
Crash-resilient Time-free Eventual Leadership

Achour MOSTEFAOUI Michel RAYNAL Corentin TRAVERS

IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
{achour|raynal|travers}@irisa.fr

Abstract

Leader-based protocols rest on a primitive able to pro-
vide the processes with the same unique leader. Such pro-
tocols are very common in distributed computing to solve
synchronization or coordination problems. Unfortunately,
providing such a primitive is far from being trivial in asyn-
chronous distributed systems prone to process crashes. (It
is even impossible in fault-prone purely asynchronous sys-
tems.) To circumvent this difficulty, several protocols have
been proposed that build a leader facility on top of an asyn-
chronous distributed system enriched with synchrony as-
sumptions. This paper consider another approach to build
a leader facility, namely, it considers a behavioral property
on the flow of messages that are exchanged. This property
has the noteworthy feature not to involve timing assump-
tions. Two protocols based on this time-free property that
implement a leader primitive are described. The first one
uses potentially unbounded counters, while the second one
(which is a little more involved) requires only finite memory.
These protocols rely on simple design principles that make
them attractive, easy to understand and provably correct.
Keywords: Asynchronous system, Distributed algorithm,
Fault tolerance, Leader, Process crash, Time-free Protocol.

1 Introduction
Context of the study The design and implementation of re-
liable applications on top of asynchronous distributed sys-
tems prone to process crashes is a difficult and complex
task. A main issue lies in the impossibility of correctly de-
tecting crashes in the presence of asynchrony. In such a
context, some problems become very difficult or even im-
possible to solve. The most famous of those problems is the
Consensus problem for which there is no deterministic so-
lution in asynchronous distributed systems where processes
(even only one) may crash [9].

While consensus is considered as a “theoretical” prob-
lem, middleware designers are usually interested in the
more practical Atomic Broadcast problem. That problem
is both a communication problem and an agreement prob-

lem. Its communication part specifies that the processes can
broadcast and deliver messages in such a way that each cor-
rect1 process delivers at least the messages sent by the cor-
rect processes. Its agreement part specifies that there is a
single delivery order (so, the correct processes deliver the
same sequence of messages, and a faulty process delivers a
prefix of this sequence of messages). It has been shown that
consensus and atomic broadcast are equivalent problems in
asynchronous systems prone to process crashes [4]: in such
a setting, any protocol solving one of them can be used as a
black box on top of which the other problem can be solved.
Consequently, in asynchronous distributed systems prone to
process crashes, the impossibility of solving consensus ex-
tends to atomic broadcast.

When faced to process crashes in an asynchronous dis-
tributed system, the main problem comes from the fact that
it is impossible to safely distinguish a crashed process from
a process that is slow or with which communication is very
slow. To overcome this major difficulty, Chandra and Toueg
have introduced the concept of Unreliable Failure Detec-
tor [4]. A failure detector can be seen as an oracle [15]
made up of a set of modules, each associated with a process.
The failure detector module attached to a process provides
it with a list of processes it suspects of having crashed. A
failure detector module can make mistakes by not suspect-
ing a crashed process or by erroneously suspecting a cor-
rect one. In their seminal paper [4], Chandra and Toueg
have introduced several classes of failure detectors. A class
is defined by two abstract properties, namely a Complete-
ness property and an Accuracy property. Completeness is
on the actual detection of crashes, while accuracy restrict-
s erroneous suspicions. As an example, the class of fail-
ure detectors denoted �S includes all failure detectors such
that (1) eventually each crashed process is permanently sus-
pected by every correct process, and (2) there is a correct
process that, after some finite but unknown time, is nev-
er suspected by the correct processes (accuracy). Interest-
ingly, several protocols that solve the consensus problem in
asynchronous distributed systems augmented with a failure

1A correct process is a process that does not crash. See Section 2.

1

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

detector of the class �S, and including a majority of correct
processes, have been designed (e.g., [4, 11, 12, 18] to cite
a few). It has been shown that �S is the weakest class of
failure detectors that allow solving the consensus problem
in an asynchronous system prone to process crashes (with
the additional assumption that a majority of processes are
correct) [5].

A facility that is at the core of several distributed agree-
ment protocols is the class of leader oracles (usually de-
noted Ω). Such an oracle offers a leader() primitive that
satisfies the following leadership property: a unique correct
leader is eventually elected, but there is no knowledge on
when this common leader is elected and, before this occurs,
several distinct leaders (possibly conflicting) can co-exist.
Interestingly, it is possible to solve consensus (and relat-
ed agreement problems) in asynchronous distributed sys-
tem equipped with such a “weak” oracle (as soon as these
systems have a majority of correct processes) [5, 20]. It
has also been shown that, as far as failure detection is con-
cerned, Ω and �S have the same computational power in
asynchronous distributed system prone to process crashes
[5, 6].

Neither �S nor Ω can be implemented in pure (time-
free) asynchronous systems (their implementation would
contradict the consensus impossibility result [9]). Neverthe-
less, these oracle classes allow the protocols that use them to
benefit from a very nice property, namely indulgence [10].
Let P be an oracle-based protocol, and PS be the safety
property satisfied by its outputs. P is indulgent with respect
to its underlying oracle if, whatever the behavior of the or-
acle, its outputs never violate the safety property PS. This
means that each time P produces outputs, those are correct.
Moreover, P always produces outputs when the underlying
oracle meets its specification. The only case where P can
be prevented from producing outputs is when the underly-
ing oracle does not meet its specification. (Let us notice
that it is still possible that P produces outputs despite the
fact that its underlying oracle does not work correctly.)

Interestingly, �S and Ω are classes of oracles that al-
low the design of indulgent consensus protocols [11]. It is
important to notice that indulgence is a first class property
that makes valuable the design of “approximate” protocols
that do their best to implement �S or Ω on top of the asyn-
chronous system itself. The periods during which their best
effort succeeds in producing a correct implementation of
the oracle are called “good” periods, the upper layer oracle-
based protocol P then produces outputs and those are cor-
rect. During the other periods (sometimes called “bad” pe-
riods), P does not produce erroneous outputs. The only
bad thing that can happen in a bad period is that P can be
prevented from producing outputs. It is important to notice
that neither the occurrence, nor the length of the good/bad
periods (sometimes called stable vs unstable periods) can

be known by the upper layer protocol P that uses the un-
derlying oracle. The only thing that is known is that a result
produced by P is always correct.

The fact that the safety property PS of the �S/Ω-based
protocol P can never be violated, and the fact that its live-
ness property (outputs are produced) can be ensured in
“good” periods, make attractive the design of indulgen-
t �S/Ω-based protocols, and motivates the design of un-
derlying “best effort” protocols that implement a �S or Ω
oracle within the asynchronous distributed system itself. A
challenge is then to identify properties that, when satisfied
by the asynchronous system, ensure that it evolves in a good
period.
Related work Several works have considered the imple-
mentation of failure detectors of the class �S or Ω (e.g.,
[1, 4, 8, 14, 22]). Basically, all these works consider that,
eventually, the underlying system (or a part of it) behaves in
a synchronous way. More precisely, some of these imple-
mentations consider the partially synchronous system mod-
el [4] which is a generalization of the models proposed
in [7]. A partially synchronous system assumes there are
bounds on process speeds and message transfer delays, but
these bounds are not known and hold only after some finite
but unknown time (called Global Stabilization Time). The
protocols implementing failure detectors in such systems
obey the following principle: using successive approxima-
tions, each process dynamically determines a value ∆ that
eventually becomes an upper bound on transfer delays and
processing speed.

The Ω protocol described in [1] considers weaker syn-
chrony assumptions, namely it requires synchronous pro-
cesses (process speed is bounded) and the existence of at
least one correct process whose output links are eventually
timely (i.e., there are a bound δ and a time t, such that, af-
ter t, each message sent on such a link is received within δ
time). The Ω protocol described in [2] improves on the pre-
vious one as it requires that only f output links of a correct
process be eventually timely (where f is the upper bound
on the number of faulty processes).
Content of the paper Another approach to implement fail-
ure detectors, that differently from the previous ones does
not rely on the use of timeouts, has recently been introduced
in [16]. This approach, which uses explicitly the values of n
(the total number of processes) and f (the maximal number
of processes that can crash), consists in stating a property
on the message exchange pattern that, when satisfied, al-
lows the implementation of a failure detector of some class.

Assuming that each process can broadcast queries and
then, for each query, wait for the corresponding responses,
we say that a response to a query is a winning response if it
arrives among the first (n − f) responses to that query (the
other responses to that query are called losing responses).
Let us consider the following behavioral property: “There

2

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

are a correct process pi and a set Q of (f+1) processes such
that eventually the response of pi to each query issued by
any pj ∈ Q is always a winning response (until -possibly-
the crash of pj)”. It is shown in [16] that failure detectors
of the class �S can be implemented when this property is
satisfied. This means that it is possible to design a proto-
col satisfying the completeness and accuracy properties of
�S on top of asynchronous distributed systems satisfying
the previous requirement. Interestingly, such a requirement
does not involve bounds on communication times (they can
be arbitrary). A probabilistic analysis for the case f = 1
shows that such a behavioral property on the message ex-
change pattern is practically always satisfied [16].

Let MP be the previous behavioral property on the mes-
sage exchange pattern. This paper investigates MP and
shows how it can be used to implement a leader oracle. It
is important to notice that the MP property is time-free:
it does not involve timing assumptions. It that sense, the
protocols presented in this paper show that, as soon as the
MP property is satisfied by the message exchange pattern,
the eventual leader election problem can be solved in asyn-
chronous systems prone to process crashes without requir-
ing dependable timeout values. The paper presents two pro-
tocols. The first uses unbounded counters. The second im-
proves it in the sense that it uses only finite memory. So,
the eventual leader protocol we finally obtain is a time-free
finite memory protocol.
Organization of the paper The paper is made up of six
sections. Section 2 defines the system model and the be-
havioral assumption MP . Section 3 defines the class of
eventual leader oracles, and shows that they cannot be im-
plemented in purely asynchronous system. Then, Sections 4
and 5 present MP -based protocols that implement an even-
tual leader facility (the first uses unbounded counters, while
the second needs only finite memory). Finally, Section 6
concludes the paper.

2 System Model and Additional Assumption

2.1 System Model

Asynchronous distributed system with process crash
failures We consider a system consisting of a finite set Π
of n ≥ 3 processes, namely, Π = {p1, p2, . . . , pn}. A pro-
cess can fail by crashing, i.e., by prematurely halting. It
behaves correctly (i.e., according to its specification) until
it (possibly) crashes. By definition, a correct process is a
process that does not crash. A faulty process is a process
that is not correct. As previously indicated, f denotes the
maximum number of processes that can crash (1 ≤ f < n).

Processes communicate and synchronize by sending and
receiving messages through channels. Every pair of pro-
cesses is connected by a channel. Channels are assumed

to be reliable: they do not create, alter or lose messages. In
particular, if pi sends a message to pj , then eventually pj re-
ceives that message unless it fails. There is no assumption
about the relative speed of processes or message transfer
delays (let us observe that channels are not required to be
FIFO).

We assume the existence of a global discrete clock. This
clock is a fictional device which is not known by the pro-
cesses; it is only used to state specifications or prove pro-
tocol properties. The range T of clock values is the set of
natural numbers.
Query-response mechanism For our purpose (namely,
the implementation of a leader oracle) we consider that
each process is provided with a query-response mecha-
nism. Such a query-response mechanism can easily be
implemented in a time-free distributed asynchronous sys-
tem. More specifically, any process pi can broadcast a
QUERY ALIVE() message and then wait for corresponding
RESPONSE() messages from (n−f) processes (these are the
winning responses for that query). The other RESPONSE()
messages associated with a query, if any, are systematically
discarded (these are the losing responses for that query).

A query issued by pi is terminated if pi has received
the (n − f) corresponding responses it was waiting for.
We assume that a process issues a new query only when
the previous one has terminated. Without loss of general-
ity, the response from a process to its own queries is as-
sumed to always arrive among the first (n − f) respons-
es it is waiting for. Moreover, QUERY ALIVE() and RE-
SPONSE() are assumed to be implicitly tagged in order not
to confuse RESPONSE() messages corresponding to differ-
ent QUERY ALIVE() messages.

In the following ASn,f [∅] denotes an asynchronous dis-
tributed system made up of n processes among which up to
f < n can crash (1 ≤ f < n).

2.2 A Behavioral Property on the Message Ex-
change Pattern

As implementing a leader oracle in an asynchronous sys-
tem is impossible (see Theorem 1), we consider the follow-
ing additional assumption that we call MP :

“There are a time t, a correct process pi and a
set Q of (f + 1) processes (t, pi and Q are not
known in advance) such that, after t, each process
pj ∈ Q gets a winning response from pi to each
of its queries (until pj possibly crashes).”

The intuition that underlies this property is the following.
Even if the system never behaves synchronously during a
long enough period, it is possible that its behavior has some
“regularity” that can be exploited to build a leader oracle.
This regularity can be seen as some “logical synchrony” (as

3

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

opposed to “physical” synchrony). More precisely, MP s-
tates that, eventually, there is a cluster Q of (f+1) processes
that (until some of them possibly crash) receive winning re-
sponses from pi to their queries. This can be interpreted as
follows: among the n processes, there is a process that has
(f + 1) “favorite neighbors” with which it communicates
faster than with the other processes. When we consider the
particular case f = 1, MP boils down to a simple chan-
nel property, namely, there is channel (pi, pj) that is never
the slowest among the channels connecting pj to the other
processes (it is shown in [16] that the probability that this
property be satisfied in practice is very close to 1).

In the following, ASn,f [MP] denotes an asynchronous
distributed system made up of n processes among which up
to f can crash (1 ≤ f < n), and satisfying the property
MP .

3 A Leadership Facility

Definition and Use A leader oracle is a distributed entity
that provides the processes with a function leader() that re-
turns a process name each time it is invoked. A unique cor-
rect leader is eventually elected but there is no knowledge
of when the leader is elected. Several leaders can coex-
ist during an arbitrarily long period of time, and there is no
way for the processes to learn when this “anarchy” period is
over. The leader oracle (denoted Ω) satisfies the following
property2:

• Eventual Leadership: There is a time t and a correct
process p such that, after t, every invocation of lead-
er() by any correct process returns p.

Ω-based consensus algorithms are described in [11, 13, 20]3

for systems where a majority of processes are correct (f <
n/2). Such consensus algorithms can then be used as a
subroutine to implement atomic broadcast protocols (e.g.,
[4, 13, 19]).
An Impossibility Result As consensus can be solved in an
asynchronous system with a majority of correct processes,
and equipped with a leader oracle, and as consensus cannot
be solved in purely asynchronous systems [9], it follows that
a leader oracle cannot be implemented in an asynchronous
system ASn,f [∅] with 1 ≤ f < n/2. The theorem that
follows shows a more general result in the sense that it does
not state a constraint on f .

Theorem 1 No leader oracle can be implemented in
ASn,f [∅] with 1 ≤ f < n.

2This property refers to a notion of global time. This notion is not
accessible to the processes.

3The Paxos protocol [13] is leader-based and considers a more general
model where processes can crash and recover, and links are fair lossy. (Its
first version dates back to 1989, i.e., before the Ω formalism was intro-
duced.)

Proof 4 The proof is by contradiction. Assuming that there
is a protocol implementing a leader oracle, we construct a
crash-free execution in which there is an infinite sequence
of leaders such that any two consecutive leaders are differ-
ent, from which it follows that the eventual leadership prop-
erty is not satisfied.

• Let R1 be a crash-free execution, and t1 be the time
after which some process p�1 is elected as the definitive
leader.

Moreover, let R′
1 be an execution identical to R1 until

t1 + 1, and where p�1 crashes at t1 + 2.

• Let R2 be a crash-free execution identical to R′
1 until

t1 +1, and where the messages sent by p�1 after t1 +1
are arbitrarily delayed (until some time that we will
specify later).

As, for any process px �= p�1 , R2 cannot be distin-
guished from R′

1, it follows that some process p�2 �=
p�1 is elected as the definitive leader at some time
t2 > t1. After p�2 is elected, the messages from p�1

can be received.

Moreover, let R′
2 be an execution identical to R2 until

t2 + 1, and where p�2 crashes at t2 + 2.

• Let R3 be a crash-free execution identical to R′
2 until

t2 + 1, and where the messages from �2 are delayed
(until some time that we will specify later).

Some process p�3 �= p�2 is elected as the definitive
leader at some time t3 > t2 > t1. After p�3 is elected,
the messages from p�2 are received. Etc.

This inductive process, repeated indefinitely, constructs a
crash-free execution in which an infinity of leaders are
elected at times t1 < t2 < t3 < . . . and such that no t-
wo consecutive leaders are the same process. Hence, the
eventual leadership property we have assumed is not satis-
fied. �Theorem 1

4 An MP-based Leader Protocol

4.1 Underlying Principles

The protocol is made up of three tasks executed by each
process. Its underlying principles are relatively simple. It
is based on the following heuristic: each process elects as
a leader the process it suspects the least. To implement this
idea, each process pi manages an array counti[1..n] in such
a way that counti[j] counts the number of times pi suspects

4This proof is close to the proof given in [3] where we show that there
is no protocol implementing a failure detector of the class �S in ASn,f [∅]
with 1 ≤ f < n.

4

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

pj to have crashed. Then, if counti[j] never stops increas-
ing, pi heuristically considers that pj has crashed. Accord-
ing to this management of its counti array, pi considers that
its current leader is the process p� such that counti[�] has
the smallest value5 (see Task T 3).

The aim of the task T 1 and T 2 is to manage the array
counti such that the previous heuristic used to define the
current leader be consistent, i.e., satisfies the eventual lead-
ership property. To benefit from the MP property, the task
T 1 uses the underlying query-response mechanism. Peri-
odically, each pi issues a query and waits for the (n − f)
corresponding winning responses (lines 101-102). The re-
sponse from pj carries the set of processes that sent winning
responses to its last query (this set is denoted rec fromj).
Then, according to the rec fromj sets it has received, pi

updates accordingly its counti array.
The QUERY ALIVE() messages implementing the query-

response mechanism are used as a gossiping mechanism to
disseminate the value of the counti array of each process
pi. The aim of this gossiping is to ensure that eventually all
correct processes can elect the same leader.

4.2 Correctness Proof

Given an execution, let C denote the set of processes that
are correct in that execution. Let us consider the following
set definitions (PL stands for “Potential Leaders”): PL =
{px | ∃pi ∈ C : counti[x] is bounded}, and for any correct
process pi : PLi = {px | counti[x] is bounded}.

The proof is made up of three parts:
- We first show that, in any execution that satisfies MP , the
set PL is not empty (Lemma 1),
- We then show that PL is a subset of the processes that are
correct in that execution (Lemma 2),
- Finally, we show that PLi = PL for any correct process
pi (Lemma 3).

This first lemma shows that the additional assumption
MP ensures that the set PL cannot be empty.

Lemma 1 MP ⇒ PL �= ∅.

Proof Due to the MP assumption, there are a time t, a cor-
rect process pi and a set Q including at least f +1 processes
such that, after t, ∀pj ∈ Q, until it possibly crashes, pj re-
ceives from pi only winning responses to its queries. Let us
notice that Q includes at least one correct process.

Let us consider a time t′ after which no more process
crashes, and let τ = max(t, t′). Let pk be any correct pro-
cess. As pk waits for RESPONSE() messages from (n − f)
processes and, after τ , at most n− (f +1) processes do not
receive winning responses from pi, it follows that there is a

5Actually, a timestamp-like pair (counti[�], �) is associated with each
process p�. Then, when two counters have the same value, they are ordered
according to their process ids.

time τk, after which pi always belongs to REC FROMk.
From which we conclude that, after τk, pk never increments
countk[i] at line 105. As this is true for any correct process
pk, it follows that there is a time T ≥ maxpk∈C(τk) after
which, due to the gossiping of the countk arrays, we have
countk1[i] = countk2[i] = Mi (a constant value), for any
pair of correct processes pk1 and pk2. The lemma follows.

�Lemma 1

The next corollary follows directly from the proof of the
previous lemma.

Corollary 1 Let pi and pj be any pair of correct process-
es. If, after some time, counti[k] remains forever equal to
some constant value Mk, then there is a time after which
countj[k] remains forever equal to the same value Mk.

The second lemma shows that the set of potential leaders
PL contains only correct processes.

Lemma 2 PL ⊆ C.

Proof We show the contrapositive, i.e., if px is a faulty
process, then each correct process pi is such that counti[x]
increases forever. Thanks to the gossiping mechanism (real-
ized by the QUERY ALIVE() messages) used to periodically
broadcast the counter arrays, it is actually sufficient to show
that there is a correct process pi such that counti[x] increas-
es forever if px is faulty.

Let t0 be a time after which all the faulty processes have
crashed, and all the messages they have previously sent are
received. Moreover, let t > t0 be a time such that each
correct process has issued and terminated a query-response
between t0 and t (the aim of this query-response invoca-
tion is to “clean up” -eliminate faulty processes from- the
REC FROMi set of each correct process pi). Let px be a
faulty process (it crashed before t) and pi be a correct pro-
cess. We have the following:

• All the query-response invocations issued by pi after
t define a rec fromi set (computed at line 106) that
does not include px.

• It follows that, after t, the set REC FROMi comput-
ed at line 103 can never include px. This means that,
after t, the set not rec fromi (computed at line 104)
always includes px. Hence, after t, counti[x] is in-
creased each time pi issues a query-response. As pi

is correct it never stops invoking the query-response
mechanism, and the lemma follows.

�Lemma 2

Finally, the third lemma shows that no two processes can
see different sets of potential leaders.

Lemma 3 pi ∈ C ⇒ PLi = PL.

5

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

init: rec fromi ← Π; counti ← [0, . . . , 0];

task T1:
repeat

(101) for each j do send QUERY ALIVE(counti) to pj end do;
(102) wait until

�
corresponding RESPONSE(rec from) received from (n − f) proc.

�
;

(103) let REC FROMi = ∪ of all the rec fromk received at line 102;
(104) let not rec fromi = Π − REC FROMi;
(105) for each j ∈ not rec fromi do counti[j] ← counti[j] + 1 end do;
(106) let rec fromi = the set of processes from which pi received a RESPONSE at line 102

end repeat

task T2: upon reception of QUERY ALIVE(cj) from pj :
(107) for each k ∈ Π do counti[k] ← max(cj [k], counti[k]) end do;
(108) send RESPONSE(rec fromi) to pj

task T3: when leader() is invoked by the upper layer:
(109) let � such that (counti[�], �) = mink∈Π

�
(counti[k], k)

�
;

(110) return (�)

Figure 1. MP -based Module (for Process pi)

Proof Let us first observe that PL =
⋃

pi∈C PLi (this fol-
lows immediately from the definition of PL). Consequently,
PLi ⊆ PL.

To show the inclusion in the other direction, let us con-
sider px ∈ PL (i.e., px is a correct process such that there is
a correct pj such that countj[x] is bounded). Let Mx be the
greatest value taken by countj[x]. We show that counti[x]
is bounded. As after some time countj [x] remains forever
equal to Mx, it follows from the fact that pi and pj are cor-
rect and the perpetual gossiping from pi to pj (lines 101 and
107) that we always have counti[x] ≤ Mx, from which we
conclude that counti[x] is bounded. �Lemma 3

Theorem 2 Let 1 ≤ f < n. The protocol described in
Figure 1 implements a leader facility in ASn,f [MP].

Proof The proof follows directly from the Lemmas 1, 2 and
3 which state that all the correct processes have the same
non-empty set of potential leaders, which includes only cor-
rect processes. Moreover, due to Corollary 1, all the correc-
t process have the same counter values for the processes
of PL (and those values are the only ones to be bounded).
It follows that the correct processes elect the same leader
that is the correct process with the smallest counter value.

�Theorem 2

Let us say “px is a process that makes satisfied the as-
sertion MP” when px is a correct process such that after
some time, there is a set of f +1 processes that receive only
winning responses from it. It is important to notice that the
process that is eventually elected is not necessarily a process
px that makes satisfied the assertion MP .

4.3 Discussion

It is important to observe that query-response “chal-
lenges” issued by different processes are independent one
from the other. This has an interesting consequence, name-
ly, a process can introduce an arbitrary delay before issuing
a query-response challenge (at line 101). Therefore, each
process can, independendly of the other processes, dynami-
cally define and set such a delay to match the bandwith that
failure detector messages are allowed to use.

5 Leadership with Bounded Counters

The protocol presented in Figure 1 implements a leader
facility as soon as the underlying system satisfies the behav-
ioral property MP on the message exchange pattern. The
common leader that is eventually elected is a correct process
that satisfies some global “stability” property, namely, after
some time no process suspects it. To attain this goal, the
proposed protocol uses suspicion counters. Unfortunate-
ly, both the counters associated with the faulty processes
and the counters associated with the correct processes that
are not “potential leaders” increase forever. This section
presents a protocol that requires only finite memory, name-
ly, there is a single counter and this counter takes a finite
number of values. This means that, in each infinite execu-
tion, both the local memory of each process and the message
size are finite.

5.1 Underlying Principles

The protocol with finite memory is described in Figure
2. It borrows principles from sequence number-based pro-
tocols (similarly to what is done in [6]). There are two main

6

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

differences with respect to the previous “unbounded” pro-
tocol.
• A first difference lies in the way a process pi represents
the set of possible candidates for being the common lead-
er. This is the role of the set trusti. This set, built at line
204, provides a bounded representation of the set of poten-
tial leaders.
• The second difference lies in the use of sequence number-
s that will remain finite in each execution. When a process
broadcasts its current view of the set of potential leaders
(line 201), it associates with it its “age”, namely, the current
value of seqnumi. Let us notice that (as before) the query-
response mechanism is used to convey this information.
Then, when a process pi receives a pair (trustj , seqnumj)
(task T 2), it updates trusti according to the respective val-
ues of seqnumi and seqnumj . If they are equal it trusts
the processes in the intersection set (line 206). If it knows
“less”, it adopts the values it receives (207). As the new val-
ue of trusti can be computed from an intersection (at lines
204 and 207), it is possible that the new value be the empty
set. In that case, pi resets trusti to its initial value (namely,
Π), and increments its sequence number to start a new age
period.

Finally, the process that pi considers as the leader is the
process of trusti with the smallest identity.

5.2 Correctness Proof
Theorem 3 Let 1 ≤ f < n. When run in ASn,f [MP],
the protocol described in Figure 2 uses a finite memory and
finite size messages.

Proof Given an execution (with at least one correct
process), let t0 be a time after which (1) all the faulty
processes have crashed and all their messages have been
received, and (2) there is a correct process px and a set of
(f + 1) processes that always receive winning responses
from px (such a time t0 exists due to the MP assumption).
Finally, let t > t0 be a time such that each correct process
has invoked the query-response mechanism at least once
between t0 and t. (The idea is that after t the system has a
“nice” behavior.)

Claim C1. After t, there is a correct process px that
continuously belongs to the REC FROMi set of every
correct process pi.
Proof of the claim. Let pi be any correct process. As (1) pi

waits for RESPONSE() messages from (n−f) processes and
(2) due to the MP assumption, after t, at most n − (f + 1)
processes do not receive winning responses from some
px, it follows that pi receives at least one rec fromk set
including px. The claim follows then from line 203: after t,
px always belongs to REC FROMk. End of the proof of
the claim C1.

Let M t be the maximal seqnum value among the
correct processes at time t. Moreover, let say “the set
trusted is associated with the sequence number sn” when
there is a correct process pj such that trustj = trusted
and seqnumj = sn (let us observe that several sets can be
associated with the same sequence number).

Claim C2. Let us assume that ∅ is associated with M t.
There is then (1) a process pj that executes the reset state-
ment at line 208, after which we have (trustj , seqnumj) =
(Π, M t + 1). Moreover, (2) the pair (Π, M t + 1) is sent to
all the processes.
Proof of the claim. Let us first observe that (Observation
O1) a set trusti can only decrease while seqnumi remains
equal to M t, (Observation O2) there is no gap in sequence
numbers (which means that if a sequence number variable
is equal to M , then there are sequence number variables that
had previously the values 0, 1, . . . , M − 1), and (Observa-
tion O3) the update by a process pj of its seqnumj variable
to the value M + 1 (at line 207 or 208) is always due to the
fact that some process pk (which is possibly pj itself) exe-
cuted seqnumk ← seqnumk + 1 at line 208 (where M is
the value of seqnumk before the update; notice that pk also
set trustk to Π).

Let pi be a process that associates ∅ with M t. If the
pair (trusti, seqnumi) remains equal to (∅, M t) until pi

receives a query, it executes line 208 and consequently re-
sets (trusti, seqnumi) to (Π, M t +1). The only other pos-
sibility for that pair to be modified is at line 207, but in
that case pi received a sequence number > M t, and it fol-
lows from the observations O2 and O3 that some process
pj executed line 208 updating the pair (trustj , seqnumj)
to (Π, M t + 1). This proves the first part of the claim.

The proof of the second part of the claim is by con-
tradiction. Let us assume that no process issues a query
with the pair (Π, M t + 1). This means that the pairs
that are sent have the form (X, M t + 1) with X �= Π.
Let pi1 be a process such that at some time ti1 we have
(trusti1, seqnumi1) = (Π, M t + 1). As it sends at some
time t′i1 > ti1 the pair (Xi1, M

t + 1) with Xi1 �= Π
(by assumption), we conclude that, between ti1 and t′i1,
pi1 received a query from some process pi2 carrying
(Xi2, M

t + 1) with Xi2 �= Π. The same reasoning can
be applied to pi2, from which we conclude that there is a
process pi3, etc. It follows that we can construct an infinite
chain of distinct processes, which is clearly impossible as
there is a finite number of processes. It follows that there is
a process that sends a query carrying the pair (Π, M t + 1).
End of the proof of the claim C2.

Let pi be a correct process such that seqnumi = M t.
Due to the gossiping mechanism, after some time we will
have seqnumj ≥ M t for any correct process pj . We con-

7

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

init: rec fromi ← Π; seqnumi ← 0; trusti ← Π;

task T1:
repeat

(201) for each j do send QUERY ALIVE(trusti, seqnumi) to pj end do;
(202) wait until

�
corresponding RESPONSE(rec from) received from (n − f) proc.

�
;

(203) let REC FROMi = ∪ of all the rec fromk received at line 202;
(204) trusti ← trusti ∩ REC FROMi;
(205) let rec fromi = the set of processes from which pi received a RESPONSE at line 102

end repeat

task T2: upon reception of QUERY ALIVE(trustj, seqnumj) from pj :
(206) if seqnumj = seqnumi then trusti ← trusti ∩ trustj end if;
(207) if seqnumj > seqnumi then trusti ← trustj ; seqnumi ← seqnumj end if;
(208) if trusti = ∅ then trusti ← Π; seqnumi ← seqnumi + 1 end if;
(209) send RESPONSE(rec fromi) to pj

task T3: when leader() is invoked by the upper layer:
(210) if trusti = ∅ then return (i)
(211) else return (min(trusti))
(212) end if

Figure 2. MP -based Module with Finite Memory (for Process pi)

sider two cases.
•Case 1: ∅ is never associated with M t. In that case, no cor-
rect process pi will ever execute the reset statement at line
208. It follows that no process pi will increase its seqnumi

variable, and the theorem follows.
•Case 2: ∅ is associated with M t. From the claim C2, there
is inevitably a process pj that executes the reset statemen-
t at line 208, after which we have (trustj , seqnumj) =
(Π, M t + 1), and this pair is sent to all the correct process-
es. Combining this with the claim C1, from now on, any set
trusti permanently contains at least the correct process px

defined in C1. It follows that a set trusti can become emp-
ty neither at line 204 nor at line 206. Hence, no process pi

can execute the reset statement at line 208, and the theorem
follows. �Theorem 3

Theorem 4 Let 1 ≤ f < n. The protocol described in
Figure 2 implements a leader facility in ASn,f [MP].

Proof Given an execution and C being the set of processes
that are correct in that execution, let: PL = {px | ∃pi ∈ C :
after some time x remains continuously in trusti}.

We first show that MP ⇒ PL �= ∅. This is a conse-
quence of Theorem 3 (which relies on the MP assumption).
More precisely, there is a time t after which the sequence
numbers do no longer increase, from which we conclude
that that no set trusti becomes empty after t. Moreover,
the gossiping mechanism ensures that there is a time t′ ≥ t
after which all these sets are equal and do not change their
value (as they are then updated only by intersection). Final-
ly, due to the very definition of PL, the trusti sets are then

equal to PL. It follows that PL is not empty.
We now show that PL ⊆ C. This actually follows from

the claim C1 stated and proved in Theorem 3. More explic-
itly, as there is a time after which the REC FROMi sets
contain only correct processes and the trusti sets are never
reset to Π, it follows that, after that time, these trusti sets
can contain only correct processes.

Finally, the eventual leadership property follows from
the following observations: PL �= ∅, PL ⊆ C, and there is
a time t after which we have ∀i : pi ∈ C ⇒ trusti = PL.

�Theorem 4

6 Conclusion
Leader-based protocols are common in distributed com-

puting. They rely on an underlying primitive that provide
the same unique leader to the processes. Such a primitive is
usually used to solve synchronization or coordination prob-
lems. While it is particularly easy to implement a leader
primitive in a fault-free system, its construction in an asyn-
chronous system prone to process crashes is impossible if
the underlying system is not enriched with additional as-
sumptions. While the traditional approach to build a dis-
tributed leader facility in such crash-prone asynchronous
systems considers additional synchrony assumptions, the
approach presented in this paper has considered an addi-
tional time-free assumption, namely, a behavioral property
on the message flow.

The paper has presented two leader protocols. The first
one uses potentially unbounded counters, while the second
one (which is a little bit more involved) requires only finite
memory. Interestingly, as in [17], it is possible to merge the

8

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

synchrony-based approach with the the proposed approach
to get a hybrid leader protocol. Such a combination is de-
scribed in the appendix. It allows expediting the conver-
gence (a correct process is elected as the definitive lead-
er) as, in that case, convergence can then be guaranteed as
soon as one assumption (synchrony or message exchange
pattern) is satisfied. Such a hybrid approach provides in-
creased overall assumption coverage [21].

Acknowledgements
We would like to thank X. Defago and D. Powell for

(independent) discussions on the implementation of failure
detectors, and the referees for their constructive comments.

References

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., On Implementing Omega with Weak Reliabili-
ty and Synchrony Assumptions. 22th ACM Symposium on
Principles of Distributed Computing, pp. 306-314, 2003.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., Communication Efficient Leader Election and
Consensus with Lilmited Link Synchrony. 23th ACM Sym-
posium on Principles of Distributed Computing, 2004.

[3] Anceaume E., Fernandez A., Mostefaoui A., Neiger G. and
Raynal M., Necessary and Sufficient Condition for Trans-
forming Limited Accuracy Failure Detectors. Journal of
Computer and System Sciences, 68:123-133, 2004.

[4] Chandra T.D. and Toueg S., Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[5] Chandra T.D., Hadzilacos V. and Toueg S., The Weak-
est Failure Detector for Solving Consensus. Journal of the
ACM, 43(4):685-722, 1996.

[6] Chu F., Reducing Ω to �W . Information Processing Letters,
76(6):293-298, 1998.

[7] Dwork C., Lynch N. and Stockmeyer L., Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2):288-323, 1988.

[8] Fetzer C., Raynal M. and Tronel F., An Adaptive Failure
Detection Protocol. 8th IEEE Pacific Rim Int. Symposium
on Dependable Computing (PRDC’01), pp. 146-153, 2001.

[9] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process. Journal of
the ACM, 32(2):374-382, 1985.

[10] Guerraoui R., Indulgent Algorithms. 19th ACM Symposium
on Principles of Distributed Computing, (PODC’00), ACM
Press, pp. 289-298, 2000.

[11] Guerraoui R. and Raynal M., The Information Structure
of Indulgent Consensus. IEEE Transactions on Computer-
s, 53(4):453-466, April 2004.

[12] Hurfin M., Mostefaoui A. and Raynal M., A Versatile Fami-
ly of Consensus Protocols Based on Chandra-Toueg’s Unre-
liable Failure Detectors. IEEE Transactions on Computers,
51(4):395-408, 2002.

[13] Lamport L., The Part-Time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998.

[14] Larrea M., Fernández A. and Arèvalo S., Optimal Imple-
mentation of the Weakest Failure Detector for Solving Con-
sensus. Proc. 19th Symposium on Reliable Distributed Sys-
tems, pp. 52-60, 2000.

[15] Mostefaoui A., Mourgaya E. and Raynal M., An Introduc-
tion to Oracles for Asynchronous Distributed Systems. Fu-
ture Generation Computer Systems, 18(6):757-767, 2002.

[16] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous
Implementation of Failure Detectors. Proc. Int. IEEE Con-
ference on Dependable Systems and Networks (DSN’03), pp.
351-360, 2003.

[17] Mostefaoui A., Powell D., and Raynal M., A Hybrid Ap-
proach for Building Eventually Accurate Failure Detectors.
Proc. 10th IEEE Int. Pacific Rim Dependable Computing
Symposium (PRDC’04), pp. 57-65, 2004.

[18] Mostefaoui A. and Raynal M., Solving Consensus Using
Chandra-Toueg’s Unreliable Failure Detectors: a General
Quorum-Based Approach. Proc. 13th Symp. on DIStributed
Computing, Springer Verlag LNCS #1693, pp. 49-63, 1999.

[19] Mostefaoui A. and Raynal M., Low-Cost Consensus-Based
Atomic Broadcast. 7th IEEE Pacific Rim Int. Symposium on
Dependable Computing (PRDC’2000), pp. 45-52, 2000.

[20] Mostefaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 2001.

[21] Powell D., Failure Mode Assumptions and Assumption
Coverage. 22nd Int. Symp. on Fault-Tolerant Computing
(FTCS-22), pp.386-395, 1992.

[22] Raynal M. and Tronel F., Group Membership Failure Detec-
tion: a Simple Protocol and its Probabilistic Analysis. Dis-
tributed Systems Engineering Journal, 6(3):95-102, 1999.

A A Hybrid Protocol

This appendix shows that the previous approach (based
on a property satisfied by the message exchange pattern)
and the more classical approach that relies on the use of
timeouts are not antagonistic and can be combined to pro-
duce a hybrid protocol implementing an eventual leader o-
racle. The resulting protocol benefits from the best of both
worlds in that it converges as soon as some synchrony as-
sumption is satisfied, or the required message exchange pat-
tern occurs. We consider here the synchrony assumption
and the corresponding leader protocol defined in [2].

9

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

A.1 Synchrony Assumptions

We consider here a synchrony model slightly stronger
than the one introduced in [2]6. First, the processes are syn-
chronous (there is a lower and upper bound on the number
of steps per time unit of any non-faulty process). Moreover,
there is at least one correct process that is a �f -source. This
means that there is a correct process pi that has f output
channels such that, after some unknown but finite time t,
there is a bound δ (whose value is not known in advance)
such that -after t- any message sent on such a channel is
received within δ (it is not required that the destination pro-
cesses of a �f -source be correct; some -or all- of them can
be faulty7).

Let ASn,f [�f -source] denote a distributed system satis-
fying this synchrony assumption.

A.2 Aguilera et al.’s Protocol

Aguilera et al. present in [2] the following leader proto-
col, whose code for process pi is described in Figure 3, that
works in any system ASn,f [�f -source]. Each process pi

manages an array counti. This array is such that counti[j]
is bounded if pj is a correct �f -source, while counti[j] is
unbounded if pj is faulty. As in the protocol described in
Figure 1, the leader is the process p� whose counter has the
smallest value (task T 5).

The key of the protocol is the management of each
counter counti[j], i.e., the way such a counter is (or not)
increased. To this end, each process pi manages an ar-
ray suspecti as follows (task T 4): suspecti[j] keeps track
of the set of processes that currently suspect pj to have
crashed(task T 3). If this set contains (n − f) processes (or
more), then pi increases counti[j] and resets suspecti[j] to
∅. The �f -source assumption allows showing that every
faulty process pj will be forever suspected (i.e., counti[j]
will never stop increasing), while counti[j] will remain
bounded if pj is a � f -source. Consequently, there is at
least one entry of counti that remains bounded and all the
entries of counti that remain bounded correspond to correct
processes. So, we get the following theorem:

Theorem 5 [2] The protocol in Figure 3 implements a lead-
er facility in ASn,f [�f -source].

A.3 A Hybrid Protocol

Let count MPi be the array counti used in the protocol
described in Figure 1 (the protocol based on the message
exchange pattern assumption). Similarly, let count �f i be
the array counti used in the protocol described in Figure 3
(the protocol based on the �f -source synchrony assump-
tion).

6While [2] considers that the channels can be fair lossy, we consider
here that they are reliable.

7This is similar to the MP assumption where some of the f + 1 pro-
cesses of the set Q can be faulty.

init:
∀j �= i: timeouti[j] ← α + 1; set timeri[j] to timeouti[j];
counti ← [0, . . . , 0]; suspecti ← [∅, . . . , ∅]

task T1: repeat periodically every α time units:
for each j �= i do send ALIVE (counti) to pjend do

task T2: when ALIVE (count) is received from pj :
∀k do counti[k] ← max(counti[k], count[k]) enddo;
reset timeri[j] to timeouti[j]

task T3: when timeri[k] expires:
timeouti[k] ← timeouti[k] + 1;
∀j do send SUSPECT(k) to pj enddo;
reset timeri[k] to timeouti[k]

task T4: when SUSPECT(k) is received from pj :
suspecti[k] ← suspecti[k] ∪ {pj};
if |suspecti[k]| ≥ n − f then

counti[k] ← counti[k] + 1; suspecti[k] ← ∅
end if

task T5: when leader() is invoked by the upper layer:
let � s. t. (counti[�], �) = mink∈Π

�
(counti[k], k)

�
;

return (�)

Figure 3. Aguilera et al.’s Leader Protocol

These protocols can be merged as follows. Both pro-
tocols execute independently one from the other with the
following modification. The last task of each protocol (i.e.,
the task T 3 in Figure 1, and the task T 5 in Figure 3) are
suppressed and replaced by a new task T 3/T 5 defined as
follows:

task T 3/5: when leader() is invoked by the upper layer:
∀k: counti[k] ← min(count MPi[k], count �f i[k]);
let � s. t. (counti[�], �) = mink∈Π

{
(counti[k], k)

}
;

return (�)

The reader can adapt the proof described in the paper to
show that the resulting hybrid protocol implements a leader
facility as soon as either the message pattern assumption
MP or the �f -source synchrony assumption is satisfied.
So we get the following theorem:

Theorem 6 The hybrid protocol obtained by combining the
protocol described in Figure 1 and the protocol described in
Figure 3 implements a leader facility in ASn,f [MP ∨ �f -
source].

Hence, this protocol benefits from the best of both world-
s. This shows that, when the underlying system can satis-
fy several alternative assumptions, convergence can be ex-
pedited. Moreover, since convergence is guaranteed if any
one of the alternative assumptions is satisfied, the resulting
hybrid protocol provides an increased overall assumption
coverage [21].

10

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS’04)
1060-9857/04 $ 20.00 IEEE

	footer1:

