
Splitting and Renaming
with a Majority of Faulty Processes

David Bonnin
LaBRI, U of Bordeaux, France

bonnin@labri.fr

Corentin Travers
LaBRI, U. of Bordeaux, France

travers@labri.fr

ABSTRACT
Moir and Anderson splitters are simple objects, implementa-
ble with read/write registers, that return directions in {right,
down, stop}. Not every process that accesses the object ob-
tains the same direction, and in addition at most one obtains
stop. Both in their one-shot and long-lived form, splitters
are basic building block of elegant renaming algorithms in
shared memory.

In a message passing system when less than half of the
processes may fail, splitter can be implemented by first sim-
ulating shared registers. This is no longer the case if half of
more of the processes may fail. We define and implement
one-shot and long-lived splitters suited to the majority of
failures environment. Our generalized splitters retain most
properties of the original splitters, except that they only
guarantee that at most b n

n−f
c processes return stop, where

n is the number of processes and f < n an upper bound on
the number of failures. We then adapt Moir and Anderson
grid of splitters to solve a one-shot and long-lived variant of
renaming in which at most k = b n

n−f
c processes may ob-

tain the same name. One of the main challenge consists in
composing long-lived generalized splitters.

1. INTRODUCTION

Context.
We consider a system in which n asynchronous processes

communicate by exchanging messages. Although the com-
munication system is supposed to be reliable, processes may
fail by crashing. When the number of failures f is bounded
by bn

2
c, i.e., a majority of the processes is non-faulty, it is

well known that that model is equivalent to the shared mem-
ory model [6]. In particular, the simulation in [6] enables
any shared memory algorithm to be automatically imple-
mented in message passing. The situation is different when
half or more of the processes may fail. Due to asynchrony,
the system may suffer from partitions for arbitrary long pe-
riod of time. In this context, finding useful message passing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

equivalent of basic shared memory building blocks remains
challenging. We take up this challenge for two related simple
abstractions, namely splitters and renaming.

Splitter and renaming.
A splitter [20, 21] is a shared object that provides an oper-

ation called splitter(). This operation returns a direction
among {right, down, stop}. A splitter has a mutual exclu-
sion flavor [17], as at most one of the invoking process may
capture the splitter, that is, gets back stop from the ob-
ject. As it names indicates, a splitter enables partitioning
the processes as it guarantees in addition that not all invo-
cations return the same direction right or down. Splitters
have been introduced implicitly by Lamport to implement
fast mutual-exclusion in failure-free system [20]. Later, they
were captured explicitly as objects by Moir and Anderson
[21] to solve renaming [7] in shared memory.
M -Renaming [7] is a fundamental distributed problem, in

which participating processes with identities in an arbitrary
large set are required to acquire distinct names in a smaller
domain, of size M . A simple and elegant shared-memory
splitter-based renaming algorithm has been presented by
Moir and Anderson [21].

Splitter and renaming can be made long-lived. In long-
lived M-renaming, processes repeatedly acquire and release
names in some domain of size M in a such a way that no
names are simultaneously acquired by two or more processes.
Similarly, a long-lived splitters can be invoked repeatedly by
the processes. It provides an additional operation, called
release(), which allows a process that has captured the
splitter to release it. A each point in time, a long-lived
splitter is captured by at most process, and if it not in use
(i.e., it is not captured and no operation on the object is
pending), it behaves as its one-shot counterpart.

Contributions of the paper.
The paper defines and implements one-shot and long-lived

splitter and renaming variants suited for asynchronous mes-
sage passing system in which a majority of the processes
may fail. As partitions may occur, no implementations can
guarantee that a splitter is captured by at most one process
at a time. Similarly, no renaming implementation can en-
sure that each new name is acquired by at most one process.
The paper makes the following contributions:

1. Definition of k-splitter and (M,k)-renaming (Section
2). Essentially, a k-splitter behaves like a splitter ob-
ject, except that at most k processes may simultane-
ously capture it. Similarly, names acquired by invoking

1

a (M,k)-renaming object might by shared by at most
k processes.

2. Implementation of one-shot and long-lived k-splitter,
for k ≥ b n

n−f
c (Sections 3 and 4). Our algorithms

generalized Moir and Anderson original shared mem-
ory implementations [21]. Special care should be taken
to tolerate partitions.

3. Implementation of one-shot (M,k)-renaming, for k ≥
b n
n−f
c (Section 5). For the one-shot case, in any im-

plementations of (M, 1)-renaming based on a network
of splitters, i.e., [5, 21], k-splitters can be used instead
while retaining the same size of the name domain. This
way, we obtain implementations of (M,k)-renaming
for M = O(n2) (from Moir and Anderson grid [21])

and m = O(n3/2) (from Aspnes smaller splitters net-
work [5]). We also observe that a better name domain
of size 2n − 1 can be obtained by using the seminal
message-passing algorithm of Attiya et al. [7].

4. Implementation of long-lived (M,k)-renaming, for k ≥
b n
n−f
c (Section 6.2) and M = O(n8). Following, e.g.

[2, 21], our implementation relies on a grid of long-lived
k-splitters. However, composing long-lived k-splitters
is not as straightforward as in the one-shot case. Due
to partition and asynchrony, different groups of pro-
cesses may have different perspectives on the state of
each splitter object. In fact, the same process might be
seen by different processes having a pending operation
on several splitters. To cope with these difficulties, we
resort to larger grids of splitters and carefully compose
the implementation of the splitters in the grid.

Related work.
Renaming is a fundamental problem in distributed com-

puting and a significant body of work has been devoted
to study its complexity and solvability, essentially in asyn-
chronous crash-prone shared memory systems,e.g., [3, 2, 1,
7, 8, 10, 11, 12, 13, 19, 21]. In message passing system,
renaming implementations have been considered mainly in
synchronous systems for various fault models [4, 14, 15, 16,
22, 23]. An asynchronous message-passing algorithm with
name domain of size n+f appears in [7]. This algorithm tol-
erates f < n

2
processes failures. In this setting, shared mem-

ory renaming algorithms can be turned into message passing
algorithms as registers can be simulated when f < n

2
[6].

When f ≥ n
2

, partitions may occur and it follows from the
CAP theorem [18] that no partition-tolerant asynchronous
algorithm can ensure both consistency (here, name-uniqueness)
and termination (every non-faulty process trying to acquire
a new name eventually succeeds). We relax consistency by
allowing new names to be shared by up to b n

n−f
c processes

and, in the long-live case, by also increasing the size of the
new name domain. In this regard, the paper might be seen as
part of a larger question, namely, how far consistency must
be relaxed when up to a given number of partitions have
to be tolerated, as in for example geographically distributed
systems.

Splitter are basic building blocks in shared memory adap-
tive renaming algorithms [5, 2, 21]. A renaming algorithm is
adaptive if its time/space complexity as well as the size of the
domain of new names depends on the number of processes

trying to acquire new names. The splitters-based renaming
algorithms in this paper are also adaptive in the size of the
new name domain.

2. MODEL AND DEFINITIONS

Model of computation.
We assume a standard message-passing model, as described

in textbooks, e.g., [9, 24], consisting in n asynchronous pro-
cesses {p1, . . . , pn}. Processes communicate by exchanging
over a reliable, fully-connected and asynchronous network.
This means that each message sent by pi to pj is received
by pj after some finite, but unknown, time. Channels are
assumed to be FIFO, that is for any pair of processes pi, pj ,
the order in which the messages sent by pi to pj are received
is the same as the order in which they are sent.

The system is equipped with a global clock whose ticks
range T is the positive integers. This clock is not available
to the processes, it is used from an external point of view
to state and prove properties about executions. An execu-
tion consists in a (possibly infinite) sequence of steps. In
each step, a process may send a message to some other pro-
cesses, performs arbitrary local computation and receives
messages. Processes may fail by crashing. A process that
crashes prematurely halts and never recovers. In an execu-
tion, a process is faulty if it fails and correct otherwise. f
denote an upper bound on the maximal number of processes
that may fail.

k-Splitters.
As indicated in the introduction, a one-shot k-splitter sup-

ports one operation called splittter() that can be invoked
at most once by each process. It takes as parameter the
identity of the caller. The operation returns a value in the
set {right, down, stop} subject to the following conditions:

1. Every invocation of splitter(idi) by a non-faulty pro-
cess pi eventually returns.

2. If only one process invokes splitter(id), that process
gets back stop.

3. If p processes invoke splitter(), at most p−1 of them
obtain down and at most p− 1 of them obtain right.

4. Among the processes that invoke splitter(), at most
k of them get stop.

We say that a process that obtains a stop response has cap-
tured the splitter.

A long-lived k-splitter supports an additional operation,
called release() that allows processes, as its name indi-
cates, to release the splitter after having captured it. As in
the one-shot case, an invocation of splitter() returns a di-
rection in {right, down, stop}. We consider only well-formed
executions in which (1) each process has at most one pend-
ing operation at any point in time and (2) any invocation
of release() is immediately preceded by an invocation by
the same process of splitter() and that invocation returns
stop. At each point of a splitter execution, the splitter is
busy if

• a process has invoked splitter() and has not yet ob-
tained a response from that invocation or,

2

• a process has invoked splitter(), obtained stop from
that invocation and the matching call to release()
has not returned yet.

In addition, the splitter is idle at time τ if it is not busy and
every message sent by the implementation before time τ has
been received. A busy period (respectively, idle period) is
a largest interval in which the splitter is busy (respectively,
idle). The splitter is captured by process pi if pi has in-
voked splitter() and has obtained a stop response from
that invocation and has not yet invoked release(), or that
invocation has not yet returned. A long-lived k-splitter has
the following property.

1. Every invocation of splitter(idi) by a non-faulty pro-
cess pi eventually returns.

2. At any point in the execution, the splitter is captured
by at most k processes.

3. In any busy period immediately preceded by a non-
empty idle period, not every invocation of splitter()
returns down and not every invocation returns right.

4. If only one single process invokes splitter() in the
execution, each of these invocations returns stop.

5. Every period in which every splitter() invocation re-
turns down is finite.

Note that property 3 implies that if in a busy period a single
process accesses the splitter and this period is preceded by
a non-empty idle period, the splitter() invocation in this
period returns stop.

Renaming.
A one-shot (M,k)-renaming object is accessed by one op-

eration called get-name(id) that takes as input the identity
of the caller. The operation returns a new name in the range
[1..M] with the following properties:

• (Termination) Any invocation of get-name(idi) by a
non-faulty process pi returns

• (k-uniqueness) For any name y ∈ [1..M], at most k
invocation of get-name() return y.

A long-lived (M,k)-renaming object exports an additional
operation called release(). We consider only well-formed
executions in which each process alternates between invo-
cations of get-name() and release(), starting with an in-
vocation of get-name(). We say that name y ∈ [1..M] is
acquired by process pi at some point in the execution if pi
has obtained y from a get-name() invocation and the pro-
cess following invocation of release() has not returned yet.
A long-lived (M,k)-renaming implementation has the same
termination requirement as one-shot renaming and must in
addition satisfy:

• (Long-lived k-uniqueness) For any name y ∈ [1..M]
and any point in time, name y is acquired by at most
k processes.

3. ONE-SHOT SPLITTERS
An algorithm implementing a one-shot b n

n−f
c-splitter ap-

pears in Figure 3.1. The idea of the shared-memory imple-
mentation of 1-splitter presented in [21] is the following : A

process that enters the splitter first writes its name in some
shared register, called the name register, perhaps overwrit-
ing the last name written to this register. Then the process
checks if a door (represented by a shared Boolean) is open: if
not, it returns right, and before returning closes the door. If
the door is still open, the process checks whether the shared
register still contains its own name or not. If not, it returns
down. Otherwise, it returns stop.

The idea of our message-passing algorithm is similar. A
process pi that invokes splitter() first “writes” its name,
and then marches through N doors, where N = O(n

n−f
). If

the rth door is found closed, pi returns right. Otherwise, pi
closes the door and checks whether the “name register” still
contains its name or not. If a different name is found, pi
returns down. Otherwise, the process proceeds to the next
door. A process then returns stop if it manages to proceed
through the N doors, and still have its name in the register.

The name register consists in, at process pi, a local vari-
able lasti. As a majority of the processes may fail, it is not
possible to simulate a register with atomic, regular or even
safe semantic. Instead, lasti contains the largest process id
that pi has heard of (lines 11 and 17).

Similarly, the local variable closedi represents the num-
ber of doors closed (or, similarly, the rank of the last door
closed), as known by process pi. It is updated each time
pi learns that a door with rank larger than the one it cur-
rently knows has been closed (lines 12 and 17). To determine
whether the rth door is open or not, process pi gather the
largest closed door known by a quorum of at least n − f
processes (lines 6–8). N doors, with N > b n

n−f
c are neces-

sary to ensure that no more than b n
n−f
c splitter() invo-

cations return stop. Indeed, it may be the case that f + 1
processes p1, . . . , pf+1 see the first door open and be such
that lasti = idi. This occurs for example if p1, . . . , pf+1

checks whether the first door is opened one after the other,
in order of their increasing ids and when doing so, gets re-
sponses from the same quorum Q = {pf+1, . . . , pn}. Note
that each process in quorum Q then learns the largest iden-
tity max{id1, . . . , idf+1}. Thus, in order to pass through
the second door, a processes with a lower id must not re-
ceive messages from processes in Q (Otherwise, it would
learn that a process with higher id has invoked splitter()
and return down.). So, processes with lower ids should ob-
tain responses from quorum Q′ such that Q′ ∩Q = ∅ when
checking whether the second door is closed. Intuitively, each
new door r allows a new process, whose name is the largest
among the processes that have not returned right or down
yet, to lock a new, non-intersecting quorum Qr, |Qr| = n−f
and Qr ∩ (

⋃
r′<r Qr′) = ∅ with its identity. Any remaining

processes, with lower ids, then returns down if it receives a
message from any process in a locked quorum while passing
through to the next doors r+1, r+2, . . . As there are at most
b n
n−f
c pairwise disjoint quorums may be formed, it follows

that no more than b n
n−f
c processes may return stop.

Proof of the protocol.
Lemma 3.1 proves that every invocation of splitter() by

a non-faulty process terminates. The fact that neither down
nor right is the only value returned is proved in Lemma 3.3
and Lemma 3.4 respectively. Finally, Lemma 3.6 shows that
at most b n

n−f
c invocations return stop.

Lemma 3.1 (Termination). For any correct process pi, the

3

Algorithm 3.1 One-shot b n
n−f
c-splitter (code for process

pi)

1: initialization
2: closedi ← 0; last i ← −∞;
3: function splitter(idi)
4: lasti ← max(lasti, idi)
5: for round ri from 1 to N do . N = b n

n−f
c+ 1

6: broadcast(Check, ri)
7: wait until n−f messages (AnsCheck, ∗, ri) have

been received
8: if (∃c ≥ ri :

(AnsCheck, c, ri) has been received) ∨ (closedi ≥ ri)
then return right

9: closedi ← max(ri, closedi); broadcast(Id,
lasti, closedi, ri)

10: wait until n − f messages (AnsId,∗, ∗, ri) have
been received

11: lasti ← max({` :
(AnsId, `, ∗, ri) has been received} ∪ {lasti})

12: closedi ← max({c :
(AnsId, ∗, c, ri) has been received} ∪ {closedi})

13: if lasti 6= idi then return down

14: return stop;

15: when a message m is received from process pj :
16: case m = (Check, r) do send (AnsCheck, closedi, r)

to pj
17: m = (Id, `, c, r) do lasti ← max(`, lasti);

closedi ← max(c, closedi)
18: send (AnsId, lasti, closedi, r)

to pj

invocation splitter(idi) eventually returns.

Proof. Let pi be a correct process. Since at most f of the
n processes may fail, and each process, upon receiving a
message (Check,r) or (Id,∗, ∗, r) from pi replies with a mes-
sage (AnsId,∗, ∗, r) or (AnsCheck,∗, r) from pi, each wait
until statement (on lines 7 or 10) eventually terminates.
As the number of rounds performed by pi is bounded (by
N = b n

n−f
c + 1), it follows that pi invocation of split-

ter(idi) eventually returns.

By the code, for any process pi, whenever the variables
closedi or lasti is modified, its value is changed to a larger
value (lines 4, 9, 11,12, 17). Hence,

Observation 3.2. For each process pi, the successive val-
ues of the variables closedi and lasti form an increasing
sequence.

Lemma 3.3. Let p be the number of processes that invoke
the function splitter(). At most p − 1 processes return
down.

Proof. Let pm be the process with the largest id that in-
vokes splitter() and let idm denote its id. At the begin-
ning of the invocation of splitter(), lastm is set to idm
(line 4). Note that the value of the variable lastm can only
be increased, as each modification of lastm is of the form
lastm ← max(lastm, x) where x is an id or a set of ids of
some processes that have invoked splitter() (lines 11 and
17). Hence, after pm has invoked splitter(), we always

have lastm = idm. It thus follows that pm cannot return
down, since by the code for that to happen, it must be the
case that lastm 6= idm (line 13).

Lemma 3.4. Let p be the number of processes that invoke
the function splitter(). At most p − 1 processes return
right.

Proof. For each process pi whose invocation of splitter()
returns right, let rri, 1 ≤ rri ≤ N be the value of ri when
right is returned (line 8). Among the processes that return
right, let pm be a process whose associated value rrm is
maximal. By the code, in the rrmth round, pm receives a
message (AnsCheck, cm, ∗) with cm ≥ rrm from some pro-
cess pi, possibly pm itself. At process pi, cm was the value of
closedi when that message was sent. The value of closedi is
changed to cm either when pi performs the cmth round of the
for loop without returning right (line 9) or when it receives
a message (AnsId, ∗, cm, ∗) or (Id, ∗, cm, ∗) (lines 12 and 17
respectively). In the former case, pi cannot return right as
if it does so, this necessarily occurs in an iteration > cm,
from which it will follow that rri > rrm: a contradiction.

In the latter case, the same reasoning applies to the sender
pi1 /∈ {pm, pi} of the message (AnsId, ∗, cm, ∗) or (Id, ∗, cm, ∗).
At process pi1, either closedi1 is changed to cm on line
9, in which case pi1 cannot return right or pi1 receives a
message (AnsId, ∗, cm, ∗) or (Id, ∗, cm, ∗) from some process
pi2 /∈ {pm, pi, pi1}. As finitely many processes invoke the
splitter(), a process pi` at which closedi` is changed to cm
on line 9 is eventually found. This process cannot return
right.

As an invocation of splitter() by any correct process al-
ways terminates (Lemma 3.1) and thus returns down, right
or stop, next corollary follows from Lemma 3.3 and Lemma 3.4:

Corollary 3.5. If only one process invokes splitter() and
that process returns, it returns stop.

Lemma 3.6. At most b n
n−f
c processes return stop.

Proof. Let pi be a process that terminates the rth round
(lines 5–13) without returning down or right, for some r, 1 ≤
r ≤ N . That is, pi then starts round r + 1 or, if r = N , re-
turns stop. Let M(r, i) denote that set of messages of n− f
messages (AnsId, ∗, ∗, r) that have been received by pi in
round r and let Q(r, i) be the set of processes that have sent
these messages. In addition, let cri and lastri be the value
of the variable closedi and lasti, respectively, at the end of
round r. Note that lastri = idi, since pi does not return
down (line 13).

Claim C Let pi and pi′ be two processes with identity idi and
idi′ respectively that return stop. Let 1 < r < r′ ≤ N . If
idi > idi′ , Q(r, i) ∩Q(r′, i′) = ∅.
Proof of the claim. Assume for contradiction that Q(r, i) ∩
Q(r′, i′) 6= ∅ and let pk be a process in the intersection.
By definition of the sets Q(r, i) and Q(r′, i′), pk sends m =
(AnsId, `, c, r) and m′ = (AnsId, `′, c′, r′) to pi and pi′ re-
spectively. We first observe that ` = idi and `′ = idi′ .

Message m answers the message (Id, `i, ci, r) broadcast by
pi. `i is the value of lasti when this message is broadcast.
Since the successive values of `i forms an increasing sequence
(Observation 3.2), lasti = idi at the beginning of the pi

4

invocation of splitter() (line 4) and lasti = idi at the end
of round r, `i = idi.

When the message (Id, `i, ∗, r) from pi is received by pk,
lastk is changed to `i if `i is larger than the current value of
lastk (line 17) and m is sent to back. The id ` carried by m
is the current value of lastk. Hence, ` ≥ `i = idi.

Finally, idi = lastri ≥ ` since m ∈M(i, r) and, before the
end of round r, lasti is changed to the largest id carried by
the messages in M(i, r) if this id is larger than the current
value of lasti. It thus follow that ` = idi. Similarly, we have
`′ = idi′ .

Note that ` and `′ are the values of the local variable
lastk when messages m and m′ are sent, respectively. Since
idi > idi′ , if follows from Observation 3.2 that m′ is sent
before m.

Message m′ = (AnsId, `′, c′, r′) answers to the message
(Id, `i′ , ci′ , r

′) broadcast by pi′ during round r′. ci′ is the
value of closedi′ when this message is sent. By the code
(line 9), ci′ ≥ r′. When (Id, `i′ , ci′ , r

′) is received by pk,
closedk is changed to ci′ if ci′ is larger than the current
value of closedk (line 17). Since m is sent after m′ and
the successive values of closedk form an increasing sequence
(Observation 3.2), closedk ≥ r′ when m = (AnsId, `, c, r)
is sent to pi. As c is the value of closedk when m is sent,
c ≥ r′.

At process pi, at the end of round r, for any message
(AnsId, ∗, cl, r) ∈M(i, r), the value of closedi is larger than
or equal to cl (line 12). It thus follows that cri ≥ c ≥ r′ > r.
Since r < N and pi returns stop, pi performs round r + 1.
As the value of closedi is non-decreasing, closedi ≥ r+ 1 in
round r + 1, from which we conclude that pi returns right :
a contradiction.

For r, 1 ≤ r ≤ N , let Er denote the set of processes that
terminate round r without returning either down or right.
Note that the set of processes that return stop is a subset of
EN . We show that |EN | ≤ b n

n−f
c.

Let EN = {p1, . . . , pm} with id1 > . . . > idm and assume
for contradiction that m ≥ b n

n−f
c+1 = N . By Claim C, for

all i, j, 1 ≤ i < j ≤ N , Q(i, i) ∩ Q(j, j) = ∅. By definition,
for all i, 1 ≤ i ≤ N , Q(i, i) is a set of n− f process. Hence,
| ∪1≤i≤N Q(i, i)| = N ∗ (n − f) > n: a contradiction since
the system consists in n processes.

4. LONG-LIVED SPLITTERS
An implementation of a long-lived b n

n−f
c-splitter appears

in Figure 4.1. As in the one-shot case, it is inspired by
the long-lived algorithm in [21]. The main difference be-
tween the one-shot and long-lived implementations in [21],
is that each process “cleans up” before leaving the splitter,
i.e., before returning right or down, or, after returning stop,
by invoking release(). To avoid cleaning up too much, the
door system is slightly different. When closing a door, a pro-
cess add its own padlock, and then removes it when cleaning
up. In that way, if two processes close a door, but only one
leave the splitter, the door will still be closed. In order for
a door to re-open, every process that has closed this door
must remove its padlock.

Our message-passing implementation shares the same struc-
ture with our one-shot k-splitters implementation, namely,
each process follows the cycle “check if the door is open –
return right or close the door – check the last identity –

return down or continue”. At each process pi, the local vari-
able closedi is replaced by an array Clsdi as each process
now closes each door on its own, adding its personnal pad-
lock. That is, Clsdi[id] is, to the knowledge of pi, the latest
door that the process with identity id has closed. Since in
different invocations of splitter(), the same door can be
opened and closed by the same process, Clsdi[id] is associ-
ated with a timestamp stored in TClsdi[id]. When leaving
the splitter or releasing it, a process pj with identity idj re-
moves its padlocks by increasing its timestamp TClsdj [idj]
and setting Clsdj [idj] to 0 (line 17). Thus, from the point of
view of pi, the identities of the processes that have entered
the splitter and have not yet left it or released it are those
such that Clsdi[id] > 0. A process can thus determines
whether its id is the highest among the ids of the processes
in the splitter or not (from its point of view) by examining
the pair of array (Clsdi, TClsdi) (line 14).

Algorithm 4.1 Long-lived b n
n−f
c-splitter (code for process

pi)

1: initialization
2: si ← 0; for all id do 〈Clsdi[id], TClsdi[id]〉 ← 〈0, 0〉
3: function splitter(idi)
4: si ← si + 1
5: for round ri from 1 to N do . N = b n

n−f
c+ 2

6: broadcast(Check, 〈ri, si〉)
7: wait until n− f messages (AnsCheck, ∗, 〈ri, si〉)

have been received
. including pi’s own message

8: 〈Clsdi, TClsdi〉 ← merge({〈C, T 〉 :
(AnsCheck, 〈C, T 〉, 〈ri, si〉) has been received})

9: if ∃id : Clsdi[id] ≥ ri then release(); return
right

10: 〈Clsdi[idi], TClsdi[idi]〉 ← 〈ri, TClsdi[idi] + 1〉
11: broadcast(Id, 〈Clsdi, TClsdi〉, 〈ri, si〉)
12: wait until n−f messages (AnsId, ∗, 〈ri, si〉) have

been received
. including pi’s own message

13: 〈Clsdi, TClsdi〉 ← merge({〈C, T 〉 :
(AnsId, 〈C, T 〉, 〈ri, si〉) has been received})

14: if max{id such that Clsdi[id] > 0) 6= idi} then
release(); return down

15: return stop

16: function release()
17: 〈Clsdi[id], TClsdi[id]〉 ← 〈0, TClsdi[id] + 1〉;
18: broadcast(Release, 〈Clsdi, TClsdi〉)
19: function merge(S)
20: for all id do 〈C[id], T [id]〉 ← max{〈C′[id], T ′[id]〉 :
〈C′, T ′〉 ∈ S}

. 〈c′, t′〉 > 〈c, t〉 ⇐⇒ t′ > t ∨ (t′ = t ∧ c′ > c)
21: return 〈C, T 〉
22: when a message m is received from process pj :
23: case m = (Check, 〈r, s〉) do send

(AnsCheck, 〈Clsdi, TClsdi〉, 〈r, s〉) to pj

24: m = (Id, 〈C, T 〉, 〈r, s〉) do 〈Clsdi, TClsdi〉 ←
merge({〈Clsdi, TClsdi〉, 〈C, T 〉});

25: send
(AnsId, 〈Clsdi, TClsdi〉, 〈r, c〉) to pj

26: m = (Release, 〈C, T 〉) do 〈Clsdi, TClsdi〉 ←
merge({〈Clsdi, TClsdi〉, 〈C, T 〉});

5

Proof of the protocol.
Termination is established in Lemma 4.1. The property

that in a busy period following a non-empty idle period,
neither down nor right is the only value returned by split-
ter() invocations is shown in Lemma 4.4 and Lemma 4.5.
Lemma 4.8 then shows that at any point in time, the splitter
is captured by at most b n

n−f
c processes.

Lemma 4.1 (Termination). For any correct process pi, any
invocation of splitter(idi) by pi eventually returns.

Proof. The proof is similar to the proof of Lemma 3.1. It is
left to the reader.

The values of the variables 〈Clsdi[id], TClsdi[id]〉 are or-
dered first by the value of the timestamp TClsdi[id] and
then, in case of equality, by Clsdi[id] (e.g., (c, t) < (c′, t′) iff
t < t′ or (t = t′ and c < c′)). From the code (line 8, 10, 13,
24 and 26), each time 〈Clsdi[id], TClsdi[id]〉 is updated, it
receives a larger value. Hence,

Observation 4.2. For each process pi, and each identity
id, the successive values of 〈Clsdi[id], TClsdi[id]〉 form an
increasing sequence.

If the splitter is idle at time τ , then for every process and
every id, 〈Clsdi[id], TClsdi[id]〉 = 〈0, t〉 where t is the last
value assigned to TClsd[id] by the process with identity id.
Moreover, there is no pending message. Thus, after an idle
period, Clsdi[idj] = 0 while pj does not change the value of
Clsdj [idj]. Hence,

Observation 4.3. After an idle period, Clsd[idj] = 0 until
pj invokes splitter().

Lemma 4.4. In a busy period that immediately follows a
non-empty idle period, not every splitter() invocation re-
turns down.

Proof. The lemma is true if at least one invocation never
returns (in this case the busy period is infinite.). In the fol-
lowing, we thus assume that every invocation of splitter()
made in this busy period returns.

Assume for contradiction that every invocation of split-
ter() returns down.

Consider the set PI of all processes that invoked split-
ter() during this period, and let us note pmax the process
with the largest identity idmax in PI .

For a process pi with identity idi to return down, it has
to verify max(id such that Clsdi[id] > 0) 6= idi (line 14).
In other words, either Clsdi[idi] = 0, or ∃idj > idi such
that Clsdi[idj] > 0. The first case is impossible, since the
(Clsdi[idi], TClsdi[idi]) are in increasing order, and because
the last one (overwriting others) is generated by pi itself in
line 10, with Clsdi[idi] > 0.

Thus, if pmax returns down, this means that ∃idj > idmax

such that Clsdmax[idj] > 0. Because just before the busy
period, the splitter was idel, this means that, from obser-
vation 4.3, process pj must have invoked splitter() after
the idle period and before the moment where pmax returns.
Thus, process pj has invoked splitter() during this busy
period, and idj > idmax. This contradicts the definition of
pmax.

Hence, not all splitter() invocations may return down
during this busy period.

Lemma 4.5. In a busy period that immediately follows an
non-empty idle period, not every splitter() invocation re-
turns right.

Proof. If an invocation of splitter() does not return, the
lemma is true. In the following, we assume that in the first
busy period, every invocation of splitter() returns.

For an invocation by process pi to return right, it must
be the case that Clsdi[id] ≥ ri (line 9) for some process
identity id. Let rm denote the largest round r such that, for
some process pi and some identity id, there is an invocation
of splitter() by pi during this period such that, when this
invocation returns, Clsdi[idi] ≥ r. rm is well defined, as for
each process pi, ri ≤ N .

Let inv be an invocation by some process pi that re-
turns right and, when right is returned (line 9), for some
idm, Clsdi[idm] = rm. Let pm be the process whose iden-
tity is idm. This means process pm changes the value of
Clsdm[idm] to rm at line 10 while performing some invoca-
tion invm of splitter(). By the code, in this invocation, pm
does not return right while performing rounds 1, . . . , rm of
invm. If right is returned in some subsequent round r > rm,
then due to the test of line 9, we would have for some idj ,
Clsdm[idj] = rj ≥ r > rm.

Since this busy period was immediately preceded by an
idle period, and because Clsd[idj] > 0 during this busy
period, this means by observation 4.3 that pj has invoked
splitter() during this busy period. Moreover, to have Clsd[idj] =
rj , it has to be increased from 0 to rj in repeated line 10,
and thus pj reached at least Clsdj [idj] = rj before return-
ing. And since Clsd is only increasing, this means that when
this invocation returned, Clsdj [idj] ≥ rj > rm, thus contra-
dicting the definition of rm.

Therefore invm does not return right.

Lemma 4.6. Any interval during which every splitter()
invocation returns down is finite.

Proof. Assume for contradiction that there is an execution
and a time τ1 after which splitter() is invoked infinitely
often, and always returns down.

Consider the process pm with the largest identity idm
among the identities of the processes that invoke splitter()
infinitely often. For every process pj with idj > idm, pj in-
vokes splitter() a finite number of times. Thus, there is
a time τ2 after which each process pj with idj > idm no
longer invokes splitter(), and each such process has either
returned from their last invocation or crashed. Between the
beginning of the execution and τ2, there is only a finite num-
ber of invocations by processes pj , idj > idm, and thus a
finite number of different 〈Clsd[idj], TClsd[idj]〉 values.

After time τ1, every invocation of splitter() by process
pm returns down. This can only happen if Clsdm[idj] > 0
with idj > idm at line 14 for some j. But, before checking
whether down should be returned at line 14, pm tests if
Clsdm[id] = 0 for all id 9. If this is not the case, right is
returned. Thus, the value of Clsdm[idj] changes during the
invocation.

We know from observation 4.2 that the values of 〈Clsdm[idj], TClsdm[idj]〉
form an increasing sequence. Since there are an infinite
number of invocations by pm that all return down, and the
number of identity larger than idm is finite, there is an infi-
nite increasing sequence of 〈Clsdm[idj], TClsdm[idj]〉, with
idj > idm (because there is a finite number of such idj).

6

This contradicts the fact that there are only a finite number
of 〈Clsd[idj], TClsd[idj]〉 for each idj > idm.

Corollary 4.7. If only a single correct process pi calls Split-
ter(), it will necessarily return stop.

Proof. No other process can have any values that will replace
local variables of pi, because they never calls splitter() and
thus never generate new values. Thus, since pi should call
release() before calling splitter() again, at the beginning
of each invocation, Closedi[id] = 0 for any id including idi.
Thus no invocation returns right. Since pi is the only process
for which Clsd[idi] > 0, max{id : Clsd[id] > 0} = idi is
always true. Hence no invocation returns down.

Lemma 4.8. At any point in the execution, the splitter is
captured by at most bn/(n− f)c processes.

Proof. Suppose for contradiction that at some time τ , s >
bn/(n − f)c processes have returned stop and have not yet
invoked release(). Let inv1, . . . , invs denote the last invo-
cation of splitter() preceding τ by those processes. With-
out loss of generality, assume that pi is the process that
performs invocation invi, and let us note its identity idi.

In round r of invocation invi pi receives a set of (n − f)
messages AnsId (line 12). As in the proof of Lemma 3.6,
let Q(r, i) denote the set of (n− f) processes that have sent
these messages. A key ingredient in the proof is the follow-
ing claim:

Claim C1. Let 1 < r′ < r < N , and i, i′ ∈ [1, s]. If idi < idi′ ,
Q(r, i) ∩Q(r′, i′) = ∅.
Proof of Claim C1. Assume for contradiction that Q(r, i) ∩
Q(r′, i′) 6= ∅ and let px ∈ Q(r, i) ∩Q(r′, i′).
px ∈ Q(r, i) means that process px sent a message M

of the form (AnsId,(Cx, TCx), (r, s)) to pi (line 25). M is
sent as a reply to message (Id,(C`, TC`), (r, s)) from pi, with
C`[idi] = r (line 11). Hence, when M is sent, Cx[idi] = r.
px ∈ Q(r′, i′) means that process px sent a message M ′

of the form (AnsId,(C′x, TC
′
x), (r′, s′)) to pi′ . As above, M ′

is an answer to a message (Id,(C′`, TC
′
`), (r

′, s′)) sent by pi′ .
Similarily, when M ′ is sent, Clsdx[idi′] = r′. If M ′ is sent
before M , as the value of Clsdx[idi′] never decreases until
pi′ invokes release(), the value Cx[idi′] carried by M is
larger than or equal to r > 0 with idi′ 6= idi. Thus, after
M has been received by pi, and until pi′ invokes release(),
max(id : Clsdi[id] > 0) ≥ idi′ > idi and it follows that invi
returns down (line 14): a contradiction.

IfM is sent beforeM ′, we have whenM ′ is sent 〈Clsdx[idi], TClsdx[idi]〉 >
(r′, tc(r′)) where tc(r′) is the value assigned to TClsdi[idi]
when Clsdi[idi] is changed to r′ in invocation invi. More-
over, at process pi′ , when M ′ is received if Clsdi′ [idi] ≤ r′,
then TClsdi′ [idi] ≤ tc(r′) as pi has not yet returned from
invi. Thus, after M ′ has been received, Clsdi′ [idi] ≥ r > r′

(line 24). It thus follows that in round r′ + 1 of the invoca-
tion invi′ , right is returned: A contradiction.

Assume without loss of generality that id1 > . . . > ids.
Hence, the sets Q(1, 1), Q(2, 2), . . . , Q(N−1, N−1) are well
defined (since s ≥ N − 1) and pairwise disjoint. Thus
|
⋃

1≤i≤N−1Q(i, i)| = (N−1)(n−f) > n since N ≥ bn/(n−
f)c+ 2: a contradiction.

1 3 4 10

2 5 9

6 8

7

Figure 1: Moir Anderson grid of splitters for 4 pro-
cesses.

5. ONE-SHOT RENAMING
Ones-shot (M, 1)-renaming can be implemented with a

network of 1-splitters, as presented in [5, 21]. Each split-
ter in the network is uniquely associated with an integer
in [1..M]. Starting from a designated splitter, processes
traverse the network following the directions obtained by
splitter() invocations. Whenever an invocation returns
stop, the invoking process acquire the corresponding name.
Name uniqueness is guaranteed, since for any given splitter,
at most invocation returns stop. To ensure termination, the
network should be large enough. IT must be the case that
in any execution, each non-faulty process eventually attains
a splitter that no other processes access. Its splitter() in-
vocation on that object then returns stop, and the process
thus acquires the name associated with it. The size of the
name domain M is determined by the size of the network.
For example, in [21], the splitters are organized in half-grid

of size n(n−1)
2

, as pictured in Figure 1. A slightly smaller

name domain of O(n3/2) can be achieved by organizing the
splitters in a different way [5]. If only k-splitters are avail-
able, one can implement k-renaming from any algorithm A
for (M, 1)-renaming based on a splitter network, by simply
replacing each 1-splitter in the network by a k-splitter. The
implementation retains the same size of the name domain
as the original one. Hence, in this way, we obtain message

passing implementations of (n(n−1)
2

, b n
n−f
c)-renaming from

[21] and (O(n3/2), b n
n−f
c)-renaming from [5].

A smaller name domain is achieved by algorithm in [7].
This algorithm implements (n+ f, 1)-renaming in the asyn-
chronous message-passing model and tolerates up to f < n

2
failures. A careful examination of its proof reveals that the
same algorithm actually implements (n+f, b n

n−f
c)-renaming,

for any f < n.

6. LONG-LIVED RENAMING
Generalizing the ideas of the message-passing algorithm of

[7] to the long-lived case while tolerating f ≥ n
2

failures re-
sults in a non-blocking algorithm. That is, some non-faulty
processes may never be able to acquire names. Instead, fol-
lowing [21], our long-lived (M,k)-renaming implementation
relies on a network of long-lived k-splitters.

As in a one-shot case, long-lived (M, 1)-renaming can be
implemented by a network of M long-lived 1-splitters. A

7

process acquires a name by traversing the network until it
accesses a splitter from which it gets back stop. To release
the name, the process invoke release() on the splitter as-
sociated with that name. The size and the structure of the
network has to be chosen in such way that in any execu-
tion, whatever the names that have been acquired, any pro-
cess traversing the network eventually reaches a splitter from
which it gets back stop.

As in every execution of long-lived k-splitter, the splitter is
captured by at most k processes at the same time, a network
of long-lived k-splitters ensures that no names is acquired
simultaneously by more than k processes. For termination,
a process accessing a long-lived k-splitter uncontended is
ensured to get back stop only if the splitter is idle when pi
invokes splitter() (Property 3 of the definition).

The network our long-lived (M,k)-renaming implemen-
tation relies on is an half-grid as in [21] (Figure 1). The
ith k-splitter in the network is implemented by an instance
Si of some long-lived k-splitter algorithm S, e.g., the one
described in Section 4. We remark however that if the in-
stances are treated as black-box, some processes might not
be able to acquire names whatever the size of the grid. To
see why, consider an execution in which process pi enters
the k-splitter i`, after accessing k-splitters i1, . . . , i`−1 by
splitter() operations. Due to partitions, groups of pro-
cesses of size ≥ n − f might not be aware that each invo-
cation of splitter() on objects i1, . . . , i`−1 by pi has re-
turned. Hence, each k-splitters ii, . . . , i`−1 are not idle and,
and hence another process pj may obtain the same direc-
tions as pi when accessing splitters ii, . . . , i`−1. pj may thus
invoke also splitter() on the `th splitter, from which it fol-
lows that another splitter i`+1 has to be accessed by pi before
it acquires a name. The argument can be repeated to extend
to arbitrary lengths the sequence of splitters accessed by pi
before acquiring a name, while keeping the number of par-
titions and the number of processes trying to acquire names
bounded. The concurrent composition of the instances pre-
sented next avoids this issue essentially by bounding the
number of pending messages in each channel.

6.1 Concurrent composition of M long-lived k-
splitters

Without loss of generality, we assume that algorithm S
implementing a long-lived k-splitter is full information and
follows a query-response communication pattern. More pre-
cisely, each time a message is sent by process pi , it in-
cludes the complete state σi of pi. When such a message
is received by some process pj , pj changes its states σi by
calling a function update(σj , σi). Moreover, there are two
types of messages, namely Query and Answer. Answer are
sent back when a Query message is received. Query mes-
sages are broadcast, and, after a Query has been broadcast,
the sender waits until it receives (n − f) matching Answer
messages. For example, in Algorithm 4.1, Check, Id, and
Release are Query messages, while AnsCheck and AnsId
are Answer messages.

Algorithm S consists in n local algorithms, S1, . . . ,Sn one
per process. As we want to implement a grid of M splitters,
each process pi executes M instances S1

i , . . . ,SM
i . At each

process pi, instead of executing M independent threads, one
per instance, process pi take step in each instance S`

i sequen-
tially, one instance after the other in round robin fashion
(line 5). In particular, at any time, pi is waiting for n − f

Answer message matching a Query in at most one instance
(lines 6–9). Query messages may be accepted (line 13) or
rejected (line 12).

Algorithm 6.1 Composing M long-lived k-splitters (code
for process pi)

1: init
2: for each ` ∈ [1..n] do σi[`] ← initial state of S`

i ;
Ans[1, 2, . . .]← [∅, . . . , ∅]

3: si ← 0; last sendi[1..n] ← [0, . . . , 0];
last rcvi[1..n]← [0, . . . , 0]; `← 1

4: while true do
5: `← (` mod M) + 1; take a step of S`

i ;
6: if step of S`

i is broadcast Query then
7: lastqi ← (σi, `); si ← si + 1
8: for each j ∈ [1..n] do send (Query, (σi, `) ,
last rcvi[j], si)

9: Ans[si]← ∅; wait until |reci[si]| ≥ n− f
10: when a message m is received from process pj
11: case m = (Query, (σ, `), lr, s) do
12: if lr < last sendi[j] then

(Reject,last sendi[j],s) to pj . m is rejected
13: else last sendi[j]← last sendi[j] + 1; . m is

accepted
14: for each ` ∈ [1,M] do update(σi[`], σ[`]);

send (Answer, σi, last sendi[j], s) to pj
15: case m = (Answer, σ, ls, s) do
16: last rcvi[j] ← ls; Ans[s] ← Ans[s] ∪ {m}; for

each ` ∈ [1,M] do update(σi[`], σ[`]);
17: case m = (Reject, ls, s) do
18: last rcvi[j] ← max{ls, last rcvi[j]}; if s = si

then send (Query, lastqi, last rcvi[j], si)

When at process pj a Query is accepted, a matching An-
swer is sent (line 14) and the state of the corresponding
instance updated. A query from pi is accepted by pj if
and only if the last Answer sent by pj to pi has been re-
ceived by pi before the query is sent. To that end, a counter
last sendj [i] identifies the Answer sent by pj to pi. At pro-
cess pi, last rcvi[j] keeps track of the number of the last
Answer received from pj . That value is sent to pj with each
Query message, so that pj can check whether its last Answer
message has been received or not. This mechanism ensures
that at any time, at most one of the Queries sent by pi and
not yet received by pj can be accepted by pj . Also, because
the channels are FIFO and since an Answer message is only
sent immediately after a Query message is accepted, there
is at most one pending Answer message from pi to pj at any
time.

Query messages from pi that are not accepted by pj (line
12) are discarded, i.e., they are ignored by pj . To prevent
stalling, that is, to prevent pi from waiting forever to receive
n−f matching Answers to one of its Query, pj sends a Reject
message (line 12) asking the query to be sent again. When
the Reject message is received by pi, every Answer from pj
to pi has been received. Hence, if pi is still waiting for n− f
Answers, the Query that it sends again carries the number
of last Answer from pj and is necessarily accepted by pj .

Any process pk traversing the grid of splitters invoke split-
ter() on one object at a time. Each Query or Answer
message sent by pi carries not only the state σi[`] of the
instance S`

i on behalf of which the message is sent but also

8

the states σi[1], . . . , σi[M] of every of other instances. When
m is received by some process pj , pj updates, based on
σi[1], . . . , σi[M] the state of each instance S1

j , . . . ,SM
j . Be-

sides ensuring progress in each instance at each non-faulty
process despite the fact that some Query messages might be
discarded, this also guarantees that at most one of the states
σi[1], . . . , σi[M] is a state in which process pk has an active
operation. Hence, at any point in time, in the collection of
states σi, at most n splitters are active.

Moreover, we know that, at any time, each one of the
O(n2) directed channels contain at most 2 messages m, m′

(a Query and an Answer) that will be accepted. In states
σ and σ′ contained in these messages, at most n splitters
are active. Therefore, at any point in time, at most O(n3)
different splitters are seen as active by the processes. The
remaining splitters are idle:

Lemma 6.1. There is a bound B = O(n3) such that, at any
time, at most B splitters are not idle.

6.2 Long-lived renaming
Finally, we show that for M large enough, a grid of long-

lived b n
n−f
c-splitters implements long-lived (M, b n

n−f
c)-renaming,

provided that the implementation of the splitter are com-
posed as explained in the previous section.

A grid of depth D consists in D(D+1)
2

splitters denoted si,j
where 1 ≤ i, j ≤ D and i+j ≤ D+1. For each i, j, 2 ≤ i+j ≤
D, splitter si,j has a right arrow pointing towards splitter
si+1,j and down arrow pointing towards splitter si+1,j+1.
For 1 ≤ d ≤ D, diagonal d consists in the splitters {si,j :
i+ j = d+ 1}.

Each splitter is associated with a unique integer in the in-

terval [1, D(D+1)
2

]. A process pi acquiring a name enters the
network by invoking splitter() on s1,1. It then traverses
the grid, following the directions returned by its splitter()
invocation, until it gets back stop. The name acquired by
pi is the one associated with the splitter from which it gets
back stop. To release the name it has previously acquired,
pi invokes release() on the corresponding splitter.

In an execution, we say that a process is in the diagonal
d at time τ is it has invoked splitter() on a splitter of
s ∈ d, and that invocation has not returned by time τ . By
extension, for d ≤ d′, a process is present in the diagonals
[d, d′] at time τ if it is in a diagonal d′′ at time τ , for some
d′′ ∈ [d, d′].

Recall that, by Lemma 6.1, at any time in the execution
there is a bound B on the number of non-idle splitters.

Lemma 6.2. Let p, 1 ≤ p ≤ n and d1 < d2 such that
d2 − d1 + 1 ≥ B + p+ 1. Suppose that at any time, at most
p processes p processes are present in the diagonals [d1, d2].
Then, for any d3 ≥ d2 and any time, at most p−1 processes
are present in the diagonals [d2, d3].

Proof. Assume for contradiction that there exists an exe-
cution during which, at some time τf , all p processes are in
diagonal d2 or beyond. Note that to reach a diagonal d ≥ d2,
process pi, has successively invoked splitter() on splitters
in diagonal 1, 2, . . . , d − 1 in that order. Let τ0 be the last
time before τf when a process was in diagonal d1.

A splitter is occupied at some time τ if an operation has
been invoked on that splitter before time τ and this opera-
tion has not returned by time τ . Let S ⊂ ∪d1≤d≤dd denote
the set of splitters that are occupied at some time between

τ0 and τf . Let nd the number of splitters in diagonal d that
are also in S, i.e., nd = S ∩ d.

We prove that, for any , d1 ≤ d ≤ d2, nd+1−nd ≥ 1−NI d,
where NI d is the number of splitters in diagonal d that are
non-idle at time τ0.

If a splitter s in S and in diagonal d (d1 ≤ d ≤ d2) is idle at
time τ0, then it cannot enter a non-idle period unless at least
one process accesses this splitter. This means that, either
a process accessing it returns stop, or at least 2 processes
access it during the period [τ0, τf]. Since every process reach
at least diagonal d2, no process gets back stop during the
interval [τ0, τf], (Otherwise, such a process returns to the
initial diagonal in the interval, contradicting the definition
of τ0). Therefore at least 2 processes concurrently access s.

Moreover, as s is idle when the first access starts, because
no process may stop , both right and down are returned by
s at some point during [τ0, τf] (from property 3). Conse-
quently, the two splitters following s in the next diagonal
are both in S.

If a splitter s in S and in diagonal d is non-idle at τ0, then
every splitter() invocation on s in the interval [τ0, τf] may
return the same direction, right or down (but not stop).
Thus, at least one splitter following s in the next diagonal
is in S.

Then, by an induction on NI i, we prove that ni+1 − ni ≥
1−NI i. . Summing these inequalities leads to nd2 − nd1 ≥
d2 − d1 − NI All, where NI All is the number of splitters in
the diagonals [d1, d2] that are non-idle at time τ0. As, by
Lemma 6.1, NI All ≤ B, we have nd2 ≥ nd1 + d2 − d1 −B ≥
nd1 +B+p−B ≥ p+1, since at least one splitter in diagonal
d1 is occupied at τ0 (and thus n1 ≥ 1).

But, during the interval [τ0, tf], no more than p processes
are present in the diagonals [d1, d2] of the grid, and each
process present in these diagonals keeps progressing from
one diagonal to the next. As a process cannot enter more
than one splitter in each diagonal, at most p splitters in the
diagonal d2 are in S, i.e. nd2 ≤ p. This is a contradiction.

Lemma 6.3. Let p ∈ N and let Dk = B + k + 1, for any
k ≥ 1. Let G be a grid of depth at least D = B + D′ =
B + 1 +

∑p
k=1(Dk − 1). If at most p processes use the grid,

each process returns stop before reaching the end of the grid.

Proof. From Lemma 6.2, we know that at any time in the
execution, at most p−1 processes can be in the part consist-
ing in the diagonal d ≥ Dp. By applying again Lemma 6.2
to diagonals d ≥ Dp, it follows that at most p− 2 processes
can be in the diagonals d ≥ Dp − 1 +Dp−1.

Therefore, by induction, we have that at most 1 process
can be in the diagonals d ≥ D′. At the time τ process pi
enters the diagonal D′, at most B splitters in the diagonals
[D′, D] are non-idle (Lemma 6.1). Moreover, no splitter in
these diagonals that is idle period at time τ becomes non-
idle unless the process pi enters it and returns stop. Thus,
pi can visit at most B+1 different splitters before returning
stop. Since there are B+1 diagonals in the diagonal [D′, D],
then pi necessarily returns stop.

Hence, the previous lemma implies that the grid G imple-
ment long-lived (M, b n

n−f
c)-renaming for M = O(n8).

Theorem 6.4. There is a message-passing (M, n
n−f

)-renaming

algorithm for M = O(n8).

9

7. CONCLUSION
The paper has investigated partition-tolerant implemen-

tations of splitter and renaming. In asynchronous message-
passing systems in which f ≥ n

2
processes may fail, at

most b n
n−f
c partitions may occur. It is thus not possible

to guarantee that stop is returned to less than b n
n−f
c from

a splitter or that new names in renaming are shared by less
than b n

n−f
c processes. The paper has provided implementa-

tions of one-shot and long-lived f -tolerant implementation
of b n

n−f
c-splitters. It has also shown that, despite their weak

semantic, when appropriately composed, long-lived b n
n−f
c-

splitters can be used as a basic building block to implement
(M, b n

n−f
c)-renaming, where the size of the name domain

M = O(n8). Obvious direction for future research is to im-
prove the size of the domain of new names.

8. REFERENCES
[1] Y. Afek and M. Merritt. Fast, wait-free

(2k-1)-renaming. In Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’99, pages 105–112, New York,
NY, USA, 1999. ACM.

[2] Y. Afek, G. Stupp, and D. Touitou. Long lived
adaptive splitter and applications. Distributed
Computing, 15(2):67–86, 2002.

[3] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert,
and R. Guerraoui. Tight bounds for asynchronous
renaming. J. ACM, 61(3):18, 2014.

[4] D. Alistarh, H. Attiya, R. Guerraoui, and C. Travers.
Early deciding synchronous renaming in o(logf)
rounds or less. In 19th International Colloquium on
Structural Information and Communication
Complexity (Sirocco), volume 7355 of Lecture Notes in
Computer Science, pages 195–206. Springer, 2012.

[5] J. Aspnes. Slightly smaller splitter networks. CoRR,
abs/1011.3170, 2010.

[6] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory
robustly in message-passing systems. J. ACM,
42(1):124–142, 1995.

[7] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and
R. Reischuk. Renaming in an asynchronous
environment. J. ACM, 37(3):524–548, July 1990.

[8] H. Attiya and A. Fouren. Adaptive and efficient
algorithms for lattice agreement and renaming. SIAM
Journal on Computing, 31(2):642–664, 2001.

[9] H. Attiya and J. Welch. Distributed Computing. Wiley,
2004.

[10] E. Borowsky and E. Gafni. Immediate atomic
snapshots and fast renaming. In Proceedings of the
Twelfth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’93, pages 41–51, New
York, NY, USA, 1993. ACM.

[11] J. E. Burns and G. L. Peterson. The ambiguity of
choosing. In Proceedings of the 8th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 145–157. ACM, 1989.

[12] A. Castañeda and S. Rajsbaum. New combinatorial
topology bounds for renaming: the lower bound.
Distributed Computing, 22(5-6):287–301, 2010.

[13] A. Castañeda and S. Rajsbaum. New combinatorial
topology bounds for renaming: The upper bound. J.

ACM, 59(1):3, 2012.

[14] S. Chaudhuri, M. Herlihy, and M. R. Tuttle. Wait-free
implementations in message-passing systems. Theor.
Comput. Sci., 220(1):211–245, 1999.

[15] O. Denysyuk and L. Rodrigues. Byzantine renaming
in synchronous systems with t<n. In ACM Symposium
on Principles of Distributed Computing (PODC),
pages 210–219. ACM, 2013.

[16] O. Denysyuk and L. Rodrigues. Order-preserving
renaming in synchronous systems with byzantine
faults. In 33rd IEEE International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2013.

[17] E. Dijkstra. Solution of a problem in concurrent
programming control. Communications of the ACM,
26(1):21–22, 1983.

[18] S. Gilbert and N. A. Lynch. Perspectives on the CAP
theorem. IEEE Computer, 45(2):30–36, 2012.

[19] M. Herlihy and N. Shavit. The topological structure of
asynchronous computability. J. ACM, 46(6):858–923,
1999.

[20] L. Lamport. A fast mutual exclusion algorithm. ACM
Trans. Comput. Syst., 5(1):1–11, Jan. 1987.

[21] M. Moir and J. H. Anderson. Wait-free algorithms for
fast, long-lived renaming. Science of Computer
Programming, 25(1):1 – 39, 1995.

[22] M. Okun. Strong order-preserving renaming in the
synchronous message passing model. Theor. Comput.
Sci., 411(40-42):3787–3794, 2010.

[23] M. Okun, A. Barak, and E. Gafni. Renaming in
synchronous message passing systems with byzantine
failures. Distributed Computing, 20(6):403–413, 2008.

[24] M. Raynal. Communication and Agreement
Abstractions for Fault-Tolerant Distributed Systems.
Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2010.

10

