
From Renaming to Set Agreement

Achour Mostefaoui, Michel Raynal, and Corentin Travers

IRISA, Université de Rennes, 35042 Rennes, France
{achour,raynal,ctravers}@irisa.fr

Abstract. The M -renaming problem consists in providing the processes
with a new name taken from a new name space of size M . A renaming
algorithm is adaptive if the size M depends on the number of processes
that want to acquire a new name (and not on the total number n of
processes). Assuming each process proposes a value, the k-set agreement
problem allows each process to decide a proposed value in such a way
that at most k different values are decided. In an asynchronous system
prone to up to t process crash failures, and where processes can cooperate
by accessing atomic read/write registers only, the best that can be done
is a renaming space of size M = p+ t where p is the number of processes
that participate in the renaming. In the same setting, the k-set agreement
problem cannot be solved for t ≥ k.

This paper focuses on the way a solution to the renaming problem
can help solving the k-set agreement problem when k ≤ t. It has several
contributions. The first is a t-resilient algorithm (1 ≤ t < n) that solves
the k-set agreement problem from any adaptive (n + k − 1)-renaming
algorithm, when k = t. The second contribution is a lower bound that
shows that there is no wait-free k-set algorithm based on an (n + k − 1)-
renaming algorithm that works for any value of n, when k < t. This
bound shows that, while a solution to the (n + k − 1)-renaming prob-
lem allows solving the k-set agreement problem despite t = k failures,
such an additional power is useless when k < t. In that sense, in an
asynchronous system made up of atomic registers, (n + k − 1)-renaming
allows progressing from k > t to k = t, but does not allow bypassing that
frontier. The last contribution of the paper is a wait-free algorithm that
constructs an adaptive (n + k − 1)-renaming algorithm, for any value of
the pair (t, k), from a failure detector of the class Ωk

∗ (this last algorithm
is a simple adaptation of an existing renaming algorithm).

1 Introduction

Asynchronous Computability. Renaming and set agreement are among the basic
problems that lie at the core of computability in asynchronous systems prone to
process crashes. The renaming problem (introduced in [3]) consists in designing
an algorithm that allows processes (that do not crash) to obtain new names from
a new name space that is as small as possible. In the following M denotes the size
of the new name space, and a corresponding algorithm is called an M -renaming
algorithm.

G. Prencipe and S. Zaks (Eds.): SIROCCO 2007, LNCS 4474, pp. 66–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

From Renaming to Set Agreement 67

A wait-free algorithm is an algorithm that allows each process that does not
crash to terminate in a finite number of computation steps, whatever the behav-
ior of the other processes (i.e., despite the fact that all the other processes are
extremely slow, or even have crashed) [12]. It has been shown that, in a system
of n processes that can communicate through atomic read/write registers only,
the smallest new name space that a wait-free renaming algorithm can produce is
lower bounded by M = 2n − 1 [15]. More generally, in an asynchronous system
where up to t processes may crash, the smallest value of M is n+ t (the wait-free
case corresponds to t = n − 1).

A renaming algorithm is adaptive if the size of the new name space depends
only on the number of processes that ask for a new name (and not on the total
number of processes). Let p be the number of processes that participate in the
renaming. Several adaptive algorithms have been designed such that the size of
the new name space is M = 2p − 1 (e.g., [2,5]). These adaptive algorithms are
consequently optimal with respect to the size of the new name space.

Recently, with the aim of circumventing the M = 2p − 1 lower bound, re-
searchers have investigated the use of base objects stronger than atomic registers
in order to solve the renaming problem. Following this line of research, it has
been shown in [19] that, as soon as k-test&set objects can be used, the renam-
ing problem can be wait-free solved with a new name space the size of which is
M = 2p−� p

k � 1. Among the processes that access it, a k-test&set object ensures
that at least one and at most k processes obtain the value 1 (they win), while all
the other processes obtain the value 0 (they lose)2. It has also been shown in [10]
that the renaming problem can be wait-free solved with a new name space of
size M = p+k −1 as soon as k-set agreement objects can be used. According to
the base objects they use, respectively, both algorithms are optimal with respect
to the size of their new name space.

The k-set agreement problem (sometimes abbreviated k-set), has been intro-
duced in [8]. It is a paradigm of coordination problems encountered in distributed
computing and is defined as follows. Each process is assumed to propose a value.
The problem consists in designing an algorithm such that (1) each process that
does not crash decides a value (termination), (2) a decided value is a proposed
value (validity), and (3) no more than k different values are decided (agreement).
(The well-known consensus problem is nothing else than the 1-set agreement
problem.) The parameter k can be seen as the coordination degree (or the dif-
ficulty) associated with the corresponding instance of the problem. The smaller
k is, the more coordination among the processes is imposed: k = 1 means the
strongest possible coordination, while k = n means no coordination.

It has been shown in [6,15,22] that, in an asynchronous system made up of
processes that communicate through atomic registers only, and where up to t
processes may crash, there is no wait-free k-set agreement algorithm for k ≤ t.

1 The renaming algorithm presented in [19] is actually based on k-set agreement ob-
jects. But, as observed by E. Gafni, these objects can be trivially replaced by k-
test&set objects without affecting the behavior of the renaming algorithm.

2 The usual test&set object is a 1-test&set object.

68 A. Mostefaoui, M. Raynal, and C. Travers

Differently, when k > t the problem can be trivially solved (a predefined set of k
processes write their proposal, and a process decides the first proposal it reads).

Randomized or failure detector-based algorithms have been proposed to cir-
cumvent the previous impossibility result [13,17,18]. An algorithm that wait-free
solves the (n − 1)-set agreement in a system of n crash-prone asynchronous pro-
cesses from (2n − 2)-renaming objects is described in [9].

Content of the Paper. The paper has three contributions. The first is motivated
by the computability power of the renaming problem with respect to the set
agreement problem. More specifically, the paper considers systems made up of n
processes. In such a system, an algorithm is t-resilient if it always preserves its
safety and liveness properties when no more than t processes commit failures.
(The notion of t-resilience boils down to the wait-free notion when t = n−1.) The
first contribution investigates the t-resilience notion to solve the k-set agreement
problem from renaming objects. It presents a t-resilient algorithm that solves
the k-set problem from an adaptive (n + k − 1)-renaming object when k =
t. Interestingly, this result generalizes a previous result presented in [9] that
also considers k = t, but only for the wait-free case (i.e., t = n − 1). So, the
algorithm presented in the paper works for any value of t. When we consider the
constructions relating renaming and set agreement that are known, we obtain the
transformations described in Figure 1. Interestingly, it follows from the proposed
algorithm (that considers k = t) that, in asynchronous shared memory systems
prone to a single process crash (t = 1), a solution to the renaming problem
allows solving the consensus problem (and vice-versa).

(n + k − 1)-renaming k-set agreement
∀t, k = t [this paper]

k = t = n − 1 [9]

∀k, t = n − 1 [10]

Fig. 1. Piecing together the transformations

The second contribution of the paper is a lower bound. While, in an asyn-
chronous shared memory system made up of atomic registers only, the k-set
agreement problem can be (trivially) solved when k > t, and is impossible to
solve when k ≤ t, the previous algorithm shows that enriching the system with
an adaptive (n + k − 1)-renaming algorithm allows progressing from k > t to
k = t. So, an important question is the following: does an (n + k − 1)-renaming
algorithm allows bypassing the k = t frontier? The second contribution of the
paper shows that such a renaming algorithm is not powerful enough to do it.
More precisely, it shows that, in an asynchronous shared memory system made
up of atomic registers and (n + k − 1)-renaming, there are values of n for which

From Renaming to Set Agreement 69

it is not possible to solve the k-set agreement problem when k < t. (Showing
that this is true for any value of n remains an open problem.)

The last contribution is a wait-free algorithm that builds a (p+k−1)-renaming
object from an oracle of the class Ωk

∗ . Such an oracle class has been introduced
in [21]. It generalizes the “leader” oracles (failure detectors) classes introduced
in [7,11,19,20]. Basically, such an oracle provides the processes with a primitive
leader() that always returns a set of at most k processes, and after some unknown
but finite time, returns always the same set that contains at least one correct
participating process. Interestingly, that algorithm is a simple generalization of
an (n + t)-renaming algorithm described in [4] (that is in turn an adaptation
to the shared memory setting of an (n + t)-renaming algorithm designed for
message-passing systems [3]).

Roadmap. The paper is made up of 5 sections. Section 2 describes the com-
putation model. Section 3 presents a t-resilient algorithm that solves the k-set
problem from a single (n+k−1)-renaming object. Section 4 shows that (n+k−1)-
renaming does not allow solving the k-set agreement problem when k < t, for
any value of n. Then, Section 5 presents a wait-free construction from Ωk

∗ to an
adaptive (p + k − 1)-renaming object.

2 Basic Computation Model

Process Model. The system is made up of n asynchronous processes p1, . . . , pn.
The integer i is the index of pi while its identity is kept in idi. Π denotes the
set of indexes, i.e., Π = {1, . . . , n}. Asynchronous means that there is no bound
on the time it takes for a process to execute a computation step. A process may
crash (halt prematurely). After it has crashed a process executes no step. A
process executes correctly its algorithm until it possibly crashes. The integer t,
0 ≤ t < n, denotes an upper bound on the number of processes that may crash;
t is known by the processes. A process that does not crash in a run is correct in
that run; otherwise, it is faulty in that run.

Communication Model. The processes cooperate by accessing atomic read/write
registers. Atomic means that each read or write operation appears as if it has
been executed instantaneously at some time between its begin and end events
[16]. Each atomic register is a one-writer/multi-readers (1WnR) register. This
means that a single process (statically determined) can write it. Moreover such
a register is a write-once register (the writing process writes it at most once).
Atomic registers are denoted with uppercase letters. The atomic registers are
structured into arrays. X [1..n] being such an array, X [i] denotes the register of
that array that pi only is allowed to write. A process can have local registers. Such
registers are denoted with lowercase letters with the process index appearing as
a subscript (e.g., winneri is a local register of pi).

The processes are provided with an atomic snapshot operation [1] denoted
snapshot(X), where X [1..n] is an array of atomic registers. It allows a process pi

to atomically read the whole array. This means that the execution of a snapshot()

70 A. Mostefaoui, M. Raynal, and C. Travers

operation appears as it has been executed instantaneously at some point in time
between its begin and end events. Such an operation can be built from 1WnR
atomic registers [1].

The value ⊥ denotes a default value that can appear only in the algorithms
described in the paper. It always remains everywhere else unknown to the pro-
cesses.

Notions of t-resilience and Wait-freeness. An algorithm is t-resilient if it copes
with up to t process failures. In our context, this means that it satisfies its safety
and liveness (termination) properties despite up to t process crashes. A wait-free
algorithm is an (n − 1)-resilient algorithm.

Notion of Adaptive Renaming. In the renaming problem, each process pi has an
initial name denoted idi (that it is the only to know). These names are from a
very large name space, i.e., max(id1, . . . , idn) >> n. A renaming algorithm is
adaptive with respect to the size of its new name space, if that size depends on
the number of processes that actually participate in the renaming algorithm. A
process participates in an algorithm as soon as it has written an atomic register
used by that algorithm. Let us remark that an adaptive renaming algorithm
cannot systematically assign the new name i to pi. This is because, if only pn

wants to acquire a new name, the new name space is [1..n], which depends on
the number of processes instead of depending on the number of participating
processes (here a single process). To rule out this type of ineffective solution, the
following symmetry requirement is usually considered for the renaming problem
[4]: the code executed by pi with name id is the same as the code executed by
process pj with name id. This means that the process indexes can be used only
for addressing purposes.

As indicated in the introduction, if p processes participate in a renaming
algorithm based on atomic registers only, the best that can be done is an adaptive
name space of size M = 2p − 1. This means that if “today” p′ processes acquire
new names, their new names belong to the interval [1..2p′ − 1]. If “tomorrow”
p′′ additional processes acquire new names, these processes will have their new
names in the interval [1..2p − 1] where p = p′ + p′′.

3 From Adaptive (p + k − 1)-Renaming to k-Set
Agreement

Considering an asynchronous system made up of n processes, where up to t
(1 ≤ t < n) may crash and where the processes can cooperate through 1WnR
write-once atomic registers, plus an adaptive (p+ t− 1)-renaming object (where
p ≤ n is the number of participating processes), this section presents and proves
correct an algorithm that builds a t-set agreement object.

3.1 Principles and Description of the t-Resilient Algorithm

The principle of the transformation algorithm rests on two simple ideas.

From Renaming to Set Agreement 71

1. First, use the underlying adaptive renaming object to partition the partici-
pating processes into two groups: the processes the name of which is smaller
or equal to t (the winners); and the processes the name of which is greater
than t (the losers). So, there are at most t winners.

2. Then, direct a process pi to decide a value proposed by a winner. If pi does
not see winner processes, direct it to decide the value proposed by a process
that has proposed a value but not yet obtained a new name.

To make operational these ideas, the shared memory is composed of two arrays
of 1WnR write-once atomic registers.

– The array PROP [1..n], initialized to [⊥, . . . , ⊥], is such that PROP [i] will
contain the value (denoted vi) proposed by pi to the set agreement problem.
A process pi becomes participating as soon as PROP [i] �= ⊥.

– The aim of the array RENAMED [1..n], also initialized to [⊥, . . . , ⊥], is to
allow the processes to benefit from the renaming object. When a process pi

has obtained a new name, RENAMED [i] is set to 1 if its new name is smaller
or equal to t (pi is then a winner), while RENAMED [i] is set to 0 if pi is a
loser. It trivially follows that RENAMED [i] �= ⊥ means that pi has acquired
a new name.

The behavior of a process pi is described in Figure 2. A process pi invokes
kset proposet(vi) where vi is the value it proposes to the k-set agreement problem.
It decides a value when it executes the return(v) statement (line 09) where v is
the value it decides. The way it implements the previous design ideas can be
decomposed in two stages.

1. The first stage is composed of the lines 01-04. After it has deposited its pro-
posal (line 01), obtained a new name (line 02), and updated RENAMED [i]
accordingly (line 03), a process pi atomically reads the array RENAMED
(using the snapshot() operation) until it sees that at least n − t processes
have acquired new names (line 04).

2. The second stage, composed of the lines 05-09, is the decision stage. It pi

sees a winner, it decides the value proposed by that winner process (lines 05,
06 and 09). If pi sees no winner, it decides the value proposed by a process
that (from its point of view) has not yet obtained a new name. The proof
will show that this is a consistent rule for deciding a value.

3.2 Proof of the Algorithm

The proof considers that (1) k = t, i.e., the size of the new name space of the
underlying adaptive renaming is M = p+ t−1 when p processes participate, and
(2) at least (n− t) correct processes participate in the k-set agreement problem.

Lemma 1. The number of values that are decided is at most t, and a decided
value is a proposed value.

72 A. Mostefaoui, M. Raynal, and C. Travers

operation kset propose(vi):
(1) PROP [i] ← vi;
(2) new namei ← rename(idi);
(3) RENAMED [i] ← 1 if new namei ≤ t, 0 otherwise;
(4) repeat renamedi ← snapshot(RENAMED)

until |{j : renamedi[j] �= ⊥}| ≥ (n − t);
(5) let winnersi = {j : renamedi[j] = 1};
(6) if winnersi �= ∅ then �i ← any value ∈ winnersi
(7) else let seti = {j : PROP [j] �= ⊥ ∧ renamedi[j] = ⊥};
(8) �i ← any value ∈ seti

(9) end if;
(10) return(PROP [�i])

Fig. 2. From (n + k − 1)-renaming to k-set, for k = t, ∀t (code for pi)

Proof. Let renamedi be the last value of renamedi when pi exits the repeat
loop at line 04. As a process px writes RENAMED [x] at most once, we have
renamedi[x] �= ⊥ ∧ renamedj [x] �= ⊥ ⇒ renamedi[x]=renamedj [x]. Let us
define renamedi ≤ renamedj as ∀x : renamedi[x] �= ⊥ ⇒ renamedi[x] =
renamedj [x]. Due to the atomicity property of the snapshot() operation (line 04)
we have ∀i, j: renamedi ≤ renamedj ∨ renamedj ≤ renamedi (this is some-
times called the containment property provided by the snapshot() operation).

If no process ever executes line 05, the agreement and validity property are
trivially satisfied. So, let us assume that at least one process executes line 05.
Moreover, let renamed be the smallest array value obtained by a process when
it exits the repeat loop at line 04. We consider two cases.

– ∃x: renamed[x] = 1.
In that case there is at least one winner, namely, px. Due to the containment
property, renamedi[x] = 1 for any process pi that decides. It follows from
that observation and the lines 05-06 that any process that decides, does
decide the value proposed by a winner process. As at most t processes can
obtain a new name comprised between 1 and t (lines 02-03), it follows that
there are at most t winners. Consequently, no more than t different values
can be decided.

– ∀x: renamed[x] �= 1.
In that case, let R = {x : renamed[x] = 0} (hence, all other entries of
renamed are equal to ⊥). Due to the exit condition of the repeat loop (line
04), we have |R| ≥ n − t, from which it follows that |Π \ R| ≤ t. We claim
(claim C1) that any process pi that decides, decides a value proposed by a
process py such that y ∈ Π \ R. Combining this claim with |Π \ R| ≤ t, we
conclude that at most t different values can be decided.
Proof of the claim C1. Let pi be a process that decides. It decides the value
in PROP [y] where y has been determined at line 06 or line 08.

• pi selects y at line 06. In that case, pi decides the value proposed by
a process py such that renamedi[y] = 1. As renamed ≤ renamedi

From Renaming to Set Agreement 73

(snapshot containment property), and renamed does not contain the
value 1, we conclude that y /∈ R, and the claim C1 follows.

• pi selects y at line 08. In that case, pi decides a value proposed by
a process py such that renamedi[y] = ⊥. We claim (claim C2) that
seti �= ∅, i.e., py does exist. As renamedi[y] = ⊥ and renamed ≤
renamedi, we conclude from the definition of R that y /∈ R, which
proves the claim C1.

Proof of the claim C2 (seti �= ∅). Let pi be a process that executes line 07.
That process is such that ∀x ∈ Π : renamedi[x] = ⊥ or 0. Let Ri = {x :
renamedi[x] = 0}, and α = |Ri|. Moreover, let r = |{x : PROP [x] �= ⊥}|

where the value of PROP [x] is the value read by pi at line 07. (See Figure 3,
where the time instants are such that τ0 < τ2 < τ3 < τ4). We show that
α < r, from which the claim follows (namely, there is a process py such that
PROP [y] �= ⊥ ∧ renamedi[y] = ⊥ when pi executes line 07).

τ0 τ1 τ2

acquired their new names

τ3

that PROP [x] �= ⊥for each x ∈ Ri

pi sees r processes px suchpi reads RENAMED [x] = 0The α processes of Ri have

τ4

Fig. 3. Timing scenario

1. Let us first consider the processes px of the set Ri (i.e., the processes px

such that renamedi[x] = 0). These processes have obtained new names
in a name space [1..M] before time τ0. We can conclude from the text
of the algorithm that the new name obtained by each of these processes
px (a loser) is such that new namex > t (lines 02 and 03). As there are
α such processes we have t + α ≤ M .

2. Let ρ be the number of processes that started participating in the re-
naming before τ0. We have seen (item 1) that M is the greatest name
obtained by a process of Ri and that name has been obtained before τ0.
As the algorithm is adaptive, we have M ≤ ρ + t − 1.

3. As the ρ processes started participating in the renaming before τ0, they
updated their entry in PROP to a non-⊥ value before τ0, and conse-
quently we have ρ ≤ r.

4. It follows from the previous items that t+α ≤ M ≤ ρ+ t−1 ≤ r+ t−1,
from which we conclude α < r, that terminates the proof of the claim
C2. �Lemma 1

Lemma 2. Each correct process decides a value.

Proof. As there are at least n − t correct process that participate in the set
agreement problem, no process can block forever at line 04. Moreover, as the set
seti of a process pi that executes line 07 is not empty (see the claim C2 in the

74 A. Mostefaoui, M. Raynal, and C. Travers

proof of Lemma 1), the entry �i from which pi decides is well-defined (it does
exist). It follows that each correct process decides. �Lemma 2

Theorem 1. The algorithm described in Figure 2 is a t-resilient t-set agreement
algorithm.

Proof. The proof follows directly from Lemma 1 and Lemma 2. �Theorem 1

3.3 From k-Test&Set to k-Set

In the k-test&set problem, the processes invoke an operation k test&set() and
obtains the value 1 (winner), or the value 0 (loser). The values returned to the
processes satisfy the following property: there are at least one and at most k
winners.

In a very interesting way, the algorithm described in Figure 2 allows solving
the k-set problem from any solution to the k-test&set problem, when k = t, ∀t.
The only “modification” consists in replacing the lines 02-03 by the following
statement: RENAMED [i] ← k test&set().

Both 1-test&set and n-renaming have consensus number 2 [10,19]. The trans-
formation described in Figure 2 exhibits another strong connection linking k-
test&set and k-set.

4 An Impossibility Result

Theorem 2. The k-set agreement problem cannot be solved in asynchronous
systems made up of atomic registers and a solution to the adaptive (n + k − 1)-
renaming problem, for any value of n, k < t and t = n − 1.

Proof. The proof uses the following notations:

– fk: the function p → 2p − � p
k �.

– gk: the function p → p + k − 1.
– (n, k)-TS: the k-tes&set problem with up to n processes. (At least one and

most k processes are winners.)
– (n, k)-SA: the k-set agreement problem with up to n processes.
– (n, fk)-AR: the adaptive M -renaming problem with M = fk(p) (where p ≤ n

is the number of processes that participate in the renaming).
– (n, gk)-AR: the adaptive M -renaming problem with M = gk(p) (where p ≤ n

is the number of processes that participate in the renaming).
– Any solution to the (n, �)-XX problem (where XX is TS, SA, or AR, and �

is k, fk or gk) defines a corresponding (n, �)-XX object.

Let us first observe that ∀p, ∀k, we have f1(p) = g1(p) ≤ gk(p). This means that
any solution to (n, f1)-AR is a solution to (n, gk)-AR.

The proof consists in showing the following: ∀k, ∀n ≥ 2k + 1: there is no
algorithm that solves (n, k)-SA from (n, gk)-AR. The proof is by contradiction.
Let us assume that there is an algorithm A that, for t = n − 1, solves (n, k)-SA
from (n, gk)-AR with n ≥ 2k + 1. The (2, 1)-SA problem plays a key role in
proving the contradiction.

From Renaming to Set Agreement 75

1. On one side.
– The (2, 1)-TS problem and the (2, 1)-SA problem are equivalent [9].
– There is a wait-free construction of (n, k)-TS from (2, 1)-TS objects [9].
– The (n, f1)-AR problem can be wait-free solved from (n, 1)-TS objects

[19].
– For any k ≥ 1, the (n, gk)-AR problem can be wait-free solved from

(n, f1)-AR objects (previous observation).
– Due to the assumption, the algorithm A solves the (n, k)-SA problem

from (n, gk)-AR objects with n ≥ 2k + 1, when t = n − 1.
– It follows that, when t = n − 1, it is possible to solve the (n, k)-SA

problem from (2, 1)-SA objects for n ≥ 2k + 1.
2. On the other side.

– It is shown in [14] that k ≥ j� t+1
m � + min

(
j, (t + 1) mod m

)
is a neces-

sary requirement for having a t-resilient k-set agreement algorithm for
n processes, when these processes share atomic registers and (m, j)-SA
objects (objects that allow solving j-set agreement among m processes).

– Let us consider the case where the (m, j)-SA objects are (2, 1)-SA ob-
jects. Let us recall t = n − 1. We have then: k ≥ � t+1

2 � + min
(
1, (t +

1) mod 2
)
, from which we obtain the necessary requirement k ≥ �n

2 �.
– It follows that, for t = n − 1, k ≥ �n

2 � (i.e., 2k ≥ n) is a necessary
requirement for solving the (n, k)-SA problem from (2, 1)-SA objects
and atomic registers.

3. The previous items 1 and 2 contradict each other. It follows that the initial
assumption A cannot hold, which proves the theorem. �Theorem 2

5 From Ωk
∗ to (p + k − 1)-Renaming

This section enriches the picture by proposing a wait-free algorithm that solves
the adaptive M -renaming problem with M = min(2p − 1, p + k − 1), p being
the number of processes that participate in the algorithm. In addition to 1WnR
atomic registers, this algorithm uses an oracle of the class Ωk

∗ . Interestingly, when
all the correct processes participate and the oracle has no additional power (i.e.,
k ≥ t + 1), this algorithm boils down to a t-resilient algorithm described in [4]
that solves the (n + t)-renaming problem.

5.1 The Class of Oracles Ωk
∗

This class has been defined in [21]. An oracle of the class Ωk
∗ provides the pro-

cesses with an operation denoted leader(). (As indicated in the introduction, this
definition is based on the leader oracle classes introduced in [11,19,20].) When a
process pi invokes that operation, it provides it with an input parameter, namely
a set X of processes, and obtains a set of process identities as a result3.
3 The definition of Ωk

∗ is not expressed in the framework introduced by Chandra
and Toueg to define failure detector classes. More precisely, in their framework, the
failure detector operation that a process can issue has no input parameter. It would
be possible to express Ωk

∗ in their framework. We don’t do it in order to keep the
presentation simpler.

76 A. Mostefaoui, M. Raynal, and C. Travers

The semantics of Ωk
∗ is based on a notion of time, whose domain is the set

of integers. It is important to notice that this notion of time is not accessible to
the processes. An invocation of leader(X) by a process pi is meaningful if i ∈ X .
If i /∈ X , it is meaningless. The primitive leader() is defined by the following
properties where LX denotes the set of processes returned by an invocation
leader(X).

– Termination (wait-free). Any invocation of leader() by a correct process al-
ways terminates (whatever the behavior of the other processes).

– Bounded size leadership. Whatever X , the set LX returned by a leader(X)
invocation is such that |LX | ≤ k.

– Triviality. A meaningless invocation can return any set (of size k) of pro-
cesses.

– Eventual multi-leadership for each input set X : For any X ⊆ Π , such that
X ∩ Correct �= ∅, there is a time τX such that, ∀τ ≥ τX , all the meaningful
leader(X) invocations (that terminate) return the same set LX and this set
is such that LX ∩ X ∩ Correct �= ∅.

The intuition that underlies this definition is the following. The set X passed
as input parameter by the invoking process pi is the set of all the processes
that pi considers as being currently participating in the computation. (This also
motivates the notion of meaningful and meaningless invocations: an invoking
process is trivially participating).

Given a set X of participating processes that invoke leader(X), the eventual
multi-leadership property states that there is a time after which these processes
obtain the same set LX of at most k leaders, and at least one of them is a correct
process of X . Let us observe that the (at most k − 1) other processes of LX can
be any subset of processes (correct or not, participating or not).

It is important to notice that the time τX from which this property occurs
is not known by the processes. Moreover, before that time, there is an anarchy
period during which each process, as far as its leader(X) invocations are con-
cerned, can obtain different sets of any number of leaders. Let us also observe
that if a process pi issues two meaningful invocations leader(X1) and leader(X2)
with X1 �= X2, there is no relation linking LX1 and LX2, whatever the values
of X1 and X2 (e.g., the fact that X1 ⊂ X2 imposes no particular constraint on
LX1 and LX2).

Let us consider an execution in which all the invocations leader(X) are such
that X = Π (the whole set of processes are always considered as participating).
In that case, Ωk

∗ boils down to the failure detector class denoted Ωk introduced
in [20]. If additionally, k = 1, we obtain the classical leader failure detector Ω
introduced in [7].

When X ⊆ Π and k = 1, Ωk∗ boils down to the failure detector class intro-
duced in [11]. It is shown in [11] that Ω is weaker than Ω1

∗ that in turn is weaker
than �P (the class of eventually perfect failure detectors: after some finite but
unknown time, an eventually perfect failure detector suspects all the crashed
processes and only them).

From Renaming to Set Agreement 77

5.2 An Adaptive min(2p − 1, p + k − 1)-Renaming Algorithm

As previously mentioned, the adaptive renaming algorithm that is now presented
is inspired from a t-resilient renaming algorithm designed for read/write registers
only, described in [4].

Atomic Registers. The algorithm uses an array of 1WnR atomic registers, de-
noted STATE [1..n]. Each register STATE [i] contains three fields. The first field,
denoted STATE [i].old, is for the initial name of pi. The second field, denoted
STATE [i].prop, is for the new name that pi is currently trying to acquire. Fi-
nally, the third field, denoted STATE [i].done, is set to true once pi has obtained
a new name (STATE [i].prop contains then the new name of pi). Initially, each
atomic register STATE [i] is initialized to < ⊥, ⊥, false >.

Process Behavior. A process starts the renaming algorithm by setting a local
flag denoted donei to false , and its current proposal for a new name to ⊥ (line
01). Then, it enters a repeat loop and leaves it only when it has acquired a new
name (line 15).

In the loop body, a process pi first writes its current state in STATE [i] to
inform the other processes about its current progress, and then atomically reads
STATE (using the snapshot() operation) to obtain a consistent view of the global
state. If it has not yet determined a name proposal or there is another process
that has chosen the same name proposal (line 05), pi enters the lines 06-11 to
determine another name proposal. Differently, if its current name proposal is not
proposed by another process (the test of line 05 is then negative), pi commits its
last proposal that becomes its new name (line 12), informs the other processes
(line 13), and decides that new name (line 15).

To determine a name proposal, a process pi proceeds as follows. It first de-
termines the processes that are competing to have a new name. Those are the
processes pj that, from pi’s point of view, are participating in the renaming
(namely, the processes pj such that statei[j].old �= ⊥) and have not yet obtained
a new name (i.e., such that ¬(statei[j].done)). Before starting the next execu-
tion of the loop body, some processes have to change their new name proposal
(otherwise, it could be possible that they loop forever). So, a process pi does the
following.

– According to the set of processes perceived as competing with it, pi computes
a current set of leaders (line 07).

– If it does not appear in the set of leaders, pi starts directly another execution
of the loop body. Let us notice that, in that case, pi’s new name proposal is
not modified.

– Differently, if it appears in the set of leaders (line 08), pi determines a new
name proposal before starting another execution of the loop body. This de-
termination (done exactly as in [4]) consists for pi in first computing its
rank within the leader set, and then taking as its new name proposal the
first integer not yet used by the other processes (lines 09-10).

78 A. Mostefaoui, M. Raynal, and C. Travers

5.3 Proof of the Algorithm

Lemma 3. Let p be the number of processes that participate in the renaming.
The size of the new name space is M = min(2p − 1, p + k − 1).

Proof. Let us consider a run in which p processes participate. Let pi be a process
that returns a new name (line 15). The new name obtained by pi is the last name
it has proposed (at line 10 during the previous iteration). When pi defined its
last name proposal, at most p−1 other processes have previously defined a name
proposal, i.e., |{j : (j �= i) ∧ (statei[j].prop �= ⊥)}| ≤ p − 1 (O1). Moreover,
due to the definition of Ωk

∗ , when it defines its last name proposal, the rank of
pi in leadersi is at most min(p, k) (O2). It follows from (O1) and (O2) that the
last name proposal computed by pi is upper bounded by (p−1)+min(p, k), i.e.,
M = min(2p − 1, p − 1 + k). �Lemma 3

Lemma 4. No two processes decide the same new name.

Proof. [Preliminary Remark. This proof is verbatim the same as the corre-
sponding proof in [4]. We give it only for completeness purpose. As noticed in
[4], this follows from the fact that this proof does not depend on the way the
new names are chosen. It is based only on the structure of the algorithm and
the containment property of the the snapshot() operation.]

The proof is by contradiction. Let us assume that pi and pj obtain the same
new name a. Let statei (resp., statej) be the last snapshot value obtained by
pi (resp., pj) before returning its new name a. Due to the sequence of the lines
10, 02 and 04 executed by pi (resp., pj) before deciding its new name, we have
statei[i].prop = a (resp., statej [j] = a). Moreover, after having written its last
new name proposal, a process does not change its entry of STATE .prop.

Due to the containment property of the snapshot(STATE) operation, we
have statei ≤statej or statej ≤statei. Let us assume without loss of gen-
erality that statei ≤statej . It follows from the containment property that
statej [i].prop=statei[i].prop = a. According to the test of line 05, pj proceeds
to lines 06-11 to select a new name proposal distinct from statej [i].prop = a,
which proves the lemma. �Lemma 4

Lemma 5. Each correct process that participates obtains a new name.

Proof. As in [4], the proof is by contradiction. Let us assume that a process
takes infinitely many steps without obtaining a new name. Let CORRECT be
the set of correct processes, and NT the subset of correct processes that do not
terminate. Let τ be a time such that:

1. Each (correct or not) participating process pj has written its initial name
idj in STATE [j].old before τ1 < τ .

2. Each (correct or not) process pj that decides, has set STATE [j].done to true
before τ2 < τ .

From Renaming to Set Agreement 79

3. Each process pi ∈ NT has taken at least one snapshot of STATE between
max(τ1, τ2) and τ .
Due to the containment property provided by the snapshot() primitive, it
follows that, after τ , each process pi ∈ NT sees the same set of participating
processes and the same set of processes that have decided.

4. Let τ3 < τ be the time from which the multi-leadership property of Ωk
∗

remains forever satisfied.

Let contendingx[τ ′] be the value, at time τ ′, of the set {j : (statex[j].old �= ⊥)
∧ ¬(statex[j].done)}. Let pi be a process of NT , and CTD = contendingi[τ].
Let us observe that, at any time τ ′ ≥ τ , and for each process pj ∈ NT , we have
contendingj[τ ′] = CTD. Moreover, NT ⊆ CTD . It follows from the properties
of Ωk∗ , that there is a set leaders such that, after τ , each time a process pj ∈ NT
invokes leader(CTD), it obtains leaders . Since CTD \ NT contains only faulty
processes, and (due to the definition of τ) leaders ∩CTD ∩CORRECT �= ∅, the
set leaders ∩ CTD is not empty and contains at least one correct process.

As |leaders | ≤ k, all the correct processes in leaders ∩CTD select a new name
proposal when they execute the lines 09-11, and these new name proposals are
all different (this follows from the fact that they select their rank from the same
set leaders). It follows that they decide their new name. A contradiction with
the assumption that the processes of NT do not terminate. �Lemma 5

operation rename(idi):
(1) prop namei ← ⊥; donei ← false;
(2) repeat
(3) STATE [i] ←< idi, prop namei, donei >;
(4) statei ← snapshot(STATE);
(5) if (prop namei = ⊥) ∨ (∃j : (j �= i) ∧ (statei[j].prop = prop namei))
(6) then contendingi ← {j : (statei[j].old �= ⊥) ∧ ¬(statei[j].done)};
(7) leadersi ← leader(contendingi);
(8) if idi ∈ leadersi then
(9) let ri = rank of idi in leadersi ;
(10) prop namei ← ri-th integer /∈ X where
(11) X = {statei[j].prop : (j �= i) ∧ (statei[j].prop �= ⊥)} end if
(12) else new namei ← prop namei; donei ← true ;
(13) STATE [i] ←< idi, prop namei, donei > end if
(14) until donei;
(15) return(prop namei)

Fig. 4. From Ωk
∗ to adaptive M -renaming with M = min(2p − 1, p + k − 1) (pi’s code)

Theorem 3. The algorithm described in Figure 4 is an adaptive wait-free M -
renaming algorithm with M = min(2p − 1, p + k − 1).

Proof. The theorem follows from Lemma 3, Lemma 4 and Lemma 5. �Theorem 3

80 A. Mostefaoui, M. Raynal, and C. Travers

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., Merritt, M.: Fast, Wait-Free (2k − 1)-Renaming. 18th ACM Symposium
on Principles of Distributed Computing (PODC’99), pp. 105–112 (1999)

3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asyn-
chronous Environment. Journal of the ACM 37(3), 524–548 (1990)

4. Attiya, H., Welch, J.P.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. p. 414. Wiley-Interscience, New York (2004)

5. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming. 12th
ACM Symp on Principles of Distributed Computing (PODC’93), pp. 41–51 (1993)

6. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient
Asynchronous Computations. 25th ACM Symposium on Theory of Distributed
Computing (STOC’93), pp. 91–100 (1993)

7. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving
Consensus. Journal of the ACM 43(4), 685–722 (1996)

8. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation 105, 132–158 (1993)

9. Gafni, E.: Read/Write Reductions. DISC/GODEL presentation given as introduc-
tion to the 18th Int’l Symposium on Distributed Computing (DISC’04) (2004)

10. Gafni, E.: Renaming with k-set Consensus: an Optimal Algorithm in n+k−1 Slots.
In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 36–44. Springer,
Heidelberg (2006)

11. Guerraoui, R., Kapa�lka, M., Kouznetsov, P.: The Weakest Failure Detectors to
Boost Obstruction-Freedom. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp.
376–390. Springer, Heidelberg (2006)

12. Herlihy, M.P.: Wait-Free Synchronization. ACM Transactions on Programming
Languages and Systems 13(1), 124–149 (1991)

13. Herlihy, M.P., Penso, L.D.: Tight Bounds for k-Set Agreement with Limited Scope
Accuracy Failure Detectors. Distributed Computing 18(2), 157–166 (2005)

14. Herlihy, M.P., Rajsbaum, S.: Algebraic Spans. Mathematical Structures in Com-
puter Science 10(4), 549–573 (2000)

15. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computabil-
ity. Journal of the ACM 46(6), 858–923 (1999)

16. Herlihy, M.P., Wing, J.M.: Linearizability: a Correctness Condition for Concurrent
Objects. ACM TOPLAS 12(3), 463–492 (1990)

17. Mostéfaoui, A., Raynal, M.: k-Set Agreement with Limited Accuracy Failure De-
tectors. 19th ACM Symp. on Principles of Distr. Comp. pp. 143–152 (2000)

18. Mostéfaoui, A., Raynal, M.: Randomized Set Agreement. 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA’01), pp. 291–297 (2001)

19. Mostéfaoui, A., Raynal, M., Travers, C.: Exploring Gafni’s reduction land: from
Ωk to wait-free adaptive (2p-[p/k])-renaming via k-set agreement. In: Dolev, S.
(ed.) DISC 2006. LNCS, vol. 4167, Springer, Heidelberg (2006)

20. Neiger, G.: Failure Detectors and the Wait-free Hierarchy. In: Proc. 14th ACM Sym-
posium on Principles of Distributed Computing (PODC’95), pp. 100–109 (1995)

21. Raynal, M., Travers, C.: In search of the holy grail: looking for the weakest failure
detector for wait-free set agreement. In: Shvartsman, A.A. (ed.) OPODIS 2006.
LNCS, vol. 4305, Springer, Heidelberg (2006)

22. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology
of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

	Introduction
	Basic Computation Model
	From Adaptive (p+k-1)-Renaming to k-Set Agreement
	Principles and Description of the t-Resilient Algorithm
	Proof of the Algorithm
	From k-Test&Set to k-Set

	An Impossibility Result
	From Ω^k_* to $(p+k-1)$-Renaming
	The Class of Oracles Ω_*^k
	An Adaptive $\min(2p-1,p+k-1)$-Renaming Algorithm
	Proof of the Algorithm

