
Strongly Terminating Early-Stopping k-Set Agreement
in Synchronous Systems with General Omission Failures

Philippe Raïpin Parvédy, Michel Raynal, and Corentin Travers

IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
{praipinp, raynal, ctravers}@irisa.fr

Abstract. The k-set agreement problem is a generalization of the consensus
problem: considering a system made up of n processes where each process pro-
poses a value, each non-faulty process has to decide a value such that a decided
value is a proposed value, and no more than k different values are decided. It
has recently be shown that, in the crash failure model, min(� f

k
� + 2, � t

k
� + 1)

is a lower bound on the number of rounds for the non-faulty processes to decide
(where t is an upper bound on the number of process crashes, and f , 0 ≤ f ≤ t,
the actual number of crashes).

This paper considers the k-set agreement problem in synchronous systems
where up to t < n/2 processes can experience general omission failures (i.e.,
a process can crash or omit sending or receiving messages). It first introduces a
new property, called strong termination. This property is on the processes that
decide. It is satisfied if, not only every non-faulty process, but any process that
neither crashes nor commits receive omission failures decides. The paper then
presents a k-set agreement protocol that enjoys the following features. First, it is
strongly terminating (to our knowledge, it is the first agreement protocol to satisfy
this property, whatever the failure model considered). Then, it is early deciding
and stopping in the sense that a process that either is non-faulty or commits only
send omission failures decides and halts by round min(� f

k
� + 2, � t

k
� + 1). To

our knowledge, this is the first early deciding k-set agreement protocol for the
general omission failure model. Moreover, the protocol provides also the follow-
ing additional early stopping property: a process that commits receive omission
failures (and does not crash) executes at most min(� f

k
� + 2, � t

k
� + 1) rounds.

It is worth noticing that the protocol allows each property (strong termination vs
early deciding/stopping vs early stopping) not to be obtained at the detriment of
the two others.

The combination of the fact that min(� f
k
� + 2, � t

k
� + 1) is lower bound on

the number of rounds in the crash failure model, and the very existence of the
proposed protocol has two very interesting consequences. First, it shows that,
although general omission failure model is more severe than the crash failure
model, both models have the same lower bound for the non-faulty processes to
decide. Second, it shows that, in the general omission failure model, that bound
applies also the processes that commit only send omission failures.

Keywords: Agreement problem, Crash failure, Strong Termination, Early
decision, Early stopping, Efficiency, k-set agreement, Message-passing system,
Receive omission failure, Round-based computation, Send omission failure, Syn-
chronous system.

P. Flocchini and L. Gąsieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 182–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Strongly Terminating Early-Stopping k-Set Agreement 183

1 Introduction

Context of the paper k-set and consensus problems. The k-set agreement problem gen-
eralizes the uniform consensus problem (that corresponds to the case k = 1). It has been
introduced by S. Chaudhuri who, considering the crash failure model, investigated how
the number of choices (k) allowed to the processes is related to the maximum number
(t) of processes that can be faulty (i.e., that can crash) [7]. The problem can be defined
as follows. Each of the n processes (processors) defining the system starts with its own
value (called “proposed value”). Each process that does not crash has to decide a value
(termination), in such a way that a decided value is a proposed value (validity) and no
more than k different values are decided (agreement)1.

k-set agreement can trivially be solved in crash-prone asynchronous systems when
k > t [7]. A one communication step protocol is as follows: (1) t + 1 processes are ar-
bitrarily selected prior to the execution; (2) each of these processes sends its value to all
processes; (3) a process decides the first value it receives. Differently, it has been shown
that there is no solution in these systems as soon as k ≤ t [5, 17, 31]. (The asynchronous
consensus impossibility, case k = 1, was demonstrated before, using a different tech-
nique [11]. A combinatorial characterization of the tasks which are solvable in presence
of one process crash is presented in [3]). Several approaches have been proposed to cir-
cumvent the impossibility to solve the k-set agreement problem in process crash prone
asynchronous systems (e.g., probabilistic protocols [22], or unreliable failure detectors
with limited scope accuracy [16, 21, 32]).

The situation is different in process crash prone synchronous systems where the k-
set agreement problem can always be solved, whatever the value of t with respect to k.
It has also been shown that, in the worst case, the lower bound on the number of rounds
(time complexity measured in communication steps) is �t/k� + 1 [8]. (This bound gen-
eralizes the t + 1 lower bound associated with the consensus problem [1, 2, 10, 20]. See
also [4] for the case t = 1.)

Early decision. Although failures do occur, they are rare in practice. For the uniform
consensus problem (k = 1), this observation has motivated the design of early deciding
synchronous protocols [6, 9, 19, 30], i.e., protocols that can cope with up to t process
crashes, but decide in less than t + 1 rounds in favorable circumstances (i.e., when
there are few failures). More precisely, these protocols allow the processes to decide in
min(f + 2, t + 1) rounds, where f is the number of processes that crash during a run,
0 ≤ f ≤ t, which has been shown to be optimal (the worst scenario being when there
is exactly one crash per round) [6, 18]2.

In a very interesting way, it has very recently been shown that the early deciding
lower bound for the k-set agreement problem in the synchronous crash failure model is
�f/k�+2 for 0 ≤ �f/k� ≤ �t/k�−2, and �f/k�+1 otherwise [12]. This lower bound,

1 A process that decides and thereafter crashes is not allowed to decide one more value, in ad-
dition to the k allowed values. This is why k-set agreement generalizes uniform consensus
where no two processes (be they faulty or not) can decide different values. Non-uniform con-
sensus allows a faulty process to decide a value different from the value decided by the correct
processes. The non-uniform version of the k-set agreement problem has not been investigated
in the literature.

2 More precisely, the lower bound is f +2 when f ≤ t−2, and f +1 when f = t−1 or f = t.

184 P. Raïpin Parvédy, M. Raynal, and C. Travers

not only generalizes the corresponding uniform consensus lower bound, but also shows
an “inescapable tradeoff” among the number t of crashes tolerated, the number f of
actual crashes, the degree k of coordination we want to achieve, and the best running
time achievable [8]. As far as the time/coordination degree tradeoff is concerned, it
is important to notice that, when compared to consensus, k-set agreement divides the
running time by k (e.g., allowing two values to be decided halves the running time).

Related work. While not-early deciding k-set agreement protocols for the synchronous
crash failure model (i.e., protocols that always terminate in �t/k� + 1 rounds) are now
well understood [2, 8, 20], to our knowledge, so far only two early deciding k-set agree-
ment protocols have been proposed [13, 27] for that model. The protocol described in
[13] assumes t < n − k, which means that (contrarily to what we could “normally”
hope) the number of crashes t that can be tolerated decreases as the coordination de-
gree k increases. The protocol described in [27], which imposes no constraint on t (i.e.,
t < n), is based on a mechanism that allows the processes to take into account the actual
pattern of crash failures and not only their number, thereby allowing the processes to
decide in much less than �f/k� + 2 rounds in a lot of cases (the worst case being only
when the crashes are evenly distributed in the rounds with k crashes per round). We
have recently designed an early deciding k-set agreement protocol for the synchronous
send (only) omission failure model [28].

Content of the paper. This paper investigates the k-set agreement problem in synchro-
nous systems prone to general omission failures and presents a corresponding protocol.
This failure model lies between the crash failure model and the Byzantine failure model
[24]: a faulty process is a process that crashes, or omits sending or receiving messages
[14, 25]. This failure model is particularly interesting as it provides the system design-
ers with a realistic way to represent input or output buffer overflow failures of at most t
processes [14, 25]. The proposed protocol enjoys several noteworthy properties.

– The usual termination property used to define an agreement problem concerns only
the correct processes: they all have to decide. This requirement is tied to the prob-
lem, independently of a particular model. Due to the very nature of the correspond-
ing faults, there is no way to force a faulty process to decide in the crash failure
model. It is the same in the Byzantine failure model where a faulty process that
does not crash can decide an arbitrary value.

The situation is different in the general omission failure model where a faulty
process that does not crash cannot have an arbitrary behavior. On one side, due to
the nature of the receive omission failures committed by a process, there are runs
where that process can forever be prevented from learning that it can decide a value
without violating the agreement property (at most k different values are decided).
So, for such a process, the best that can be done in the general case is either to
decide a (correct) value, or halt without deciding because it does not know whether
it has a value that can be decided. On the other side, a process that commits only
send omission failures receives all the messages sent to it, and should consequently
be able to always decide a correct value.

We say that a protocol is strongly terminating if it forces to decide all the
processes that neither crash nor commit receive omission failures (we call them

Strongly Terminating Early-Stopping k-Set Agreement 185

the good processes; the other processes are called bad processes). This new termi-
nation criterion is both theoretically and practically relevant: it extends the termi-
nation property to all the processes that are committing only “benign” faults. The
proposed protocol is strongly terminating3.

– Although, as discussed before, early decision be an interesting property, some
early-deciding (consensus) protocols make a difference between early decision and
early stopping: they allow a correct process to decide in min(f + 2, t + 1) but stop
only at a later round (e.g., [9]). Here we are interested in early-deciding protocols
in which a process decides and stops during the very same round. More precisely,
the protocol has the following property:

• A good process decides and halts by round min(� f
k � + 2, � t

k� + 1).
So, when � f

k � ≤ � t
k � − 2, the protocol has the noteworthy property to extend the

� f
k �+2 lower bound for a correct process to decide (1) from the crash failure model

to the general omission failure model, and (2) from the correct processes to all the
good processes.

As noticed before, it is not possible to force a bad process to decide. So, for
these processes the protocol “does its best”, namely it ensures the following early
stopping property:

• No process executes more than min(� f
k � + 2, � t

k � + 1) rounds.
Let us notice that it is possible that a bad process decides just before halting. More-
over, when f = x k where x is an integer (which is always the case for consensus),
or when there is no fault (f = 0), a bad process executes no more rounds than a
good process. In the other cases, it executes at most one additional round.

– Each message carries a proposed value and two boolean arrays of size n (sets of
process identities). This means that, if we do not consider the size of the proposed
values (that does not depends on the protocol), the bit complexity is upper bounded
by O(n2f/k) per process.

The design of a protocol that satisfies, simultaneously and despite process crashes
and general omission faults, the agreement property of the k-set problem, strong termi-
nation, early decision and stopping for the good processes and early stopping for the
bad processes is not entirely obvious, as these properties are partly antagonistic. This is
due to the fact that agreement requires that no more than k distinct values be decided
(be the deciding processes correct or not), strong termination requires that, in addition
to the correct processes, a well defined class of faulty processes decide, and early stop-
ping requires the processes to halt as soon as possible. Consequently the protocol should
not prevent processes from deciding at different rounds, and so, after it has decided, a
process can appear to the other processes as committing omission failures, while it is
actually correct. Finally, the strong termination property prevents the elimination from
the protocol of a faulty process that commits only send omission failures as soon as it
has been discovered faulty, as that process has to decide a value if it does not crash later.
A major difficulty in the design of the protocol consists in obtaining simultaneously all
these properties and not each one at the price of not satisfying one of the others.

3 None of the uniform consensus protocols for the synchronous general omission failure model
that we are aware of (e.g., [25, 26]) is strongly terminating.

186 P. Raïpin Parvédy, M. Raynal, and C. Travers

General transformations from a synchronous failure model to another synchronous
failure model (e.g., from omission to crash) are presented in [23]. These transformations
are general (they are not associated with particular problems) and have a cost (simulat-
ing a round in the crash failure model requires two rounds in the more severe omission
failure model). So, they are not relevant for our purpose.

When instantiated with k = 1, the protocol provides a new uniform consensus pro-
tocol for the synchronous general omission failure model. To our knowledge, this is
the first uniform consensus protocol that enjoys strong termination and directs all the
processes to terminate by round min(f +2, t + 1). Let us finally observe that the paper
leaves open two problems for future research. The first consists in proving or disproving
that � f

k � + 2 is a tight lower bound for a bad process to stop when f = k x + y with x
and y being integers and 0 < y < k (we think it is). The second problem concerns t: is
t < n/2 a lower bound to solve the strongly terminating early stopping k-set problem?
(Let us remark that the answer is “yes” for k = 1 [23, 30].)

k-set protocol can be useful to allocate shareable resources. As an example, let us
consider the allocation of broadcast frequencies in communication networks (this ex-
ample is taken from [20]). Such a protocol allows processes to agree on a small number
of frequencies for broadcasting large data (e.g., a movie). As the communication is
broadcast based, the processes can receive the data using the same frequency.

Roadmap. The paper consists of 6 sections. Section 2 presents the computation model
and gives a definition of the k-set agreement problem. To underline its basic design
principles and make its understanding easier, the protocol is presented incrementally.
Section 3 presents first a strongly terminating k-set agreement protocol. Then,
Section 5 enriches this basic protocol to obtain a strongly terminating, early stopping
k-set agreement protocol. Formal statements of the properties (lemmas and theorems)
of both protocols are provided in Section 4 and Section 6, respectively. Due to the page
limitation, the full proofs of these properties do not appear in this paper. The interested
reader can find them in a companion technical report [29] available on-line.

2 Computation Model and Strongly Terminating k-Set Agreement

2.1 Round-Based Synchronous System

The system model consists of a finite set of processes, namely, Π = {p1, . . . , pn},
that communicate and synchronize by sending and receiving messages through chan-
nels. Every pair of processes pi and pj is connected by a channel denoted (pi, pj). The
underlying communication system is assumed to be failure-free: there is no creation,
alteration, loss or duplication of message.

The system is synchronous. This means that each of its executions consists of a
sequence of rounds. Those are identified by the successive integers 1, 2, etc. For the
processes, the current round number appears as a global variable r that they can read,
and whose progress is managed by the underlying system. A round is made up of three
consecutive phases:

Strongly Terminating Early-Stopping k-Set Agreement 187

– A send phase in which each process sends messages.
– A receive phase in which each process receives messages. The fundamental prop-

erty of the synchronous model lies in the fact that a message sent by a process pi to
a process pj at round r, is received by pj at the same round r.

– A computation phase during which each process processes the messages it re-
ceived during that round and executes local computation.

2.2 Process Failure Model

A process is faulty during an execution if its behavior deviates from that prescribed by
its algorithm, otherwise it is correct. A failure model defines how a faulty process can
deviate from its algorithm [15]. We consider here the following failure models:

– Crash failure. A faulty process stops its execution prematurely. After it has crashed,
a process does nothing. Let us observe that if a process crashes in the middle of a
sending phase, only a subset of the messages it was supposed to send might actually
be sent.

– Send Omission failure. A faulty process crashes or omits sending messages it was
supposed to send [14].

– General Omission failure. A faulty process crashes, omits sending messages it
was supposed to send or omits receiving messages it was supposed to receive (re-
ceive omission) [25].

It is easy to see that these failure models are of increasing “severity” in the sense that
any protocol that solves a problem in the General Omission (resp., Send Omission)
failure model, also solves it in the (less severe) Send Omission (resp., Crash) failure
model [15]. This paper considers the General Omission failure model. As already
indicated, n, t and f denote the total number of processes, the maximum number of
processes that can be faulty, and the actual number of processes that are faulty in a
given run, respectively (0 ≤ f ≤ t < n/2).

As defined in the introduction, good processes are the processes that neither crash
nor commit receive omission failures. A bad process is a process that commits receive
omission failures or crashes. So, given a run, each process is either good or bad. A good
process commits only “benign” failures, while a bad process commits “severe” failures.

2.3 Strongly Terminating k-Set Agreement

The problem has been informally stated in the Introduction: every process pi proposes
a value vi and each correct process has to decide on a value in relation to the set of pro-
posed values. More precisely, the k-set agreement problem is defined by the following
three properties:

– Termination: Every correct process decides.
– Validity: If a process decides v, then v was proposed by some process.
– Agreement: No more than k different values are decided.

As we have seen 1-set agreement is the uniform consensus problem. In the following,
we implicitly assume k ≤ t (this is because, as we have seen in the introduction, k-set
agreement is trivial when k > t).

188 P. Raïpin Parvédy, M. Raynal, and C. Travers

As already mentioned, we are interested here in protocols that direct all the good
processes to decide. So, we consider a stronger version of the k-set agreement problem,
in which the termination property is replaced by the following property:

– Strong Termination: Every good process decides.

3 A Strongly Terminating k-Set Agreement Protocol

We first present a strongly terminating k-set agreement protocol where the good pro-
cesses terminate in � t

k � + 1 rounds. The protocol is described in Figure 1. r is a global
variable that defines the current round number; the processes can only read it.

A process pi starts the protocol by invoking the function k-SET_AGREEMENT(vi)
where vi is the value it proposes. It terminates either by crashing, by returning the
default value ⊥ at line 08, or by returning a proposed value at line 11. As we will
see, only a bad process can exit at line 08 and return ⊥. That default value cannot be
proposed by a process. So, returning ⊥ means “no decision” from the k-set agreement
point of view.

3.1 Local Variables

A process pi manages four local variables. The scope of the first two is the whole
execution, while the scope of the last two is limited to each round. Their meaning is the
following:

– esti is pi’s current estimate of the decision value. Its initial value is vi (line 01).
– trustedi represents the set of processes that pi currently considers as being correct.

Its initial value is Π (the whole set of processes). So, i ∈ trustedi (line 04) means
that pi considers it is correct. If j ∈ trustedi we say “pi trusts pj”; if j /∈ trustedi

we say “pi suspects pj”.
– rec_fromi is a round local variable used to contain the ids of the processes that

pi does not currently suspect and from which it has received messages during that
round (line 05).

– Wi(j) is a set of processes identities that represents the set of the processes p� that
are currently trusted by pi and that (to pi’s knowledge) trust pj (line 06).

3.2 Process Behavior

The aim is for a process to decide the smallest value it has seen. But, due to the send
and receive omission failures possibly committed by some processes, a process cannot
safely decide the smallest value it has ever seen, it can only safely decide the smallest in
a subset of the values it has received during the rounds. The crucial part of the protocol
consists in providing each process with correct rules that allow it to determine its “safe
subset”.

During each round r, these rules are implemented by the following process behav-
ior decomposed in three parts according to the synchronous round-based computation
model.

Strongly Terminating Early-Stopping k-Set Agreement 189

Function k-SET_AGREEMENT(vi)
(01) esti ← vi; trusted i ← Π ; % r = 0 %
(02) for r = 1, . . . , � t

k
� + 1 do

(03) begin_round
(04) if (i ∈ trusted i) then foreach j ∈ Π do send(esti, trusted i) to pj enddo endif;
(05) let rec_fromi = {j : (estj , trust j) is received from pj during r ∧ j ∈ trusted i};
(06) foreach j ∈ rec_fromi let Wi(j) = {� : � ∈ rec_fromi ∧ j ∈ trust �};
(07) trusted i ← rec_fromi −

�
j : |Wi(j)| < n − t

�
;

(08) if (|trusted i| < n − t) then return (⊥) endif;
(09) esti ← min(estj received during r and such that j ∈ trustedi)
(10) end_round;
(11) return (esti)

Fig. 1. Strongly terminating k-set protocol for general omission failures, code for pi, t < n
2

– If pi considers it is correct (i ∈ trustedi), it first sends to all the processes its
current local state, namely, the current pair (esti, trustedi) (line 04). Otherwise,
pi skips the sending phase.

– Then, pi executes the receive phase (line 05). As already indicated, when it con-
siders the messages it has received during the current round, pi considers only the
messages sent by the the processes it trusts (here, the set trustedi can be seen as a
filter).

– Finally, pi executes the local computation phase that is the core of the protocol
(lines 06-09). This phase is made up of the following statements where the value
n − t constitutes a threshold that plays a fundamental role.

• First, pi determines the new value of trustedi (lines 06-07). It is equal to the
current set rec_fromi from which are suppressed all the processes pj such
that |Wi(j)| < n − t. These processes pj are no longer trusted by pi because
there are “not enough” processes trusted by pi that trust them (pj is missing
“Witnesses” to remain trusted by pi, hence the name Wi(j)); “not enough”
means here less than n − t.

• Then, pi checks if it trusts enough processes, i.e., at least n − t (line 08). If the
answer is negative, as we will see in the proof, pi knows that it has commit-
ted receive omission failures and cannot safely decide. It consequently halts,
returning the default value ⊥.

• Finally, if it has not stopped at line 08, pi computes its new estimate of the
decision value (line 09) according to the estimate values it has received from
the processes it currently trusts.

4 Proof of the Strongly Terminating Protocol

The full proof of the protocol is given in [29]. The protocol proof assumes t < n/2. It
uses the following notations.

– Given a set of process identities X = {i, j, . . .}, we sometimes use pi ∈ X for
i ∈ X .

– C is the set of correct processes in a given execution.

190 P. Raïpin Parvédy, M. Raynal, and C. Travers

– xi[r] denotes the value of pi’s local variable x at the end of round r.
By definition trustedi[0] = Π . When j ∈ trustedi, we say that “pi trusts pj” (or
“pj is trusted by pi”).

– Completing [r] = {i : pi proceeds to r + 1 }. By definition Completing[0] = Π .
(If r = � t

k � + 1, “pi proceeds to r + 1” means pi executes line 11.)
– EST [r] = {esti[r] : i ∈ Completing [r]}. By definition EST [0] = the proposed

values.
EST [r] contains the values that are present in the system at the end of round r.

– Silent[r] = {i : ∀j ∈ Completing[r] : i /∈ trustedj [r]}. It is important to
remark that if i ∈ Silent[r], then no process pj (including pi itself) takes into
account esti sent by pi (if any) to update its local variables estj at line 09 of the
round r. (Silent[0] = ∅.)

The proof of the following relations are left to the reader: Completing[r + 1] ⊆
Completing[r], Silent[r] ⊆ Silent[r + 1], ∀i ∈ Completing[r] : Silent[r] ⊆ Π −
trustedi[r].

4.1 Basic Lemmas

The first lemma that follows will be used to prove that a process that does not commit
receive omission failure decides.

Lemma 1. Let pi be a process that is correct or commits only send omission failures.
We have ∀r : (1) C ⊆ trustedi[r] and (2) i ∈ Completing[r].

The next two lemmas show that n − t is a critical threshold related to the number of
processes (1) for a process to become silent or (2) for the process estimates to become
smaller or equal to some value. More explicitly, the first of these lemmas states that
if a process px is not trusted by “enough” processes (i.e., trusted by less than n − t
processes4) at the end of a round r − 1, then that process px is not trusted by the
processes that complete round r.

Lemma 2. ∀r ≥ 1 : ∀x :
∣
∣{y : y ∈ Completing[r − 1] ∧ x ∈ trustedy[r − 1]}

∣
∣ <

n − t ⇒ x ∈ Silent[r].

The next lemma shows that if “enough” (i.e., at least n − t) processes have an estimate
smaller than or equal to a value v at the end of a round r − 1, then no process pi ∈
Completing[r] has a value greater than v at the end of r.

Lemma 3. Let v be an arbitrary value. ∀r ≥ 1 :
∣
∣{x : estx[r − 1] ≤ v ∧ x ∈

Completing[r − 1]}
∣
∣ ≥ n − t ⇒ ∀i ∈ Completing[r] : esti[r] ≤ v.

Finally, the next lemma states that the sequence of set values EST [0], EST [1],. . . is
monotonic and never increases.

Lemma 4. ∀r ≥ 0 : EST [r + 1] ⊆ EST [r].

4 Equivalently, trusted by at most t processes.

Strongly Terminating Early-Stopping k-Set Agreement 191

4.2 Central Lemma

The lemma that follows is central to prove the agreement property, namely, at most k
distinct values are decided. Its formulation is early-stopping oriented. Being general,
this formulation allows using the same lemma to prove both the non-early stopping
version of the protocol (Theorem 3) and the early stopping protocol (Theorem 4).

Lemma 5. Let r (1 ≤ r ≤ � t
k� + 1) be a round such that (1) C ⊆ Completing[r − 1],

and (2) |EST [r]| > k (let vm denote the kth smallest value in EST [r], i.e., the greatest
value among the k smallest values of EST [r]). Let i ∈ Completing[r]. We have n −
k r < |trustedi[r]| ⇒ esti[r] ≤ vm.

4.3 Properties of the Protocol

Theorem 1. [Validity] A decided value is a proposed value.

Theorem 2. [Strong Termination] A process pi that neither crashes nor commits re-
ceive omission failures decides.

As a correct process does not commit receive omission failures, the following corollary
is an immediate consequence of the previous theorem.

Corollary 1. [Termination] Every correct process decides.

Theorem 3. [Agreement] No more than k different values are decided.

5 A Strongly Terminating and Early Stopping k-Set Agreement
Protocol

This section enriches the previous strongly terminating k-set agreement protocol to
obtain an early stopping protocol, namely, a protocol where a good process decides and
halts by round min(� f

k � + 2, � t
k � + 1), and a bad process executes at most min(� f

k � +
2, � t

k � + 1) rounds.
The protocol is described in Figure 2. To make reading and understanding easier,

all the lines from the first protocol appears with the same number. The line number of
each of the 10 new lines that make the protocol early stopping are prefixed by “E”. We
explain here only the new parts of the protocol.

5.1 Additional Local Variables

A process pi manages three additional local variables, one (can_deci) whose scope is
the whole computation, and two (CAN _DECi and REC_FROMi) whose scope is
limited to each round. Their meaning is the following.

– can_deci is a set of process identities that contains, to pi’s knowledge, all the
processes that can decide a value without violating the agreement property. The
current value of can_deci is part of each message sent by pi. Its initial value is ∅.

192 P. Raïpin Parvédy, M. Raynal, and C. Travers

Function k-SET_AGREEMENT(vi)
(01) esti ← vi; trusted i ← Π ; can_deci ← ∅; % r = 0 %
(02) for r = 1, . . . , � t

k
� + 1 do

(03) begin_round
(04) if (i ∈ trusted i) then

foreach j ∈ Π do send(esti, trusted i, can_deci) to pj enddo endif;
(E01) let REC_FROMi = {i} ∪ {j : (estj, trust j , c_decj) rec. from pj during r};
(E02) let CAN _DECi = ∪(c_decj : j ∈ REC_FROMi);
(E03) if (i /∈ trustedi ∨ i ∈ can_deci) then
(E04) if |CAN _DECi | > t then let ESTi = {estj : j ∈ REC_FROMi ∧ c_decj �= ∅};
(E05) return (min(ESTi))
(E06) endif endif;
(05) let rec_fromi = {j : (estj, trustj , c_decj) rec. from pj during r ∧ j ∈ trusted i};
(06) foreach j ∈ rec_fromi let Wi(j) = {� : � ∈ rec_fromi ∧ j ∈ trust �};
(07) trusted i ← rec_fromi −

�
j : |Wi(j)| < n − t

�
;

(08) if (|trusted i| < n − t) then return (⊥) endif;
(09) esti ← min(estj received during r and such that j ∈ trustedi);
(E07) can_deci ← ∪(c_decj received during r and such that j ∈ trustedi);
(E08) if (i ∈ trustedi ∧ i /∈ can_deci)then
(E09) if (n − k r < |trustedi|) ∨ (can_deci �= ∅) then can_deci ← can_deci ∪ {i}
(E10) endif endif
(10) end_round;
(11) return (esti)

Fig. 2. k-set early-deciding protocol for general omission failures, code for pi, t < n
2

– REC_FROMi is used by pi to store its id plus the ids of all the processes from
which it has received messages during the current round r (line E01). Differently
from the way rec_fromi is computed (line 05), no filtering (with the set trustedi)
is used to compute REC_FROMi .

– CAN _DECi is used to store the union of all the can_decj sets that pi has received
during the current round r (line E02).

5.2 Process Behavior

As already indicated, the behavior of a process pi is modified by adding only 10 lines
(E01-E10). It is important to notice that no variable used in the basic protocol is updated
by these lines; the basic protocol variables are only read. This means that, when there
is no early deciding/stopping at line E05, the enriched protocol behaves exactly as the
basic protocol.

Let us now examine the two parts of the protocol where the new statements appear.

– Let us first consider the lines E07-E10.
After it has updated its current estimate esti (line 09), pi updates similarly its set
can_deci , to learn the processes that can early decide. As we can see, esti and
can_deci constitute a pair that is sent (line 04) and updated “atomically”.
Then, if pi trusts itself (i ∈ trustedi) and, up to now, was not allowed to early
decide and stop (i /∈ can_deci), it tests a predicate to know if it can early decide. If

Strongly Terminating Early-Stopping k-Set Agreement 193

it can, pi adds its identity to can_deci (line E09). The “early decision” predicate is
made up of two parts:

• If can_deci �= ∅, then pi learns that other processes can early decide. Conse-
quently, as it has received and processed their estimates values (line 09), it can
safely adds its identity to can_deci .

• If n − k r < |trustedi|, then pi discovers that the set of processes it trusts
is “big enough” for it to conclude that it knows one of the k smallest estimate
values currently present in the system. “Big enough” means here greater than
n − k r. (Let us notice that threshold was used in Lemma 5 in the proof of the
basic protocol.)

– Let us now consider the lines E01-E06.
As already indicated REC_FROMi and CAN _DECi are updated in the receive
phase of the current round.
To use these values to decide during the current round (at line E05), pi must either
be faulty (predicate i /∈ trustedi) or have previously sent its pair (esti, can_deci)
to the other processes (predicate i /∈ trustedi∨i ∈ can_deci evaluated at line E03).
But, when i ∈ trustedi, i ∈ can_deci is not a sufficiently strong predicate for pi to
safely decide. This is because it is possible that pi committed omission faults just
during the current round. So, to allow pi to early decide, we need to be sure that
at least one correct process can decide (as it is correct such a process pj can play
a “pivot” role sending its (estj , can_decj) pair to all the processes). Hence, the
intuition for the final early decision/stopping predicate, namely |CAN _DECi | >
t used at line E04: that additional predicate guarantees that at least one correct
process can early decide and consequently has transmitted or will transmit its
(estj , can_decj) pair to all.

So, the early decision/stopping predicate for a process pi spans actually two rounds
r and r′ (r′ > r). This is a “two phase” predicate split as follows:

– During r (lines E08|E09): (i ∈ trustedi∧i /∈ can_deci)∧(n−k r < |trustedi|)∨
(can_deci �= ∅), and

– During r′ (lines E03|E04): (i /∈ trustedi ∨ i ∈ can_deci) ∧ |CAN _DECi | > t.

Moreover, for a correct process pi, the assignment can_deci ← can_deci ∪ {i} can
be interpreted as a synchronization point separating the time instants when they are
evaluated to true.

6 Proof of the Strongly Terminating Early Stopping Protocol

Detailed proofs of the following lemmas and theorems are given in [29].

6.1 Basic Lemmas

The next lemma extends Lemma 1 to the early stopping context.

Lemma 6. Let rd be the first round during which a correct process decides at line E05
(If there is no such round, let rd = � t

k � + 1). Let pi be a process that is correct or
commits only send omission failures. ∀r ≤ rd: if pi does not decide at line E05 of the
round r, we have (1) C ⊆ trustedi[r] and (2) i ∈ Completing[r].

194 P. Raïpin Parvédy, M. Raynal, and C. Travers

Lemma 5 considers a round r such that C ⊆ Completing[r − 1] (i.e., a round executed
by all the correct processes). Its proof relies on Lemma 1, but considers only the rounds
r′ ≤ r. As, until a correct process decides, the Lemma 1 and the Lemma 6 are equiva-
lent, it follows that the Lemma 1 can be replaced by Lemma 6 in the proof of Lemma
5. Let us also observe that the proofs of the Lemmas 2, 3 and 4 are still valid in the
early stopping context (these proofs use the set Completing[r] and do not rely on the
set C). We now state and prove additional lemmas used to prove the early stopping k-set
agreement protocol.

Lemma 7. The set ESTi[r] computed by pi during round r (line E04) is not empty.

Lemma 8. Assuming that a process decides at line E05 during round r, let px be a
process that proceeds to round r + 1 (if r = � t

k � + 1, “proceed to round r + 1”
means “execute the return() statement at line 11”). We have: x /∈ trustedx[r] ∨ x ∈
can_decx[r].

Lemma 9. Let i ∈ Completing[r] (1 ≤ r ≤ � t
k � + 1). can_deci[r] �= ∅ ⇒ esti[r] is

one of the k smallest values in EST [r].

Lemma 10. Assuming that a process decides at line E05 during round r, let px be a
process that proceeds to round r + 1 (if r = � t

k � + 1, “proceed to round r + 1” means
“execute the return() statement at line 11”). We have: estx[r] is among the k smallest
values in EST [r − 1].

Lemma 11. Let r ≤ � t
k� be the first round during which a process decides at line E05.

Then, (1) every process that is correct or commits only send omission failures decides
at line E05 during round r or r + 1. Moreover, (2) no process executes more than r + 1
rounds.

6.2 Properties of the Protocol

Theorem 4. [Agreement] No more than k different values are decided.

Theorem 5. [Strong Termination and Early Stopping] (i) A process that is correct or
commits only send omission failures decides and halts by round min(� f

k �+2, � t
k �+1).

(ii) No process halts after min(� f
k � + 2, � t

k � + 1) rounds.

The next corollary is an immediate consequence of the previous theorem.

Corollary 2. [Termination] Every correct process decides.

Theorem 6. [Validity] A decided value is a proposed value.

Theorem 7. [Bit Complexity] Let b be the number of bits required to represent a pro-
posed value. The bit complexity is upper bounded by O(n(b + 2n)f/k) per process.

Strongly Terminating Early-Stopping k-Set Agreement 195

References

1. Aguilera M.K. and Toueg S., A Simple Bivalency Proof that t-Resilient Consensus Requires
t + 1 Rounds. Information Processing Letters, 71:155-178, 1999.

2. Attiya H. and Welch J., Distributed Computing, Fundamentals, Simulation and Advanced
Topics (Second edition). Wiley Series on Parallel and Distributed Computing, 414 pages,
2004.

3. Biran O., Moran S. and Zaks S., A Combinatorial Characterization of the Distributed 1-
Solvable Tasks. Journal of Algorithms, 11(3): 420-440, 1990.

4. Biran O., Moran S. and Zaks S., Tight Bounds on the Round Complexity of Distributed
1-Solvable Tasks. Theoretical Computer Science, 145(1-2):271-290, 1995.

5. Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchro-
nous Computations. Proc. 25th ACM Symposium on Theory of Computation (STOC’93),
California (USA), pp. 91-100, 1993.

6. Charron-Bost B. and Schiper A., Uniform Consensus is Harder than Consensus. Journal of
Algorithms, 51(1):15-37, 2004.

7. Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105:132-158, 1993.

8. Chaudhuri S., Herlihy M., Lynch N. and Tuttle M., Tight Bounds for k-Set Agreement. Jour-
nal of the ACM, 47(5):912-943, 2000.

9. Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Agreement. Journal of
the ACM, 37(4):720-741, April 1990.

10. Fischer M.J., Lynch N.A., A Lower Bound on the Time to Assure Interactive Consistency.
Information Processing Letters, 14(4):183-186, 1982.

11. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

12. Gafni E., Guerraoui R. and Pochon B., >From a Static Impossibility to an Adaptive Lower
Bound: The Complexity of Early Deciding Set Agreement. Proc. 37th ACM Symposium on
Theory of Computing (STOC’05), Baltimore (MD), pp.714-722, May 2005.

13. Guerraoui R. and Pochon B., The Complexity of Early Deciding Set Agreement: how Topol-
ogy Can Help? Proc. 4th Workshop in Geometry and Topology in Concurrency and Distrib-
uted Computing (GETCO’04), BRICS Notes Series, NS-04-2, pp. 26-31, Amsterdam (NL),
2004.

14. Hadzilacos V., Issues of Fault Tolerance in Concurrent Computations. PhD Thesis, Tech Re-
port 11-84, Harvard University, Cambridge (MA), 1985.

15. Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Distributed Sys-
tems, ACM Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

16. Herlihy M.P. and Penso L. D., Tight Bounds for k-Set Agreement with Limited Scope Ac-
curacy Failure Detectors. Distributed Computing, 18(2): 157-166, 2005.

17. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability.
Journal of the ACM, 46(6):858-923, 1999.

18. Keidar I. and Rajsbaum S., A Simple Proof of the Uniform Consensus Synchronous Lower
Bound. Information Processing Letters, 85:47-52, 2003.

19. Lamport L. and Fischer M., Byzantine Generals and Transaction Commit Protocols. Unpub-
lished manuscript, 16 pages, April 1982.

20. Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Fransisco (CA), 872
pages, 1996.

21. Mostéfaoui A. and Raynal M., k-Set Agreement with Limited Accuracy Failure Detectors.
Proc. 19th ACM Symposium on Principles of Distributed Computing (PODC’00), ACM
Press, pp. 143-152, Portland (OR), 2000.

196 P. Raïpin Parvédy, M. Raynal, and C. Travers

22. Mostéfaoui A. and Raynal M., Randomized Set Agreement. Proc. 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA’01), ACM Press, pp. 291-297, Hersonissos
(Crete), 2001.

23. Neiger G. and Toueg S., Automatically Increasing the Fault-Tolerance of Distributed Algo-
rithms. Journal of Algorithms, 11:374-419, 1990.

24. Pease L., Shostak R. and Lamport L., Reaching Agreement in Presence of Faults. Journal of
the ACM, 27(2):228-234, 1980.

25. Perry K.J. and Toueg S., Distributed Agreement in the Presence of Processor and Communi-
cation Faults. IEEE Transactions on Software Eng., SE-12(3):477-482, 1986.

26. Raïpin Parvédy Ph. and Raynal M., Optimal Early Stopping Uniform Consensus in Syn-
chronous Systems with Process Omission Failures. Proc. 16th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’04), Barcelona (Spain), ACM Press, pp. 302-310, 2004.

27. Raïpin Parvédy Ph., Raynal M. and Travers C., Early-Stopping k-set Agreement in Syn-
chronous Systems Prone to any Number of Process Crashes. 8th Int. Conference on Parallel
Computing Technologies (PaCT’05), Krasnoyarsk (Russia), Springer Verlag LNCS #3606,
pp. 49-58, 2005.

28. Raïpin Parvédy Ph., Raynal M. and Travers C., Decision Optimal Early-Stopping k-set
Agreement in Synchronous Systems Prone to Send Omission Failures. Proc. 11th IEEE Pa-
cific Rim Int. Symposium on Dependable Computing (PRDC’05), Changsa (China), IEEE
Computer Press, pp. 23-30, 2005.

29. Raïpin Parvédy Ph., Raynal M. and Travers C., Strongly Terminating Early-Stopping k-set
Agreement in Synchronous Systems with General Omission Failures. Tech Report #1711,
IRISA, Université de Rennes (France), 22 pages 2005.
ftp://ftp.irisa.fr/techreports/2005/PI-1711.ps.gz

30. Raynal M., Consensus in Synchronous Systems: a Concise Guided Tour. Proc. 9th IEEE
Pacific Rim Int. Symposium on Dependable Computing (PRDC’02), Tsukuba (Japan), IEEE
Computer Press, pp. 221-228, 2002.

31. Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of
Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

32. Yang J., Neiger G. and Gafni E., Structured Derivations of Consensus Algorithms for Fail-
ure Detectors. Proc. 17th Int. ACM Symposium on Principles of Distributed Computing
(PODC’98), ACM Press, pp. 297-308, Puerto Vallarta (Mexico), July 1998.

	Introduction
	Computation Model and Strongly Terminating k-Set Agreement
	Round-Based Synchronous System
	Process Failure Model
	Strongly Terminating k-Set Agreement

	A Strongly Terminating k-Set Agreement Protocol
	Local Variables
	Process Behavior

	Proof of the Strongly Terminating Protocol
	Basic Lemmas
	Central Lemma
	Properties of the Protocol

	A Strongly Terminating and Early Stopping k-Set Agreement Protocol
	Additional Local Variables
	Process Behavior

	Proof of the Strongly Terminating Early Stopping Protocol
	Basic Lemmas
	Properties of the Protocol

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

