from each correct process p;.
This means that, with respect to each correct process p;, we
always have |W;(j)| > n — t (lines 6-7). Consequently, p;
always trusts all correct processes, and so we always have
|trusted;| > n — t. It follows that such a process p; cannot
stop at line 8, and decides consequently at line 11.

6.2 A first open problem

As far as early-decision is concerned, to our knowledge,
only one protocol has been designed for the general omis-
sion failure model with ¢ < n /2. This protocol (introduced
in [23]) enjoys the following properties:

e It is strongly terminating.

e Any process that commits only send omission fail-
ures (and does not crash) decides in at most [by =
min( L%J +2, | £]41), which shows that this is a lower
bound on the time complexity for the k-set agreement
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problem in the general omission failure model where
t<n/2.

e A process that commits receive omission failures (and
does not crash) executes at most min( f%] +2,[£]+1)

rounds.

The following problem remains open: Is f%] + 2 a tight
lower bound for a process that commits receive omission
failure (and does not crash) to stop when f = k x + v,
where = and y are integers such that 0 < y < k.

7 Set Agreement in the General Omission
Failure Model when ¢ > n/2

Let us finally consider the general omission failure
model when the “majority of correct processes” assumption
is no longer valid. This section first shows that there is no k-
set agreement protocol that can cope with general omission

failures when ¢t > kiﬂn Then, it presents a protocol show-

ing thatt < kL_Hn is a tight lower bound. Finally, problems
are stated, that remain open in the general omission failure
model.

7.1 A resilience bound for k-set agreement

Several k set agreement protocols have been designed
for the crash failure and the send omission failure models.
They all consider the most general case, i.e., t < n. Very
differently, to our knowledge, only one k-set protocol has
been designed for the general omission failure model (the
protocol presented in the previous section [23]), and that
protocol considers t < n/2. (Several protocols have been
designed for the particular case k£ = 1 -consensus problem-,
e.g., [18, 20, 24], where it is shown that t < n/2 is an upper
bound on the value of ). So the following fundamental
question comes immediately to mind: Does ¢ < n/2 define
the upper bound for the value of £ when one is interested
in solving the k set agreement problem, for any £ > 1?
This section shows that it is not. The lower bound on the
maximal number of faulty processes is ¢ < kL_Hn The next
subsection shows that this lower bound it tight by providing
a corresponding protocol.

Theorem 2 There is no k-set agreement protocol in syn-
chronous systems prone to general omission failures when
k

The proof is a straightforward generalization of proofs
that show there is no uniform consensus protocol in syn-
chronous systems prone to general omission failures when
t > n/2[18, 24]. It is based on a (simple) classical parti-
tioning argument. Due to page limitation it is given in [25].

7.2 A protocol for t < o

This section presents a new, yet very simple, protocol
that solves the k-set agreement problem despite up to ¢
processes that commit general omission failures in a syn-
chronous system where ¢ < kL_Hn To our knowledge, the
design of such a protocol has never been addressed before.
This protocol requires ¢t — k + 2 rounds. To make more
visible the meaning of this number, it can be rewritten as
(t+1) — (k — 1). It is easy to see that for k& = 1, this is
the ¢ + 1 consensus lower bound, and ¢ < ki_ﬂn becomes
t < n/2, which is a necessary condition for that problem
in the general omission failure setting (see the “Open prob-
lems” section that follows).

Function set_agreement(v;)
(1) est; < v;; trusted; < II; % r =0%

@ forr=1,...[t+2—k]|do

(3) begin_round
(4) for_each j € trusted; do send est; to p; end_do;
(5) foreach j € trusted; do

6) if (est; received from p;) then est; <— min(est;, est;)

(@) else trusted; «+ trusted; — {j}
®) end_if

(9) end_do;

(10) if (|trusted;| < n — t) then return (L) end_if;
(11) end_round;
(12) return (est;)

Figure 5. k-set protocol for general omission
failures, code for p; (t < {5n)

Differently from its proof that is not trivial (see [25] for
a proof), the design of this protocol is particularly simple. It
is similar to the early-deciding uniform consensus protocol
presented in [20] from which the early decision part is sup-
pressed. More precisely, the protocol can be seen as manag-
ing two variables, a control variable (a set denoted trusted;
that contains the processes it considers as non-faulty), and
a data variable, namely, its current estimate est;. More
specifically, we have the following:

e A process p; sends its current estimate only to the pro-
cesses in trusted;, and accept receiving estimates only
from them. Basically, it communicates only with the
processes it trusts (lines 4-9). In that way, if during a
round 7, p; commits a send omission failure with re-
spect to p;, or if p; commits a receive omission failure
with respect to p;, p; and p; will not trust each other
from the round r + 1. Interestingly, this ensures that,
if p; is correct, it will always trust at least n — ¢ pro-
cesses. So, if during a round r, a process finds that it
trusts less than n — ¢ processes, it can conclude that it
is faulty, and consequently decides the default value L
(line 10).
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e Each data local variable est; is used as in the previous
protocols. It contains the smallest value that p; has
ever received from the processes it currently trusts.

This simple management of the variables trusted; and
est;, solves the k-set agreement problem despite up to ¢ <
k

7317 processes prone to general omission failures. This

protocol is proved in [25]. It is not strongly terminating.
7.3 Four more open problems

Concerning the k-set agreement problem in synchronous
systems where up to to ¢t < kiﬂn processes can commit
general omission failures, four problems (at least) remain
open.

e Ist — k + 2 a lower bound on the number of rounds?
(Let us remind that ¢ + 1 is the lower bound for the
consensus problem [1, 7], i.e., when k = 1.)

e How to design an early-deciding protocol? Which is
the corresponding early-deciding lower bound?

e Isit possible to design a strongly terminating protocol?
If the answer is “yes”, design such a protocol.

o Is there a proof simpler than the one described in [25],
for the protocol described in Figure 5.

These questions remain open challenges for people in-
terested in synchronous agreement problems and lower
bounds.
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